
Balancing Cost and Effectiveness of Synthetic Data
Generation Strategies for LLMs

Yung-Chieh Chan∗ George Pu∗ Apaar Shanker Parth Suresh Penn Jenks
John Heyer Sam Denton

Scale AI
{yungchieh.chan, george.pu, sam.denton}@scale.com

Abstract

As large language models (LLMs) are applied to more use cases, creating high
quality, task-specific datasets for fine-tuning becomes a bottleneck for model
improvement. Using high quality human data has been the most common approach
to unlock model performance, but is prohibitively expensive in many scenarios.
Several alternative methods have also emerged, such as generating synthetic or
hybrid data, but the effectiveness of these approaches remain unclear, especially in
resource-constrained scenarios and tasks that are not easily verified. To investigate
this, we group various synthetic data generation strategies into three representative
categories – Answer Augmentation, Question Rephrase and New Question – and
study the performance of student LLMs trained under various constraints, namely
seed instruction set size and query budget. We demonstrate that these strategies are
not equally effective across settings. Notably, the optimal data generation strategy
depends strongly on the ratio between the available teacher query budget and the
size of the seed instruction set. When this ratio is low, generating new answers to
existing questions proves most effective, but as this ratio increases, generating new
questions becomes optimal. Across all tasks, we find that choice of augmentation
method and other design choices matter substantially more in low to mid data
regimes than in high data regimes. We provide a practical framework for selecting
the appropriate augmentation method across settings, taking into account additional
factors such as the scalability of each method, the importance of verifying synthetic
data, and the use of different LLMs for synthetic data generation.

1 Introduction

Applications of large language models (LLMs) cover a wide range of tasks, from natural language
understanding to code generation (Qin et al., 2024; Jiang et al., 2024). However, applying LLMs
to new tasks and domains brings challenges in sourcing high-quality, task-specific data (Ling et al.,
2023). To overcome this data bottleneck, various solutions have emerged, leveraging human input,
hybrid methods, and synthetic data. Some examples of these approaches involve manual or automated
enhancement of data quality (Weng, 2024), increasing the dataset quantity (Gunasekar et al., 2023;
Wang et al., 2024), or extracting more informative learning signals from each data sample (Setlur
et al., 2024). For instance, Dubey et al. (2024) enhanced smaller Llama 3.1 models in coding, math,
and long-context tasks by fine-tuning on hybrid data from Llama 3.1 405b.

While each of these methods has shown promise, their relative cost-effectiveness and performance
across different tasks and data constraints remain unclear, especially in resource-constrained scenarios.
This lack of clarity poses a significant challenge for practitioners seeking to optimize their data
generation strategies for specific tasks and available resources.

∗Denotes equal contribution. Work was done while Yung-Chieh was interning at Scale AI.

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).

In this paper, we investigate the effectiveness of various synthetic data generation strategies for
training LLMs under different constraints. We choose a knowledge distillation setting where we
only have access to a set of seed instructions, a teacher LLM, and a student LLM to be fine-tuned.
The objective is to leverage the limited set of seed instructions and our choice of teacher model to
best improve the student model. To evaluate these strategies, we study the performance of training
a student LLM under various constraints, such as seed instruction set size and query budget. The
seed instruction set size represents the number of initial task-specific instructions available, while the
query budget reflects the number of allowed queries to the teacher model.

Motivated by the many augmentation strategies in math domains (Yu et al., 2023; Xu et al., 2023),
we categorize synthetic data generation methods into three main approaches – Answer Augmentation,
Question Rephrasing, and New Question – and assess the generalizability to multiple tasks, including
mathematics, coding (SQL), and general question answering. We also focus on disentangling and
identifying the critical dimensions to consider when designing a data strategy for training LLMs. Our
main contributions are summarized as follows:

1. We propose a novel framework to evaluate synthetic data generation strategies under data
constraints and demonstrate synthetic data effectiveness in new tasks beyond traditional
mathematical and coding scenarios.

2. We demonstrate that the optimal data generation strategy depends on the query budget-to-
seed instruction set size ratio, where augmenting responses is most effective with limited
queries, while generating new instructions becomes better as the query budget increases.

3. We identify that model choice for New Question evolution is a key factor for student LLM
performance, while showing that factors like response verification, choice of augmentation
LLM for Question Rephrase, and choice of student LLM have less impact.

2 Related Work

Synthetic Data for Fine-Tuning. Fine-tuning on synthetic and hybrid data has proven successful
across a wide range of tasks (Liu et al., 2024). In the domain of mathematical reasoning, high-
quality instructions are scarce, so many works leverage LLM-generated synthetic data to significantly
improved the math reasoning ability of small LLMs (Yu et al., 2023; Li et al., 2024; Setlur et al.,
2024; Luo et al., 2023). In code generation, synthetic data from LLMs can be further verified by
running test cases or the code directly, which helps close the gap between closed-source LLMs
and smaller LLMs (Wei et al., 2024; Yang et al., 2024). Similar approaches have been applied in
instruction-following, where LLMs are effectively trained on diverse synthetic instructions with
minimal to no human supervision (Xu et al., 2024; Wang et al., 2022; Xu et al., 2023). However,
most works focus on a single domain and do not explore how these techniques perform under varying
data constraints and strategies, leaving uncertainty in adapting them to new applications. We aim to
compare and extend these methods in cost constrained settings, while investigating which factors in
synthetic data generation remain impactful across multiple tasks and data budgets.

Efficient Synthetic Data Generation. Although synthetic data is significantly cheaper than real
data, its scalability encourages researchers to generate it at extremely large scales, making generation
costs a substantial component of fine-tuning expert models (Li et al., 2024). Other works focus on
aggressively filtering synthetic datasets for diversity and correctness with custom tricks for each
domain (Long et al., 2024). Current research on training LLMs with synthetic data emphasizes
scalability and performance, but to make these methods more applicable to more tasks, we also need
to disentangle and understand cost-efficiency across different scales. Bansal et al. (2024) explores
and optimizes the choice of LLMs to sample synthetic data for overall cost reductions. Our work
addresses this challenge from a new perspective by offering a general framework that guides model
trainers in defining and refining their synthetic data generation strategies to maximize cost-efficiency
within budget constraints.

3 Method

In this work, we examine techniques in synthetic data that were initially introduced in the math-
reasoning domains and extend the analysis of these strategies to a more diverse collection of tasks

2

Figure 1: Overview of Synthetic Data Generation Approaches. Given a seed instruction set,
we have 3 different methods to create instruction-response pairs for fine-tuning our student model.
We use an example seed instruction from the ARC-C training set with synthetic instructions and
responses generated with Llama 3.1 70b Instruct.

and constraints (Setlur et al., 2024; Yu et al., 2023; Li et al., 2024). We choose supervised fine-
tuning (SFT) as the learning objective for the student model, which requires a dataset consisting
of instruction-response pairs. We identify three main types of synthetic data generation strategies
pertinent to an SFT instruction set – Answer Augmentation, Question Rephrasing and New Question
– that are in essence, either the transformations of the seed instructions by an augmenter LLM,
generation of corresponding responses by a teacher LLM or both. In this work, we do not utilize or
assume the availability of ground truth responses for our instruction sets.

First, we establish relevant notations to facilitate the discussion of our data generation strategies
and experiments. Let Iseed = {qi}i=1:N be the set of seed or initial instructions of size N . Then, a
synthetic data generation strategy G can be understood as a two-step process: (1) augmentation of the
seed instructions using an augmenter LLM referred to as πaug and (2) the generation of corresponding
responses for each of these instructions using a teacher LLM, referred to as πT . In the different choices
of G, πaug and πT are utilized to obtain a synthetic training dataset Dsynth ∈ {Itrain, Rtrain} where
Itrain is the set of instructions and Rtrain is the corresponding responses towards training a student
model referred to as πS .

We present an overview of our data generation methods in Figure 1. The following section details
the construction of Dsynth using these three strategies, illustrated through the initial question: "How
many times does Earth rotate on its axis in one day?"

3.1 Data Generation Strategies

Answer Augmentation generates a diverse set of responses to the seed instructions, varying in
reasoning paths, lexical choices and semantic content. We perform Chain-of-Thought prompting
with our teacher model πT and use temperature sampling (T) to increase response variety (Wei et al.,
2022). Given our question about Earth’s rotation, responses created by answer augmentation would
generally begin with background and explanatory text: "Earth’s rotation on its axis is what causes
day and night..." and end with a final answer: "The Earth rotates on its axis once in one day".

Dsynth = {(qi, ri) : qi ∈ Iseed, ri = πT (qi|T = 0.7), i = 1 : N} (1)

Question Rephrasing generates new instructions Itrain by reformulating the seed instructions using
the augmentation model πaug before sampling the corresponding responses from the teacher model
πT . Often, prompting LLMs to generate more diverse and relevant instructions is a much harder task

3

Table 1: Student model πS and teacher model πT accuracy on each dataset’s held-out test set of 1k
samples, where higher is better.

Model GSM8k Spider ARC-C

Llama 2 7B Chat 15.0% 23.7% 47.6%
Llama 3.1 70B Instruct 94.6% 77.3% 93.9%

than generating diverse solutions for a given question. An example of a rephrased instruction would
be "What is the number of rotations the Earth makes on its axis within a 24-hour period?", such that
there is the same final answer to both this and the initial question. In practice, the rephrased questions
can be paired with the responses already available in the seed instruction sets, thus providing a
particularly appealing alternative from the cost-efficiency angle. However, in our study, we only
assume the availability of instructions.

Dsynth = {(qi, ri) : qi = GQR(Iseed|πaug, T = 0.7), ri = πT (qi|T = 0.7), i = 1 : N} (2)

New Question Evolution generates new instructions using πaug conditioned on examples derived
from the seed instruction set but prompted to have a different final answer, and then samples πT for
their responses. Similar to Li et al. (2024), we adopt a self-verification process to ensure that the
generated instructions are answerable and adhere to the correct format. By conditioning the πaug

generation on the seed instruction set, we observe that the new instructions are semantically better
aligned with the target domain. At the same time, this approach ensures more diversity in the sampled
instructions compared to question rephrasing. An example of a new instruction given an initial seed
instruction can be: "How many times does the Moon rotate on its axis in the time it takes to orbit
the Earth two times?", which has a different final answer: "The Moon rotates on its axis two times."
compared to answer augmentation and question rephrase.

Dsynth = {(qi, ri) : qi = GNQ(Iseed|πaug, T = 0.7), ri = πT (qi|T = 0.7), i = 1 : N} (3)

4 Experimental Setup
Our setup consists of a student model πS , an augmentation model πaug, a teacher model πT and a
task-specific seed instruction set. πS learns from an expanded dataset with instructions generated by
πaug from the seed instruction set and their corresponding responses generated by πT . To evaluate
the broad applicability of our approach, we select three diverse task types: math, coding and general
question answering. We choose coding and general question answering as task types based on popular
industry use cases to understand how trends in synthetic data extend beyond math-heavy domains.

For our primary experiments, we use Llama 3.1 70b Instruct as both πT and πaug and Llama 2
7b Chat as πS (Dubey et al., 2024; Touvron et al., 2023). This choice of models ensures a wide
performance gap between πS and πT , allowing us to highlight the relative improvements to πS

with each technique. To better understand additional cost-effective dimensions, we also run several
ablations, such as the choice of πaug and πS , in Section 5.3. Additional details on our fine-tuning
process and design choices are in Appendix F.

4.1 Datasets and Evaluations

We select one representative dataset for each of the three tasks to evaluate the synthetic data generation
strategies at scale. For math, we use GSM8k (Cobbe et al., 2021), which consists of grade school-level
math questions and has 7,500 seed instructions used in training. We report the exact accuracy of the
final answer for evaluation. For coding, we utilize Spider (Yu et al., 2018), which is a text-to-SQL
dataset across 200 different databases and 138 domains. We use the full 7,000 seed instructions for our
experiments, and for evaluation, execution accuracy is reported as the evaluated metric. For general
question answering, we use ARC-C (Clark et al., 2018), a reasoning-focused question-answering
dataset consisting of grade school science questions. For each dataset, we use the respective held-out
test containing about 1000 samples each to evaluate πS . In the case of ARC-C, we evaluate our
models on challenge split with exact accuracy. The initial accuracy of πS and πT are shown in Table
1, while the seed instruction sets and evaluation details are described in Appendix G.

4

4.2 Generating Synthetic Data under Data Constraints

This work examines the effectiveness of the synthetic data generation strategies of interest under seed
data and cost constraints for a diverse set of tasks. To simulate real-world data constraints, we create
three shards of sizes 100, 1000 and "full" for each of the three source datasets. As such, we end up
with nine seed instruction sets of varying sizes and task types. Let this set of seed instruction sets
be denoted as S where |S| = 9. We now pair each of the generation methods (G) with each of the
seed instruction sets (S) and perform repeated samplings at a high temperature to arrive at the final
expanded training datasets of sizes Q ∈ {1k, 2.5k, 5k, 10k, 25k, 50k, 100k}. Thus, the number
of distinct training sets can then be represented as |S × G × Q| = 81. The amount we sample πT

and πaug towards creating a synthetic dataset leads to the notion of a query budget. Additionally,
we define budget ratio (BR) as BR = q/s, which measures the trade-off between the query budget
and the seed instruction size. A higher BR indicates more resources available for synthetic data
generation relative to the initial data size. We leverage BR as a cost-sensitized metric to examine the
effectiveness of different synthetic data generation strategies.

5 Experimental Results

For all experiments, we assess the effectiveness of each synthetic data generation strategy by com-
paring the accuracy of fine-tuned πS on the evaluation split of the dataset used in the experiment.
First, we understand the effectiveness of each data generation strategy through scalability and data
constraints in Section 5.1. Next, we investigate the cost-effectiveness of creating new instructions
and responses in Section 5.2. Finally, we cover ablation studies focused on understanding the impact
of different πaug , verification of responses, and a different πS in Subsection 5.3.

Additionally, to fit the curves in our plots and better model the scaling relationship of our data
generation methods, we adopt prior work on LLM scaling laws and data-constrained scaling laws to
our setting (Hoffmann et al., 2022; Muennighoff et al., 2024). Appendix A includes additional details
on how we model this scaling behavior.

5.1 Effectiveness of Synthetic Data Generation Strategies

We study the effectiveness of data generation methods by comparing the accuracy of πS when
fine-tuned on equal amounts of synthetic data from each method. This comparison allows us to
measure the value of each added synthetic example from each generation method across different
data budgets. The results for GSM8k, Spider, and ARC-C are presented in Figure 2. Notably, these
trends generalize across data constraints, and scalability holds across our evaluated datasets.

In our GSM8k experiments with 100 seed instructions, new question evolution continues to improve
accuracy as we scale the dataset beyond 50,000 examples (over 500 times the initial size) while other
generation methods plateau. However, as we increase the seed instruction set, the performance gap
between augmentation methods narrows. In Spider and ARC-C, we observe the optimal augmentation
method varies when our synthetic data size is between 10,000 to 50,000 samples. The impact of
data generation strategies and design choices on model performance is more pronounced in settings
with fewer amounts of initial seed instructions compared to abundant data settings. This relation-
ship becomes evident when examining our evaluation results for πS across various experimental
configurations (Tables 3, 4, 5).

5.2 Cost-Effectiveness Analysis: When to Create New Instructions or Responses?

The optimal data generation strategy depends on many factors, such as the cost of querying πT , final
dataset size, and complexity of the task. We investigate one of these dimensions: When should we
add new responses or new instructions pairs to our dataset?

Within our cost constrained setting, answer augmentation helps us measure improvements solely from
creating new responses to our initial prompts. Both question rephrase and new question represent
augmentations in the prompt space. We provide empirical analysis of the optimal augmentation
strategy at each budget and assume that the cost of generating a synthetic instruction-response pair
using Answer Augmentation : Question Rephrase : New Question is 1 : 2 : 2 based on the total
number of queries made to πT and πaug . In Figure 3, we show the cost and effectiveness relationship

5

Figure 2: Student model πS accuracy on GSM8k (Top), Spider (Middle) and ARC-C (Bottom)
after fine-tuning on synthetic data from our teacher model πT and across resource constraints.

between the three data generation methods on GSM8k, Spider and ARC-C. From our experiments
with different seed sizes and tasks, all results suggest that answer augmentation is most effective
option when our budget ratio (BR) is low. Thus, if we have a small query budget relative to our seed
instruction size, we should spend more time creating new responses to our existing prompts. However,
creating new prompts, such as through question rephrase or new question evolution, becomes the best
option when the BR is high.

Generally, new question evolution outperforms question rephrase in both cost and scalability, but
rephrasing questions is an easier task and may fit better in certain constrained settings. The intersection
point between these methods, which denotes the shift in optimal data strategy from new responses to
new prompts, varies based on the seed instruction size. For a small seed set of 100 instructions, this
point occurs at a BR between 27 and 51, corresponding to approximately 3,000 to 5,000 samples.
As the seed set grows, the average BR across tasks at which this shift occurs decreases. For 1,000
seed instructions, this average BR is 17.6, whereas at our largest seed size, average BR is 16.4. These
findings highlight the importance of considering both the initial dataset size and the available budget
when determining the most effective data generation strategy for training LLMs.

5.3 Ablations

5.3.1 Performance Trade-off with Different Augmentation Models

We investigate whether we can reduce the cost of creating Dsynth by using a cheaper πaug when
generating synthetic instructions. Given how the trends across cost-effectiveness transferred across
tasks, we conduct experiments using GSM8k with 1,000 seed instructions and create Dsynth with up

6

Figure 3: Cost-Effectiveness on GSM8k (Top), Spider (Middle), and ARC-C (Bottom): Across all
three seed instruction sizes, the dashed line marks the query budget when the optimal data generation
strategy changes from generating new responses to new instructions. For details on how the regression
curves were fitted using our scaling relationship model, please refer to Appendix A.

to 10,000 synthetic examples. We consider various choices of πaug , such as Llama 2 7B, Llama 3 8B,
Llama 3.1 8B, and Llama 3.1 70B, all while keeping the teacher model πT constant as Llama 3.1
70B and using the instruct versions.

As illustrated in Figure 4, the effectiveness of question rephrasing remains relatively robust, even
when weaker augmentation models are used. However, the performance of new question evolution
is closely tied to the capability of πaug on this task. At a synthetic data size of 10,000 samples, we
notice a substantial decrease in performance when using Llama 2 7B, with accuracy dropping by
approximately 15% compared to other choices of πaug. Since no significant degradation is seen for
question rephrasing, this may be a much easier task for an LLM. We can reduce costs by using a
cheaper model with this method while maintaining overall effectiveness.

5.3.2 Effect of Verification with Ground Truth Answers

Since our teacher models πT produce incorrect responses for a portion of instructions in Dsynth,
the training process inevitably incorporates noisy and erroneous answers. We examine whether
verifying the synthetic responses from πT with correct answers improves the effectiveness of Dsynth

when fine-tuning πS . We focus on answer augmentation and question rephrase because the human
final answers match the original or rephrased instruction, whereas new question evolution creates an
unverifiable answer. Thus, we fine-tune πS on the Spider dataset with Llama 3.1 70B Instruct as πT

and πaug. We consider two scenarios: equal dataset and filtered dataset sizes, which addresses the
possibility that the lower dataset size caused by filtering limits the effectiveness of verification.

7

Figure 4: Performance Trade-off with Weaker Augmentation Model πaug on GSM8k

In Figure 5, we present the first scenario using 1,000 seed instructions and compare πS fine-tuned on
an equal number of training samples at each synthetic data size after filtering for correct samples.
Despite using the same number of training samples, πS trained on verified responses does not show
significant improvement compared to the gains from scaling up the dataset size. In Figure 6, we
consider the second scenario where we query πaug and πT with 1,000 and 7,000 seed instructions to
create a synthetic dataset up to 100,000 samples which is then filtered for good (verified) samples to
fine-tune πS . Across both data generation methods and seed instruction sizes, we similarly observe
no significant improvement from verification. This can possibly be attributed to several factors. First,
πS may still benefit from incorrect responses generated by a more capable πT , similar to findings
from Yu et al. (2023), where Llama 2 still showed improvements when trained on incorrect GPT-3.5
responses. Second, verification could reduce overall diversity of Dsynth. In our setting, πT fails
to provide correct responses for 10% of the instructions, which are filtered out and result in fewer
unique instructions.

5.3.3 Cost-Effectiveness with a Different Student Model

In Section 5.2, we show how cost-effectiveness relationships apply across various tasks, along with
the optimal data generation strategy shifting between low and high BR settings. We reconsider the
choice of πS and assess if our cost-effectiveness results hold for a different student model. Using
different data generation methods, we replicate our previous experiment with 1,000 seed instructions
from GSM8k, setting our student model πS to Mistral 7B (Jiang et al., 2023). We present our results
in Figure 7, which reveals consistent cost-effectiveness patterns across methods and suggests the
important factors are in the quality or diversity responses from πT . Similarly, answer augmentation
proves most effective at low budget ratios (BR), while creating new instructions becomes more
beneficial as BR increases. As we see fine-tuning Mistral 7B, this transition occurs at BR of 12,
aligning with our medium resource scenario (1,000 seed instructions) using Llama 2 7B, where the
optimal BR fell between 8 and 26. These results reinforce the generalizability of our cost-effectiveness
findings across different model architectures and sizes.

6 Conclusion

In this study, we provide a framework to analyze the effectiveness of various synthetic data generation
strategies for training LLMs under different resource constraints and task types. Our findings reveal
that the optimal strategy hinges on the ratio of the query budget to the size of the seed instruction
set. Augmenting answers to existing questions proves most effective when this ratio is low, while
generating new questions becomes advantageous as the ratio increases. We also find that the choice
of augmentation strategy is less critical in data-rich scenarios, potentially leading to future cost
reductions and efficiency improvements. Furthermore, question rephrasing is robust even with weaker
augmentation models, highlighting the potential for cost reduction in specific scenarios. Finally,
our observations indicate that verification of synthetic responses and the specific choice of student
model have less impact. These insights should guide practitioners in selecting the most suitable data
generation strategies for more efficient LLM training within their specific constraints.

8

References
Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q Tran, and Mehran Kazemi. Smaller, weaker,

yet better: Training llm reasoners via compute-optimal sampling. arXiv preprint arXiv:2408.16737,
2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all
you need. arXiv preprint arXiv:2306.11644, 2023.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Hamish Ivison, Noah A Smith, Hannaneh Hajishirzi, and Pradeep Dasigi. Data-efficient finetuning
using cross-task nearest neighbors. arXiv preprint arXiv:2212.00196, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024.

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy
Chowdhury, Yun Li, Hejie Cui, Xuchao Zhang, et al. Domain specialization as the key to make
large language models disruptive: A comprehensive survey. arXiv preprint arXiv:2305.18703,
2023.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
Peng, Diyi Yang, Denny Zhou, et al. Best practices and lessons learned on synthetic data for
language models. arXiv preprint arXiv:2404.07503, 2024.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang.
On llms-driven synthetic data generation, curation, and evaluation: A survey. arXiv preprint
arXiv:2406.15126, 2024.

9

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36, 2024.

George Pu, Anirudh Jain, Jihan Yin, and Russell Kaplan. Empirical analysis of the strengths and
weaknesses of peft techniques for llms. arXiv preprint arXiv:2304.14999, 2023.

Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu, Yongheng Zhang, Yinghui Li, Min Li, Wanxiang
Che, and Philip S Yu. Large language models meet nlp: A survey. arXiv preprint arXiv:2405.12819,
2024.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H Chi,
James Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms.
arXiv preprint arXiv:2402.09668, 2024.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on
incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T Le, Jin Miao, Zizhao Zhang, Chen-Yu Lee, and
Tomas Pfister. Codeclm: Aligning language models with tailored synthetic data. arXiv preprint
arXiv:2404.05875, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct. In Forty-first International Conference on Machine Learning,
2024.

Lilian Weng. Thinking about high-quality human data. lilianweng.github.io, Feb 2024. URL
https://lilianweng.github.io/posts/2024-02-05-human-data-quality/.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing. arXiv preprint arXiv:2406.08464, 2024.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing
text-to-sql data from weak and strong llms. arXiv preprint arXiv:2408.03256, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

10

https://lilianweng.github.io/posts/2024-02-05-human-data-quality/

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

11

Table 2: Effectiveness of Synthetic Data (additional figures)
Task Generation Method E A B Alpha Beta R*

GSM8k Answer Aug. 1.000 0.401 1.856 0.144 0.176 27.012
Question Rephrase 1.000 0.391 1.915 0.175 0.170 79.123

New Question 1.000 0.511 2.005 0.272 1.699 385.956

Spider Answer Aug. 1.000 0.544 16.089 0.083 0.616 21.681
Question Rephrase 0.771 0.771 29.544 0.266 0.708 44.206

New Question 0.738 9.350 60.586 1.316 0.756 320.083

ARC-C Answer Aug. 1.000 0.361 1.519 0.055 0.378 53.265
Question Rephrase 1.000 0.024 0.878 0.076 0.131 11.276

New Question 0.996 0.109 1.020 1.632 1.887 80.799

A Scaling Relationship of Data Augmentation Strategies

As we repeatedly augment and query with the same instruction set Itrain, each query adds less
information to Dsynth, leading to a decay in per-query accuracy gain. To model this decaying effect
of repeated querying, we adapt the exponential decay formulation from Muennighoff et al. (2024) to
our settings of unique seed instructions, S, and repeated queries, Q.

We found this exponential decay formulation fits our results significantly better than the original
Chinchilla Scaling Law and other regression methods, especially on the augmentation methods that
have a quick per-query effectiveness decay when querying repeatedly. This formulation model our
results very closely with R2 over 0.98 on all combinations of tasks and augmentation methods, and
we use these θ parameters in Table 2 to plot our best-fit curves.

Specifically, we model the accuracy of an augmentation method given a data budget as:

Acc(S,Q) = E − A

Sα
− B

S + S ·R∗ · (1− e−
Q/S
R∗)β)

where S is the size of the seed instructions, Q is the number of queries we make to our teacher model,
and θ = {E,A,B, α, β,R∗} are learnable parameters.

On a high level, we break down efficiency into 3 factors:

1. E: The maximum possible accuracy.

2. A
Sα : The part of accuracy improvable by scaling up the seed data size (S).

3. B

S+S·R∗·(1−e
−Q/S

R∗)β)
: The part of accuracy improvable by increasing the query (Q), with

exponential decay as we repeatedly augment the same instruction.

For each combination of task and generation method, we obtain the empirical accuracy as,q of the
student model by fine-tuning on Dsynth generated from s seed instructions and q queries. Before
fitting as,q to our student model results, we observed overfitting when using Answer Augmentation
and Question Rephrasing at high budget ratio BR (q/s). Repeatedly generate from the same seed
instructions cause the accuracy to decrease after q increase over a certain threshold. To reflect
the actual achievable accuracy under query budget q and account for our monotonically increasing
function Acc, we adjust as,q to âs,q = maxs′≤s,q′≤q as′,q′ , which represent the highest accuracy
obtainable under the given budget. We fit Acc(s, q) by optimizing for the mean squared error:

minθ

∑
{s,q}∈S×Q

(âs,q −Accθ(s, q))
2

with the boundary 1 ≥ E ≥ 0, A ≥ 0, and B ≥ 0 using Limited-memory BFGS.

12

Figure 5: Ablations measuring the effect of verification with 1,000 seed instructions from Spider. We
ensure the synthetic data size is the amount after filtering.

Figure 6: Effect of Verification on Spider across medium and high seed instruction sizes. The
synthetic data size amount is before filtering for correctness.

B Related Work: Efficient LLM Training

As model sizes and data requirements grow exponentially, optimizing the training process for Large
Language Models (LLMs) has become increasingly critical. Researchers have investigated pre-
training scaling laws and data mixtures, guiding model trainers toward more efficient pre-training
strategies (Hoffmann et al., 2022; Muennighoff et al., 2024; Kaplan et al., 2020; Sachdeva et al., 2024).
Noticing the increasing capabilities of open-source LLMs and the growing demand for task-specific
LLMs, several works have explored efficient methods during post-training. From a computational
efficiency perspective, studies on parameter-efficient fine-tuning demonstrate techniques to reduce the
compute requirements for fine-tuning (Pu et al., 2023; Han et al., 2024). Likewise, for data efficiency,
previous works have successfully reduced data requirements in the fine-tuning process by upsampling
for quality (Zhou et al., 2024; Ivison et al., 2022). These works inspire our investigation of cost and
efficiency when fine-tuning with LLM-generated synthetic data.

C Ablation: Effect of Verification Plots

In this section, we include both figures on our verification experiment results. In Figure 5, we
fine-tune πS on an equal number of training samples, after filtering for correctness, to each synthetic
data size and evaluate the performance scaling up from 1,000 samples.

We present Figure 6 as another setting where we filtered out all incorrect responses from the synthetic
data generated by Answer Augmentation and Question Rephrasing using 1,000 and 7,000 seed
instructions, and fine-tuned πS on the filtered datasets.

13

Figure 7: Transferability of Cost-Effectiveness on 1k seed instructions from GSM8k with Mistral 7B
as πS

Table 3: Performance Across Different Query Sizes and Seeds for GSM8k
Generation Method Seed \ Query 1k 2.5k 5k 10k 25k 50k 100k

100 25.9 27.7 32.0 32.8 34.2 34.1 32.1
Answer Aug. 1000 30.1 37.3 41.0 47.5 51.1 53.7 52.7

7500 29.6 40.1 47.7 52.8 59.9 60.5 65.8

100 27.5 29.4 34.0 37.7 41.5 41.2 41.7
Question Rephrase 1000 28.4 37.5 41.2 48.2 52.7 55.0 58.5

7500 31.1 38.6 43.9 50.5 59.7 62.5 67.6

100 26.8 33.0 37.8 40.3 46.3 48.3 53.5
New Question 1000 30.5 36.39 42.98 48.9 56.5 61.3 64.1

7500 27.8 37.4 45.4 53.1 58.9 66.5 68.2

D Ablation: Different Student Model Plots

We present Figure 7 to showcase the transferability of our cost-effective analysis with Llama 2 7b to
a different student model.

E Accuracy Scores Across Tasks

We include the accuracy of the student model πS , fine-tuned on the Dsynth synthetic training
dataset across query budgets ({1k, 2.5k, 5k, 10k, 25k, 50k, 100k}), and generation methods
({Answer Augmentation, Question Rephrase, New Question}). Each task, and respective
dataset, has different seed sizes S, but we ensure that low-resource has S = 100, medium-resource
has S = 1, 000 and high-resource scenario has the constraint: 1k < S ≤ 10k.

We present the results on GSM8k in Table 3, which includes the performance of πS on Dsynth across
seed sizes {100, 1k, 7.5k}. Similarly, for Spider, Table 4 includes the performance of across seed
sizes {100, 1k, 7k}. For ARC-C, Table 5 includes the performance across seed sizes {100, 1k, 3k}.

F Training Details and Design Choices

We used the instruction-tuned versions of all language models in this paper because they are easier
to prompt for our specific tasks and produce better-formatted outputs, making them easier to parse
and process. Fine-tuning was carried out over 3 epochs with a peak learning rate of 4e-5, except
for the Mistral 7B model, which used a learning rate of 1e-5. A cosine decay schedule was applied,
with 3% of the total steps allocated for warm-up. The batch size was set to 128, and the maximum
sequence length was 1,536 tokens. These settings were determined through a hyperparameter search
on learning rate and batch size, conducted on the GSM8k training data, with the assumption that the

14

Table 4: Performance Across Different Query Sizes and Seeds for Spider
Generation Method Seed \Query 1k 2.5k 5k 10k 25k 50k 100k

100 38.49 43.9 47.68 49.32 47.39 46.03 40.72
Answer Aug. 1000 45.56 57.16 61.03 63.25 65.18 65.47 63.0

1000 47.00 63.25 66.34 68.47 69.73 72.53 72.34

100 40.33 46.42 54.73 54.16 53.00 55.22 52.42
Question Rephrase 1000 46.80 57.83 62.86 63.83 66.92 67.02 68.67

7000 47.39 60.06 66.64 69.44 69.83 70.89 70.89

100 38.10 55.61 61.90 65.67 68.66 69.73 71.18
New Question 1000 41.59 57.83 65.18 66.24 71.47 70.21 72.53

7000 44.68 57.76 64.22 67.79 69.54 72.43 74.08

Table 5: Performance Across Different Query Sizes and Seeds for ARC-C
Generation Method Seed \Query 1k 2.5k 5k 10k 25k 50k 100k

100 61.51 63.05 66.04 61.68 60.66 60.58 60.83
Answer Aug. 1000 65.87 67.49 71.16 72.10 72.35 73.38 73.29

3000 63.90 69.19 70.05 71.92 75.68 75.42 76.10

100 61.43 62.11 62.62 64.41 63.13 62.54 61.94
Question Rephrase 1000 63.39 65.95 69.53 71.16 70.90 70.47 73.03

3000 63.73 65.52 69.28 73.29 75.00 77.04 76.53

100 62.45 66.80 66.89 68.25 69.53 70.22 73.12
New Question 1000 61.26 64.67 71.07 72.01 73.97 75.59 77.30

3000 63.13 66.38 70.39 72.26 74.82 75.93 78.32

optimal configuration would generalize to other tasks and synthetic data. All training experiments
were performed on two NVIDIA H100 GPUs.

For synthetic data generation, we followed settings from math literature, using greedy decoding
with a temperature of 0.7. Our exploratory experiments confirmed this as a stable choice. Lower
temperatures reduced the diversity of the generated data, making fine-tuning on repeated samples
less effective, while higher temperatures decreased quality without improving effectiveness. For the
choice of teacher model, we compared the effectiveness of fine-tuning using responses generated by
GPT-4o and Llama 3.1 70B on the GSM8k dataset and observed similar outcomes. Given that Llama
3.1 70B is cheaper and faster, we selected it as the teacher model and generated all synthetic data
using vLLM (Kwon et al., 2023) on four NVIDIA H100 GPUs.

G Prompts and Evaluation Details

In this section, we present the prompts used to generate synthetic instruction and responses across
generation methods and tasks. We adapt prompts from prior work in math reasoning into all of our
representative tasks – math, coding (SQL), and general question answering. We perform additional
prompt engineering to ensure the generated data resembles the original instructions. We validate this
with small experiments to compare the effectiveness of training on synthetic data against real data.
Similar to the experiment described in the "Comparison of Synthetic SFT Data versus Real Data"
section in Li et al. (2024), we first generate synthetic data with size equal to the original training data.
Then, we train Llama 2 7B model on the synthetic data and ensure the synthetic data maintains a
level of effectiveness comparable to the real data.

For our initial evaluation results in Table 1, we evaluate Llama 2 with few-shot prompts pulled
from the training dataset while Llama 3 is evaluated with a zero-shot COT prompt used in Answer
Augmentation. We observed Llama 2 being unable to generate reasonable CoT responses without
few-shot examples provided, whereas, Llama 3 scored fairly high with zero-shot examples and had

15

fairly similar scores. Additionally, we generate synthetic responses in a zero-shot manner, so we
opted to capture accuracy under the same settings.

G.1 Answer Augmentation

Table 6 contains all prompts we use for answer augmentation.

GSM8K (Math)
Please act as a professional math teacher. Your goal is to accurately solve a math word problem.

To achieve the goal, you have two jobs.
Write a detailed solution to a given question.
Write the final answer to this question.

You have two principles to do this.
Ensure the solution is step-by-step.
Ensure the final answer is just a number (float or integer).

Given question: {question}
Your output should be in the following format:
SOLUTION: <your detailed solution to the given question>
FINAL ANSWER: <your final answer to the question with only an integer or float number>

Spider (Coding)
You are a database engineer. Given database table descriptions and a question, your goal is to
write a SQL query to answer the question.

To achieve the goal, you have two jobs.
Write a detailed solution with step-by-step reasoning to break down the problem.
Write the final SQL query.

You have two principles to do this.
Ensure the solution is step-by-step.
Ensure the final answer is only the executable SQL query.

Given question: {question}
Your output should be in the following format:
SOLUTION: <your detailed solution to the given question>
FINAL ANSWER: <your final executable SQL query>

ARC-C (General QA)
Your goal is to solve a reasoning problem. You will be given a question, followed by multiple
answer choices. Only one of the choices is correct.

To achieve the goal, you have two jobs.
Write a detailed solution with step-by-step logical reasoning to the given question.
Write the final chosen answer.

Given question: {question}
Your output should be in the following format:
SOLUTION: <your solution to the given question>
FINAL ANSWER: <your final answer choice label>

Table 6: Answer Augmentation prompts across tasks (math, coding, general qa).

G.2 Question Rephrasing

Table 7 contains all prompts we use for question rephrasing.

G.3 New Question

Table 8 and Table 9 contains all prompts we use for new question evolution.

16

GSM8K (Math)
Please act as a professional math teacher. Your goal is to create high quality math word problems
to help students learn math.

You will be given a math question. Please rephrase the given question to create a new question.
Ensure the rephrased question has the same meaning as the given question and can be answered
with the same solution as the given question. # Please DO NOT include solution in your question.

Given question: {question}
Your output should be in the following format:
REPHRASED QUESTION: <your rephrased question>

Spider (Coding)
You are a professional computer science teacher. Your goal is to create high quality SQL
problems to help students learn.

You will be given a problem that contains database table descriptions and a question. Please
rephrase the given problem to create a new problem.
Ensure the rephrased problem has the same meaning as the given problem and can be answered
with the same SQL query as the given problem.
Ensure the table description is included in the rephrased problem as the same format as the
given problem.

Given problem: {question}
Your output should be in the following format:
REPHRASED PROBLEM: <your rephrased problem>

ARC-C (General QA)
Your goal is to create high quality reasoning problems to help AI learn about our world.

You will be given a multiple choice question. Please rephrase the Given Question to create a
new question.
Ensure the rephrased question has the same meaning as the Given Question and can be
answered with the same solution as the Given Question.
Ensure the answer choices are included in the rephrased question as the same format as the
given question.

Given question: {question}
Your output should be in the following format:
REPHRASED QUESTION: <your rephrased question and answer choices>

Table 7: Answer Augmentation prompts across tasks (math, coding, general qa).

17

GSM8K (Math)
Please act as a professional math teacher. Your goal is to create high quality math word problems to
help students learn math. You will be given a math question. Please create a new question based on
the given question and the following instructions.

To achieve the goal, you have three jobs.
Please generate a similar but new question according to the given question.
Check the question by solving it step-by-step to find out if it adheres to all principles.
Modify the created question according to your checking comment to ensure it is of high quality.

You have five principles to do this.
Ensure the new question only asks for one thing, be reasonable, be based on the given question,
and can be answered with only a number (float or integer). For example, DO NOT ask, ‘what is the
amount of A, B and C?’.
Ensure the new question is in line with common sense of life. For example, the amount someone
has or pays must be a positive number, and the number of people must be an integer.
Ensure your student can answer the new question without the given question. If you want to use
some numbers, conditions or background in the given question, please restate them to ensure no
information is omitted in your new question.
Please DO NOT include the solution in your question.
If the created question already follows these principles upon your verification, just keep it without
any modification.

Given question: {question}
Your output should be in the following format:
CREATED QUESTION: <your created question>
VERIFICATION AND MODIFICATION: <solve the question step-by-step and modify it to follow
all principles>
FINAL CREATED QUESTION: <your final created question>

Spider (Coding)
You are a professional computer science teacher. Your goal is to create high quality SQL problems
to help students learn. You will be given a problem that contains database table descriptions and a
question. Please create a new problem similar to the given problem with the following instructions.

To achieve the goal, you have three jobs.
Please generate a similar but new problem according to the given problem.
Check if the problem adheres to all principles.
Modify the created problem according to your checking comment to ensure it is of high quality.

You have three principles to do this.
Ensure the created problem has the same difficulty as the given problem.
Ensure the created problem has a table description section in the same format as the given problem.
Ensure the new problem can be answered without the given problem. If it uses the same table as the
given problem, make sure to include them in the table description of the new problem.
If the created problem already follows these principles upon your verification, just keep it without
any modification.

Given problem: {question}
Your output should be in the following format:
CREATED PROBLEM: <your created problem>
VERIFICATION AND MODIFICATION: <verify the problem adheres to the principles, if not
modify it to follow all principles>
FINAL CREATED PROBLEM: <your final created problem>

Table 8: New Question prompts across math and coding tasks.

18

ARC-C (General QA)
Your goal is to create high quality reasoning problems to help AI learn about our world. You will be
given a multiple choice question. Please create a new question based on the given question and the
following instructions.

To achieve the goal, you have three jobs.
Please generate a similar but new question according to the given question.
Check the question by solving it step-by-step to find out if it adheres to all principles.
Modify the created question according to your checking comment to ensure it is of high quality.

You have four principles to do this.
Ensure there’s only one correct answer.
Ensure the new question can be answered without the given question.
Ensure the answer choices are included in the created question in the same format as the given
question.
If the created question already follows these principles upon your verification, just keep it without
any modification.
Please DO NOT include the solution in your question.

Given question: {question}
Your output should be in the following format:
CREATED QUESTION: <your created question>
VERIFICATION AND MODIFICATION: <solve the question step-by-step and modify it to follow
all principles>
FINAL CREATED QUESTION: <your final created question and answer choices>

Table 9: New Question prompts across general question answering tasks.

19

	Introduction
	Related Work
	Method
	Data Generation Strategies

	Experimental Setup
	Datasets and Evaluations
	Generating Synthetic Data under Data Constraints

	Experimental Results
	Effectiveness of Synthetic Data Generation Strategies
	Cost-Effectiveness Analysis: When to Create New Instructions or Responses?
	Ablations
	Performance Trade-off with Different Augmentation Models
	Effect of Verification with Ground Truth Answers
	Cost-Effectiveness with a Different Student Model

	Conclusion
	Scaling Relationship of Data Augmentation Strategies
	Related Work: Efficient LLM Training
	Ablation: Effect of Verification Plots
	Ablation: Different Student Model Plots
	Accuracy Scores Across Tasks
	Training Details and Design Choices
	Prompts and Evaluation Details
	Answer Augmentation
	Question Rephrasing
	New Question

