
Speeding up NAS with Adaptive Subset Selection

Vishak Prasad C.1 Colin White2 Sibasis Nayak1 Paarth Jain1 Aziz Shameem1

Prateek Garg1 Ganesh Ramakrishnan1

1Indian Institute Of Technology, Bombay
2Abacus.AI

Abstract A majority of recent developments in neural architecture search (NAS) have been aimed
at decreasing the computational cost of various techniques without affecting their final
performance. Towards this goal, several low-fidelity and performance prediction methods
have been considered, including those that train only on subsets of the training data. In
this work, we present an adaptive subset selection approach to NAS and present it as
complementary to state-of-the-art NAS approaches. We uncover a natural connection
between one-shot NAS algorithms and adaptive subset selection and devise an algorithm
that makes use of state-of-the-art techniques from both areas. We use these techniques to
substantially reduce the runtime of DARTS-PT (a leading one-shot NAS algorithm) with
minimal sacrifice to accuracy and to give reasonable runtime reductions for BOHB and
DEHB (leading multi-fidelity optimization algorithms) as well. In experiments, we find
architectures on CIFAR-10 that give 5% increase in performance over DARTS-PT while
reducing the time required by more than a factor of 8. Our results are consistent across
multiple datasets, and towards full reproducibility, we release all our code at https://
github.com/pcvishak/SubsetSelection_NAS.

1 Introduction

Neural architecture search (NAS), the process of automating the design of high-performing neural
architectures, has been used to discover architectures that outpace the best human-designed neural
networks (Dai et al., 2020; Real et al., 2019; Tan and Le, 2019). Early NAS algorithms used black-box
optimization methods such as reinforcement learning (Pham et al., 2018; Zoph and Le, 2017) and
Bayesian optimization (Kandasamy et al., 2018). A majority of recent developments have focused
on decreasing the cost of NAS without sacrificing performance.

Toward this direction, ‘one-shot’ methods improve the search efficiency by training just a
single over-parameterized neural network (supernetwork) (Bender et al., 2018; Liu et al., 2019). For
example, the popular DARTS (Liu et al., 2019) algorithm applies a continuous relaxation to the
architecture parameters, allowing the architecture parameters and the weights to be simultaneously
optimized via gradient descent. While many follow-up works have improved the performance of
DARTS (Laube and Zell, 2019; Wang et al., 2021; Zela et al., 2020), the algorithms are still slow and
require computational resources that are expensive in terms of budget and CO2 emissions (Tornede
et al., 2021).

On the other hand, the field of subset selection for efficient machine learning-based model
training has seen a flurry of activity. In this area of study, facility location (Mirzasoleiman et al.,
2020), clustering (Clark et al., 2020), and other subset selection algorithms are used to select a
representative subset of the training data, substantially reducing the runtime of model training.
Recently, adaptive subset selection algorithms have been used to speed up model training even
further (Killamsetty et al., 2021, 2020). Adaptive subset selection is a powerful technique which
regularly updates the current subset of the data as the search progresses, to ensure that the
performance of the model is maintained.

AutoML 2024 © 2024 the authors, released under CC BY 4.0

mailto:vishak@cse.iitb.ac.in
mailto:colin@abacus.ai
mailto:
mailto:
mailto:
mailto:
mailto:
https://github.com/pcvishak/SubsetSelection_NAS
https://github.com/pcvishak/SubsetSelection_NAS
https://creativecommons.org/licenses/by/4.0/

�,QLWLDO
�ș�����ḇ�����6��� 6*'

8SGDWH�ș�L�

5HSHDW�7��7��VWHSV

5HSHDW�7��VWHSV

6*'
8SGDWH�ḇ�L�

*/,67(5
8SGDWH�6�L�

5HSHDW�7�7��VWHSV

3HUWXUEDWLRQ�
EDVHG�
SURMHFWLRQ�WR�
GLVFUHWL]H�ḇ�I�

2XWSXW�ḇ�I�

Figure 1: Overview of Adaptive-Dpt. The algorithm starts with the initial set of weights \ (0) ,
architecture-parameters 𝛼 (0) , and subset of the training data 𝑆 (0) . Throughout the search,
the weights \ (𝑖) and architecture-parameters 𝛼 (𝑖) are updated with SGD, and the subset 𝑆 (𝑖)

is updated with Glister, according to different time schedules. Then the final architecture
𝛼 (𝑓) is discretized and returned.

In this work, we combine state-of-the-art techniques from both adaptive subset selection
and NAS to devise new algorithms. First, we uncover a natural connection between one-shot
NAS algorithms and adaptive subset selection: DARTS-PT (Wang et al., 2021) (a leading one-shot
algorithm) and Glister, (Killamsetty et al., 2020) (a leading adaptive subset selection algorithm)
are both cast as bi-level optimization problems on the training and validation sets, allowing us
to formulate a combined approach, Adaptive-Dpt, as a mixed discrete and continuous bi-level
optimization problem (see Figure 1 for an overview). Next, we also combine adaptive subset
selection with BOHB (Falkner et al., 2018a) and DEHB (Awad et al., 2021), two leading multi-fidelity
optimization approaches, to devise Adaptive-BOHB and Adaptive-DEHB, respectively.

Across several search spaces, we show that the resulting algorithms achieve a moderate to
significant improvement in runtime, without sacrificing performance. Specifically, due to the use of
adaptive subset selection, the training data can often be reduced to 10% of the full training set size,
resulting in up to an order of magnitude decrease in runtime, with minimal reduction to accuracy.

To validate these approaches, we compare against baselines such as facility location, entropy-
based subset selection (Na et al., 2021), and random subset selection. Facility location itself is a
novel baseline for NAS applications; the codebase we release, which includes four different subset
selection algorithms (c.f. Sec. 4) integrated into one-shot NAS, may be of independent interest.
Our contributions. We summarize our main contributions.

• We introduce Adaptive-Dpt, the first NAS algorithm to make use of adaptive subset selection.
The training time needed to find high-performing architectures is substantially reduced. We
also add facility location as a novel baseline for subset selection applied to NAS. (c.f. Sec. 3). We
extend our idea to show that adaptive subset selection complements hyperparameter optimization
algorithms in the form of Adaptive-BOHB and Adaptive-DEHB.

• Through extensive experiments, we show that Adaptive-Dpt, Adaptive-BOHB and
Adaptive-DEHB often substantially reduce the runtime needed for running DARTS-PT, BOHB,
and DEHB, respectively, with little to no decrease in the final (test) accuracy of the returned
architecture (c.f. Sec. 4).

For reproducibility, we release all of our code.

2

2 Related Work

Neural architecture search. NAS has been studied since the 1980s (Angeline et al., 1994; Dress,
1987; Kitano, 1990; Tenorio and Lee, 1988) and has been revitalized in recent years (Liu et al., 2019;
Zoph and Le, 2017). The initial set of approaches focused on evolutionary search (Real et al., 2019;
Stanley and Miikkulainen, 2002), reinforcement learning (Pham et al., 2018; Zoph and Le, 2017),
and Bayesian optimization (Kandasamy et al., 2018; White et al., 2021). More recent trends have
focused on reducing the computational complexity of NAS using various approaches. One line of
work aims to predict the performance of neural architectures before they are fully trained, through
low-fidelity estimates such as training for fewer epochs (Ru et al., 2020; Zhou et al., 2020), learning
curve extrapolation (Domhan et al., 2015; Yan et al., 2021), or ‘zero-cost proxies’ (Abdelfattah et al.,
2021; Mellor et al., 2020).

Another line of work takes a one-shot approach by representing the entire space of neural
architectures by a single ‘supernetwork’, and then performing gradient descent to efficiently
converge to a high-performing architecture (Liu et al., 2019). Since the release of the original
differentiable architecture search method (Liu et al., 2019), several follow-up works have attempted
to improve its performance (Laube and Zell, 2019; Li et al., 2021; Liang et al., 2019; Xu et al.,
2019; Zela et al., 2020). Recently, Wang et al. (2021) introduced a more reliable perturbation-based
operation scoring technique while computationally returning the final architecture, yielding more
accurate models compared to DARTS.

Subset selection. Several approaches have been developed in the field of subset selection for efficient
model training. Popular fixed subset selection methods include coreset algorithms (Har-Peled and
Mazumdar, 2004; Mirzasoleiman et al., 2020), facility location (Mirzasoleiman et al., 2020), and
entropy-based methods (Na et al., 2021). Recently, Killamsetty et al. (2020) proposed GLISTER
as an adaptive subset selection method based on a greedy search; an adaptive gradient-matching
algorithm for subset selection was also subsequently proposed (Killamsetty et al., 2021).

Subset selection in NAS. A few existing works have applied fixed (non-adaptive) subset selection
to the field of NAS. Na et al. (2021) consider three subset selection approaches: forgetting events,
𝑘-center, and entropy-based techniques, showing that the entropy-based approaches result in the
best speedup in the case of DARTS. Shim et al. (2021) consider core-set sampling to speed up
PC-DARTS by a factor of 8. Some more recent work (Killamsetty et al., 2022) employs subset
selection algorithms to obtain greater speed-ups over multi-fidelity methods such as Hyperband (Li
et al., 2018) and ASHA (Li et al., 2020). Another league of recent work uses a generative model to
create a small set of synthetic training data, which in turn is used to efficiently train architectures
during NAS (Rawal et al., 2020; Such et al., 2019).

Very recently, there has been more work on subset selection for NAS (Lu et al., 2024; Tu et al.,
2023; Xie et al., 2024). We refer to Bartoldson et al. (2023); Lei and Tao (2023) for comprehensive
surveys, and we discuss the most relevant works below. The most similar technique to our
approach is perhaps Yao et al. (2023), recent subsequent work, which proposes a framework for
bi-level adaptive subset selection for one-shot NAS. However, they use an mixture of objectives for
subset selection rather than directly integrating the subset selection optimization into the existing
architecture parameter optimization. Furthermore, they do not test their method with DARTS-PT
(Wang et al., 2021). Finally, Jain et al. (2023) devise SubSelNet, a subset selection framework that
uses a fast neural surrogate alongside an optimization routine in order to efficiently find the best
subset of training data for new architectures. However, their method requires an initial surrogate
model which uses additional computational resources.

3

3 Methodology

In this section, we first present the requisite background on supernet-based NAS algorithms and
adaptive subset selection algorithms. Then, we introduce our approach, which combines these two
techniques.

3.1 One-shot NAS Preliminaries

We begin by reviewing the ideas behind DARTS and DARTS-PT. The DARTS search space consists
of cells, with each cell expressed as a directed acyclic graph, where each edge (𝑖, 𝑗) can take on
choices of operations 𝑜 (𝑖, 𝑗) such as max_pool_3x3 or sep_conv_5x5. Let us denote the entire set of
possible operations by O. Each choice of operation for a given edge (𝑖, 𝑗), has a corresponding
continuous valued variable 𝛼 (𝑖, 𝑗) . Let U and V denote the training and validation sets respectively.
Further, let us denote the training and validation losses by Ltrain and Lval, respectively. For any
given dataset, these losses are a function of the architecture parameters and the architecture itself.

DARTS and DARTS-PT are both gradient-based optimization methods that train a supernetwork
consisting of weights \ and architecture-parameters 𝛼 . We will hereafter refer to 𝛼 ’s as NAS
parameters. Each edge in the DARTS search space can assume any of the operations from the set
of choices (O), resulting in a mixed output defined by

�̄�(𝑥𝑖) =
∑︁
𝑜∈O

𝑒𝛼𝑜∑
𝑜′ 𝑒

𝛼𝑜′
𝑜 (𝑥𝑖), (1)

where 𝑜 (𝑥𝑖) denotes the output of operation 𝑜 applied to feature map 𝑥𝑖 . DARTS and DARTS-PT
both attempt to solve the following expression via alternating gradient updates:

min
𝛼

Lval

(
arg min

\

Ltrain (\, 𝛼,U) , 𝛼,V
)
. (2)

In particular, the gradient with respect to 𝛼 can be approximated via

∇𝛼Lval (\ − Z∇\Ltrain (\, 𝛼,U) , 𝛼,V) , (3)

which can then be optimized using alternating gradient descent updates, according to a hyperpa-
rameter Z (learning rate).

Once the supernetwork finishes training via gradient descent, the continuous NAS parameters
𝛼 must be discretized. In the original DARTS algorithm, this is achieved by taking the largest 𝛼𝑜 on
each edge. However, Wang et al. (2021) showed that this approach may not perform well. Instead,
at each edge, DARTS-PT directly evaluates the strength of each operation by its contribution to
the supernetwork’s performance, using a perturbation-based scoring technique (Wang et al., 2021).
Now that we have given an overview of one-shot methods, in the next section we give an overview
of adaptive subset selection methods, before combining them in Sec. 3.3

3.2 Adaptive Subset Selection Preliminaries

Glister. (GeneraLIzation based data Subset selecTion for Efficient and Robust learning), is a
subset selection algorithm that adaptively selects a subset of the training data that maximizes
the log-likelihood on a held-out validation set. This problem is formulated as a mixed discrete-
continuous bi-level optimization problem. Glister approximately solves the following expression
by first approximating the bi-level optimization expression using a single gradient step, and then
using a greedy data subset selection procedure (Killamsetty et al., 2020).

min
𝑆⊆U, |𝑆 | ≤𝑘

Lval

(
arg min

\

Ltrain (\, 𝑆) ,V
)
. (4)

4

In particular, the validation loss is approximated as follows:

Lval

(
arg min

\

Ltrain (\, 𝑆) ,V
)
≈ Lval (\ − Z∇\Ltrain (\, 𝑆) ,V) . (5)

Thereafter, a simple greedy dataset subset selection procedure is employed to find the subset 𝑆
which approximately minimizes the validation loss (Killamsetty et al., 2020). Now that we have
gone over the preliminaries of one-shot NAS and adaptive subset selection, we combine them in
the next section. Our main approach makes use of Glister, but we also consider Grad-Match,
another adaptive subset selection approach, as an ablation study in Appendix A.4.4.

3.3 Our Framework

Adaptive-Dpt. There exist multiple possibilities for applying adaptive subset selection to one-shot
NAS. We present Glister here (the best-performing method in our experiments) and Grad-Match
in Appendix A.4.4. Specifically, we now present a formulation that organically combines Equation (2)
and Equation (4) into a single mixed discrete and continuous bi-level optimization problem. The
inner optimization is the minimization (over model weights \) of training loss during architecture
training, on a subset of the training data of size 𝑘 . In the outer optimization, we minimize the
validation loss by simultaneously optimizing over the NAS parameters 𝛼 as well as over the subset
of the training data 𝑆 . This optimization problem is aimed at efficiently determining the best (or, at
least, an effective) neural architecture:

arg min
𝑆⊆U, |𝑆 | ≤𝑘,𝛼

Lval

(
arg min

\

Ltrain (\, 𝛼, 𝑆) , 𝛼,V
)
. (6)

Evaluating this expression is computationally prohibitive because of the expensive inner op-
timization problem. Instead, we iteratively perform a joint optimization of the weights \ from
the inner optimization as well as the training subset 𝑆 and NAS parameters 𝛼 from the outer
optimization. In order to iteratively update the training subset and architecture, we compute
meta-approximations of the inner optimization. As for the architecture, we compute

∇𝛼Lval

(
arg min

\

Ltrain (\, 𝛼, 𝑆) , 𝛼,V
)
≈ ∇𝛼Lval (\ − Z∇\Ltrain (\, 𝛼, 𝑆) , 𝛼,V) . (7)

For the subset selection optimization problem, following Killamsetty et al. (2020), we run a
greedy algorithm on a similar approximation to the inner optimization:

Lval

(
arg min

\

Ltrain (\, 𝛼, 𝑆) , 𝛼,V
)
≈ Lval (\ − Z∇\Ltrain (\, 𝛼, 𝑆) , 𝛼,V) . (8)

The above equations form the basis of our method: we iteratively update the outer parameters
(architecture and subset) using the approximations above, and the inner parameters (weights) using
standard gradient descent; also see Algorithm 1 for the details of our approach. Following prior
work (Killamsetty et al., 2020; Liu et al., 2019), we only update the architecture and subset every 𝑡1
and 𝑡2 steps, respectively, for efficiency (𝑡1 << 𝑡2).

4 Experiments
In this section, we describe our experimental setup and results.

4.1 Experimental setup and details

Search spaces. We perform experiments on NAS-Bench-201 with CIFAR-10, CIFAR-100, and
ImageNet16-120, DARTS with CIFAR-10, and DARTS-S4 with CIFAR-10. See Appendix A.3 for
more information on the search spaces.

5

Table 1: Performance of one-shot NAS algorithms on NAS-Bench-201 CIFAR-10.

Performance on NAS-Bench-201 CIFAR-10
Algorithm Test accuracy GPU hours % Data used
Darts-pt 88.21 (88.11) 7.50 100
Darts-pt-entropy 86.31 ± 4.66 0.62 10
Darts-pt-rand 86.94 ± 3.58 0.62 10
Darts-pt-fl 89.27 ± 1.09 1.60 10
Adaptive-Dpt 92.22 ± 1.76 0.83 10

Table 2: Performance of one-shot NAS algorithms on NAS-Bench-201 CIFAR-100.

Performance on NAS-Bench-201 CIFAR-100
Algorithm Test accuracy GPU hours %Data used
Darts-pt 61.650 8.00 100
Darts-pt-entropy 56.79 ± 7.63 0.58 10
Darts-pt-rand 56.95 ± 4.54 0.58 10
Darts-pt-fl 64.28 ± 3.10 0.67 10
Adaptive-Dpt 64.27 ± 3.37 0.87 10
Adaptive-Dpt(F) 64.83 ± 4.70 0.67 10

Table 3: Performance of one-shot NAS algorithms on NAS-Bench-201 ImageNet16-120.

Performance on NAS-Bench-201 Imagenet16-120
Algorithm Test accuracy GPU hours %Data used
Darts-pt 35.00 33.50 100
Darts-pt-entropy 26.52 ± 3.73 1.58 10
Darts-pt-rand 27.04 ± 5.53 1.58 10
Darts-pt-fl 29.30 ± 5.35 1.90 10
Adaptive-Dpt 36.10 ± 6.96 2.60 10

Table 4: Performance of one-shot NAS algorithms on S4 search space CIFAR-10.

Performance on S4 CIFAR-10
Algorithm Test accuracy GPU hours %Data used
Darts-pt 97.31 (97.36) 8.38 100
Darts-pt-entropy 97.45 ± 0.10 0.86 10
Darts-pt-rand 97.40 ± 0.06 0.86 10
Darts-pt-fl 97.34 ± 0.13 1.08 10
Adaptive-Dpt 97.30 ± 0.12 1.08 10

6

Algorithm 1 Pseudocode for Adaptive-Dpt. 𝐺𝑟𝑒𝑒𝑑𝑦𝐷𝑆𝑆 refers to the set of greedy algorithms and
approximations that solves Equation (6); see Appendix A.4.1 for its full details.

1: Require: Training data U , Validation data V , Initial subset 𝑆 (0) of size 𝑘 , Initial parameters \ (0)

and 𝛼 (0) , steps 𝑇1, 𝑇2, and 𝑇 .
2: for all steps 𝑡 in 𝑇 do
3: if 𝑡 mod 𝑇1 == 0:
4: 𝑆 (𝑡) = GreedyDSS(U ,V, \ (𝑡−1) , 𝛼 (𝑡−1))
5: else:
6: 𝑆 (𝑡) = 𝑆 (𝑡−1)

7: if 𝑡 mod 𝑇2 == 0:
8: Perform one step of SGD to update 𝛼 (𝑡) using 𝑉
9: else:
10: 𝛼 (𝑡) = 𝛼 (𝑡−1)

11: Perform one step of SGD to update \ (𝑡) using 𝑆 (𝑡) and 𝛼 (𝑡) .
12: Discretize the supernet, based on NAS parameters 𝛼 (𝑇) obtained using 𝑆 (𝑇) , to return final

architecture
13: Train 𝛼 using SGD with the full training set U
14: Return: Final architecture (discretized 𝛼 (𝑇))

Table 5: Performance of one-shot NAS algorithms on DARTS search space CIFAR-10.

Performance on DARTS CIFAR-10
Algorithm Test accuracy GPU hours %Data used
Darts-pt 97.17 (97.39) 20.59 100
Darts-pt-entropy 96.68 ± 0.26 3.40 10
Darts-pt-rand 97.01 ± 0.32 2.35 10
Darts-pt-fl 96.91 ± 0.15 4.00 10
Adaptive-Dpt 96.73 ± 0.29 2.75 10
Adaptive-Dpt 96.97 ± 0.24 4.50 20
Adaptive-Dpt 97.30 ± 0.05 8.82 30

Baselines and approaches tested. We perform experiments with DARTS-PT, Adaptive-Dpt, and
three other (non-adaptive) data subset selection methods applied to DARTS-PT (Wang et al., 2021).
We describe the details of each approach below.

• Darts-pt: We use the original implementation of DARTS-PT, as described in Sec. 3.

• Darts-pt-rand: This is similar to Darts-pt, but the supernetwork is trained and discretized
using a random subset of the training data.

• Darts-pt-fl: While similar to Darts-pt, the supernetwork is trained and discretized using a
subset of the training data, selected using facility location. The facility location function attempts
to find a representative subset of items. The function is similar to k-medoid clustering: for each
data point 𝑖 in the ground set𝑉 , we compute the representative from subset 𝑋 which is closest to
𝑖 and add these similarities for all data points.

𝑓 (𝑋) =
∑︁
𝑖∈V

max
𝑗∈X

𝑠𝑖 𝑗 (9)

7

The facility location algorithm was implemented using the naive greedy algorithm and ran on
each class separately, using a dense Euclidean metric. For this, we employed the submodlib
library (Kaushal et al., 2022).

• Darts-pt-entropy (Na et al., 2021): again, this bears similarity to Darts-pt but using a non-
adaptive subset selection procedure. Specifically, the subset of the training data is selected using
a combination of high and low-entropy datapoints. Unlike the other existing zero cost subset
selection methods for NAS, this approach is specifically tailored for NAS and accelerates neural
architecture search using proxy data. The entropy of a datapoint is calculated by training a base
neural architecture from the search space, and determining whether the output probability is low
or high. This approach was adopted by Na et al. (2021), to speed up DARTS.

• Adaptive-Dpt: This is one of our key approaches, as described in Algorithm 1.

Experimental setup. Following Wang et al. (2021), we use 50% of the full training dataset for
supernet training and 50% for validation. We report the accuracy of the finally obtained architecture
on the held-out test set. In our primary experiments, for each (adaptive or non-adaptive) subset
selection method, we set the subset size to 10% of the training dataset. We run the same experimental
procedure for each method: select a size-10% subset of the full training dataset, train and discretize
the supernet on the subset, and train the final architecture using the full training dataset. For
Darts-pt, we run the same procedure using the full training dataset at each step. We otherwise use
the exact same training pipeline as in Wang et al. (2021), i.e, batch size of 64, learning rate of 0.025,
momentum of 0.9, and cosine annealing. We run all experiments on an NVIDIA Tesla V100 GPU.
We run each algorithm with 5 random seeds, reporting the mean and standard deviation of each
method, with the exception of Darts-pt; due to its extreme runtime and availability of existing
results, we perform the experiment once and verify that the result is nearly identical to published
results (Wang et al., 2021). We also report the time it takes to output the final architecture.

4.2 Adaptive-Dpt results and discussion

In this section, we give results for Adaptive-Dpt across the search spaces and baselines described
above. We start with the core results, then we present ablations, and then we describe the key
takeaways.

In Tab. 1, Tab. 2, and Tab. 3, we report the results on NAS-Bench-201. On CIFAR-10 and
ImageNet16-120, Adaptive-Dpt yields higher accuracy than all other algorithms tested, and on
CIFAR-100, Adaptive-Dpt is essentially tied with Darts-pt-fl for the highest accuracy. Fur-
thermore, all NAS algorithms that use subset selection have significantly decreased runtime –
Adaptive-Dpt sees a factor of 9 speedup compared to Darts-pt. Note that Darts-pt-fl takes
more time when the number of examples per class in the dataset is higher, so it sees comparatively
higher runtimes on CIFAR-10.

Next, in Tab. 4 and Tab. 5, we report the results on S4 CIFAR-10 and DARTS CIFAR-10. Once
again, the runtime of Adaptive-Dpt is significantly faster than Darts-pt – a factor of 7 speedup.
On these search spaces, the performances of the subset-based methods are more similar when
compared to NAS-Bench-201, and on the DARTS search space, Adaptive-Dpt does not outperform
Darts-pt. A possible explanation is that S4 and DARTS are significantly larger search spaces than
NAS-Bench-201 and require more training data to distinguish between architectures. To test this,
we included an additional experiment in Tab. 5, giving Adaptive-Dpt 20% and 30% training data
instead of 10%. We find that the accuracy significantly increases, moving within one standard
deviation of the accuracy of Darts-pt for 20% and slightly better than Darts-pt for 30%.

Additionally, since Jain et al. (2023) ran the same experiment as us on the DARTS CIFAR-
10, we compare our results in Tab. 5 to their Table 4. Adaptive-Dpt achieves 96.73 ± 0.29%,
96.97 ± 0.24%, and 97.30 ± 0.05% on 10%, 20%, and 30% data, compared to SubSelNet’s 97.18%,

8

97.24%, and 97.32% across 10%, 20%, and 40% data. Note a caveat: since we are comparing to results
in their paper, we only accuracy with respect to subset size, and although the experimental setup
appears to be similar, we cannot guarantee it is a fully apples-to-apples comparison. That said,
Adaptive-Dpt performs within the standard deviation of the accuracy of SubSelNet, and achieves
near-identical performance with 30% data vs. their 40% data. Overall, Adaptive-Dpt achieves
near-top performance across all search spaces, while also achieving no less than a seven-fold
increase in runtime compared to Darts-pt.

Ablation study. Next, we briefly describe three ablation studies: using Grad-Match rather than
Glister, computing the accuracy of Adaptive-Dpt as a function of subset sizes, and performing
the projection step with/without the full training dataset. We present these ablation studies in
Appendix A.1, and we summarize the results here.

In Appendix A.4.4, we report the results of DARTS-PT with adaptive subset selection using
Grad-Match (Killamsetty et al., 2021) on NAS-Bench-201 with datasets CIFAR-10 and CIFAR-100.
Although DARTS-PT with Grad-Match could not outperform Adaptive-Dpt, it outperformed
most non-adaptive subset selection methods.

In Appendix A.1, we test the performance of Adaptive-Dpt using different percentages of
the training data, ranging from 1% to 50%, on NAS-Bench-201 CIFAR10. Interestingly, we see a
U-shape: the highest accuracy with Adaptive-Dpt is at 20%, achieving accuracy higher than the
standard setting of 100% data. Since the supernetwork is an over-parameterized model of weights
and architecture parameters, and Adaptive-Dpt regularly updates the training subset to maximize
validation accuracy, Adaptive-Dpt may help prevent the supernetwork from overfitting. Finally,
we compare Adaptive-Dpt with and without using the full training dataset for the projection
(perturbation) step of DARTS-PT, where the default for Adaptive-Dpt is to use a subset of the
data. We find that there is high increase in the runtime, and accuracy is moderately improved on
DARTS CIFAR10, and remains similar for S4. We present the full details in Appendix A.1.

Key takeaways. Overall, we find that across many settings, Adaptive-Dpt improves the runtime
by roughly an order of magnitude, without sacrificing accuracy. While using 10% of the training
data is a strong default, the user may decide their desired tradeoff between performance and
accuracy, and choose the subset size in the supernetwork training accordingly.

4.3 Additional extensions
In this section, we discuss additional extensions beyond our core results and ablations above.
Specifically, we consider experiments with additional NAS algorithms (DEHB and BOHB), and
additional regularisation with other subset selection methods.

Adaptive-DEHB and Adaptive-BOHB. To show the generality of our approach, we combine
DEHB (Awad et al., 2021) and BOHB (Falkner et al., 2018b) with adaptive subset selection (Glister).
These are (efficient) iterative algorithms, meaning that we can simply run DEHB and BOHB as
normally, while iteratively selecting the best subset using Equation (4) and Equation (5), rather than
the more involved optimization procedure that we used for one-shot methods. See Appendix A.5
for more details. We use the same search space as Awad et al. (2021): a configuration sampled
from a parameter space (with parameters such as kernel size, channel size, and stride) is used to
instantiate a base CNN architecture. On this architecture, we trained DEHB on the MNIST dataset
for 100 epochs with and without subset selection. Across 5 seeds, DEHB trained without adaptive
subset selection took 0.91 hours and gave 0.96 ± 0.03 accuracy whereas Adaptive-DEHB using
20% data and selecting subset at every 10 epochs took 0.85 hours and yielded 0.99 ± 0.00 accuracy.
For Fashion-MNIST (Xiao et al., 2017), across 3 seeds, DEHB took 1.43 hours and gave 0.85 ± 0.03,
while Adaptive-DEHB using 20% data took 0.98 hours and yielded 0.94 ± 0.03.

For BOHB on the MNIST dataset, one set of experiments was done with this complete data
and another with a subset of these selected by Glister every 10 epochs. BOHB without adaptive

9

subset selection gave an accuracy of 0.99 ± 0.00 and took 2.43 hours on MNIST dataset whereas
Adaptive-BOHB gave an accuracy of 0.98 ± 0.00 and took 1.16 hours with 20% data.

Regularisation with fixed subset selection functions. In Sec. 4.2, we showed that Adaptive-Dpt
can sometimes outperform DARTS-PT, due to a (likely) regularization effect. Now, we push this
further by applying additional fixed subset selection. Specifically, we add a fixed subset selection
function, 𝑅(𝑆) to our original objective, along with a _ tradeoff parameter:

min
𝑆⊆U, |𝑆 | ≤𝑘

Lval

(
arg min

\

Ltrain (\, 𝑆) ,V
)
+ _ · 𝑅(𝑆) (10)

Then, we run the method the same way as before (Algorithm 1). We considered two regu-
larization functions. First is a random function, Adaptive-Dpt(R) (selecting 10% random data)
and second is supervised facility location, Adaptive-Dpt(F) which is NN-submodular function on
the training set features. We tested on CIFAR-100 and found that adaptive subset selection using
regularised (supervised facility location) Glister outperforms all models on CIFAR-100 with a
tradeoff on time. For Adaptive-Dpt(R) and Adaptive-Dpt(F), on CIFAR-100, we used 10% fixed
subset selection and 10% adaptive subset selection. Adaptive-Dpt(R) achieved an accuracy of 60.40
± 2.60 in 0.88 hours, while Adaptive-Dpt(F) achieved an accuracy of 65.41 ± 2.57 in 1.1 hours.
This approach shows that we can use non-adaptive subset selection algorithms as regularization
functions for adaptive subset selection algorithms to achieve better test accuracy.

5 Conclusions, Future work, and Impact

In this work, we used a connection between one-shot NAS algorithms and adaptive subset selection
to devise an algorithm that makes use of state-of-the-art techniques from both areas. Specifically,
we build on state-of-the-art approaches to one-shot NAS and adaptive subset selection and pose a
bi-level optimization problem on the training and validation sets. This leads us to the formulation
of a combined approach, Adaptive-Dpt, as a mixed discrete and continuous bi-level optimization
problem. We empirically demonstrated that the resulting algorithm is able to train on an (adaptive)
dataset that is 10% of the size of the full training set, without sacrificing accuracy, resulting in
an order of magnitude decrease in runtime. We also show how this method can be extended to
hyperparameter optimization algorithms, in general, using Adaptive-DEHB and Adaptive-BOHB.
We also release a codebase consisting of four different subset selection techniques.

Future work. An interesting direction for future work is to use an adaptive subset of the data even
when training the final architecture, which may lead to even faster runtime, perhaps at a small
cost to performance. Another interesting direction for future work is to apply adaptive subset
selection to other NAS algorithms such as regularized evolution (Real et al., 2019) or additional
supernet-based algorithms (see, e.g., (Heuillet et al., 2023)). Another interesting direction is to apply
Adaptive-Dpt to a transformer-based search space such as in Section 7.4 in White et al. (2023).

Broader impact. Our work combines techniques from two different areas: adaptive subset selection
for machine learning, and neural architecture search. The goal of our work is to make it easier
and quicker to develop high-performing architectures on new datasets. Our work also helps to
unify two sub-fields of machine learning that had thus far been disjoint. There may be even more
opportunity to use tools from one sub-field to make progress in the other sub-field, and our work
is the first step at bridging these subfields.

Since the end product of our work is a NAS algorithm, it is not itself meant for one application
but can be used in any end-application. Our hope is that future AI models discovered by our work
will have a net positive impact, due to the push for the AI community to be more conscious about
the societal impact of its work (Hecht et al., 2018).

10

References
Abdelfattah, M. S., Mehrotra, A., Dudziak, Ł., and Lane, N. D. (2021). Zero-cost proxies for lightweight {nas}.

In Proceedings of the International Conference on Learning Representations (ICLR).

Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1994). An evolutionary algorithm that constructs recurrent
neural networks. IEEE transactions on Neural Networks, 5(1):54–65.

Awad, N., Mallik, N., and Hutter, F. (2021). Dehb: Evolutionary hyperband for scalable, robust and efficient
hyperparameter optimization. arXiv preprint arXiv:2105.09821.

Bartoldson, B. R., Kailkhura, B., and Blalock, D. (2023). Compute-efficient deep learning: Algorithmic trends
and opportunities. J. Mach. Learn. Res., 24:122–1.

Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q. (2018). Understanding and simplifying
one-shot architecture search. In ICML.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. (2020). Electra: Pre-training text encoders as discrimi-
nators rather than generators. arXiv preprint arXiv:2003.10555.

Dai, X., Wan, A., Zhang, P., Wu, B., He, Z., Wei, Z., Chen, K., Tian, Y., Yu, M., Vajda, P., et al. (2020). Fbnetv3:
Joint architecture-recipe search using neural acquisition function. arXiv e-prints, pages arXiv–2006.

Domhan, T., Springenberg, J. T., and Hutter, F. (2015). Speeding up automatic hyperparameter optimization
of deep neural networks by extrapolation of learning curves. In IJCAI.

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural architecture search.
In ICLR.

Dress, W. (1987). Darwinian optimization of synthetic neural systems. Technical report, Oak Ridge National
Lab., TN (United States).

Falkner, S., Klein, A., and Hutter, F. (2018a). Bohb: Robust and efficient hyperparameter optimization at scale.
In International Conference on Machine Learning, pages 1437–1446. PMLR.

Falkner, S., Klein, A., and Hutter, F. (2018b). Bohb: Robust and efficient hyperparameter optimization at scale.
In ICML.

Frankle, J. and Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635.

Har-Peled, S. and Mazumdar, S. (2004). On coresets for k-means and k-median clustering. In Proceedings of
the thirty-sixth annual ACM symposium on Theory of computing, pages 291–300.

Hecht, B., Wilcox, L., Bigham, J. P., Schöning, J., Hoque, E., Ernst, J., Bisk, Y., De Russis, L., Yarosh, L., Anjum,
B., Contractor, D., and Wu, C. (2018). It’s time to do something: Mitigating the negative impacts of
computing through a change to the peer review process. ACM Future of Computing Blog.

Heuillet, A., Nasser, A., Arioui, H., and Tabia, H. (2023). Efficient automation of neural network design: A
survey on differentiable neural architecture search. arXiv preprint arXiv:2304.05405.

Jain, E., Nandy, T., Aggarwal, G., Tendulkar, A., Iyer, R., and De, A. (2023). Efficient data subset selection to
generalize training across models: Transductive and inductive networks. Advances in Neural Information
Processing Systems, 36.

Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., and Xing, E. P. (2018). Neural architecture search
with bayesian optimisation and optimal transport. In NeurIPS.

Kaushal, V., Ramakrishnan, G., and Iyer, R. (2022). Submodlib: A submodular optimization library. arXiv
preprint arXiv:2202.10680.

11

Killamsetty, K., Abhishek, G. S., Evfimievski, A. V., Popa, L., Ramakrishnan, G., Iyer, R., et al. (2022).
Automata: Gradient based data subset selection for compute-efficient hyper-parameter tuning. arXiv
preprint arXiv:2203.08212.

Killamsetty, K., Durga, S., Ramakrishnan, G., De, A., and Iyer, R. (2021). Grad-match: Gradient matching
based data subset selection for efficient deep model training. In International Conference on Machine
Learning, pages 5464–5474. PMLR.

Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G., and Iyer, R. (2020). Glister: Generalization based
data subset selection for efficient and robust learning. arXiv preprint arXiv:2012.10630.

Kitano, H. (1990). Designing neural networks using genetic algorithms with graph generation system.
Complex systems, 4(4):461–476.

Laube, K. A. and Zell, A. (2019). Prune and replace nas. arXiv preprint arXiv:1906.07528.

Lei, S. and Tao, D. (2023). A comprehensive survey of dataset distillation. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018). Hyperband: A novel bandit-based
approach to hyperparameter optimization. In JMLR.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Hardt, M., Recht, B., and Talwalkar, A. (2020). A system for
massively parallel hyperparameter tuning. In MLSys Conference.

Li, L., Khodak, M., Balcan, M.-F., and Talwalkar, A. (2021). Geometry-aware gradient algorithms for neural
architecture search. In Proceedings of the International Conference on Learning Representations (ICLR).

Liang, H., Zhang, S., Sun, J., He, X., Huang, W., Zhuang, K., and Li, Z. (2019). Darts+: Improved differentiable
architecture search with early stopping. arXiv preprint arXiv:1909.06035.

Liu, H., Simonyan, K., and Yang, Y. (2019). Darts: Differentiable architecture search. In ICLR.

Lu, S., Hu, Y., Yang, L., Mei, J., Sun, Z., Tan, J., and Song, C. (2024). Phd-nas: Preserving helpful data to
promote neural architecture search. Neurocomputing, page 127646.

Mellor, J., Turner, J., Storkey, A., and Crowley, E. J. (2020). Neural architecture search without training. arXiv
preprint arXiv:2006.04647.

Mirzasoleiman, B., Bilmes, J., and Leskovec, J. (2020). Coresets for data-efficient training of machine learning
models. In International Conference on Machine Learning, pages 6950–6960. PMLR.

Na, B., Mok, J., Choe, H., and Yoon, S. (2021). Accelerating neural architecture search via proxy data. arXiv
preprint arXiv:2106.04784.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural architecture search via parameters
sharing. In International Conference on Machine Learning, pages 4095–4104. PMLR.

Rawal, A., Lehman, J., Such, F. P., Clune, J., and Stanley, K. O. (2020). Synthetic petri dish: A novel surrogate
model for rapid architecture search.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized evolution for image classifier architecture
search. In AAAI.

Ru, B., Lyle, C., Schut, L., van der Wilk, M., and Gal, Y. (2020). Revisiting the train loss: an efficient
performance estimator for neural architecture search. arXiv preprint arXiv:2006.04492.

Shim, J.-h., Kong, K., and Kang, S.-J. (2021). Core-set sampling for efficient neural architecture search. arXiv
preprint arXiv:2107.06869.

12

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127.

Storn, R. and Price, K. (1997). Differential evolution – a simple and efficient heuristic for global optimization
over continuous spaces. J. of Global Optimization, 11(4):341–359.

Such, F. P., Rawal, A., Lehman, J., Stanley, K. O., and Clune, J. (2019). Generative teaching networks:
Accelerating neural architecture search by learning to generate synthetic training data.

Tan, M. and Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946.

Tenorio, M. and Lee, W.-T. (1988). Self organizing neural networks for the identification problem. Advances
in Neural Information Processing Systems, 1.

Tornede, T., Tornede, A., Hanselle, J., Wever, M., Mohr, F., and Hüllermeier, E. (2021). Towards green
automated machine learning: Status quo and future directions. arXiv preprint arXiv:2111.05850.

Tu, C., Ye, P., Lin, W., Ye, H., Yu, C., Chen, T., Li, B., and Ouyang, W. (2023). Efficient architecture search via
bi-level data pruning. arXiv preprint arXiv:2312.14200.

Wang, R., Cheng, M., Chen, X., Tang, X., and Hsieh, C.-J. (2021). Rethinking architecture selection in
differentiable nas. arXiv preprint arXiv:2108.04392.

White, C., Neiswanger, W., and Savani, Y. (2021). Bananas: Bayesian optimization with neural architectures
for neural architecture search. In AAAI.

White, C., Safari, M., Sukthanker, R., Ru, B., Elsken, T., Zela, A., Dey, D., and Hutter, F. (2023). Neural
architecture search: Insights from 1000 papers. arXiv preprint arXiv:2301.08727.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747.

Xie, W., Li, H., Fang, X., and Li, S. (2024). Darts-pt-core: Collaborative and regularized perturbation-based
architecture selection for differentiable nas. Neurocomputing, 580:127522.

Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q., and Xiong, H. (2019). Pc-darts: Partial channel
connections for memory-efficient architecture search. In ICLR.

Yan, S., White, C., Savani, Y., and Hutter, F. (2021). Nas-bench-x11 and the power of learning curves. In
NeurIPS.

Yao, P., Liao, C., Jia, J., Tan, J., Chen, B., Song, C., and Zhang, D. (2023). Asp: Automatic selection of proxy
dataset for efficient automl. arXiv preprint arXiv:2310.11478.

You, H., Li, B., Sun, Z., Ouyang, X., and Lin, Y. (2022). Supertickets: Drawing task-agnostic lottery tickets
from supernets via jointly architecture searching and parameter pruning. In European Conference on
Computer Vision, pages 674–690. Springer.

Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., and Hutter, F. (2020). Understanding and robustifying
differentiable architecture search. In ICLR.

Zhang, Z., Chen, X., Chen, T., and Wang, Z. (2021). Efficient lottery ticket finding: Less data is more. In
International Conference on Machine Learning, pages 12380–12390. PMLR.

Zhou, D., Zhou, X., Zhang, W., Loy, C. C., Yi, S., Zhang, X., and Ouyang, W. (2020). Econas: Finding proxies
for economical neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11396–11404.

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning. In ICLR.

13

Submission Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] [The main claims in the abstract and introduction reflect
the paper’s contributions and scope.]

(b) Did you describe the limitations of your work? [Yes] [See Section 5.]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See Section 5.]
(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] [We read the ethics and accessi-
bility guidelines and ensured our paper conforms to them.]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same
benchmarks, data (sub)sets, available resources)? [Yes] [See Section 4.]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,
search spaces, hyperparameter tuning)? [Yes] [See Section 4.]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account
for the impact of randomness in your methods or data? [Yes] [See Section 4.]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or
splits)? [Yes] [See Section 4.]

(e) Did you report the statistical significance of your results? [Yes] [See Section 4.]
(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] [We used

NAS-Bench-201.]
(g) Did you compare performance over time and describe how you selected the maximum

duration? [No] [Since we only compared one-shot NAS methods, we did not compare
performance over time.]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [Yes] [See Section 4.]

(i) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] [See Section 4.]

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results, including all requirements (e.g., requirements.txt with explicit versions), random
seeds, an instructive READMEwith installation, and execution commands (either in the supple-
mental material or as a url)? [Yes] [We include the code, data, and instructions to reproduce
the results here: https://anon-github.automl.cc/r/SubsetSelection_NAS-945B]

(b) Did you include a minimal example to replicate results on a small subset of the experiments
or on toy data? [Yes] [Please see : https://anon-github.automl.cc/r/SubsetSelection_
NAS-945B]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute
and understand your code? [Yes] [We included multipe documentation files, and put in a
reasonable effort to make our code as easy to use as possible.]]

14

https://2022.automl.cc/ethics-accessibility/
https://anon-github.automl.cc/r/SubsetSelection_NAS-945B
https://anon-github.automl.cc/r/SubsetSelection_NAS-945B
https://anon-github.automl.cc/r/SubsetSelection_NAS-945B

(d) Did you include the raw results of running your experiments with the given code, data, and
instructions? [Yes] [We include our raw results; see: https://anon-github.automl.cc/r/
SubsetSelection_NAS-945B]

(e) Did you include the code, additional data, and instructions needed to generate the figures
and tables in your paper based on the raw results? [Yes] [Please see : https://anon-github.
automl.cc/r/SubsetSelection_NAS-945B]

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] [[We cited all assets we used.]

(b) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating if the license requires it? [N/A] [Our experiments were conducted only on
publicly available datasets.]

(c) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] [Our experiments were conducted only on publicly
available datasets.]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A]
[All assets were public.]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,
GitHub or Hugging Face)? [No] [We did not include new assets.]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A] [We did not conduct research with human subjects.]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A] [We did not conduct research with human subjects.]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A] [We did not conduct research with human subjects.]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] [[We did not
include theoretical results.]

(b) Did you include complete proofs of all theoretical results? [N/A] [[We did not include
theoretical results.]

15

https://anon-github.automl.cc/r/SubsetSelection_NAS-945B
https://anon-github.automl.cc/r/SubsetSelection_NAS-945B
https://anon-github.automl.cc/r/SubsetSelection_NAS-945B
https://anon-github.automl.cc/r/SubsetSelection_NAS-945B

Table 6: Performance of Adaptive-Dpt on the DARTS search space and the S4 search space.

Performance on CIFAR-10
Search
Space

Test accu-
racy

GPU
hours

%Data used

DARTS 97.06± 1.09 2.65 10
S4 97.28± 0.03 1.18 10

Table 7: Performance and runtime ofAdaptive-Dpt varies as the percentage of training data increases,
on NAS-Bench-201 search space CIFAR-10. The supernetwork training and projection step
are given a percentage of the full training dataset.

Performance on NAS-Bench-201 CIFAR-10
Test accuracy GPU hours %Data used
57.91 ± 43.77 0.30 1
89.21 ± 3.12 0.35 2
91.95 ± 1.56 0.58 5
92.22 ± 1.76 0.83 10
92.24 ± 1.65 1.58 20
88.23 ± 0.06 3.63 50

A Additional Results and Analyses

In this section, we give additional results and analyses to supplement Sec. 4.

A.1 Ablation study

First, we describe the ablation studies (which were summarized in Sec. 4.2).
To explore the effect of the percentage of data used, in Figure 2 (left), we runAdaptive-Dptwith

different percentages of the training data, ranging from 1% to 50%. In Figure 2 (right), we run the
same experiment using the full training data in the projection step of Adaptive-Dpt. Interestingly,
we see a definitive U-shape in the first experiment: the highest accuracy with Adaptive-Dpt is at
20%, achieving accuracy higher than the standard setting of 100% data. Since the supernetwork is
an over-parameterized model of weights and architecture parameters, and Adaptive-Dpt regularly
updates the training subset to maximize validation accuracy, Adaptive-Dpt may help prevent the
supernetwork from overfitting. Furthermore, in the second experiment, we see that relatively, the
accuracies are much more consistent when varying the percentage of the training set used, when
the projection step is allowed to use the full training dataset. Therefore, keeping the full training
dataset for the projection step leads to higher and more consistent performance, at the expense of
more GPU-hours.

Overall, based on the ablation studies in Figure 2, the user may decide their desired tradeoff
between performance and accuracy, and choose the subset size in the supernetwork training
accordingly. For example, with a budget of 1 GPU hour, the best approach is to use a 10% subset of
the training data for the supernet training and projection, but with a budget of 2.5 GPU hours, the
best approach is to use a 10% subset of the training data for the supernet and the full training data
for the projection.

In Tab. 6, we give the results of Adaptive-Dpt with the full data for the DARTS-PT projection
step for search spaces DARTS and S4. Although we were able to get better accuracy (when compared
10% data on projection step) on DARTS space, the accuracy stayed similar for S4.

In Tab. 7 and Tab. 8, we give the tables to match the plots in Figure 2.

16

100 101

Percentage of fulll training dataset used
for supernetwork training and projection

55
60
65
70
75
80
85
90
95

Fin
al

 a
cc

ur
ac

y

100 101

Percentage of fulll training dataset used
for supernetwork training only

55
60
65
70
75
80
85
90
95

Fin
al

 a
cc

ur
ac

y

100 101

Percentage of fulll training dataset used
for supernetwork training and projection

0

1

2

3

4

5

GP
U

ho
ur

s

100 101

Percentage of fulll training dataset used
for supernetwork training and projection

0

1

2

3

4

5

GP
U

ho
ur

s

Figure 2: Performance and runtime of Adaptive-Dpt varies as the percentage of training data in-
creases. (Left) The supernetwork training and projection step are given a percentage of the
full training dataset. (Right) The supernetwork training is given a percentage, while the
projection step is given the full training dataset.

In Tab. 9, we give the results of Adaptive-Dpt using the full data for the Darts-pt projection
(perturbation) step for search space NAS-Bench-201 for datasets CIFAR-100 and Imagenet16-120.
Although we were able to get better accuracy (when compared to Adaptive-Dpt without full data
for the perturbation step), the time taken was significantly more.

In Tab. 10, we give a summary of the improvements of Adaptive-Dpt when compared to
Darts-pt.

A.2 Details from Sec. 4

In this section, we give more details for the experiments conducted in Sec. 4.

A.2.1 Experiments on NAS-Bench-201. We used the original code from Darts-pt (Wang et al., 2021)
and GLISTER (Killamsetty et al., 2020). The Darts-pt code consists of two parts. The supernet
training and a perturbation based projection part to discretize 𝛼 . The Supernet training is run for
100 epochs and at each 10 epoch interval, we select a new subset of data by passing the model and
architecture parameters. At every epoch, we use 10% of the original dataset. We use a batchsize of
64, learning rate of 0.025, momentum of 0.9, and cosine annealing. We use 50% of data for training
and 50% for validation, as in the DARTS-PT paper (Wang et al., 2021). The last 10% data subset is
saved and used for the perturbation based projection part of Darts-pt. We run the projection part

17

Table 8: Performance and runtime ofAdaptive-Dpt varies as the percentage of training data increases,
on NAS-Bench-201 search space CIFAR-10. The supernetwork training is given a percentage,
while the projection step is given the full training dataset.

Performance on NAS-Bench-201 CIFAR-10
Test accuracy GPU hours %Data used
92.68 ± 1.47 2.28 1
91.30 ± 1.69 2.33 2
92.88 ± 1.51 2.50 5
93.85 ± 0.51 2.66 10
91.81 ± 1.84 3.23 20
88.15 ± 0.14 4.73 50

Table 9: Performance of Adaptive-Dpt on NAS-Bench-201.

Performance on NAS-Bench-201
Dataset Test accu-

racy
GPU
hours

%Data used

CIFAR-100 65.85± 4.17 2.43 10
Imagenet16-
120

37.43± 2.12 8.78 10

Table 10: Summary of Improvements over Darts-pt by Adaptive-Dpt, across all search spaces.

Summary of Improvements
Search
Space

Dataset Accuracy Time re-
duced

% Data
Used

NAS-
Bench-
201

CIFAR-
10

+5.07 8.62
times

10

NAS-
Bench-
201

CIFAR-
100

+2.63 9.20
times

10

NAS-
Bench-
201

Imagenet-
16-120

+1.10 12.80
times

10

S4 CIFAR-
10

-0.01 7.76
times

10

DARTS CIFAR-
10

+0.13 2.33
times

30

18

for 25 epochs. For subset selection, we used the same code of GLISTER with selection algorithm
run on each class separately.

For Darts-pt-fl, we used the implementation of Facility Location as present in submodlib.
This subset selection algorithm was used in the dense Euclidean setting. The algorithm is used
separately for each class so as to keep the representation across classes the same as original. It was
optimised using the ‘NaiveGreedy’ algorithm, For the experiments, 10% data was used.

For Darts-pt-rand and Darts-pt-entropy, we combined Darts-pt with proxy data using
two methods of subset selection techniques for dataset, one a random subset selection and other
an entropy based subset selection technique (Na et al., 2021). For random subset data was chosen
randomly from the dataset. For the entropy based selection, we used the entropy files for CIFAR-10
and CIFAR-100 from Na et al. (2021) which was obtained by training a baseline network of ResNet20
and ResNet56 respectively. For ImageNet16-120, we trained a ResNet-50 model from the PyTorch
model zoo.

For S4 and the DARTS search space, we used the same configuration as for NAS-Bench-201.
Since S4 and DARTS are non-tabular, we used a separate evaluation code for computing the
performance of the selected architecture. We used the same evaluation code given in Darts-pt.
The code uses a batch size of 96, learning rate of 0.025, momentum of 0.9 and weight decay of 0.025.
The architecture is trained for 600 epochs.

A.3 Additional Details of the Search Spaces

A.3.1 NAS-Bench-201. In NAS-Bench-201 (Dong and Yang, 2020), the search space is based on cell-based
architectures where each cell is a DAG. Here each node is a feature map and each edge is an
operation. The search space for NAS-Bench-201 is defined by 4 nodes and 5 operations making
15625 different cell candidates.

NAS-Bench-201 gives performance of every candidate architecture on three different datasets
(CIFAR-10, CIFAR-100, Imagenet-16-120). This makes NAS-Bench-201 a fair benchmark for the
comparison of different NAS algorithms. The five representative operations chosen for NAS-Bench-
201 are: (1) zeroize (dropping the associated edge) (2)skip connection (3) 1-by-1 convolution (4)
3x3 convolution (5) 3x3 average pooling layer. Each convolution operation is a sequence of ReLU,
convolution and batch normalization. The input of each node includes the sum of all the feature
maps transformed using the respective edge operations. Each candidate architecture is trained
using Nestorov momentum SGD using cross entropy loss for 200 epochs.

A.3.2 DARTS-CNN search space. The search space is represented using cell based architectures (Liu
et al., 2019). Each cell is a DAG with feature maps as nodes and edges as operations. The operations
included are 3x3 and 5x5 separable convolutions, 3x3 and 5x5 dilated separable convolutions, 3x3
max pooling, 3x3 average pooling, identity and zero. Each cell consists of 7 nodes where output
node is depth-wise concatenation of all the intermediate nodes.

A.3.3 DARTS S4. S1-S4 are four different search spaces proposed by Zela et al. (2020). These search
spaces were proposed to demonstrate the failure of standard DARTS. The same micro-architecture
as the original DARTS paper with normal and reduction cells is used but only a subset of operators
are allowed for the search spaces. The representative set of operations for S4 is {3x3 SepConv,
Noise}. SepConv is chosen since it is one of the most common operation in the discovered cells
reported by Liu et al. (2019). Noise operation plugs in the noise values 𝜖 ∼ 𝑁 (0, 1) for every value
from the input feature map.

A.4 Additional Details of the Algorithms Implemented

In this section, we give more details for GLISTER and the baselines used in Sec. 4.

19

A.4.1 Details of GLISTER. The optimization that we are trying to solve for GLISTER, equation (4), can
be written as

𝑆𝑡+1 = arg min
𝑆⊆𝑈 , |𝑆 | ≤𝑘

𝐺\𝑡 (𝑆) (11)

where𝐺\𝑡 (𝑆) is Equation (5). Since equation (11) is an instance of submodular optimization (as
proven in Theorem 1 of Killamsetty et al. (2020)), it can be regularized using another function such
as supervised facility location. The regularized objective can be written as

𝑆𝑡+1 = arg min
𝑆⊆𝑈 , |𝑆 | ≤𝑘

𝐺\𝑡 (𝑆) + _𝑅(𝑆) (12)

where _ is a trade-off parameter. GreedyDSS refers to the set of greedy algorithms and approxima-
tions that solves Equation (12). Greedy Taylor Approximation algorithm (GreedyTaylorApprox(U,
V, \ 0, [, k, r, _, R), described as Algorithm 2 in Killamsetty et al. (2020)) is used as GreedyDSS in
our work. Here, 𝑈 and 𝑉 are the training and validation set respectively. \ 𝑡 is the current set of
parameters, [is the learning rate, 𝑘 is the budget, parameter 𝑟 governs the number of times we
perform the Taylor series approximation, and _ is the regularization constant.

A.4.2 Details of facility location. Intuitively, facility location, attempts to model representation of the
datapoints. If 𝑠𝑖 𝑗 is the similarity between datapoints 𝑖 and 𝑗 , define 𝑓 (𝑋) such that

𝑓 (𝑋) =
∑︁
𝑖∈𝑉

max
𝑗∈𝑋

𝑠𝑖 𝑗 (13)

where 𝑉 is the ground set. If the ground set of items are assumed clustered, an alternative
clustered implementation of facility location is computed over the clusters as

𝑓 (𝑋) =
∑︁
𝑙∈1..𝐾

∑︁
𝑖∈𝐶𝑙

max
𝑗∈𝑋∩𝐶𝑙

𝑠𝑖 𝑗 (14)

A.4.3 Details of DARTS-PT-ENTROPY. Darts-pt-entropy is the implementation of Na et al. (2021)
where the cost of NAS is reduced by selecting a representative set of the original training data. The
entropy of a datapoint is defined as

Entropy(𝑥 : 𝑀) = −
∑̃︁
𝑦

𝑝 (𝑦 |𝑥,𝑀) log𝑝 (𝑦 |𝑥,𝑀) (15)

where 𝑦 = 𝑀 (𝑥) is the predictive distribution of 𝑥 w.r.t. a pre-trained baseline model𝑀 .
The selection method selects datapoints from both the high entropy and low entropy regions.
If ℎ𝑥 is a bin of the data point 𝑥 on data entropy histogram 𝐻 , |ℎ𝑥 | is the height of ℎ𝑥 (number

of examples in ℎ𝑥), three probabilities are defined as

𝑃{1,2,3} (𝑥 ;𝐻) = norm(𝑊{1,2,3} (ℎ𝑥 ;𝐻)/|ℎ𝑥 |) (16)

where norm() is a normalizer such that the probability terms add to 1.𝑊{1,2,3} are selected such
that the tail end entropy data are likely to be selected over the middle entropy data points.

In Na et al. (2021), 𝑃1(𝑥) was the highest performer. We have used 𝑃1(𝑥) in our experiments.

A.4.4 Details of Grad-Match.

20

Table 11: Performance of DARTS-PT + Grad-Match on NAS-Bench-201

Performance on NAS-Bench-201 CIFAR-10
Dataset Test accu-

racy
GPU
hours

% Data
used

CIFAR-
10

88.83 ±
1.09

0.87 10

CIFAR-
100

63.70 ±
3.98

0.87 10

Grad-Match. Grad-Match, Gradient Matching based Data Subset Selection for Efficient Deep
learning Model Training is proposed in Killamsetty et al. (2021). Grad-Match selects a subset that
best approximates either the full training dataset (or) a held-out validation dataset. This is achieved
by selecting a coreset whose gradient matches the average loss gradient over the training dataset or
the validation dataset respectively. The objective is modelled as a discrete subset selection problem
that is combinatorially hard to solve and in response, they propose Orthogonal Matching Pursuit
based greedy algorithm to pick the subset.

In Killamsetty et al. (2021), it is proved that the convergence bounds of adaptive subset selection
algorithms critically depends on an additive error term that depends on how well the subset’s
gradients match the full training/validation gradient. The Error term E is defined as:

E_ (w, 𝑆) = _∥w∥2 (17)

+ ∥
∑︁
𝑗∈𝑆

w𝑗∇\Ltrain (\, 𝑗) −
1
|U |

∑︁
𝑢∈U

∇\Ltrain (\,𝑢) ∥

where w ∈ R𝑘 represents the weight coefficient attached to each point in the coreset(𝑆). First
term of E is a squared 𝑙2 loss regularizer over the weight vector with a regularizer coefficient _ to
prevent overfitting.

The objective function for the Grad-Match version that selects a coreset to approximate
training gradient is:

argmin
𝑆⊆U, |𝑆 | ≤𝑘

min
w

E_ (w, 𝑆) where, (18)

w ∈ R𝑘 represents the weight coefficient attached to each point in the coreset. Essentially, the
formulation selects a subset whose weighted sum of gradients match the average training gradient.

In Table 11, we give performance of DARTS-PT + Grad-Match on NAS-Bench-201.

A.5 Adaptive-DEHB and Adaptive-BOHB

Adaptive-DEHB. Differential evolution hyperband (DEHB) (Awad et al., 2021) is a leading algo-
rithm for mutli-fidelity optimization which has been applied to both hyperparameter optimization
(HPO) and NAS. The approach combines differential evolution (Storn and Price, 1997), a population-
based evolutionary algorithm, with hyperband (Li et al., 2018), a bandit-based multi-fidelity op-
timization routine which rules out poor hyperparameter settings before they are trained for too
long. Unlike DARTS-based approaches, DEHB does not use a supernetwork – each architecture is
trained separately. Therefore, to devise Adaptive-DEHB, we incorporate adaptive subset selection
simply by running Glister for each individual architecture trained throughout the algorithm.

21

Adaptive-BOHB. Bayesian Optimization and Hyperband (BOHB) (Falkner et al., 2018a) is a
hyperparameter optimization method that combines benefits of Bayesian Optimization and bandit
based methods (Li et al., 2018) such that it finds good solutions faster than Bayesian optimization
and converges to the best solutions faster than Hyperband. We use adaptive subset selection
along with BOHB to devise Adaptive-BOHB which yields accuracy almost similar to BOHB while
reducing the runtime significantly.

A.6 Supertickets and subset selection

The Lottery Ticket Hypothesis (Frankle and Carbin, 2018) and Supertickets (You et al., 2022)
represent two complementary concepts in the realm of neural network pruning and efficiency.
The Lottery Ticket Hypothesis posits that within a dense, over-parameterized neural network,
there exist sparse subnetworks, or ”winning lottery tickets,” that can achieve similar performance
with significantly fewer parameters. This hypothesis underscores the importance of identifying
and training these critical subnetworks during the training process. Supertickets, on the other
hand, build upon this idea by explicitly seeking out these winning subnetworks during training,
rather than relying on the randomness of weight initialization. Supertickets are a strategic means
to discover and harness the lottery ticket subnetworks, ensuring that the training process is not
only more efficient but also yields models with improved resource utilization and competitive
performance. In essence, both concepts share the common goal of reducing the computational and
memory demands of deep learning models while preserving or even enhancing their predictive
capabilities.

We combined adaptive subset selection to find supertickets (You et al., 2022) on MNIST dataset
and found that the training time can be significantly reduced with better results.

The Pruning-Aware Critical (PrAC) (Zhang et al., 2021) subset selection approach is a key
innovation aimed at identifying a subset of training examples that are essential for maintaining
the performance of deep neural networks while significantly reducing the dataset size required
for training. The PrAC approach focuses on discovering data instances that play a pivotal role
in the learning process, aligning with the Lottery Ticket Hypothesis (Frankle & Carbin, 2018),
which posits that sparse subnetworks within a neural architecture can be trained effectively.
The goal is to create a data subset that facilitates the training of these sparse subnetworks,
making it possible to achieve model efficiency with fewer training samples. To select PrAC
subsets, the approach incorporates two crucial components: Critical Examples for Pruning
(CEP) and Critical Examples for Training (CET). These subsets are carefully curated during the
iterative magnitude pruning process and aim to strike a balance between data retention and
model efficiency. Specifically, CET comprises examples that significantly affect the network’s
performance during training, while CEP focuses on data instances that are influential in the
pruning process. By identifying and preserving these critical examples, PrAC ensures that the
retained training data is not only conducive to network learning but also facilitates effective pruning.

We combined PrAC subset selection to find supertickets (You et al., 2022) on MNIST dataset
and found that the training time can be significantly reduced with better results. In Tab. 12, we
give performance of various subset selection algorithms on supertickets code (You et al., 2022).

22

Table 12: Performance of subset selection algorithms for finding Supertickets

Performance on MNIST
Subset
Selection
Algorithm

Loss Top 1 er-
ror

% Top 5 er-
ror

Vanilla 0.414 0.1072 0.004
PrAC 0.377 0.003 0.003
Glister 0.951 0.299 0.0185
Grad-
Match

0.9598 0.2937 0.0165

23

	Introduction
	Related Work
	Methodology
	One-shot NAS Preliminaries
	Adaptive Subset Selection Preliminaries
	Our Framework

	Experiments
	Experimental setup and details
	Adaptive-Dpt results and discussion
	Additional extensions

	Conclusions, Future work, and Impact
	Additional Results and Analyses
	Ablation study
	Details from sec:experiments
	Experiments on NAS-Bench-201

	Additional Details of the Search Spaces
	NAS-Bench-201
	DARTS-CNN search space
	DARTS S4

	Additional Details of the Algorithms Implemented
	Details of GLISTER
	Details of facility location
	Details of DARTS-PT-ENTROPY
	Details of Grad-Match

	Adaptive-DEHB and Adaptive-BOHB
	Supertickets and subset selection

