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Abstract

This work is about rigorously defining the values of perception, prediction,
communication, and common sense in decision making. The defined quanti-
ties are decision-theoretic, but have information-theoretic analogues, e.g.,
they share some simple but key mathematical properties with Shannon
entropy and mutual information, and can reduce to these quantities in par-
ticular settings. One interesting observation is that, the value of perception
without prediction can be negative, while the value of perception together
with prediction and the value of prediction alone are always nonnegative.
The defined quantities suggest answers to practical questions arising in the
design of autonomous decision-making systems. Example questions include:
Do we need to observe and predict the behavior of a particular agent? How
important is it? What is the best order to observe and predict the agents?
The defined quantities may also provide insights to cognitive science and
neural science, toward the understanding of how natural decision makers
make use of information gained from different sources and operations.

1 Introduction

This work is motivated by the following questions arising in decision-making problems.

• What is the value of observing the world when making decisions, compared to not
observing the world at all?

• When we can only observe part of the world but can predict the rest, what is the value of
predicting the unobserved part of the world?

• When there are multiple agents involved in decision making, how important is it to
observe and predict the behavior of a particular agent? and

• What is the best order to perform perception and prediction on these agents?

Answering the first two questions can help us quantify the importance of the perception
and prediction subsystems in a decision-making system. The latter two questions are of
particular interest when the limited computational resource is a concern in the design of the
decision-making system. In this work, we attempt to provide a rigorous path to formalize
the above questions and derive answers to them. We define the values of key operations for
decision making, including perception and prediction, and extending to communication and
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common sense; we also extend these definitions to decision-making problems with multiple
agents. We analyze the mathematical properties of these values and draw connections to
information-theoretic measures. The defined quantities may also provide insights to cognitive
and neural sciences, toward the understanding of how natural decision makers make use of
information gained from different sources and operations. Related works are discussed in
Appendix A.

2 Definitions of values of different operations

2.1 A generic decision-making problem

This study concerns a generic decision-making problem, where a decision maker need to
take an action u from action space U in order to minimize the expectation E[ℓ(X,Y, u)] of
a loss function ℓ : X × Y × U → R, where X is a random observable state, Y is a random
unobservable state, and the expectation is taken with respect to the joint distribution PX,Y .
X being observable means that the action can be taken as a function of X through a policy
ψ : X → U, such that U = ψ(X). This problem encompasses several types of problems, e.g.

• One-step or open-loop stochastic control, where the loss depends on both the observed
and unobserved states. This includes the settings where the loss only depends on (X,u)
or (Y, u) as special cases.

• Bayesian statistical estimation, including both regression and classification, where Y need
to be estimated based on X. An advantage of considering both X and Y in the loss
function is that it makes the loss contextual, which can better model the situations where
the quality of an estimate depends on its accuracy as well as the context it is made in.

• Bayesian game play with an agent, where X includes the ego player’s own state and the
observable state of the agent, Y represents the unknown action to be taken by the agent
that only depends on X, and the loss depends on both players’ states and actions.

For this decision-making problem, how well the decision can be made depends on what
information or knowledge the decision maker uses when coming up with the action. Possible
knowledge that can be used includes the marginal distributions PX and PY , the joint
distribution PX,Y , the observable state X, and even the unobservable state Y . There are
also different ways of using PX,Y , depending on whether it is used together with X or not.
Gaining and making use of these knowledge usually requires different operations, such as
common sense inquiry, perception, prediction, and even communication. In general, the
more knowledge is gained, the better decision can be made. In what follows, we present
a rigorous way to define the operations for gaining different knowledge, and quantify the
values of these operations when the gained knowledge is used for decision making.

2.2 Value of common sense

When neither X nor Y can be used for decision making, knowing their joint distribution
can still be helpful as it encodes their statistical dependency, which is usually gained from
common sense. We can thus quantify the value of common sense as the reduction of the
minimum achievable expected loss, a.k.a. the risk, when using PX,Y in decision making,
compared with when ignoring the statistical dependency between X and Y by using only
the product of their marginals PXPY . Formally, this value can be defined as

E[ℓ(X,Y, ū)] − E[ℓ(X,Y, u∗)] (1)
where ū ≜ arg minu∈U E[ℓ(X, Ȳ , u)] with PX,Ȳ = PXPY is the best action to take when X

and Y are treated to be independent from each other; and u∗ ≜ arg minu∈U E[ℓ(X,Y, u)]
is the best action to take when using the true joint distribution of X and Y . From the
definition of u∗, we know that the value of common sense is always nonnegative.

2.3 Value of perception

The observable state X can be used in decision making only when it is perceived. In a
narrow sense, perception is the operation to get X ready for use by a policy, while not taking
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the dependency of Y on X into account. We can define the value of this narrow sense of
perception as the reduction of risk when using X in decision making without predicting Y
based on X, compared with only using PX,Y in decision making. Formally, it can be

E[ℓ(X,Y, u∗)] − E[ℓ(X,Y, ψ̄(X))] (2)

where ψ̄ ≜ arg minψ:X→U E[ℓ(X, Ȳ , ψ(X))] is the best policy when using X but treating
Y to be independent of X in decision making. Given X = x, ψ̄(x) can be realized as
ψ̄(x) = arg minu∈U E[ℓ(x, Y, u)]. In other words, ψ̄ only takes X and the marginal distribution
PY into account when coming up with the best action to take, thus does not predict Y based
on X. There is no definite order between E[ℓ(X,Y, u∗)] and E[ℓ(X,Y, ψ̄(X))], meaning that
the value of perception defined above could be negative for certain PX,Y and ℓ. One such
example is given in Appendix B. An intuitive example is that, it may be safer for a driver to
pull up the vehicle when they cannot clearly see the surrounding objects, than driving with
limited consciousness while only reacting to immediately visible objects but ignoring the
interactions between them and the invisible ones. The full potential of perception needs to be
realized by the additional operation of prediction, as discussed in the next two subsections.

2.4 Value of prediction

The value of prediction can be defined as the reduction of risk when making use of X as well
as predicting Y based on it in decision making, compared with just using X and treating Y
as independent of X. Formally, it can be defined as

E[ℓ(X,Y, ψ̄(X))] − E[ℓ(X,Y, ψ∗(X))] (3)

where ψ∗ ≜ arg minψ:X→U E[ℓ(X,Y, ψ(X))] is the best policy when using X and the true
joint distribution PX,Y in decision making. Given X = x, ψ∗(x) can be realized as ψ∗(x) =
arg minu∈U E[ℓ(x, Y, u)|X = x]. In other words, ψ∗ takes both X and the posterior PY |X
into account when coming up with the best action to take. Computationally, the operation
of predicting Y based on X means the evaluation of the posterior PY |X=x for each given x.
From the definition of ψ∗, we know that the value of prediction is always nonnegative.

2.5 Value of perception together with prediction

We can also define the value of perception together with prediction as the reduction of risk
when using X and predicting Y in decision making, compared with only using PX,Y :

E[ℓ(X,Y, u∗)] − E[ℓ(X,Y, ψ∗(X))] (4)
which simply equals the sum of the value of perception and the value of prediction defined
above. From the definition of ψ∗, we know that the value of perception together with
prediction is always nonnegative.

2.6 Value of communication

When the decision maker not only uses observable X, but also can access Y through some
form of communication, the achievable risk in the decision making can be further reduced.
This reduction can be defined as the value of communication:

E[ℓ(X,Y, ψ∗(X))] − E[ℓ(X,Y, ψ∗∗(X,Y )] (5)

where ψ∗∗ ≜ arg minψ:X×Y→U E[ℓ(X,Y, ψ(X,Y )] is the best communication-enabled pol-
icy that uses both X and Y and their joint distribution in decision making. Since a
communication-enabled policy defined as ψ(x, y) = ψ∗(x) that simply ignores Y can achieve
E[ℓ(X,Y, ψ∗(X))], we know that the value of communication is always nonnegative.

3 Information-theoretic realizations and interpretations

The values of different operations defined above have information-theoretic realizations
as commonly seen information measures. These information measures in turn provide
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information-theoretic interpretations and analogues of the defined values. Consider the case
where X and Y are jointly distributed discrete random variables, the action space is the set
of joint distributions on X × Y, and the loss function is ℓ(x, y, u) = − log u(x, y), that is, the
negative log-likelihood of (x, y) under distribution u. In this case, the best actions and policies
defined above become ū = PXPY , u∗ = PX,Y , ψ̄(x) = δxPY , ψ∗(x) = δxPY |X=x, ψ∗∗(x, y) =
δxδy, where δx and δy are one-hot distributions at x and y respectively. The various values
defined above become: value of common sense H(X) +H(Y ) −H(X,Y ) = I(X;Y ), value
of perception H(X,Y ) −H(Y ) = H(X|Y ), value of prediction H(Y ) −H(Y |X) = I(X;Y ),
value of perception together with prediction H(X,Y ) − H(Y |X) = H(X), and value of
communication H(Y |X) − 0 = H(Y |X). It is interesting to note that in this information-
theoretic setting, the values of common sense and prediction both are the mutual information
between X and Y . It is also notable that the uncertainty of X can be fully removed only
when both observing X and predicting Y based on X, as

H(X,Y ) −H(Y |X) = H(X|Y ) + I(X;Y ) = H(X). (6)

The defined quantities and their information-theoretic realizations are illustrated in Fig. 1.
The connections between the defined values and the information measures are further studied
through their functional properties in Appendix C.

Extension: values of perception, prediction, communication,  
and common sense
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• These quantities are decision-theoretic, but have information-theoretic interpretationsFigure 1: Values of common sense, perception, prediction, and communications, as well as
their information-theoretic analogues.

4 Extension to multi-agent settings and applications

We can extend the definitions of the values of different operations to decision-making
problems involving multiple agents. The extended results can provide ground truths of agent
importance and the best order of perception and prediction of the agents in such problems.
Consider the problem where the decision maker needs to take an action u ∈ U to minimize
the expected loss E[ℓ(Xn, Y n, u)] influenced by n agents. Each agent has an observable
state Xi which could be their status, and an unobservable state Yi which could be their
action to take, for i = 1, . . . , n. There is a joint distribution PXn,Y n of Xn = (X1, . . . , Xn)
and Y n = (Y1, . . . , Yn), known to the decision maker. The action can be taken based on
PXn,Y n and Xn. Using the concepts developed in the previous sections, we may gauge the
importance of an agent by examining the value of observing and making prediction on that
agent. For the ith agent, this value can be defined as

E[ℓ(Xn, Y n, u∗)] − E[ℓ(Xn, Y n, ψ∗
i (Xi))] (7)

where we redefine u∗ to be u∗ = arg minu∈U E[ℓ(Xn, Y n, u)], and define ψ∗
i =

arg minψ:X→U E[ℓ(Xn, Y n, ψ(Xi))]. This value reflects the importance of taking the ith
agent into account for decision making without or before taking any other agent into account.
Further discussions on the definitions of these values and the order of importance of the
agents are continued in Appendix D.
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Appendix

A Related works

This work can be viewed as an extension of (1) on the generalized definition of entropy
and mutual information in decision making, which was subsequently studied in (2) in game
theoretic setting. The value of information is also discussed in economics setting in (3). In
those earlier works, the “value of information” can be viewed as the special case of the value
of perception together with prediction as defined in this work. In this work, we specifically
distinguish between perception and prediction, and extent the discussion to cover common
sense and communication as well. The decision-making problem considered here is also more
general, due to the more general form of the loss function we use. The loss function used
here follows the one considered in (4; 5). To the author’s knowledge, there is no dedicated
study in the literature on the values of the diverse operations considered in this work yet.
The nonnegativity of the most values considered here also generalizes the data processing
inequality of Bayes risk in (6).
The identification of importance of agents in autonomous driving has been a trending topic
in recent years. Example works include (7; 8; 9; 10). Those works are mostly based on
machine learning methods which require human labels on the importance of the agents, or
based on rules from human knowledge. The results in this work can be used to provide
ground truth labels of agent importance to be used for the learning-based methods.
Recently, common sense reasoning in perception, prediction, and planning becomes a trending
topic in AI research (11). Gaining a principled understanding of the importance of common
sense helps to promote the related research in a more scientific manner.

B An example where value of perception is negative

One such example is where X = Y = U = {0, 1}, the loss function is

(x, y, u) 000 001 010 011 100 101 110 111
ℓ 1 0 0 1 0 0 1 0

and the joint distribution PX,Y and the conditional distribution PY |X are

(x, y) 00 01 10 11
PX,Y 0.1 0.05 0.15 0.7

(x, y) 00 01 10 11
PY |X 0.67 0.33 0.18 0.82

For this example, u∗ = 1 and E[ℓ(X,Y, u∗)] = 0.05, while ψ̄(0) = 0, ψ̄(1) = 1, and
E[ℓ(X,Y, ψ̄(X))] = 0.1, resulting in a negative value of perception.

C Functional properties of defined values

We have seen that the defined values are always nonnegative except for the value of perception
without prediction. In this section we further study some functional properties of the defined
values, mainly concavity and convexity in the underlying distributions. These properties are
inherited as key properties by their information-theoretic realizations. This further reveals
the intimate connection between the defined values and the information measures.
The results are built on four lemmas. The first three are about properties of the achievable
risks, which are useful in proving properties of the value of perception together with prediction
and the value of communication stated in Propositions 1 and 2.
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Lemma C1. E[ℓ(X,Y, u∗)] is concave in the joint distribution PX,Y .
Lemma C2. E[ℓ(X,Y, ψ∗(X))] has the following properties:

1. For a fixed PX , it is concave in PY |X .

2. For a fixed PY |X , it is linear in PX .
Lemma C3. E[ℓ(X,Y, ψ∗∗(X,Y ))] is linear in the joint distribution PX,Y .

The next lemma is useful in proving the properties of the values of common sense and
prediction stated in Proposition 3.
Lemma C4. Given a loss function ℓ : Z × U → R and two distributions P and Q on Z, a
generalized decision-theoretic divergence between P and Q with respect to ℓ can be defined as

Dℓ(P,Q) = EP [ℓ(Z, uQ)] − EP [ℓ(Z, uP )] (8)
where uP = arg minu∈U EP [ℓ(Z, u)] and uQ = arg minu∈U EQ[ℓ(Z, u)]. This divergence is
convex in P when Q is fixed.

Now we can state the major functional properties in the following three propositions.
Proposition 1. The value of perception together with prediction is concave in PX for a
fixed PY |X .

This result echoes the information-theoretic realization of the value of perception together
with prediction as H(X), which is concave in PX . This value can thus be seen as a generalized
form of entropy of X, implying that the uncertainty about X in decision making can be fully
resolved by observing it and making prediction on Y based on it.
Proposition 2. The value of communication have the following properties:

1. For a fixed PX , it is concave in PY |X .

2. For a fixed PY |X , it is linear in PX .

This result echoes the information-theoretic realization of the value of communication as
H(Y |X), which has the same properties. It shows that this value can be seen as a generalized
form of conditional entropy of Y given X, implying that the residue uncertainty of Y after
predicting it based on X in decision making can be fully resolved by communication.
Proposition 3. For a fixed pair of PX and PY , and the set of probability transition kernels
M = {PY |X : PY |X ◦ PX = PY } that couple the pair, the value of common sense and the
value of prediction both are convex in PY |X on M.

This result echoes the information-theoretic realization of the values of common sense and
prediction as I(X;Y ), which has a stronger property that it is convex in PY |X as long as
PX is fixed. It shows that these two values both can be seen as a generalized form of mutual
information between X and Y , implying that the uncertainty of Y in decision making can
be partially resolved by using its statistical dependency on X.

D Further discussions on decision making with multiple agents

Another way of defining the value or importance of the ith agent would be the reduction
of risk by observing and making prediction based on this agent while the other agents are
already taken into account, that is

E[ℓ(Xn, Y n, ψ∗n\i(Xn\i))] − E[ℓ(Xn, Y n, ψ∗n(Xn))] (9)
where

ψ∗n\i = arg min
ψ:Xn−1→U

E[ℓ(Xn, Y n, ψ(Xn\i))], (10)

and
ψ∗n = arg min

ψ:Xn→U
E[ℓ(Xn, Y n, ψ(Xn))] (11)
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are the best policies when taking Xn\i ≜ (X1, . . . , Xi−1, Xi+1, . . . , Xn) and Xn respectively
into account for decision making.
As both definitions are viable for agent importance, we see that the importance of an agent
actually depends on its order in perception and prediction. In other words, it depends on
which other agents have already been taken into account for decision making before observing
and making predictions based on that agent. This motivates us to continue this chain of
thought to answer the second question.
The best order (i1, . . . , in) to run perception and prediction on agents can be determined as

i1 = arg min
i∈[n]

E[ℓ(Xn, Y n, ψ∗
i (Xi))] (12)

and for k = 2, . . . , n
ik = arg min

i∈[n]\{i1,...,ik−1}
E[ℓ(Xn, Y n, ψ∗

ik−1,i(Xi1 , . . . , Xik−1 , Xi))] (13)

where
ψ∗
ik−1,i = arg min

ψ:Xk→U
E[ℓ(Xn, Y n, ψ(Xi1 , . . . , Xik−1 , Xi))]. (14)

Equivalently, i1 maximizes among i ∈ [n] the value of the first agent to take into account
E[ℓ(Xn, Y n, u∗)] − E[ℓ(Xn, Y n, ψ∗

i (Xi))] (15)
while ik maximizes among i ∈ [n] \ {i1, . . . , ik−1} the value of the kth agent to take into
account.
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