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ABSTRACT

Although diffusion models have achieved strong results in decision-making tasks,
their slow inference speed remains a key limitation. While consistency models offer
a potential solution, existing applications to decision-making either struggle with
suboptimal demonstrations under behavior cloning or rely on complex concurrent
training of multiple networks under the actor-critic framework. In this work,
we propose a novel approach to consistency distillation for offline reinforcement
learning that directly incorporates reward optimization into the distillation process.
Our method achieves single-step sampling while generating higher-reward action
trajectories through decoupled training and noise-free reward signals. Empirical
evaluations on the Gym MuJoCo, FrankaKitchen, and long horizon planning
benchmarks demonstrate that our approach can achieve a 9.7% improvement
over previous state-of-the-art while offering up to 142× speedup over diffusion
counterparts in inference time.

1 INTRODUCTION

Recent advances in diffusion models have demonstrated their remarkable capabilities across various
domains (Song et al., 2020a; Karras et al., 2022; Liu et al., 2023; Chi et al., 2023; Janner et al., 2022),
including decision-making tasks in reinforcement learning (RL). These models excel particularly in
capturing multi-modal behavior patterns (Janner et al., 2022; Chi et al., 2023; Ajay et al., 2022) and
achieving strong out-of-distribution generalization (Duan et al., 2025; Block et al., 2023), making
them powerful tools for complex decision-making scenarios. However, their practical deployment
faces a significant challenge: the computational overhead of the iterative sampling procedures, which
requires numerous denoising steps to generate high-quality outputs.

To address this limitation, various diffusion acceleration techniques have been proposed, including
ordinary or stochastic differential equations (ODE or SDE) solvers with flexible step sizes (Song
et al., 2020a; Lu et al., 2022; Karras et al., 2022), sampling step distillation (Song et al., 2023; Kim
et al., 2023) and improved noise schedules and parametrizations (Salimans & Ho, 2022; Song &
Dhariwal, 2024). In particular, consistency distillation (Song et al., 2023) and consistency trajectory
models (Kim et al., 2023) have emerged as one of the most promising solutions for image generation,
in which a many-step diffusion model serves as a teacher to train a student consistency model that
achieves comparable performance while enabling faster sampling through a single-step or few-step
generation process.

This breakthrough has sparked considerable interest in applying consistency-based distillation to
decision-making tasks. However, current applications either adopt a behavior cloning approach (Lu
et al., 2024; Prasad et al., 2024; Wang et al., 2024) or integrate few-step diffusion based samplers in
actor-critic frameworks (Chen et al., 2023; Ding & Jin, 2023; Li et al., 2024). While promising, these
approaches face inherent challenges: behavior cloning performs well only with expert demonstrations
but struggles with suboptimal data (e.g., median-quality replay buffers), while actor-critic methods
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Figure 1: Overview of Reward Aware Consistency Trajectory Distillation (RACTD). We incorporate
reward guidance with consistency trajectory distillation to train a student model that can generate
actions with high rewards with only one denoising step.

require concurrent optimization of multiple networks from scratch with sensitive hyperparameters,
leading to training complexity, instability, and computational overhead.

This raises an important question: can we develop a more effective approach to consistency-based
distillation that tackles the two fundamental challenges introduced in previous framework: suboptimal
data and the concurrent training of actor critic networks for offline RL? We address this challenge
by introducing a novel method that directly incorporates reward optimization into the consistency
trajectory distillation process. Our approach builds on existing infrastructure, leveraging a pre-trained
diffusion planner as teacher and a standalone reward model to augment the standard consistency
trajectory distillation (Kim et al., 2023) with an explicit reward objective for a single-step sampling
student. The vanilla consistency trajectory distillation helps the student planner distill the diverse
behavior modes learned by the teacher from mixed-quality offline data into a single-step sampling
model. The additional reward objective acts as a mode selection mechanism: effectively steering the
student planner toward selecting high reward modes from the multi-modal distributions captured by
the teacher diffusion planner.

Our decoupled training framework offers two additional key advantages: training simplicity and
flexibility. By generating clean action trajectories through single-step diffusion sampling, our
approach removes the need for noise-aware reward models required for classifier-guided sampling
from multi-step diffusion models (Janner et al., 2022), which also suffer from reduced accuracy at
high noise levels. Furthermore, the reward model is trained independently from the teacher diffusion
planner and the distillation process, avoiding the tight coupling that arises from concurrent multi-
network training present in actor-critic methods. By integrating reward optimization directly into the
single-step distillation process, our method simultaneously enables efficient generation and achieves
superior performance, while maintaining straightforward training procedures.

We demonstrate the performance and sampling efficiency of our RACTD on the suboptimal hetero-
geneous D4RL Gym-MuJoCo and D4RL FrankaKitchen benchmark and challenging long-horizon
planning task Maze2d (Fu et al., 2020). Our method demonstrates both superior performance and
substantial sampling efficiency compared to existing approaches, achieving an 9.7% improvement
compared to existing state-of-the-art (SOTA) while maintaining a 142-fold reduction in sampling
time inherited from the consistency trajectory distillation.

Our contributions include: (1) We propose a novel reward-aware consistency trajectory distillation
method for offline RL that enables single-step action trajectory generation while achieving superior
performance, (2) We demonstrate that our approach enables decoupled training without the com-
plexity of concurrent multi-network optimization or noise aware reward model training, (3) Through
comprehensive experiments on multi-modal suboptimal dataset and long-horizon planning tasks, we
show that our method achieves 9.7% improvement over prior SOTA while achieving up to 142×
speedup by leveraging consistency trajectory distillation. We will publicly release our code upon
acceptance of this paper.
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2 BACKGROUND

2.1 PROBLEM SETTING

In this paper we consider the classic setting of offline reinforcement learning, where the goal is to
learn a policy π to generate actions that maximize the expected cumulative discounted reward in
a Markov decision process (MDP). A MDP is defined by the tuple (S,A,P, R, γ), where S is the
set of possible states s ∈ S, A is the set of actions a ∈ A, P(s′ | s,a) is the transition dynamics,
R(s,a) is a reward function, and γ ∈ [0, 1] is a discount factor. In offline RL, we further assume
that the agent can no longer interact with the environment and is restricted to learning from a size M
static dataset D = {τi}Mi=1, where τ = (s0,a0, r0, s1,a1, r1, . . . , sH ,aH , rH) represents a rollout
of episode horizon H collected by following a behavior policy πβ .

Mathematically, we want to find a policy π∗ that

π∗ = argmax
π

Eτ∼π

[ H∑
n=0

γnR
(
sn,an

)]
(1)

subject to the constraint that all policy evaluation and improvement must rely on D alone.

2.2 DIFFUSION MODELS

Diffusion models generate data by learning to reverse a gradual noise corruption process applied
to training examples. Given a clean data sample x0, we define xt for t ∈ [0, T ] as increasingly
noisy versions of x0. The forward (or noising) process is commonly formulated as an Itô stochastic
differential equation (SDE):

dx = f(x, t)dt+ g(t)dw (2)
where w is a standard Wiener process. As t approaches the final timestep T , the distribution of xT
converges to a known prior distribution, typically Gaussian. At inference time, the model reverses
this corruption process by following the corresponding reverse-time SDE, which depends on the
score function ∇x log pt(x). In practice, this score function is approximated by a denoiser network
Dϕ, enabling iterative denoising from xT back to x0. An alternative, deterministic interpretation of
the reverse process is given by the probability flow ODE (PFODE):

dx =
[
f(x, t)− 1

2g(t)
2∇x log pt(x)

]
dt (3)

which preserves the same marginal distribution pt(x) as the reverse SDE at each timestep t. This
ODE formulation often enables more efficient sampling through larger or adaptive step sizes without
significantly compromising the sample quality.

EDM (Karras et al., 2022) refine both the forward and reverse processes through improved noise
parameterization and training objectives. Concretely, they reparametrize the denoising score matching
(DSM) loss so that the denoiser network learns to predict a scaled version of the clean data:

LEDM = Et,x0,xt|x0
[d(x0, Dϕ(xt, t))] (4)

where d is a distance metric in the clean data space. In this paper, we train an EDM model as the
teacher using the pseudo huber loss as d following Prasad et al. (2024). At inference time, EDM
solves the associated PFODE with a 2nd-order Heun solver.

2.3 CONSISTENCY TRAJECTORY DISTILLATION

The iterative nature of the diffusion sampling process introduces significant computational overhead.
Among various acceleration techniques proposed, consistency distillation (Song et al., 2023) has
emerged as a particularly effective approach. The core idea is to train a student model that can
emulate the many-step denoising process of a teacher diffusion model in a single step.

Building upon this framework, Kim et al. (2023) introduced Consistency Trajectory Models (CTM).
Instead of learning only the end-to-end mapping from noise to clean samples, CTM learns to predict
across arbitrary time intervals in the diffusion process. Specifically, given three arbitrary timesteps
0 ≤ k < u < t ≤ T , CTM aims to align two different paths to predict xk: (1) direct prediction from
time t to k using the student model, and (2) a two-stage prediction that first uses a numerical solver
(e.g., Heun) with the teacher model to predict from time t to u, and then uses the student model to
predict from time u to k.
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Figure 2: Visualization of CTM loss, DSM loss and reward loss.

Since the distance metric d is defined on the clean data space and may not be well-defined in the noisy
data space, in practice we further map all predictions to time 0 using the student model. Formally,
denote the student model as Gθ, the CTM loss is defined as:

LCTM = E
[
d
(
Gsg(θ)(x̂

(t)
k , k, 0), Gsg(θ)(x

(t,u)
k , k, 0)

)]
(5)

where Gθ(xt, t, u) represents the student prediction from time t to u given noisy sample xt at time t,
sg(θ) represents stop-gradient student parameters and

x̂
(t)
k = Gθ(xt, t, k), x

(t,u)
k = Gsg(θ)(Solver(xt, t, u;ϕ), u, k) (6)

Here Solver(xt, t, u;ϕ) is the numerical solver result from time t to u using the teacher model Dϕ

given noisy sample xt at time t.

In addition to the CTM loss, Kim et al. (2023) also incorporates the DSM loss to enforce the generated
samples to be close to the training data. The DSM loss for the student model is the same as the one
for EDM in Equation 4:

LDSM = Et,x0,xt|x0
[d(x0, Gθ(xt, t, 0))] (7)

CTM loss together with DSM loss constitutes consistency trajectory distillation (CTD), resembling
the model in Kim et al. (2023) without the optimal GAN loss. In Figure 2 we provide a visualization
of these objectives on a PFODE trajectory. After the distillation, the student model can perform
“anytime-to-anytime” jumps along the PFODE trajectory. One-step sampling can then be achieved by
calculating x̂

(T )
0 = Gθ(xT , T, 0). This one-step sampling ability unlocks significant speedups and

many potential design choices that are beneficial in RL, which we will elaborate next section.

3 METHOD

3.1 MOTIVATION AND INTUITION

Diffusion models and their consistency-based counterparts have demonstrated promising results in
decision-making tasks, particularly in capturing multimodal behavior patterns (Janner et al., 2022;
Chi et al., 2023; Ajay et al., 2022). Common recipes for using these models in decision-making
generally fall into one of the three paradigms: (1) training a diffusion or consistency planner on
expert demonstrations via behavior cloning and deploying it directly as a policy (Chi et al., 2023;
Prasad et al., 2024); (2) integrating diffusion or consistency models into actor-critic frameworks for
RL tasks (Wang et al., 2022; Hansen-Estruch et al., 2023; Ding & Jin, 2023); or (3) using reward
agnostic diffusion planner with guided diffusion sampling for RL tasks (Janner et al., 2022; Ajay
et al., 2022).

While behavior cloning pipelines perform well when trained on expert demonstrations, they often
struggle with suboptimal datasets (e.g., medium-replay buffers) collected from diverse behavior
policies. Such datasets typically exhibit complex multimodal behavior patterns, where only some
modes lead to high rewards. Although one could potentially use rejection sampling to filter out
low-reward training data, this approach becomes prohibitively sample inefficient, particularly as the
quality of the training data deteriorates. On the other hand, to generate high reward actions, actor-critic
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approaches require concurrent training of multiple neural networks with sensitive hyperparameters.
Finally, guided diffusion sampling necessitates training noise-aware reward models and multi-step
sampling, which could be detrimental for time-sensitive decision-making tasks like self-driving.

So how can we better leverage potentially suboptimal datasets to design a diffusion-based single-
step sampling model with a simple training procedure? Our key idea is to utilize the multimodal
information captured by the teacher diffusion planner and encourage the student diffusion planner
to favor the high reward modes. We achieve this by incorporating a reward objective directly in
the consistency distillation process. Since our student model can achieve single-step denoising, we
can incorporate a reward model trained in the clean sample space and avoid the multi-step reward
optimization for diffusion models.

3.2 MODELING ACTION SEQUENCES

When applying diffusion models to RL, several modeling choices are available: modeling actions
(as a policy), modeling rollouts (as a planner), or modeling state transitions (as a world model).
Following Chi et al. (2023), we adopt a planner approach and model a fixed-length sequence of
future actions conditioned on a fixed-length sequence of observed states. This formulation ensures
consecutive actions form coherent sequences, and reduces the chances of generating idle actions.

Formally, let s⃗n = {sn−h, sn−h+1, . . . , sn} denote a length-h sequence of past states at rollout time
n, and a⃗n = {an,an+1, . . . ,an+c} represent a length-c sequence of future actions. Both the teacher
and the student learn to model the conditional distribution p(a⃗n | s⃗n). In the context of diffusion
notations, x = a⃗n | s⃗n.

During execution, we can either execute only the first predicted action an in the environment before
replanning at the next step, or follow the entire predicted sequence of actions at once.

3.3 REWARD-AWARE CONSISTENCY TRAJECTORY DISTILLATION

Based on our action trajectory formulation, we now present our approach to integrating reward
optimization into the consistency trajectory distillation process.

Let Rψ be a pre-trained differentiable return-to-go network (i.e. reward model) that takes the
state sn and action an at rollout time n as inputs and predicts the future discounted cumulative
reward r̂n =

∑H−n
j=0 γjrn+j . We implement this reward model with four ConvBlocks used by

previous reward-guided sampling method (Janner et al., 2022), followed by a Linear layer to map
output to the correct dimension (Appendix B). When the student model generates a prediction
a⃗n | s⃗n = x̂

(T )
0 = Gθ(xT , T, 0), we extract the action at time n, denoted as ân, from the predicted

sequence and pass it along with sn to the frozen reward model Rψ to estimate r̂n. The goal of our
reward-aware training is to maximize the estimated discounted cumulative reward. Mathematically,
the reward objective is defined as

LReward = −Rψ(s⃗n, ân) (8)

The final loss for reward-aware consistency trajectory distillation (RACTD) combines all three terms:

L = αLCTM + βLDSM + σLReward (9)

where α, β, and σ are hyperparameters to balance different loss terms. This objective bears resem-
blance to established offline RL algorithms like off-policy deterministic policy gradient (Silver et al.,
2014) (Appendix G), suggesting our approach builds upon well recognized theoretical foundations.

3.4 DECOUPLED TRAINING

A key advantage of our method of combining reinforcement learning, diffusion models, and con-
sistency distillation is the ability to support fully decoupled training of all components. Traditional
actor-critic frameworks, which are commonly used to incorporate diffusion models into reinforce-
ment learning, require simultaneous training of both the actor and critic networks from scratch. This
concurrent optimization presents considerable challenges, often demanding extensive hyperparameter
tuning and careful balancing of different learning objectives.

Guided diffusion sampling, as proposed in Janner et al. (2022), offers an alternative approach by
taking inspiration from classifier guided diffusion (Dhariwal & Nichol, 2021; Song et al., 2020b).
However, since these classifiers (i.e. reward models) must evaluate noisy states at every denoising step
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to provide gradient guidance, they require noise-aware training and thus cannot be separately trained
from the diffusion model. Also, predicting the correct reward from highly corrupted input could
be very challenging, which can lead to inaccurate guidance that accumulates during its multi-step
sampling process.

Our method, in contrast, fully leverages the advantages of single-step denoising models by operating
entirely in the noise-free state-action space. This design choice enables the reward model to provide
stable and effective signals without requiring noise-aware training. Importantly, the reward model can
be pre-trained completely decoupled from the teacher model and distillation process. This separation
not only simplifies the training process but also allows for flexible integration of different reward
models using the same teacher model.

3.5 REWARD OBJECTIVE AS MODE SELECTION

In offline RL, models often have to learn from datasets containing behaviors of varying quality. While
diffusion models excel at capturing these diverse behavioral modes, they inherently lack the ability
to differentiate between actions that lead to high versus low rewards. Our RACTD addresses this
limitation by transforming the reward-agnostic teacher diffusion sampling distribution into one that
preferentially samples from high-reward modes. We empirically verify this through a comparative
analysis using the D4RL hopper-medium-expert dataset Fu et al. (2020), which contains an equal
mixture of expert demonstrations and suboptimal rollouts from a partially trained policy.

Figure 3: The reward distribution of the D4RL
hopper-medium-expert dataset and 100 rollouts
from an unconditioned teacher, an unconditioned
student, and RACTD.

Figure 3 illustrates the reward distributions of roll-
outs sampled from three models: the unconditioned
teacher, unconditioned student, and RACTD. The
dataset (grey) exhibits two distinct modes correspond-
ing to medium-quality and expert rollouts. The uncon-
ditioned teacher model (blue) accurately captures this
bimodal distribution, and the unconditioned student
model (orange) faithfully replicates it. In contrast,
our RACTD (green) concentrates its samples on the
higher-reward mode, demonstrating that our reward
guidance effectively identifies and selects optimal be-
haviors from the teacher’s multi-modal distribution.
We also include the discussion between sample diver-
sity and mode selection in Appendix F.

4 EXPERIMENT

In this section, we conduct experiments to demonstrate: (1) the effectness of our RACTD in identify-
ing high reward behavior patterns among multimodal mix quality data, (2) the expressiveness of our
single step model compared to its multistep counterpart on complex high dimensional long horizon
planning tasks, and (3) the speed-up achieved over the teacher model and existing policy-based
diffusion models inherited from our appropriate application of CTD.

4.1 OFFLINE RL

Baselines We compare our approach against a comprehensive set of baselines, including vanilla
behavior cloning (BC) and Consistency Policy (Consistency BC) (Ding & Jin, 2023); model-free
RL algorithms CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2021); model-based algorithms
Trajectory Transformer (TT) (Janner et al., 2021), MOPO (Yu et al., 2020), MOReL (Kidambi et al.,
2020), MBOP (Argenson & Dulac-Arnold, 2020); autoregressive model Decision Transformer (DT)
Chen et al. (2021); diffusion-based planner Diffuser Janner et al. (2022); and diffusion/flow-based
actor-critic methods Diffusion QL (Wang et al., 2022), Consistency AC (Ding & Jin, 2023), and Flow
Q-learning (Park et al., 2025).

Setup We evaluate our method and the baselines on D4RL Gym-MuJoCo and FrankaKitchen
benchmark (Fu et al., 2020). Gym-MuJoCo is a popular offline RL benchmark that contains three
environments (hopper, walker2d, halfcheetah) of mixtures of varying quality data (medium-replay,
medium, medium-expert). The FrankaKitchen dataset features a 9-DoF robotic arm performing multi-
task manipulation across four kitchen objects (microwave, kettle, light, cabinets) with mixed-quality
demonstrations (partial, mixed).
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Following the setups in the prior works, we report the performance of both online and offline model
selection if available in their original paper. Online model selection reports the best-performing
checkpoint observed during training, while offline model selection reports the performance of the
last training epoch. Results for non-diffusion-based models and Diffuser are taken from Janner et al.
(2022), and results for Diffusion QL and Consistency AC/BC are sourced from their respective papers.
The results for RACTD are reported as the mean and standard error over 100 planning seeds. We
use past observation length h = 1 and prediction horizon c = 16 and closed-loop planning in all
experiments following the same setup in previous diffusion planners (Chi et al., 2023; Prasad et al.,
2024) and include the ablations on observation and planning horizons in Appendix E.6. The best
score is emphasized in bold and the second-best is underlined.

Table 1: (Offline RL: Gym-MuJoCo) Performance and sampling efficiency (NFE: Number of Function
Evaluations) of RACTD and a variety of baselines on the D4RL Gym-MuJoCo benchmark.

Medium Expert Medium Medium Replay Avg ↑ NFE ↓
HalfCheetah Hopper Walker2d HalfCheetah Hopper Walker2d HalfCheetah Hopper Walker2d

Offline model selection
BC 55.2 52.5 107.5 42.6 52.9 75.3 36.6 18.1 26.0 51.9 -

CQL 91.6 105.4 108.8 44.0 58.5 72.5 45.5 95.0 77.2 77.6 -
IQL 86.7 91.5 109.6 47.4 66.3 78.3 44.2 94.7 73.9 77.0 -
DT 86.8 107.6 108.1 42.6 67.6 74.0 36.6 82.7 66.6 74.7 -
TT 95.0 110.0 101.9 46.9 61.1 79.0 41.9 91.5 82.6 78.9 -

MOPO 63.3 23.7 44.6 42.3 28.0 17.8 53.1 67.5 39.0 42.1 -
MOReL 53.3 108.7 95.6 42.1 95.4 77.8 40.2 93.6 49.8 72.9 -
MBOP 105.9 55.1 70.2 44.6 48.8 41.0 42.3 12.4 9.7 47.8 -

Diffusion QL 96.8 ±0.3 111.1 ±1.3 110.1 ±0.3 51.1 ±0.5 90.5 ±4.6 87.0 ±0.9 47.8 ±0.3 101.3 ±0.6 95.5 ±1.5 87.9 5
Consistency AC 84.3 ±4.1 100.4 ±3.5 110.4 ±0.7 69.1 ±0.7 80.7 ±10.5 83.1 ±0.3 58.7 ±3.9 99.7 ±0.5 79.5 ±3.6 85.1 2
Consistency BC 32.7 ±1.2 90.6 ±9.3 110.4 ±0.7 31.0 ±0.4 71.7 ±8.0 83.1 ±0.3 34.4 ±5.3 99.7 ±0.5 73.3 ±5.7 69.7 2

Diffuser 88.9 ±0.3 103.3 ±1.3 106.9 ±0.2 42.8 ±0.3 74.3 ±1.4 79.6 ±0.55 37.7 ±0.5 93.6 ±0.4 70.6 ±1.6 77.5 20
RACTD(Ours) 88.5 ±2.1 120.2 ±2.6 122.3 ±0.3 56.6 ±0.6 102.4 ±2.4 112.8 ±1.3 51.4 ±0.2 108.3 ±1.1 105.2 ±1.8 96.4 1

Online model selection
Diffusion QL 97.2 ±0.4 112.3 ±0.8 111.2 ±0.9 51.5 ±0.3 96.6 ±3.4 87.3 ±0.5 48.3 ±0.2 102.0 ±0.4 98.0 ±0.5 89.3 5

Consistency AC 89.2 ±3.3 106.0 ±1.3 111.6 ±0.7 71.9 ±0.8 99.7 ±2.3 84.1 ±0.3 62.7 ±0.6 100.4±0.6 83.0 ±1.5 89.8 2
Consistency BC 39.6 ±3.4 96.8 ±4.6 111.6 ±0.7 46.2 ±0.4 78.3 ±2.6 84.1 ±0.3 45.4 ±0.7 100.4 ±0.6 80.8 ±3.4 75.9 2
RACTD(Ours) 95.9 ±1.5 129.0 ±1.3 122.3 ±0.3 59.3 ±0.2 115.5 ±1.7 118.8 ±0.3 57.9 ±1.0 109.5 ±0.3 105.2 ±1.8 101.5 1

Results As shown in Table 1, RACTD achieves the highest average score by a substantial margin
and best or second-best performance on 8/9 tasks in Gym-MuJoCo, with the only exception being a
medium-expert dataset where reward guidance is less beneficial. RACTD is also the only planning-
based method that achieves single-step sampling compared to consistency model based actor-critic
methods (which require double sampling steps) and other diffusion-based planners (which require
20× more sampling steps).

Table 2: (Offline RL: FrankaKitchen) Performance
and sampling efficiency (NFE) of RACTD and diffu-
sion based baselines on D4RL FrankaKitchen bench-
mark. Each cell has two values: the first is offline
model selection and the second (in brackets) is online
model selection.

Method kitchen-partial kitchen-mixed Avg↑ NFE↓
Diffusion QL 60.5 ±6.9 (63.7 ±5.2) 62.6 ±5.1 (66.6 ±3.3) 61.6(65.15) 5

Consistency AC 38.2 ±1.8 (39.8 ±1.6) 45.8 ±1.5 (46.7 ±0.9) 42.0(43.3) 2
Consistency BC 22.6 ±3.8 (23.8 ±2.8) 23.5 ±1.8 (24.3 ±1.3) 23.1(24.1) 2
Flow Q-learning 47.5 ±2.8 (53.3 ±3.2) 46.0 ±2.2 (53.5 ±1.9) 46.8(53.4) 1
RACTD(Ours) 59.0 ±1.5 (63.1 ±0.1) 60.9 ±0.6 (61.9 ±0.2) 60.0(62.5) 1

As shown in Table 2, RACTD consistently out-
performs its counterpart that incorporates an
actor-critic framework for consistency models
(Consistency AC) or flow-based models (Flow
q-learning) across all dataset qualities. On sub-
optimal partial and mixed datasets where reward
guidance is crucial, our method achieves near-
equivalent performance to multi-step diffusion
approaches with 5× fewer sampling steps. These
findings highlight the effectiveness of our reward-
aware distillation framework, which combines
decoupled training, noise-free reward modeling,
and single-step sampling efficiency.

4.2 LONG HORIZON PLANNING

Next, we showcase the expressiveness of the single-step sampling model RACTD in complex high-
dimensional long-horizon planning tasks. Previously, Diffuser has shown great potential in open-loop
long-horizon planning, but requires a significantly larger number of denoising steps compared to
closed-loop planning like MuJoCo. We demonstrate that our model can achieve superior performance
with a single-step denoising process under the same problem formulation.
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Setup We test this ability on D4RL Maze2d (Fu et al., 2020), which is a sparse reward long-horizon
planning task where an agent may take hundreds of steps to reach the goal in static environments.
Maze2d medium and large are also shared environments in other benchmarks like OGBench (Park
et al., 2024), where it is demonstrated to be even more challenging than higher-dimensional envi-
ronments like AntMaze. Following the setup in Janner et al. (2022), we use a planning horizon
128, 256, 384 for U-Maze, Medium and Large respectively, all conditioned on two observations: the
start and goal position. We perform open-loop planning by generating the entire state sequence
followed by a reverse dynamics model to infer all the actions from the predicted state sequence. The
reward model returns 1 if the current state reaches the goal and 0 otherwise. The baseline results are
reported from Janner et al. (2022) and RACTD results are reported as the mean and standard error of
100 planning seeds.

Results As shown in Table 3, both Diffuser and RACTD outperform previous model-free RL
algorithms CQL, IQL, Flow Q-learning, and MPPI. Our approach surpasses the Diffuser baseline
in all settings, highlighting its ability to effectively capture complex behavioral patterns and high-
dimensional information in the training dataset. Notably, the planning dimension for this task (384 for
the Large Maze) is substantially higher than that of MuJoCo tasks (16). As a result, Diffuser requires
significantly more denoising steps (256 for the Large Maze) compared to MuJoCo (20 steps). On the
contrary, despite the increased task complexity, RACTD still only requires a single denoising step
to achieve 11.6× performance boost, showcasing its expressiveness. Furthermore, maintaining the
speedup inherited from CTD, our RACTD is able to achieve significant performance improvement
over CTD, especially on the more challenging long-horizon tasks.

Table 3: (Long-horizon planning) The performance of RACTD, Diffuser, Flow Q-learning and prior
model-free algorithms in the Maze2D environment. Flow Q-learning is close loop planning and
Diffuser, RACTD are open loop planning.

Method U-Maze Medium Large Avg Score
Score NFE Time (s) Score NFE Time (s) Score NFE Time (s)

MPPI 33.2 - - 10.2 - - 5.1 - - 16.2
CQL 5.7 - - 5 - - 12.5 - - 7.7
IQL 47.4 - - 34.9 - - 58.6 - - 47.0

Flow Q-learning 106.7 ± 6.4 1 - 89.7 ± 1.9 1 - 107.3 ± 7.1 1 - 101.2

Diffuser 113.9 ±3.1 64 1.664 121.5 ±2.7 256 4.312 123.0 ±6.4 256 5.568 119.5
CTD 123.4 ±1.0 1 0.029 119.8 ±4.1 1 0.047 127.1 ±6.4 1 0.049 123.4

RACTD (Ours) 125.7 ±0.6 1 0.029 130.8 ±1.8 1 0.047 143.8 ±0.0 1 0.049 133.4

4.3 INFERENCE TIME COMPARISON

Beyond performance improvements, thanks to the single-step sampling ability from consistency
trajectory distillation, our RACTD significantly accelerates diffusion-based models while maintaining
their superior performance for decision-making tasks. The primary computational bottleneck in
diffusion models arises from the multiple function evaluations (NFEs) required by the iterative
denoising process. By reducing the number of denoising steps to a single NFE, our approach achieves
a speed-up roughly proportional to the number of denoising steps originally required.

Setup To evaluate sampling efficiency, we compare RACTD with different samplers, including
DDPM (Ho et al., 2020), DDIM (Song et al., 2020a), and EDM (Karras et al., 2022) using the
same network architecture as our teacher and student model. Additionally, we report the efficiency
of Diffuser. Note that since Diffuser employs a different model architecture and generates future
state-action pairs, its sampling time may also be influenced by these factors. Table 4 and Table 3
present the wall clock sampling time and NFE for MuJoCo (hopper-medium-replay) and Maze2d.
All experiments are conducted on one NVIDIA Tesla V100-SXM2-32GB.

Results In hopper-medium-replay, RACTD achieved 20× reduction in NFEs and a 43× speed-up
compared to Diffuser. Additionally, our student model requires 80× fewer NFEs and samples 142×
faster than the teacher model. In Maze2d, RACTD significantly accelerates computation compared to
Diffuser, achieving approximately 57×, 92×, and 114× speed-ups on Umaze, Medium and Large
mazes, by reducing NFEs by a factor of 256 for the Medium and Large mazes.
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Table 4: Wall clock time and NFEs per action
for different samplers and Diffuser on MuJoCo
hopper-medium-replay.

Method Time (s) NFE Score

Diffuser 0.644 20 93.6

DDPM 0.236 15 24.2
DDIM 0.208 15 60.6
EDM (Teacher) 2.134 80 114.2
RACTD (Ours, Student) 0.015 1 109.5

Table 5: We compare incorporating the reward
model in different stages of training on MuJoCo
hopper-medium-replay. Results are presented as
the mean and standard error across 100 seeds.

Hopper
Medium-Replay

Unconditioned
teacher

Reward-Aware
teacher

Unconditioned student 50.8 ±0.3 96.2 ±0.2

Reward-Aware student 109.5 ±0.3 96.0 ±0.3

5 ABLATION STUDY

We evaluate the necessity of incorporating reward objectives during student versus teacher training
and include extended analyses on reward loss weights and multi-step sampling in Appendix E.3 E.5.

5.1 IMPACT OF REWARD OBJECTIVE

To understand the unique advantages of incorporating reward objectives during distillation, we
conduct a systematic comparison across four model configurations: the baseline combination of an
unconditioned teacher and student, a reward-aware teacher paired with an unconditioned student, a
fully reward-aware teacher-student pair, and our proposed RACTD, which combines an unconditioned
teacher with a reward-aware student. The results for hopper-medium-replay and walker-medium is
shown in Table 5 and Table 12.

Our analysis reveals that while incorporating reward objectives at any stage yields substantial
improvements, optimal performance is achieved through our RACTD framework, which combines
an unconditioned teacher with reward-aware student distillation. Our method allows the teacher to
capture a comprehensive range of behavioral patterns, while enabling the student to selectively distill
the most effective strategies. Although incorporating reward objectives in the teacher model also
enhances performance, this approach risks discarding suboptimal behaviors that may be valuable in
novel testing scenarios, potentially limiting the model’s generalization capabilities.

6 RELATED WORK

Diffusion Models in Reinforcement Learning Diffusion models have emerged as a powerful
approach for decision-making tasks in reinforcement learning Janner et al. (2022); Ajay et al. (2022);
Wang et al. (2022); Hansen-Estruch et al. (2023); Chi et al. (2023). The integration of diffusion
models into RL frameworks typically follows two main paradigms: actor-critic approaches, where
diffusion models serve as policy or value networks (Wang et al., 2022; Hansen-Estruch et al., 2023),
and policy-based approaches, where diffusion models directly generate action trajectories Janner et al.
(2022); Ajay et al. (2022); Chi et al. (2023). While these methods have demonstrated impressive
performance on standard RL benchmarks, their practical deployment is hindered by the slow sampling
time inherent to vanilla diffusion policies based on DDPM Ho et al. (2020). This limitation poses
particular challenges for speed-sensitive real-world applications such as robotics.

Accelerating Diffusion Model Sampling Various approaches have been proposed to accelerate
the sampling process in diffusion models. One prominent direction leverages advanced ODE solvers
to reduce the number of required denoising steps (Song et al., 2020a; Karras et al., 2022; Lu et al.,
2022). Another line of work explores knowledge distillation techniques Luhman & Luhman (2021);
Salimans & Ho (2022); Berthelot et al. (2023); Kim et al. (2023); Song et al. (2023), where student
models learn to take larger steps along the ODE trajectory. Particularly, consistency trajectory models
(Kim et al., 2023) enable one-step sampling by learning anytime-to-anytime jumps along the PFODE
trajectory, achieving performance that surpasses teacher models.

Consistency Models in Decision Making Consistency models have emerged as a promising policy
class for behavior cloning from expert demonstrations in robotics (Lu et al., 2024; Prasad et al.,
2024; Wang et al., 2024). In RL, several works have enhanced actor-critic methods by replacing
traditional diffusion-based value/policy networks with consistency models, showing faster inference
and training speed (Chen et al., 2023; Ding & Jin, 2023; Li et al., 2024). These approaches directly
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incorporate consistency loss (Song et al., 2023) into the value/policy network training, rather than
distilling a separate student model. Park et al. (2025) distilled a flow-based model into a single-step
student but still requires concurrent network optimization under the actor critic framework. While
Wang et al. made some initial attempts to apply consistency distillation in policy-based RL through
classifier-free guidance and reverse dynamics, their approach requires two NFEs and under-performs
the state-of-the-art. In contrast, RACTD is a straightforward approach of using a separate reward
model and incorporating reward objective during student distillation, achieving superior performance
with only one NFE.

7 CONCLUSION

In this work, we address the challenge of accelerating diffusion planners at sampling by introduc-
ing reward-aware consistency trajectory distillation (RACTD), which predicts high-reward action
trajectories in a single denoising step. RACTD uses a pre-trained diffusion teacher planner and a
separately trained reward model, leveraging the teacher’s ability to capture multi-modal distributions
while prioritizing higher-reward modes to generate high-quality action trajectories from suboptimal
training data. Its decoupled training approach avoids the complex concurrent optimization of multiple
networks and enables the use of a standalone, noise-free reward model. RACTD outperforms previous
state-of-the-art by 9.7% while leveraging consistency trajectory distillation to accelerate its diffusion
counterparts up to a factor of 142.

IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.
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A MODEL ARCHITECTURE

We follow the model architecture used in Chi et al. (2023) and Prasad et al. (2024) and continue to use
the 1D temporal CNN layer for our Unet and FiLM layers to process the conditioning information.

A.1 MODEL SIZES FOR MAZE2D

Model parameters for teacher models of Umaze, Medium, and Large Maze are shown below in Table
6. The student model has the same architecture as the teacher model except it also takes one extra
variable of denoising timestep as conditioning.

Parameter Umaze Medium Large
diffusion_step_embed_dim 256 256 256
down dims [256, 512, 1024] [512, 1024, 2048] [256, 512, 1024, 2048]
horizon 128 256 384
kernel size 5 5 5

Table 6: Model parameters for Unet in Maze2d.

A.2 MODEL SIZES FOR GYM-MUJOCO

Unet parameters for teacher and student models in the MuJoCo task are shown below in Table 7.
Model sizes are fixed through 9 different environments.

Parameter MuJoCo
diffusion_step_embed_dim 128
down dims [512, 1024, 2048]
horizon 16
kernel size 5

Table 7: Model parameters for Unet in MuJoCo.

B REWARD MODEL PARAMETERS

We follow the setup in Janner et al. (2022), where we use Linear layers and Mish layers Misra (2019)
for the reward model. We stack 4 ConvBlocks for the reward model, each with dimension shown in
Table 14. Each ConvBlock consists of a Conv1D layer, groupnorm, and a Mish layer. Reward model
architecture remains the same across all MuJoCo benchmarks.

C TRAINING DETAILS

Our models are trained on D4RL dataset (Fu et al., 2020), which was released under Apache-2.0
license.

C.1 NOISE SCHEDULER

We follow the setup in Prasad et al. (2024) and use EDM noise scheduler (Karras et al., 2022) for the
teacher model. Particularly, discretization bins are chosen to be 80.

Student model used CTM scheduler (Kim et al., 2023) also with discretization bins of 80.

C.2 WEIGHT OF DIFFERENT LOSSES

The weights for CTM, DSM, and Reward loss we used in the experiment are shown below in Table 9.
Generally, if the training dataset includes more expert samples, the weight for reward guidance is
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Parameter MuJoCo
layer dimensions [32, 64, 128, 256]

Table 8: Reward model parameters in MuJoCo.

Parameter CTM DSM Reward
hopper-medium-replay 1.0 1.0 0.8
hopper-medium 1.0 1.0 3.0
hopper-medium-expert 1.0 1.0 0.0
walker2d-medium-replay 1.0 1.0 1.0
walker2d-medium 1.0 1.0 0.4
walker2d-medium-expert 1.0 1.0 0.2
halfcheetah-medium-replay 1.0 1.0 1.0
halfcheetah-medium 1.0 1.0 0.5
halfcheetah-medium-expert 1.0 1.0 0.0

Table 9: Weights for CTM, DSM, and Reward loss used in MuJoCo benchmark.

smaller. A reward weight of 0.0 resembles behavior cloning with consistency trajectory distillation.
We found that as long as the loss weights are chosen to keep the individual loss terms within the same
order of magnitude, the model will achieve reasonable performance.

D MORE RESULTS

D.1 EXPERT AND RANDOM DATASET PERFORMANCE FOR GYM-MUJOCO

We include the performance on expert and random datasets along with a comparison between
dataset quality, ranging from random to expert, with another diffusion-based planning method
Diffuser (Janner et al., 2022). Under the trajectory modeling setup, the random dataset provides little
valid trajectory and the expert dataset will degrade the problem to behavior cloning. Nevertheless,
our method outperforms Diffuser in all settings tested.

hopper random medium-replay medium medium-expert expert NFE
RACTD 31.8±0.0 104.9±2.1 121.0±0.5 129.0±1.3 137.1±0.1 1
Diffuser 6.7±0.1 70.6±1.6 79.6±0.6 106.9±0.2 110.3±0.1 20

Table 10: Performance of Diffuser and RACTD on Gym-MuJoCo random and expert dataset.

D.2 EXPERT DATASET PERFORMANCE FOR FRANKA KITCHEN

Since kitchen-complete consists of pure expert demonstrations, the problem degrades to behavior
cloning and reward guidance becomes less effective.

Table 11: (Offline RL: FrankaKitchen) Performance and sampling efficiency (NFE) of RACTD and
diffusion based baselines on FrankaKitchen complete. Each cell has two values: the first is offline
model selection and the second (in brackets) is online model selection.

Method kitchen-complete NFE↓
Diffusion QL 84.0 ±7.4 (84.5 ±6.1) 5

Consistency AC 51.9 ±6.0 (67.6 ±2.7) 2
Consistency BC 45.2 ±5.0 (50.9 ±3.6) 2

RACTD(Ours) 56.3 ±8.2 (58.1 ±8.3) 1
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E MORE ABLATIONS

E.1 REWARD OBJECTIVE FOR WALKER-MEDIUM

Table 12: We compare incorporating the reward model in different stages of training on MuJoCo
walker-medium. Results are presented as the mean and standard error across 100 seeds.

Walker
Medium

Unconditioned
teacher

Reward-Aware
teacher

Unconditioned student 93.3 ±1.8 97.0 ±1.0

Reward-Aware student 118.8 ±0.3 94.5 ±2.6

E.2 COMPARING WITH FAST SAMPLING ALGORITHMS FOR MAZE2D

Table 13: We compare fast sampling algorithms DDIM and CTD, along with our method RACTD
on Maze2d environment. DDIM performs fast sampling based on a DDPM model, while CTD
and RACTD (ours) distill an EDM teacher. The number of function evaluations (NFE) reflects the
sampling speed of each algorithm. Results are reported as the mean and standard error over 100
random seeds.

Method NFE U-Maze Medium Large Average Score
Score Score Score

DDPM 100 126.3±0.7 126.8 ±3.0 144.8 ±4.9 132.6
DDIM 10 121.2 ±1.1 126.2 ±2.8 143.1 ±4.9 130.2
DDIM 1 3.5 ±4.7 −2.6 ±12.5 −1.5 ±0.7 −0.2

EDM 80 125.4 ±0.6 120.1 ±4.2 149.0 ±0.5 131.5
CTD 1 123.4 ±1.0 119.8 ±4.1 127.1 ±6.4 123.4

RACTD (ours) 1 125.7 ±0.6 130.8 ±1.8 143.8 ±0.0 133.4

E.3 EFFECT OF REWARD OBJECTIVE WEIGHTS

The reward loss weight is a hyperparameter in our pipeline that impacts both training stability and
performance. We plot the reward curve achieved over 200 epochs of student training with reward loss
weights ranging from [0.3, 0.8, 1.5] on MuJoCo hopper-medium-replay in Figure 4. The mean and
standard error are reported across 20 rollouts from intermediate checkpoints.

Figure 4: Ablation on reward objective weight.

With lower weights, increasing the weight leads to higher performance and relatively stable training.
However, when the weight is too high (e.g. 1.5 in this plot), evaluation initially increases but fluctuates
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as training progresses. This occurs when the reward loss dominates DSM and CTM losses, resulting
in unstable training.

E.4 DSM AND REWARD LOSS WEIGHTS

We include the ablation for different DSM and reward loss weights. The other two losses are fixed at
optimal when altering the target loss.

DSM weight 0.0 0.3 0.6 0.8 1.0 1.2 1.5 2.0

RACTD 1.5± 0.0 23.8± 1.0 35.6± 2.2 105.2± 1.8 108.3 ± 1.1 100.0± 2.3 104.9± 1.5 93.6± 3.4

Table 14: DSM loss weight ablation for RACTD in MuJoCo.

Reward weight 0.0 0.3 0.5 0.7 0.8 0.9 1.0 1.5 2.0

RACTD 50.8± 0.3 69.8± 2.5 91.5± 2.5 108.4 ± 1.4 108.3± 1.1 85.4± 3.2 100.9± 2.6 50.5± 2.1 17.0± 0.0

Table 15: Reward loss weight ablation for RACTD in MuJoCo.

E.5 NUMBER OF SAMPLING STEPS

Since our student model is trained for anytime-to-anytime jumps, it naturally extends to multi-
step denoising without additional training. Following the approach in Song et al. (2023), given
intermediate denoising timesteps 0 < t1 < t2 < T , we first denoise from T to 0 as usual. We then
add noise again to t1 and denoise it back to 0, and repeat this process for t2. This iterative refinement
can enhance generation quality. We evaluate the student using 2, 3, and 4 denoising steps as reported
in Table 16. Results show that multi-step sampling barely improves model performance.

Table 16: Inference time, NFE, and score comparison for student model multi-step sampling on
MuJoCo hopper-medium-replay.

NFE Time(s) Score

1 0.0147 109.5 ±0.3

2 0.0241 109.8 ±0.9

3 0.0377 108.7 ±0.1

4 0.0517 107.9 ±1.6

E.6 OBSERVATION AND PLANNING HORIZON

We compare the performance of incorporating different steps of past observations and predicting
different numbers of future actions for MuJoCo walker medium-replay here in Table 17. We can see
that the performance can be further improved by conditioning on a larger number of observations and
a longer planning horizon.

Table 17: We compare the performance of using different numbers of past observations (h) and future
actions (c) on MuJoCo walker medium-replay. Results are presented as the mean and standard error
across 100 seeds.

walker medium-replay Future actions c=16 Future actions c=8

Past observation h=1 105.2 ±1.8 104.3 ±1.4

Past observation h=4 108.0 ±1.4 103.3 ±2.2

F THE TRADE-OFF BETWEEN MODE SELECTION AND SAMPLE DIVERSITY

In this section, we include a discussion about the trade-off between mode selection induced by our
reward-aware training and the sample diversity of the student. Naturally, favoring selected modes can
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led to generation with limited sample diversity as summarized in Table 18. This trade-off between
sample diversity and sample optimality observed in RACTD is similar to what has been seen in other
generative domains (e.g., language model RLHF (Huang et al., 2024), classifier-guided diffusion,
conditional image generation), where preference alignment also often reduces sample diversity. In
our case, the reward model acts similarly to a classifier or an alignment reward model, guiding the
model toward desirable behaviors and sacrificing some of the sample diversity by design.

Importantly, our decoupled framework allows the use of a single, unconditioned teacher with strong
generalization capabilities across tasks. For multi-task or unseen-task settings, different reward
models can be trained per task, and corresponding student models can be distilled from the same
teacher using different reward models.

Table 18: A summarization of the trade off between sample diversity and model performance.

Sample diversity Performance Sample time

Reward agnostic diffusion High Low Slow
Reward aware diffusion Low High Slow
Reward agnostic consistency distillation High Low Fast
Reward aware consistency distillation Low High Fast

G THEORETICAL INSIGHTS

Here we provide a proof sketch of how our reward-aware consistency trajectory distillation training
resembles off-policy deterministic policy gradient (Silver et al., 2014), thus sharing the well-studied
theoretical analysis of these methods for offline RL.

According to CTM (Kim et al., 2023) (Section 3), our student model generates a single-step prediction
by

Gθ(xT , T, 0) = gθ(xT , T, 0) = xT +

∫ 0

T

xu − E[x|xu]
u

du

From Taylor expansion, we have Gθ(xT , T, 0) = E[x0|xT ] +O(T )

Let µθ = E[x0|xT ]. Then the gradient of our reward model is

∇θR(Gθ(xT , T, 0)) = ∇θR(µθ)∇θ E[x0|xT ] = ∇θR(µθ)∇θµθ

For off-policy deterministic policy gradient[cite], we have

∇θJβ(µθ) ≈ E
s∼ρβ

[∇θµθ(s)∇aQ
µ(s,a)|a=µθ(s)]

, where ρβ is the behavior policy.

∇θJβ(µθ) ≈ E
s∼ρβ

[∇θµθ(s)∇aQ
µ(s, a)|a=µθ(s)]

Our method first samples a state s from the offline dataset collected by the behavior policy ρβ and
asks the student model to predict actions a given s. Then, the reward model takes in s and a and
predicts the corresponding Q value. Therefore R(µθ) is equivalent to Qµ(s,a|s∼ρβ ,a=µθ(s)). Thus,
our reward-aware student model training resembles off-policy deterministic policy gradient.

H LIMITATIONS AND FUTURE WORK

One limitation of our approach is the need to train three separate networks: the teacher, student, and
reward model. Training the teacher can be time-consuming, as achieving strong performance often

17



Published as a conference paper at ICLR 2026

requires a higher number of denoising steps. Additionally, consistency trajectory distillation is prone
to loss fluctuations, and incorporating a reward model into the distillation process may further amplify
this instability. Future work will focus on developing a more stable and efficient training procedure,
as well as exploring methods to integrate non-differentiable reward models into the framework.
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