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ABSTRACT

In the broader context of deep learning, Multimodal Large Language Models
have achieved significant breakthroughs by leveraging powerful Large Language
Models as a backbone to align different modalities into the language space. A
prime exemplification is the development of Video Large Language Models (Video-
LLMs). While numerous advancements have been proposed to enhance the video
understanding capabilities of these models, they are predominantly trained on
questions generated directly from video content. However, in real-world scenarios,
users often pose questions that extend beyond the informational scope of the video,
highlighting the need for Video-LLMs to assess the relevance of the question. We
demonstrate that even the best-performing Video-LLMs fail to reject unfit questions-
not necessarily due to a lack of video understanding, but because they have not
been trained to identify and refuse such questions. To address this limitation, we
propose alignment for answerability, a framework that equips Video-LLMs with
the ability to evaluate the relevance of a question based on the input video and
appropriately decline to answer when the question exceeds the scope of the video,
as well as an evaluation framework with a comprehensive set of metrics designed
to measure model behavior before and after alignment. Furthermore, we present a
pipeline for creating a dataset specifically tailored for alignment for answerability,
leveraging existing video-description paired datasets. The code and the dataset will
be publicly available.

1 INTRODUCTION

The rapid advancements in Large Language Models (LLMs) (Brown et al., 2020; Touvron et al.,
2023; Dubey et al., 2024; Anil et al., 2023) have revolutionized natural language processing, laying
the groundwork for the development of Multimodal LLMs (Huang et al., 2023; Zhu et al., 2024; Su
et al., 2022; Li et al., 2022; 2023a). By projecting multimodal data—including images, audio, and
video—into the language space, Multimodal LLMs leverage the powerful reasoning and generative
capabilities of LLMs as a backbone. Among these, Video Large Language Models (Video-LLMs)
(Li et al., 2024b; Ahn et al., 2024; Lin et al., 2023; Maaz et al., 2024) stand out for their ability to
both comprehend video content and generate contextually relevant responses. This capability opens
up numerous real-world applications, such as automatic video summarization, video-based question
answering, content moderation, and even autonomous surveillance. By processing both the visual and
linguistic aspects of video data, Video-LLMs hold significant potential in enhancing human-computer
interaction and solving complex, video-centric tasks across various domains.

Despite the significant performance improvements Video-LLMs have achieved in video understanding
and question-answering (QA) tasks, driven by advancements in architecture and training techniques,
they are typically trained to answer questions generated directly from the video content. However, in
real-world applications, Video-LLMs often face scenarios where users pose questions that extend
beyond the information provided in the video. Since these models have not been trained to recognize
or refuse such unanswerable questions, they often fail, providing incorrect or irrelevant answers. In
Figure 1-(a), we show that while Video-LLMs show a steady increase in performance on standard
video understanding and QA benchmarks (MVSD-QA (Xu et al., 2017b), MSRVTT-QA (Xu et al.,
2016), ActivityNet-QA (Yu et al., 2019)), their performance on our unanswerable question evalu-
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Figure 1: Limitations of Current Video-LLMs. (a) While Video-LLMs demonstrate steady
improvements on traditional video understanding and QA benchmarks, their performance on our
unanswerable question evaluation benchmark remains poor, with no meaningful progress observed
across models. (b) Scaling the model size (7B → 72B) leads to improvements on traditional
answerable QA benchmark, while performance on our unanswerable question evaluation benchmark
remains consistently poor. (c) The Video-LLM successfully identifies that there is no cat in the video
when asked a straightforward existence question, which is answerable based on the video content. (d)
However, when the question is framed to ask about the breed of a cat that does not exist in the video,
the model fails to recognize the unanswerability and generates a hallucinated response.

ation benchmark highlights a contrasting outcome, with none of the models showing meaningful
improvements. Similarly, Figure 1-(b) demonstrates that while scaling model size leads to notable
improvements on standard answerable QA benchmarks, it has no significant impact on performance
for the unanswerable question evaluation benchmark, underscoring the persistent challenge of han-
dling unanswerable questions. This underscores a critical limitation of current Video-LLMs: their
inability to handle questions that go beyond the informational content of the video.

For instance, in Figure 1-(c), the video depicts a scene without any cats, and the question posed asks if
there is a cat in the video. This type of “existence” question is technically answerable, and the Video-
LLMs correctly identify that no cat is present, providing an accurate response. However, in Figure
1-(d), the same video is used, but the question asks about the breed of a cat, which is unanswerable
since it extends beyond the information contained in the video. Despite the unanswerability of the
question, the model attempts to answer and produce a hallucinated response, as it has not been trained
to recognize or reject such questions.

Contributions To address this limitation identified in current Video-LLMs, we introduce several
key contributions in this paper:

• Alignment for Answerability: In Section 4.1, we formally define alignment for answerability
framework designed to equip Video-LLMs with the capability to assess the relevance of
user queries in relation to the video content. This alignment process enables Video-LLMs to
enhance the model’s ability to reject queries that exceed the informational boundaries of the
input video.

• Evaluation Metrics for Alignment for Answerability: Assessing the degree of alignment of a
model presents several challenges. For example, we need to evaluate not only if the aligned
model become more willing to evaluate and refuse answering to unanswerable questions,
but also if it becomes overly cautious in the pursuit for answerability. To deal with the
complex nature of evaluating the alignment process, Section 4.2 introduces a set of metrics
to systematically measure the differences in model behavior before and after alignment,
capturing various aspects of the answerability performance.

• Dataset Creation for Alignment for Answerability: Existing instruction-tuning datasets
for Video-LLMs are limited to cases where the questions are generated directly from the
video content, restricting the models’ ability to handle questions that exceed the video’s
informational boundaries. In Section 4.3, we outline the process of creating a novel dataset,
UVQA, that includes questions designed to extend beyond the content of the video. This is
accomplished by leveraging existing video datasets consisting of video-description pairs,
which we modify to generate unanswerable questions.
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2 RELATED WORK

Video Large Langauge Models (Video-LLMs) Video-LLMs are trained in two stages: vision-
language alignment, where the video data is projected into the LLM’s token space to ensure visual
features are aligned with language representations, and instruction tuning, which enhances multimodal
understanding through task-specific fine-tuning (Maaz et al., 2024; Li et al., 2023b)

Building on these two foundational stages, recent models have introduced additional training phases to
address specific challenges. For instance, LLaMA-VID (Li et al., 2024b) focuses on long video com-
prehension, allowing the model to understand extended content, such as a 3-hour movie. VideoChat2
(Li et al., 2024a) improves upon the vision-language connection between the alignment and instruc-
tion tuning stages for enhanced alignment. VideoLlama2 (Cheng et al., 2024) incorporates joint
audio-video training, enabling the model to process not only video frames but also the accompanying
audio for a more holistic understanding of video. Additionally, to improve video comprehension and
instruction-following of Video-LLMs, some approaches are experimenting with feedback from AI
models (Ahn et al., 2024; Zhang et al., 2024a), inspired by Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022), to further align LLMs with video content.

Alignment in Large Vision Language Models (LVLMs) Aligning model to human preferences
means that a model’s generation should follow user instructions and account for what the user
would prefer as a response. (Ouyang et al., 2022) To achieve this alignment in language models,
Reinforcement Learning from Human Feedback (RLHF) based on PPO (Ouyang et al., 2022) or
DPO (Rafailov et al., 2023) are widely used. Building on these efforts, a growing number of papers
focus on alignment challenges in LVLMs, viewing various issues through the lens of alignment and
attempting to solve them accordingly.

RLHF-V (Yu et al., 2024a) and RLAIF-V (Yu et al., 2024b) tackle the HHH (i.e., Helpfulness,
Harmlessness, and Honesty) alignment in LVLMs using feedback-based training algorithms, similar
to those employed in RLHF for language models. Silkie (Li et al., 2023c), for example, focuses on
improving the helpfulness and faithfulness of model outputs.

One of the problems LVLMs address as an alignment issue is hallucination-the generation of responses
that are not factually grounded. To mitigate hallucination in LVLMs, techniques such as Visual
Contrastive Decoding (Leng et al., 2024), penalization methods (Huang et al., 2024), augmented
generation (Sun et al., 2023), and modified DPO (Zhao et al., 2023) have been applied. These methods
aim to enhance alignment by ensuring that model outputs are grounded in the provided visual inputs.

Unanswerability of Question Answering Determining whether a question is answerable is crucial
for building trustworthy AI. Given its significance, prior works Brahman et al. (2024); Yang et al.
(2023); Wen et al. (2024) investigate answerability in Large Language Models (LLMs), focusing
on cases where questions cannot be answered using the model’s intrinsic knowledge. For Image-
based Vision-Language Models (Image-LLMs), Whitehead et al. (2022); Guo et al. (2023) examine
unanswerability based on image content. However, in Video-based Vision-Language Models (Video-
LLMs), this aspect remains underexplored, as evidenced by the limitations of open-source Video
LLMs in addressing unanswerable questions, shown in Figure 1. In this work, we formalize this
problem and introduce both an evaluation metric and an automated data generation pipeline, providing
a robust framework for training and evaluating the performance of Video-LLMs in addressing this
challenge.

3 PROBLEM SETUP

Video Large Language Models (Video-LLMs) The general framework of Video-LLMs (Li et al.,
2024b; Ahn et al., 2024; Lin et al., 2023; Maaz et al., 2024) consist of three main components: (1) a
visual encoder V that processes the video inputs, (2) a vision-language projector P that bridges the
visual and language modalities, and (3) a pre-trained language model L for generating text-based
responses.

The visual encoder V receives the input video, represented as a sequence of frames v =
{v1, v2, . . . , vT }, where each vi corresponds to the i-th frame. The encoder extracts spatial and
temporal features, producing a latent video representation zV = V(v) ∈ RdV .
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This encoded representation, zV , is then passed to the vision-language projector P , which aligns it
with the instruction1 input x = {x1, x2, . . . , xN}, a sequence of N tokens. The projector maps the
visual features into the language space, yielding an aligned representation zP = P(zV) ∈ RdP . This
projection prepares the multimodal input for the pre-trained language model L.

The language model, leveraging its vast pre-training on text corpora, processes the aligned represen-
tation and generates a response y = {y1, y2, . . . , yM}, where M is the response length in tokens
y = L(zP ,x) ∈ RM . The generated response y reflects the interplay between the information from
the video and the instruction input, ensuring that the output is contextually relevant to both modalities.

4 ALIGNMENT FOR ANSWERABILITY IN VIDEO-LLMS

In this section, we first present a formal definition of alignment for answerability in Section 4.1.
Following that, in Section 4.2, we address the challenges of evaluating alignment for answerability
and introduce our proposed evaluation metric. Lastly, in Section 4.3, we outline our pipeline for
creating a dataset specifically designed for alignment for answerability.

4.1 DEFINING ALIGNMENT FOR ANSWERABILITY

Although various architectural advancements have been introduced to enhance the video under-
standing capabilities of Video-LLMs, they are exclusively trained on video-question-answer triplets
(v,x,ygt), where the questions x and corresponding answers ygt are generated directly from the
content of the input video v. However, in real-world scenarios, users may pose questions that extend
beyond the informational scope of the video, emphasizing the need for Video-LLMs to assess the
appropriateness of a given question x in relation to the input video v. In this paper, we define the
process of equipping Video-LLMs with the ability to evaluate question relevance based on the video
content as alignment for answerability. To formally define the process of alignment for answerability,
we draw inspiration from Yang et al. (2023) and begin by categorizing the model’s response y as
follows:

t(y) =


1, if type(y) = correct,
0, if type(y) = wrong or unanswerablew,
−1, if type(y) = unanswerablec,

(1)

• type(y) = correct when the response y does not contain any unanswerable indicators and
the correct answer ygt is included in y.

• type(y) = wrong when the response y does not contain any unanswerable indicators and
the correct answer ygt is not included in y.

• type(y) = unanswerablew when the response y contains unanswerable indicators (such as
“The question is unanswerable”, etc.), but the reasoning for why it is unanswerable differs
from the ground truth ygt.

• type(y) = unanswerablec when the response y contains unanswerable indicators and the
reasoning for why it is unanswerable is consistent with the ground truth ygt.

Then, the scoring function for alignment for answerability can be defined as:

s(v,x,y) =

{
1, if k(v,x) · t(y) = 1,

0, otherwise,
(2)

where k(v,x) is a function that determines whether a question x falls within the informational
boundaries of the input video v. Specifically, k(v,x) = 1 if the question is answerable, and
k(v,x) = −1 if the question is not answerable given the input video v. The alignment process for
answerability involves training the model M to prefer s(v,x,y) = 1 for (v,x) sampled from the
training data and y sampled from the model M resulting in an aligned model M′:

M′ = f(M, s(·)), (3)

where f(·) represents an alignment algorithm such as supervised fine-tuning (SFT) or Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023).

1In this paper, we address scenarios where users pose questions about the input video, and therefore, we use
the terms ‘instruction’ and ‘question’ interchangeably.
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Figure 2: All possible scenarios of model response type changes between the pre-aligned model
(M) and post-aligned model (M′). (a) shows cases where the question x is answerable based on the
input video v (i.e., k(v,x) = 1), while (b) depicts the cases where the question x is unanswerable
given the input video v (i.e., k(v,x) = −1). Note that for (a) Answerable Questions, unanswerable
responses are grouped as type(y) = unanswerable, without distinguishing between unanswerablec
and unanswerablew, as reasoning of unanswerability is irrelevant for answerable questions. Each
category is represented by a unique number i.

4.2 EVALUATION METRICS FOR ALIGNMENT FOR ANSWERABILITY

Figure 2 illustrates all possible scenarios of model response type (i.e., type(y), as defined in Eq. 1)
changes between the pre-aligned model (M) and the post-aligned model (M′). Each category is
represented by a number i, with Ni denoting the number of samples falling into category i. Using
this representation, we formally define the evaluation metrics for alignment for answerability.

A straightforward approach to evaluating the aligned model M′ is to measure its overall accuracy
based on the model’s response:

Sacc. =
N1 +N4 +N7 +N12 +N15 +N18

N1−18
. (4)

While this provides a simple metric, accuracy alone is insufficient for evaluating alignment for
answerability in Video-LLMs. For example, it is crucial not only to assess whether the aligned model
M′ demonstrates improved ability, compared to the unaligned model M, in recognizing when a
question exceeds the content of the video, but also whether this alignment has made the model overly
conservative, causing it to refuse answering questions that are valid and were previously answered
correctly. To fully capture this complex nature of evaluating the alignment process, we propose an
evaluation framework that establishes a set of metrics to measure the differences in model behavior
before and after alignment on various aspects.

Excessive Refusal Score: When a model is trained to respond with ‘unanswerable’ to certain
questions, it may become excessively reluctant, and the model might avoid answering questions it
actually knows the answers to. This metric evaluates the degree to which the model, after alignment,
declines to answer answerable questions that it was previously capable of answering correctly:

Sex-ref. =
N3

N1 +N2 +N3
. (5)

Permissiveness Score: In some cases, the model may incorrectly respond to an answerable question
as unanswerable (i.e., type(y) = unanswerable). This metric measures how much, after alignment,
the model improves its willingness to answer previously refused but answerable questions:

Spermis. =
N7 +N8

N7 +N8 +N9
. (6)

Discretion Score: This metric evaluates the model’s improved ability, after alignment, to correctly
decline answering unanswerable questions that it previously failed to recognize as unanswerable. It
measures the extent to which the model is aligned to recognize when a question falls outside the
informational boundaries of the input video and appropriately refrains from providing an incorrect or
speculative response:

Sdisc. =
N11 +N12

N10 +N11 +N12
. (7)
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Figure 3: Dataset Creation for Alignment for Answerability. The process begins with a video-
description paired dataset (v,d). A Description Altering Process T modifies the original description
d by applying a change c, producing an altered description d′. The altered description d′ and
the modification c are then input into a large language model (LLM) to generate an unanswerable
question x and the corresponding reasoning for why it is unanswerable, which forms the ground truth
label ygt for x. (a) For the object (O) and relation (R) unanswerable dataset, we use the MOMA-LRG
(Luo et al., 2022), where d is structured as a triplet (source object, relation, target object). (b) For
the attribute (A) unanswerable dataset, we use the DiDeMo (Anne Hendricks et al., 2017), which
provides caption-like descriptions d rich with attribute annotations.

4.3 DATASET CREATION FOR ALIGNMENT FOR ANSWERABILITY

As outlined in Eq. 2, achieving alignment for answerability—i.e., equipping a model to decline
answering unanswerable questions—requires tailoring the model to prefer s(v,x,y) = 1. This
is accomplished by ensuring the model provides a response that is categorized as t(y) = 1 when
k(v,x) = 1, or t(y) = −1 when k(v,x) = −1. However, existing instruction-tuning datasets for
Video-LLMs are limited to cases where questions x are generated directly from the video content v
(i.e., k(v,x) = 1).

Expanding Beyond Current Datasets In this section, we outline the process of creating our pro-
posed UVQA dataset, which includes questions x that extend beyond the informational boundaries
of the input video v (i.e., k(v,x) = −1). Given a dataset consisting of video-description pairs (v,
d), we generate an altered description d′, which provides an incorrect scene description of v:

(d′, c) = T (v,d), (8)

where T represents the altering process, and c indicates the specific changes made. Using the altered
description d′ and the changes c, we then prompt an external mature LLM (gpt-4-turbo-2024-04-09)
to generate a question x based on d′ along with an answer ygt, where ygt includes an unanswerable
indicator (e.g., “The question is unanswerable”) and provides the reasoning for the unanswerability,
resulting in an unanswerable question x for the video v (the complete prompt can be found in
Appendix A.4.1):

(x,ygt) = LLM(d′, c), where k(v,x) = −1. (9)
Depending on the modification c made during the altering process A, the reasoning for the unanswer-
ability in the resulting ygt will vary. Motivated by Scene Graph (SG) framework (Johnson et al., 2015;
Xu et al., 2017a; Herzig et al., 2018; 2023), which structures a visual scene by capturing objects, their
attributes, and the relationship between them, we categorize the possible changes c to object-related
(O), attribute-related (A), and relation-related (R) (i.e., c ∈ (O ∪A ∪R)).

Object & Relation-related Unanswerability If c ∈ O, the resulting question is unanswerable
due to the absence of the object of interest in the video v, whereas if c ∈ R, the objects are present,
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but the specified relationship between them is not depicted. To create data for these categories, we
use the MOMA-LRG (Luo et al., 2022) dataset as the source for video-description pairs (v, d). The
dataset includes annotations of the video description d in the form of a Scene Graph, represented as
triplets: d = (osrc, r, otgt), where osrc is the source object, otgt is the target object (osrc, otgt ∈ O), and
r represents the relation between them (r ∈ R).

The MOMA-LRG dataset categorizes objects into 251 classes (e.g., Food, Clothing, Furniture,
Independent Actors, etc.) and relations into 65 classes (e.g., Static Relationships, Intransitive
Actions, etc.). We replace one of the elements in the triplet with another from the same category
to maintain naturalness in the altered description. By ensuring replacements occur within these
predefined categories, we avoid creating descriptions that feel unrealistic or mismatched, such as
objects interacting in ways that do not logically fit within the scene.

d′ =


(o′src, r, otgt), if c = o′src,

(osrc, r
′, otgt), if c = r′,

(osrc, r, o
′
tgt), if c = o′tgt

(10)

Attribute-related Unanswerability If c ∈ A, the question becomes unanswerable because the
object’s attribute in the question does not match the attribute of the object in the video. To generate
data for this category, we utilize the DiDeMo (Anne Hendricks et al., 2017) dataset, which is designed
for video retrieval tasks and contains detailed attribute annotations for the scenes. Unlike the MOMA-
LRG dataset used for object & relation-related unanswerability, the DiDeMo dataset provides video
descriptions d in the form of caption-like natural language sentences. In order to locate and replace
the attributes in d, we use the Part of Speech (POS) tagging processor spaCy (Honnibal & Montani,
2017) and extract the adjectives (a ∈ A) in the sentence. Similar to the process for creating the
Object & Relation-related Unanswerability dataset, we classify the adjectives into the categories
{Color, Position, Pattern, Material, Size, Status, Shape, Human Status, Uncategorized} and perform
replacements within each category, resulting in d′ where c = a′.

In Appendix A.4.3, we show examples of our generated UVQA dataset for each category of object,
relation, and attribute-related unanswerable questions.

5 EXPERIMENTS

In this section, we begin by describing the statistics of the generated UVQA dataset and the balanced
answerable-unanswerable dataset used for training and evaluation (Section 5.1). Following that,
in Section 5.2, we discuss the alignment algorithms—Supervised Fine-Tuning (SFT) and Direct
Preference Optimization (DPO)—and the baseline models used for comparison, along with details
on the experimental implementation, including the base models, optimization strategy, and compu-
tational setup. Section 5.3 presents both the quantitative and qualitative results of our experiments,
highlighting the impact of alignment on the overall performance of the model.

5.1 DATASET

The resulting UVQA dataset from Section 4.3 consists of 10k training samples for each category
of unanswerability (i.e., object, relation, and attribute-related unanswerability), resulting in a total
of 30k training samples. For the evaluation of unanswerable questions, we curated 200 samples
per category, applying human filtering to ensure high-quality and accurate data, yielding 600 clean
evaluation samples. The detailed filtering process is explained in Appendix A.4.2.

As per Eq. 2, alignment for answerability requires coverage of both scenarios: k(v,x) = 1 (answer-
able) and k(v,x) = −1 (unanswerable), ensuring that alignment is not biased towards one scenario.
Therefore, in addition to the unanswerable dataset, we incorporate an answerable dataset using 30k
samples from the Video-ChatGPT (Maaz et al., 2024) for training. For the evaluation of answerable
questions, we use a subset of the ActivityNet QA (Yu et al., 2019), a widely used benchmark for
question-answering tasks in Video-LLMs. Thus, the resulting evaluation dataset consists of 1200
samples, with an equal split of 600 unanswerable from UVQA dataset and 600 answerable samples
from the ActivityNet QA, ensuring a balanced assessment between both scenarios.

7
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Table 1: Evaluation of Answerability on Alignment and Absolute Performance: Alignment
performance is assessed using the Excessive Refusal (Sex-ref.), Permissive (Spermis.), Discretion (Sdisc.)
Scores, and the overall Alignment Score (Salign.). Absolute performance is measured through overall
accuracy (Sacc.) and LLMscore across various base models. Our aligned models (SFT and DPO)
demonstrate improved answerability alignment compared to the unaligned model.

Base Model f(·) Answerability
F1

Alignment Performance Absolute Performance

Sex-ref. ↓ Spermis. ↑ Sdisc. ↑ Salign ↑ Sacc. ↑ LLMscore ↑

Video-LLaVA
unaligned 0.00 0 0 0 0.33 0.24 2.33
SFT (ours) 0.68 0.50 0.55 0.66 0.66 0.47 2.84
DPO (ours) 0.68 0.14 0.61 0.59 0.68 0.49 3.08

VideoChat2
unaligned 0.00 0 0 0 0.33 0.22 1.93
SFT (ours) 0.63 0.25 0.25 0.85 0.62 0.54 3.00
DPO (ours) 0.65 0.09 0.46 0.71 0.69 0.56 3.12

LLaMA-VID
unaligned 0.05 0 0 0 0.33 0.23 1.51
SFT (ours) 0.64 0.30 0.34 0.71 0.58 0.50 2.79
DPO (ours) 0.66 0.14 0.52 0.67 0.68 0.52 2.90

VLM-RLAIF
unaligned 0.00 0 0 0 0.33 0.25 2.36
SFT (ours) 0.65 0.10 0.37 0.67 0.65 0.52 2.86
DPO (ours) 0.66 0.08 0.5 0.64 0.69 0.53 2.93

5.2 EXPERIMENTAL SETUP

Baselines We conduct alignment training following the process outlined in Eq. 3. We evaluate
two alignment algorithms for f : Supervised Fine-Tuning (SFT) and Direct Preference Optimization
(DPO) (Rafailov et al., 2023). These are compared against an unaligned baseline, where f is
simply the identity function, meaning M′ = M.2 Performance is assessed using both our proposed
alignment metrics (Eq. 5-7) and the absolute accuracy metric (Eq. 4).

Implementation Details To evaluate the general trend of alignment, we utilize various Video LLMs,
including Video-LLaVA (Zhang et al., 2023), VideoChat2 (Li et al., 2024a), LLaMA-VID (Lin et al.,
2023) and VLM-RLAIF (Ahn et al., 2024) as our base models. We use the AdamW (Loshchilov &
Hutter, 2017) optimizer with a learning rate of 1e-6 and a constant learning rate scheduler, and we set
the batch size to 128 for all experiments. We employ DeepSpeed-Zero Stage 2 (Rasley et al., 2020)
with CPU offloading for the optimizer and gradient checkpointing. All experiments were conducted
on 2 x NVIDIA A100 80GB PCIe GPU.

5.3 EXPERIMENTAL RESULT

Table 1 presents the quantitative results of our experiments, showcasing the Answerability Cor-
rectness, Alignment Performance and Absolute Performance. For the Answerability Cor-
rectness, we evaluate the binary correctness of the answerability prediction of the model using
the F1 score. For the Alignment Performance, we use the metrics introduced in Section 4.2:
Excessive Refusal (Sex-ref.), Permissiveness (Spermis.), and Discretion (Sdisc.) scores. Along with
these metrics, we also report the average alignment score, calculated as the mean of these metrics:
Salign = 1

3 ((1− Sex-ref.) + Spermis. + Sdisc.).3 For the Absolute Performance, we report the accuracy
(Sacc.) as defined in Eq. 4. Additionally, following the evaluation methodology of previous Video-
LLMs (Lin et al., 2023; Li et al., 2024a;b; Ahn et al., 2024), we include the LLMscore, which assesses
the quality of the model-generated response y in comparison to the ground truth label ygt. This
rating, assigned by GPT-4, is on a scale from 0 to 5. The prompts for determining type(y), needed for
Alignment Performance and accuracy, and LLMscore can be found in Appendix A.5.

Across all base models, both the SFT and DPO models trained using our framework consistently
outperform the unaligned models, exhibiting higher answerability correctness (F1), average alignment
scores (Salign), accuracy (Sacc.), and LLMscore. These improvements are primarily driven by superior
performance on the unanswerable UVQA evaluation set. When comparing SFT and DPO, although
Sacc remains comparable between the two, DPO generally achieves lower Sex-ref., higher Spermis., and
slightly lower Sdisc.. This suggests that DPO facilitates a softer alignment, allowing the model to

2For the unaligned model, we still define M′ this way to compute our proposed alignment metrics.
3Since a lower Sex-ref. score indicates better performance, we use (1−Sex-ref.) in the average alignment score.
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Figure 4: Examples of model predictions from the unaligned model, the model aligned using
Supervised Fine-Tuning (SFT), and the model aligned using Direct Preference Optimization (DPO),
all based on VLM-RLAIF (Ahn et al., 2024). The examples illustrate (a) Object-related (O), (b)
Relation-related (R), and (c) Attribute-related (A) unanswerable QA predictions. In each case, the
word highlighted in red within the question x identifies the specific reason it is unanswerable. In
Appendix A.7 we present additional examples of model predictions.

maintain its original performance while still enhancing its ability to handle unanswerable questions.
Moreover, in Figure 4, we show examples of the model prediction between different models. The
example clearly shows that the unaligned model failes to detect the unanswerability, whereas both
aligned models (SFT and DPO) trained with our framework and dataset correctly identify the question
as unanswerable and provide the appropriate reasoning of unanswerability. Additionally, we provided
human evaluation results in Appendix A.11.

6 ABLATION STUDY: CAN Existence-Based Question Splitting DETECT
UNANSWERABILITY?

In Figure 1-(c), we showed an example where a current Video-LLM fails to reject an object-related
(O) unanswerable question (i.e., ‘What is the breed of the cat in the video?’). In contrast, as shown in
Figure 1-(b), the same model successfully recognizes that the object is not present when asked in an
existence-question format (i.e., ‘Is there a cat in the video?’). This raises the question: can we detect
unanswerable questions by reformulating them into a series of existence-based questions?4

4This style of reformulating the detection task into a series of binary existence questions was proposed in
POPE (Li et al., 2023d) for object hallucination detection in image-based vision large language model. Thus, we
refer to this as the “POPE-Style” approach in our work.

9
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Figure 5: Performance Comparison Between Unaligned, POPE-Style, and Aligned Models
(Ours). (a) & (b) The POPE-Style method demonstrates improved performance over the unaligned
baseline on both the alignment metric and overall accuracy. However, it falls short when compared to
the aligned model using our framework. (c) Additionally, the POPE-Style method incurs significantly
higher computational costs, reducing its practicality for real-world applications and underscoring the
importance of our models that are intrinsically aligned for answerability.

For a given question x, we prompt an LLM (gpt-4-turbo-2024-04-09) to generate a set of existence-
based questions, x′ = {x′

1, . . . , x
′
m}, derived from the objects, relations, and attributes in x (see

Appendix A.6 for complete prompt). If ∃x′
i ∈ x′ where the model responds ‘no’ and all responses

are correct, we classify it as type(y) = unanswerablec. If ∃x′
i ∈ x′ where the model responds ‘no’ but

at least one response is incorrect, it is classified as type(y) = unanswerablew. If ∀x′
i ∈ x′ the model

responds ‘yes’, we proceed to ask the original question x, classifying the response as either type(y) =
correct or type(y) = wrong.

Figure 5 shows the performance comparison between the unaligned model, the POPE-Style approach,
and an aligned model using our framework. The alignment metric in Section 4.2 measured the
behavior differences between the pre-aligned (M) and post-aligned (M′) models. For the unaligned
baseline, M = M′, while for the POPE-Style baseline, M′ represents the unaligned model M
augmented with the POPE-Style unanswerability detection mechanism discussed in this section.

As demonstrated in Figure 5-(a), POPE-Style approach improves alignment scores over the unaligned
model without additional training. Figure 5-(b) shows it also enhances the overall accuracy, driven
by improved performance on the unanswerable UVQA evaluation set. However, the POPE-Style
approach has two main limitations compared to our framework: (1) reduced performance and
(2) higher computational cost. Although it improves on the unaligned baseline, it significantly
underperforms compared to models trained with our method. More importantly, the POPE-Style
approach requires converting a single unanswerable question into multiple binary questions, increasing
both the number of model predictions and computational overhead (see Figure 5-(c)). In our
experiments, this led to a four-fold increase in dataset size and a six-fold increase in evaluation cost,
driven by the need for additional predictions and verification by advanced LLM (gpt-4o-2024-05-13).
These limitations reduce the practicality of detecting unanswerability by existence-based question
splitting (i.e., POPE-Style), highlighting the importance of training models that are natively aligned
for answerability using our framework.

7 CONCLUSION

This paper introduces a comprehensive framework for aligning Video Large Language Models
(Video-LLMs) to effectively handle unanswerable questions—a critical challenge often overlooked
in existing models. We proposed the concept of alignment for answerability, equipping Video-LLMs
to assess and reject questions that extend beyond the informational scope of the video. To support
this, we developed tailored evaluation metrics and introduced UVQA, a novel dataset offering both
training and evaluation data for unanswerable questions, along with detailed reasoning for why they
are unanswerable. Our experiments show that the combination of our framework and the UVQA
dataset significantly improves the ability of the model to align for answerability, resulting in more
accurate and reliable Video-LLMs for real-world applications.
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A APPENDIX

A.1 BROADER IMPACT

This paper highlights the importance of aligning Video Large Language Models (Video-LLMs) to
handle unanswerable questions, a critical capability often overlooked in favor of improving accuracy
on answerable tasks. By introducing alignment for answerability and leveraging unanswerable
question datasets, this work sets a new standard for developing AI models that are not only accurate
but also robust in real-world scenarios where incomplete or misleading information may arise. The
ability to reject unanswerable questions contributes significantly to the trustworthiness and reliability
of AI systems, especially in applications such as autonomous systems, content moderation, and video-
based question-answering tasks. This research encourages the broader AI community to prioritize
alignment for answerability, enhancing the safety and utility of AI systems in diverse, real-world
applications.

A.2 LIMITATIONS

A key limitation of our approach is the increase in the excessive refusal score (Sex-ref., Eq. 5)
observed after alignment for answerability. While aligning the model improves its ability to handle
unanswerable questions, it can negatively impact the model’s original performance by leading to
undesired refusals for questions the model could previously answer correctly. This trade-off between
alignment and excessive caution suggests that further consideration is needed. Future work could
focus on developing more sophisticated alignment algorithms f (Eq. 3) that achieve a better balance,
reducing the excessive refusal score without compromising the model’s overall accuracy.

A.3 ETHICS STATEMENT

In our study, we utilize Large Language Models (LLM) to generate our UVQA dataset and evaluate
video-LLMs, which may result in unintended outcomes. However, during the human filtering process
of generating the UVQA evaluation dataset, we thoroughly reviewed the generated data from LLMs
and confirmed that it does not contain any unethical or harmful content.

A.4 UVQA DATASET

In this section, we present the prompts used for data generation (Section A.4.1), detail the filtering
process for creating the dataset (Section A.4.2), and provide examples from the resulting UVQA
dataset (Section A.4.3).

A.4.1 PROMPT USED FOR UVQA GENERATION

While creating the UVQA dataset, we prompt an external LLM to generate a question x and its
corresponding answer ygt, based on the altered description d′ and the modification c (Eq. 9). Figures
6, 7, and 8 show the prompts used to generate unanswerable question-answer pairs for the object,
relation, and attribute categories in the UVQA dataset, respectively.
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Figure 6: Prompt used to instruct UVQA on object-related O questions

Figure 7: Prompt used to instruct UVQA on relation-related R questions

Figure 8: Prompt used to instruct UVQA on attribute-related A questions
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A.4.2 DATASET FILTERING

During the generation of the UVQA dataset, automatic filtering was applied to all UVQA samples
(training and evaluation samples), while human filtering was specifically conducted on the evaluation
set to ensure clean and reliable data for assessment.

Automatic Filtering As described in Section 4.3, after altering the description d to d′, we prompt
an external mature LLM to generate the unanswerable question-answer pairs (x,ygt). During this
stage, we apply a filtering process to remove instances where d′ is semantically too similar to
the original description d (Figure 9-(a)) or contains grammatical errors that could interfere with
the question generation process (Figure 9-(b)). This filtering is integrated directly into the LLM
prompting process (Eq. 9), as shown in the prompts provided in Section A.4.1.

Human Filtering For the UVQA evaluation set, human filtering process is incorporated to ensure
high-quality data. In this step, samples are reviewed to identify any questions that are still answerable
based on the video or were missed by the automatic filtering. Well-constructed instances are labeled
as ‘pass,’ while inadequate samples are marked as ‘filtered’. Figure 10 illustrates the interface used
during filtering.

Figure 9: Examples of Automatically Filtered Data in the UVQA Training Set. Two main cases
were filtered: (a) Generated Descriptions with Semantic Similarity and (b) Generated Descriptions
with Grammatical Errors.

Figure 10: Illustration of the interface used for human filtering in the UVQA test set. The
interface displays video frames, the original description d, the altered description d′, and the
generated QA pair (x,ygt). Reviewers manually assess the quality of each QA pair based on this
information.
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A.4.3 EXAMPLES OF THE GENERATED UVQA DATASET

Figures 11, 12, and 13 provide examples of unanswerable question-answer pairs from the UVQA
dataset, categorized by object-, relation-, and attribute-related questions, respectively.

Figure 11: Examples of object-related unanswerable question-answer pair from our generated
UVQA Dataset

Figure 12: Examples of relation-related unanswerable question-answer pair from our generated
UVQA Dataset
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Figure 13: Examples of attribute-related unanswerable question-answer pair from our generated
UVQA Dataset

A.5 PROMPT USED FOR EVALUATION

To determine the type(y) of the model’s response, we use a GPT-4 model (gpt-4o-2024-05-13)
with the prompts shown in Figure 14. Additionally, following the evaluation methodology of prior
Video-LLM works Lin et al. (2023); Li et al. (2024a;b); Ahn et al. (2024), we report the LLMscore in
Table 1. This score assesses the quality of the model-generated response y against the ground truth
ygt, using a rating scale from 0 to 5, as outlined in the evaluation prompt.

Figure 14: Prompt used for Evaluation: (a) Evaluation prompt for answerable dataset, and (b)
Evaluation prompt for our unanswerable dataset.

A.6 POPE-STYLE UNANSWERABILITY DETECTION

In Section 6, we experiment if we can detect unanswerable questions by reformulating them into
a series of existence-based question. To do this, we need to extract existence-based sub-questions
x′ = {x′

1, . . . , x
′
m} from the original question x, which we achieve by prompting an external LLM.

Figure 15 shows the prompt used for the LLM and Figure 16 illustrates an example of the generated
set of existence-based sub-questions x′.
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Figure 15: Prompt used to generate POPE-Style question

Figure 16: Examples of Generated Existence-based Question Set

A.7 ADDITIONAL EXAMPLES OF MODEL PREDICTIONS

In Figure 17, we provide an additional example of model predictions from the unaligned model
Video-LLaVA (Lin et al., 2023) and the aligned models (SFT and DPO). Similarly, in Figure 18, we
present another example using the unaligned model VLM-RLAIF (Ahn et al., 2024) alongside the
aligned models (SFT and DPO).
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Figure 17: Additional examples of model prediction from the unaligned model, the model aligned
using Supervised Fine-Tuning (SFT), and the model aligned using Direct Preference Optimization
(DPO), all based on Video-LLaVA (Li et al., 2024b).

Figure 18: Additional examples of model prediction from the unaligned model, the model aligned
using Supervised Fine-Tuning (SFT), and the model aligned using Direct Preference Optimization
(DPO), all based on VLM-RLAIF (Ahn et al., 2024).
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Table 2: Performance Comparison by Unanswerability Type: We report the Sacc (Eq. 4) for the
three primary categories of unanswerability: Object, Relation, and Attribute-related questions. For
Relation-related unanswerable questions, we further classify them into two subtypes: Intra-object
relationships and Inter-object relationships, each subdivided into static and dynamic cases.

Base Model f(·) Unanswerability Type Relation Type

Object Relation Attribute Intrastatic Intradynamic Interstatic Interdynamic

Video-LLaVA
unaligned 0 0 0 0 0 0 0
SFT (ours) 0.46 0.51 0.30 0.36 0.61 0.43 0.59
DPO (ours) 0.45 0.49 0.33 0.35 0.60 0.39 0.56

VLM-RLAIF
unaligned 0 0 0 0 0 0 0
SFT (ours) 0.63 0.69 0.35 0.73 0.67 0.69 0.73
DPO (ours) 0.60 0.63 0.42 0.64 0.53 0.62 0.68

A.8 PERFORMANCE ANALYSIS BY UNANSWERABILITY TYPE

We conducted a detailed analysis of model performance across different categories of unanswer-
ability within the UVQA dataset. Specifically, in Table 2, we examined three primary types of
unanswerability: object, relation, and attribute.

For relation-related unanswerability, we further categorized the questions into two subtypes:

1. Intra-object relationships, involving a single object, and
2. Inter-object relationships, involving multiple objects.

Both subtypes were further divided into static and dynamic relationships. Examples of each
categories is:

• Intrastatic: police officer standing

• Intradynamic: match official walking

• Interstatic: police officer looking at pedestrians

• Interdynamic: match official massaging soccer player

The results indicate that object and relation-related unanswerable questions achieve comparable
performance, whereas attribute-related unanswerable questions consistently pose greater challenges
for all evaluated models (i.e., Video-LLaVA (Lin et al., 2023) and VLM-RLAIF (Ahn et al., 2024)).
Importantly, this performance gap is not attributable to data imbalance, as the UVQA dataset was
carefully balanced across these three categories during training, as detailed in Section 5.1. This finding
highlights that models generally struggle more with discerning attribute-related unanswerable
questions, suggesting an inherent difficulty in addressing this category. On the other hand, for
the subcategories of the relation-related unanswerable questions, the performance did not show a
consistent pattern, highlighting variability in the capabilities of different VLMs.

A.9 CAN PROMPTING DETECT UNANSWERABILITY

In this section, we investigate whether prompting alone can achieve alignment for answerability.
Specifically, we prepend the following prompt to the question: “If the question cannot be answered
using the video content, state that it is unanswerable and provide a reason.” Table 3 presents the
results of various open-sourced Video-LLMs (i.e., VLM-RLAIF (Ahn et al., 2024), and LLaVA-
Video-Qwen2 (Zhang et al., 2024b)) evaluated in two settings: without the prompt (unaligned) and
with the prompt (prompt-aligned).

The results indicate that even the best-performing open-sourced Video-LLMs, regardless of model
size, fail to benefit from the explicit answerability prompt, showing little to no improvement in
performance. This highlights the limitations of relying solely on prompting to address unanswerability
and underscores the importance of the alignment approach proposed in this work.
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Table 3: Evaluation of Answerability on Alignment and Absolute Performance of Prompting-
based Method

Base Model f(·) Answerability
F1

Alignment Performance Absolute Performance

Sex-ref. ↓ Spermis. ↑ Sdisc. ↑ Salign ↑ Sacc. ↑ LLMscore ↑

VLM-RLAIF (7B) unaligned 0.00 0 0 0 0.33 0.25 2.36
prompt-aligned 0.08 0.02 0 0.06 0.35 0.27 1.66

DPO (ours) 0.66 0.08 0.5 0.64 0.69 0.53 2.93

LLaVA-Video-Qwen2 (7B) unaligned 0.00 0 0 0 0.33 0.38 2.26
prompt-aligned 0.04 0.01 0 0.03 0.34 0.38 2.33

LLaVA-Video-Qwen2 (72B) unaligned 0.02 0 0 0 0.33 0.38 2.35
prompt-aligned 0.12 0 0 0.07 0.36 0.41 2.50

A.10 VISUALIZING THE TRADE-OFF: PARETO FRONT ANALYSIS

In multi-objective optimization, a trade-off often arises between conflicting objectives. This trade-off
can be visualized using a Pareto front, where each point represents a specific balance or equilibrium
between the objectives (Jin & Sendhoff, 2008; Lin et al., 2019; Navon et al., 2021). In Figure 19, we
present a Pareto front analysis to visualize the trade-off between performance on standard answerable
QA dataset and the unanswerable UVQA dataset.

The initial point (Unaligned Model) achieves high accuracy on the answerable QA dataset but
performs poorly on unanswerable questions, highlighting its inability to recognize or handle unan-
swerability effectively. When alignment for answerability is performed using SFT (represented
as a square in the figure), we observe an increase in accuracy on the unanswerable QA (UVQA)
benchmark, accompanied by a slight decrease in accuracy on the answerable QA dataset. In contrast,
alignment using DPO (represented as a star in the figure) achieves a more favorable balance, with
the resulting point positioned closer to the optimal region on the Pareto front compared to SFT. This
demonstrates the effectiveness of DPO alignment in achieving a better trade-off between the two
objectives, in line with the findings presented in the main results in Section 5.3.

Figure 19: Pareto front visualization using the VLM-RLAIF model (Ahn et al., 2024).
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A.11 HUMAN EVALUATION OF MODEL PREDICTION

In this section, we conduct a human evaluation to assess the model’s prediction results. Five
annotators5 rate each prediction on a scale of 0 to 5, using the criteria outlined in Table 4 for
unanswerable questions and Table 5 for answerable questions.

Table 4: Scoring Criteria for Unanswerable Questions

Score Description

0 The model fails to identify the question as unanswerable and generates an answer that falls outside the
boundaries of the video’s information.

1 The model fails to identify the question as unanswerable but includes some correct information from
the video, showing partial understanding.

2 The model correctly identifies the question as unanswerable but provides incorrect reasoning.
3 The model correctly identifies the question as unanswerable and provides partially correct reasoning.
4 The model correctly identifies the question as unanswerable and provides correct reasoning without

much detail.
5 The model correctly identifies the question as unanswerable and provides correct reasoning with details

supported by comprehensive, accurate video information.

Table 5: Scoring Criteria for Answerable Questions

Score Description

0 The model fails to provide the correct answer to the question.
1 The answer is incorrect but includes some information from the video, showing partial understanding.
2 The model provides the correct answer but includes additional, incorrect information in the response.
3 The model provides the correct answer without errors but does not offer additional context or supporting

details.
4 The model gives the correct answer and adds brief but relevant details from the video that enhance the

response.
5 The model delivers the correct answer with comprehensive, detailed context from the video, providing

a thorough and nuanced response.

Figure 20-(a) illustrates the interface provided to human annotators, where video content was
presented as individual frames for evaluation. Figure 20-(b) reports the average scores assigned by
the five annotators, based on 100 random samples from the evaluation set for each model, comparing
unaligned model predictions with aligned ones (i.e., SFT and DPO) for the VLM-RLAIF (Ahn et al.,
2024) backbone. Notably, the figure shows that the aligned models outperforms the unaligned model,
with the scores showing a strong correlation with the LLMscore reported in Table 1.

Figure 20: (a) Interface provided to human annotators for evaluation. (b) Comparison of scores
between unaligned predictions and aligned predictions (SFT and DPO) for the VLM-RLAIF (Ahn
et al., 2024) model.

5All annotators have TOEFL iBT scores above 100 and hold at least a bachelor’s degree.
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