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Abstract

Successful clinical implementation of deep learning in medical imaging depends, in part,
on the reliability of the predictions. Specifically, the system should be accurate for classes
seen during training while providing calibrated estimates of uncertainty for abnormalities
and unseen classes. To efficiently estimate predictive uncertainty, we propose the use of
multi-head CNNs (M-heads). We compare its performance to related and more prevalent
approaches, such as deep ensembles, on the task of out-of-distribution (OOD) detection.
To this end, we evaluate models trained to discriminate normal lymph node tissue from
breast cancer metastases, on lymph nodes containing lymphoma. We show the ability to
discriminate between in-distribution lymph node tissue and lymphoma by evaluating the
AUROC based on the uncertainty signal. Here, the best performing multi-head CNN (91.7)
outperforms both Monte Carlo dropout (88.3) and deep ensembles (86.8). Furthermore, we
show that the meta-loss function of M-heads improves OOD detection in terms of AUROC.

Keywords: uncertainty estimation, digital pathology, multi-head ensembles.

1. Introduction

Motivated by the increased availability of data and computational power, numerous deep
learning models are being developed for medical imaging. Due to the potential implications
when applying such methods in a clinical setting, it is vital to report meaningful confidence
values in addition to the predicted class label, allowing practitioners to asses the quality of
the results being reported. This is especially important in digital pathology which is char-
acterised by large amounts of possible anomalies. These anomalies range from insignificant
scanning artefacts, which can be safely ignored, to clinically relevant abnormalities such
as rare disease events, which should be flagged by low confidence predictions. However,
conventional deep learning methods are unable to correctly associate anomalous data with
meaningful low confidence values (Guo et al., 2017; Ovadia et al., 2019).

In efforts to correctly asses the confidence, i.e. the uncertainty of deep neural networks,
various methods have been developed. A natural approach is based on post hoc calibra-
tion of softmax probabilities on a validation set through temperature scaling (Guo et al.,
2017). Although this demonstrates well-calibrated predictions on a test set, the same is
not guaranteed for conditions of distributional shift (Ovadia et al., 2019). Other meth-
ods, such as Monte Carlo dropout (MC-dropout) or deep ensembles, consider statistics
from a predictive distribution, instead of a point prediction (Gal and Ghahramani, 2016;
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Lakshminarayanan et al., 2017). Although effective at estimating uncertainty in controlled
conditions of computer vision datasets (Ovadia et al., 2019), these methods suffer from com-
putational complexity by requiring multiple training runs or forward passes at inference.

To enjoy high-quality uncertainty estimates while alleviating problems of computational
complexity, we propose the use of multi-head CNNs (M-heads)1 (Lee et al., 2015; Osband
et al., 2016; Rupprecht et al., 2017). This method has similarities to deep ensembles (Lak-
shminarayanan et al., 2017), but it overcomes the burden of multiple training and inference
runs due to extensive parameter sharing. Specifically, parameters in the early layers of a
network are shared such that an ensemble is defined by a collection of randomly initialised
final layers: the heads. A big advantage of such a low-cost ensemble is the ability to train all
members simultaneously, allowing modifications to the loss function to promote diversity.

A rigorous setup for evaluating uncertainty estimation methods is to assess their perfor-
mance on the task of out-of-distribution (OOD) detection. The idea here is to define two
datasets: Din containing samples similar to those seen during training and Dout containing
OOD samples. The latter may contain unseen abnormalities from the same domain or a
completely different domain. The task is to correctly discriminate between samples from
Din and Dout based on the uncertainty signal, i.e. without specific training. Due to the
relevance of detecting OOD samples, some existing methods exclusively focus on anomaly
detection (Zhai et al., 2016; Golan and El-Yaniv, 2018). Here, we are interested in methods
which perform well at a target task and estimate uncertainty as an auxiliary objective.

In order to evaluate the performance of the multi-head model, we first train it to detect
breast cancer metastases in lymph node resections. The quality of the uncertainty estimates
is evaluated by the ability to discriminate between Din: an independent dataset containing
lymph node resections and Dout: containing resections with presence of lymphoma. When
checking sentinel lymph nodes for breast cancer metastasis, incidental discovery of lym-
phoma is rare: it was found in only 1.6% of the cases (Fox et al., 2010). This makes it a
valuable case study to evaluate predictive uncertainty: clinically relevant and large-scale.
Our contributions are as follows: 1) We apply popular uncertainty estimation approaches
on a real-world, large-scale dataset and show the ability to detect anomalous data in dig-
ital pathology. 2) We demonstrate improved performance of M-heads in comparison to
more cumbersome, often used approaches and 3) we show that a diversity-promoting loss
function, unique to the multi-head CNN, is important for improved OOD detection.

2. Methods

Given a dataset Dtrain = {(xn, yn)|xn ∈ Xin, yn ∈ Yin}Ntrain
n=1 where Xin and Yin define the

in-distribution input and target space, we train a multi-head model pΘ(y|x) to produce a set
of hypotheses of size M , i.e. a function X 7→ YM . The task is to train the model such that
its mean prediction generalizes well to a held-out dataset Dtest = {(xn, yn)|xn ∈ Xin, yn ∈
Yin}Ntest

n=1 . We will refer to generalization on Dtest as the target task of the model. Our
goal here is not to obtain new state-of-the-art results on the target task, but to perform
comparable with the current state-of-the-art while simultaneously providing high-quality
uncertainty estimates to discriminate between Din and Dout.

1. Code for reproducibility is available at https://github.com/JasperLinmans/m-heads, with a mirror at
https://github.com/DIAGNijmegen/m-heads.
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Figure 1: The multi-head convolutional neural network. Arrows denote the flow of opera-
tion through the network’s shared part and the heads. During training, gradients
are distributed following Equation (1). Predictions are averaged at inference.

2.1. Multi-Head Convolutional Neural Networks

To take advantage of the limited memory requirements of the multi-head model, we train
all heads simultaneously using a meta-lossM (Rupprecht et al., 2017). See Figure 1 for an
overview. The meta-loss function acts on top of any given standard loss, e.g. cross entropy,
for a single data-point (x, y):

M(g(x), y) =

M∑
m=1

δmL(gm(x), y) (1)

where gm(x) is the softmax output of the m’th head, for all M heads and such that

δm =

{
1− ε if m = arg miniL(gi(x), y).
ε

M−1 else.
(2)

with ε the assignment relaxation constant. In other words, δm acts as a soft Kronecker
delta such that a fraction 1− ε of the gradient signal flows through the head with the best
hypothesis. The other heads receive the remaining signal. Reinforcing the performance
of the winning head accordingly, will promote specialisation. Meanwhile, distributing the
remaining loss will improve generalization of all heads to unseen data. We hypothesize
that promoting diversity between heads using the meta-loss, will help to better cover lower
density regions in the solution space which is beneficial for capturing ambiguities at infer-
ence. To prevent issues of mode-collapse, when training collapses to the predictions of a
single head, we add stochasticity by randomly dropping out predictions with low probability
(Rupprecht et al., 2017).

During inference, given an input x∗, we use the M-head CNN to model the predictive
distribution p(y|x∗; Θ;Dtrain) where Θ are the parameters of the model. Let pm denote
the softmax probabilities produced by the m’th head, in a classification setting. We use
the predictive mean across all heads to define the final prediction of the model: ppred =
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1
MΣM

m=1p
m. To asses predictive uncertainty we evaluate the entropy of the predictive mean

across all classes:

H[p(y|x∗; Θ;Dtrain)] = −
C∑
c=1

ppredc log(ppredc ) (3)

2.2. Related Work

Due to a recent surge of interest, a variety of methods have been developed with the ability
to provide estimates of uncertainty in addition to class predictions. Some of these ap-
proaches use statistics from the predictive distribution p(y|x) to estimate uncertainty (Gal
and Ghahramani, 2016; Lakshminarayanan et al., 2017). Others use an extra OOD detec-
tion component (Liang et al., 2017; Lee et al., 2018). We refer to (Ovadia et al., 2019) for
a more systematic overview of existing approaches. Here, we focus on methods that use
p(y|x) directly because of their prevalence, scalability and similarities with M-heads.

A straightforward approach utilizes the confidence of a single model to signal uncertainty
(Hendrycks and Gimpel, 2016). Here, given the predicted label ŷ, confidence is defined as
the associated softmax probability p(ŷ|x∗;θ). The majority of related work in medical
imaging however, applies MC-dropout (Ghesu et al., 2019; Nair et al., 2020; Kwon et al.,
2020). To model the predictive distribution, dropout is applied at test time and used
in multiple stochastic forward passes through the network (Gal and Ghahramani, 2016).
Previous work has shown that these uncertainty estimates can be used to detect anomalies
in medical imaging (Leibig et al., 2017; Seebock et al., 2019). A different approach is the use
of deep ensembles (Lakshminarayanan et al., 2017). Although this approach is similar to M-
heads, due to the memory requirements of backpropagation, applying meta-loss objectives
like Equation (1) to deep ensembles is practically infeasible. Instead, members are trained
on different subsets of the training data, referred to as bagging, to promote diversity.

3. Experiments

The target task for this work is defined as the detection of breast cancer metastasis in
whole-slide images (WSIs) of sentinel lymph node resections. To this end, each model is
trained on data from the Camelyon16 challenge (Bejnordi et al., 2017). We will use the
training and test set as defined by the challenge organizers. A proven method to train
semantic segmentation models for WSIs is to adopt a patch-based classification approach.
Here, models are trained on patches extracted from whole-slide images. Accordingly, we
train each model on a set of 6M patches of size 279×279 from a 10× resolution with a pixel
spacing of 0.48µm. Patches were extracted from the training-set in a ratio of 4 : 1 normal
to tumor, to reduce false positive detections, following previous work (Liu et al., 2017). To
evaluate performance on the target task, we report the challenge metrics on the test-set:
the FROC curve for tumor localization and the ROC curve for slide-level classification.

The performance for the task of OOD detection is evaluated using a dataset containing
anomalies not seen during training. In particular, we consider 26 WSIs containing lymph
node tissue diagnosed with diffuse large B-cell lymphoma. To compare the uncertainty
estimates generated on these OOD samples with in-distribution samples independent from
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Figure 2: Images from Dtrain and Dout at different resolutions. left: Taken from Dtrain
with it’s ground-truth annotation. right: A WSI diagnosed with Lymphoma.

the training and test set of the target task, we use data from the Camelyon17 challenge.
Specifically, we randomly selected 100 WSIs that were acquired by the same centers as
Camelyon16, from the test set of Camelyon17.

At inference, entire WSIs are evaluated at pixel-level by leveraging fully convolutional
networks2. However, only slide-level labels are available for both in-distribution and out-
of-distribution data. Therefore, we perform spatial average pooling on the uncertainty
heatmaps to produce a single uncertainty score per WSI. To do so, we apply a tissue-
background segmentation algorithm to filter out the background (Bándi et al., 2019). Al-
though there are more sophisticated methods for pixel-level to slide-level conversion, this is
beyond the scope of this work. To compare the quality of the uncertainty estimates between
models we evaluate AUROC for discriminating between Din and Dout. We also evaluate
FPR at 95% TPR: the probability that an OOD sample is miss-classified as in-distribution,
when the true positive rate (TPR) is as high as 95% (Liang et al., 2017).

Training details: In this work, we use a fully convolutional Densenet architecture
(Huang et al., 2017), containing three dense blocks each with four valid padded convolutional
layers. In total: 27 convolutional layers with 32 initial filters and a growth rate of 32. Each
model is trained using the Adam optimizer (Kingma and Ba, 2015) for 50 epochs (defined
as 212 patches), with a batch size of 64 and an initial learning rate of 1e-4 (divided by 10
at 60% and 80% of training). The MC-dropout model additionally applies spatial dropout
(Tompson et al., 2015) at the end of each bottleneck block (p=0.1). Based on results from
(Ovadia et al., 2019), showing diminishing returns for larger sample sizes, we ran all MC-
dropout evaluations using a sample size of 32. To study M-heads, we train models with 5
and 10 heads, where each head is defined by 4 convolutional layers and a classification layer
(≈ 15% of the convolutional layers of the DenseNet architecture). Here, ε = 0.05 and a
1% probability for dropping the winning head were selected. To determine the importance
of promoting diversity using the meta-loss, we also train models with a fixed Kronecker
delta: δm = 1

M . For comparison we also include deep ensembles of size 5 and 10 (trained
using a bagging approach). Finally, we include a baseline model: a single model where the
uncertainty is defined by the entropy of it’s softmax probabilities.

2. Here, we borrow terminology from Long et al. (2015)
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4. Results

4.1. Performance on the target task

Table 1 shows the performance of each model on the target task: predicting cancer metasta-
sis in whole-slide images of lymph node resections. Evaluations from a pathologist (Bejnordi
et al., 2017) and results from Liu et al. (at 10× resolution) are included (Liu et al., 2017).
Also, the results from the Camelyon16 winner are included, however, it uses 40× resolution
and is thus not directly comparable (Wang et al., 2016).

Table 1: Results on the target task. Confidence bounds are obtained by 2000-fold boot-
strapping. M-heads- refers to the models trained with a fixed Kronecker delta.

Method FROC AUROC

Baseline 77.0 (67.6, 87.0) 97.2 (93.9, 99.8)
MC-Dropout 75.2 (64.5, 85.7) 95.7 (90.5, 99.9)
Deep Ensembles (5) 77.9 (67.1, 88.1) 97.0 (93.0, 99.8)
Deep Ensembles (10) 77.4 (66.4, 87.8) 97.0 (93.0, 99.8)
M-heads- (5) 77.6 (66.6, 88.1) 96.6 (92.2, 99.7)
M-heads (5) 77.0 (66.2, 87.0) 97.9 (95.0, 99.9)
M-heads- (10) 75.4 (64.0, 86.6) 97.2 (93.5, 99.8)
M-heads (10) 78.2 (67.5, 88.1) 98.0 (95.3, 99.7)

Liu et al. 79.3 (74.2, 84.1) 96.5 (91.9, 99.7)
Camelyon16 winner 80.7 99.4
Pathologist 73.3 96.6

These results show that all models are competitive with the current state-of-the-art.
Furthermore, we observe that each model outperforms the single-network baseline, except
MC-dropout and M-heads- (10), which have a somewhat lower FROC score.

4.2. Performance on OOD Detection

We present the results of our main contribution, on the task of OOD detection in Figure 3.
In terms of AUROC and FPR at 95% TPR, all uncertainty-based methods show consistent
improvements over the baseline model, although MC-dropout has a slightly higher FPR.
The M-head model with ten heads outperforms other models, followed by the M-head model
with five heads. Training without the meta-loss (M-Heads-) decreases the performance
of the multi-head model, but it still outperforms other approaches in terms of FPR and
AUROC, except for MC-dropout on AUROC. Similar results are found when evaluating
model disagreement instead of entropy, see Appendix A. We have included a visualisation
of the predictions and uncertainty heatmaps produced by the M-head model for both in-
distribution and OOD WSIs in Figure 4 (see Appendix B for a more extensive overview of
randomly selected WSIs).

The entropy values used to calculate the results are visualised in Figure 5 (top row) and
Figure 5 (c) for each individual model through their cumulative distribution (CDF). Here,
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Method
FPR at 95%

AUROC
TPR ↓

Baseline 45.2 (25.1, 65.4) 84.2 (77.5, 91.3)
MC-Dropout 48.3 (26.9, 68.2) 88.3 (81.5, 94.1)
Ensemble (5) 42.4 (24.2, 61.3) 86.8 (80.2, 92.7)
Ensemble (10) 43.4 (24.0, 62.5) 86.8 (79.9, 92.9)
M-heads- (5) 41.5 (25.0, 57.9) 87.4 (81.1, 93.0)
M-heads (5) 40.5 (22.7, 58.3) 88.7 (82.7, 93.9)
M-heads- (10) 41.8 (25.0, 59.1) 88.4 (82.0, 93.8)
M-heads (10) 28.9 (12.0, 46.2) 91.7 (86.3, 96.5)

Figure 3: Performance on the task of out-of-distribution detection. Confidence bounds are
obtained by 2000-fold bootstrapping. right: the corresponding ROC curves.

we see a slightly bigger discrepancy between in-distribution and OOD entropy values for
the M-head models, which resulted in the improved AUROC values (Figure 3).

To get more insight into the differences in performance, we evaluate accuracy versus
confidence plots (Lakshminarayanan et al., 2017) in Figure 5 (a, b), that were calculated
using 200k patches extracted from the test set. Here, confidence is defined by the predicted
probability associated with the predicted label. Accuracy values are calculated by filtering
out predictions with confidence values lower then a particular confidence threshold τ ∈ [0, 1].

(a) Prediction on Din (b) Entropy on Din (c) Entropy on Dout

Figure 4: Output from M-heads (10). Predictions and entropy values from high to low:
red, green and transparent. (a) The prediction on macro metastatic tissue from
Camelyon17 with (b) the corresponding uncertainty. (c) A same-size entropy
heatmap predicted on lymphoma tissue from Dout.

5. Discussion

Our results show that all popular uncertainty-based methods, trained to detect breast can-
cer metastasis, are able to identify OOD whole-slide images diagnosed with lymphoma.
Surprisingly, although in line with previous work (Hendrycks and Gimpel, 2016), the base-
line defined by a single model also achieved reasonable OOD detection performance. Still,
the uncertainty-based methods consistently improved on these results, with one exception
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(a) Confidence vs Accuracy (b) Confidence vs Count (c) Entropy on Din and Dout

Figure 5: top row: CDFs of the predictive entropy for each model on both Din and Dout.
bottom row: (a, b) Confidence score vs accuracy and count respectively, eval-
uated for 200k patches from Dtest. (c) Summary of predictive entropy CDFs.

for the FPR of the MC-dropout model. We observe improved results for the multi-head
approach compared to the other methods when trained using the meta-loss function, Equa-
tion (1). These results demonstrate the importance of the meta-loss function, which is not
applicable to regular ensembles without significantly changing the network or the training
procedure to deal with memory issues. We furthermore observe slightly better results on
the target task for M-heads, in line with prior work (Lee et al., 2015). We hypothesize
that the improved performance of M-heads is partially due to an increased diversity of
it’s predictions, which we demonstrate in Appendix A. Although, future work with a more
extensive analysis on the diversity among the heads is required to confirm this.

Figure 5 shows that uncertainty based approaches are less confident in general and
more accurate at higher confidence values compared to the baseline model, which suggests
an improved calibration. This could partially explain the improved performance in OOD
detection compared to the baseline model. For MC-dropout specifically, we see a lower
target task performance compared to the other methods, indicating that applying dropout
throughout the network could hurt performance. However, we see a comparable OOD
detection performance with the more efficient multi-head approach based on five heads,
which could be attributed to the diversity within the predictions (Appendix A).

In future projects, we would like to expand on this work by confirming the results on
different tasks in digital pathology. Also, we would like to improve our pixel-level to slide-
level conversion method, since the current approach gives sub-optimal slide-level scores
due to uninformative estimates on fat tissue (examples in Appendix). Future work should
also include a comparison with deep ensembles trained without bagging, which could po-
tentially influence their OOD-detection performance. Furthermore, we hypothesize that
disentangling our predictive uncertainty into epistemic and aleatoric uncertainty could help
to increase the information provided by the uncertainty signal (Kendall and Gal, 2017).
This could improve down-the-line tasks such as out-of-distribution detection.
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Appendix A. Disagreement in Predictions

In this work, we show improved out-of-distribution detection results for the M-heads ap-
proach compared to the other baselines. We hypothesize that this difference in performance
is partially explained by the increased diversity between the individual predictions: between
the heads in the case of M-heads. One way to analyze the diversity between individual pre-
dictions is to evaluate their disagreement. Therefore, to give additional insight into the
differences in OOD detection performance, we will evaluate model disagreement as defined
by (Lakshminarayanan et al., 2017):

D([pm(y|x)]Mm=1) =
M∑
m=1

JSD(pm(y|x)||pe(y|x)) (4)

where JSD denotes the Jensen-Shannon divergence and pe(y|x) the ensembled prediction:
pe(y|x) = 1

MΣM
m=1pm(y|x). Since the vanilla baseline is based on just a single prediction, it

is excluded from this analysis.
Similar to the entropy of the predictive distribution, disagreement provides another use-

ful quantitative way to evaluate predictive uncertainty. Therefore, we repeat the experiment
as described in the method section of this work, but this time based on model disagreement
instead of entropy, see Table 2. As shown by the results, the M-head models show a big-
ger discrepancy between in-distribution and OOD samples compared to the other methods,
when trained using the meta-loss function. The increased diversity within the predictions on
OOD samples could partially explain the improved OOD detection based on the predictive
entropy (Figure 3). As expected, disagreement between the heads is less informative when
M-heads is not trained with the meta-loss function. Interestingly, the disagreement within
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the predictions of MC-dropout is more descriptive for OOD detection compared to the deep
ensembles, which could explain the differences in performance as shown in Figure 3.

Table 2: Performance on the task of out-of-distribution detection based on model disagree-
ment. Confidence bounds are obtained by 2000-fold bootstrapping.

Method
FPR at 95%

AUROC
TPR ↓

MC-Dropout 44.6 (25.0, 64.3) 86.0 (78.0, 93.0)
Ensemble (5) 42.5 (24.0, 62.0) 85.1 (77.5, 91.9)
Ensemble (10) 44.8 (25.0, 64.0) 83.4 (75.3, 90.7)
M-heads- (5) 50.9 (30.0, 70.8) 81.5 (72.2, 90.1)
M-heads (5) 42.4 (23.1, 63.0) 87.6 (81.3, 93.2)
M-heads- (10) 43.5 (26.1, 60.9) 81.3 (72.0, 89.7)
M-heads (10) 38.9 (16.7, 61.5) 87.3 (77.4, 95.7)

Appendix B. Uncertainty Heatmaps

Here we provide a random selection of whole-slide-images and the corresponding uncertainty
heatmaps predicted by the M-head (10) model. For each figure: the left panel displays the
input given to the network. Next to it, the uncertainty heatmap is shown, together with
the slide-level uncertainty score (calculated by average pooling across the tissue). Here
red values indicate high uncertainty whereas green and transparent indicates low values
of uncertainty. The first four rows represent randomly selected out-of-distribution images
(Figure 6). The final four rows show randomly selected in-distribution images (Figure 7).

(a)
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(b)

(c)

(d)

Figure 6: Four out-of-distribution WSIs and their corresponding uncertainty heatmaps, as
produced by the M-Heads (10) model.
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(a)

(b)

(c)
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(d)

Figure 7: Four in-distribution WSIs and their corresponding uncertainty heatmaps, as
produced by the M-Heads (10) model. The first row is an example of an in-
distribution WSI with relatively high levels of uncertainty.
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