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Abstract
Depth pruning aims to reduce the inference cost
of a large language model without any hardware-
specific complications, by simply removing sev-
eral less important transformer blocks. However,
our empirical findings suggest that the impor-
tance of a transformer block may be highly task-
dependent—a block that is crucial for a task can
be removed without degrading the accuracy on an-
other task. Based on this observation, we develop
a dynamic depth pruning algorithm, coined PuD-
Ding (Prompt-routed Dynamic Depth Pruning),
which determines which blocks to omit from the
model based on the input prompt. PuDDing oper-
ates by training a lightweight router to predict
the best omission set among a set of options,
where this option set has also been constructed in
a data-driven manner. Empirical results on com-
monsense reasoning benchmarks demonstrate that
PuDDing effectively accelerates the inference lan-
guage models, and achieves better on-task perfor-
mance than static depth pruning baselines.

Project Page: jwee01.github.io/PuDDing
Code: github.com/tada0347/PuDDing

1. Introduction
Recent advances in large language models (LLMs) have
achieved remarkable success in a wide range of natural lan-
guage processing tasks (Brown et al., 2020; Touvron et al.,
2023; Dubey et al., 2024). However, significant computa-
tional requirements of LLMs pose challenges in resource-
constrained environments, limiting their practicality. For ex-
ample, LLaMA-3.3-70B needs 140GB of RAM to be loaded
in bf16, which is often too big for memory-constrained local
devices. Thus, reducing the model size is essential to make
LLMs feasible for on-device applications.

Depth pruning is a versatile model compression technique
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Figure 1. The general framework of prompt-based depth pruning.
Given some query from the user, the goal is to identify which
layers from an LLM can be omitted, so that one can make accurate
prediction on low-memory consumer devices.

that is particularly effective for on-device scenarios (Song
et al., 2024; Kim et al., 2024). Such methods simply remove
several transformer blocks (which we call “omission set”)
from the pretrained model, based on some measures of block
importance computed using a small amount of calibration
samples. As everything is identical except for the number
of blocks, the pruned model is suitable to be deployed on
any hardware without tailored supports on low-precision
(e.g., integer cores) or fine-grained sparsity (e.g., 2:4 spar-
sity). Furthermore, as there is no extensive training involved,
depth pruning can be easily done in a device-by-device man-
ner for deployment on various devices.

A key limitation of typical depth pruning algorithms is that
their pruning decision is static, i.e., the same omission set is
removed regardless of the query given to the model. While
this choice allows one to save storage (e.g., flash drives)
by discarding the pruned parameters at the local device, it
sacrifices the ability to adapt to various downstream tasks.
Indeed, our empirical observations show that pruning some
transformer blocks in an LLM may incur significant ac-
curacy degradation on certain tasks, while being highly
unnecessary for other tasks (see Section 3).

Can we make dynamic depth pruning decisions to improve
the performance on various tasks? This question has not
been well studied yet, especially in the context of on-device
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inference. A recent line of work develops effective dynamic
token routing mechanisms to save training/inference com-
putation by processing each token with a limited number of
transformer blocks (Raposo et al., 2024; Wang et al., 2024).
However, such methods require all parameters to be loaded
on high-speed memories (e.g., on-GPU memory); thus, the
methods are appropriate for large-scale server clusters, not
for on-device inference with memory constraints.

Contribution. To overcome the limitations, we develop
a new prompt-based depth pruning approach (Section 4):
In the pre-fill stage, based on the prompt given from the
user, a limited number of transformer blocks are selected
and loaded to the on-device RAM from the storage drive.
This approach does not require a large memory to hold all
parameters or highly repeated per-token routing, and thus
can effectively accelerate inference on low-memory devices.

A naı̈ve way to achieve this goal might be to conduct conven-
tional static depth pruning at each inference, using the given
prompt as calibration samples. However, this approach in-
curs a large latency in running static pruning algorithms in
every inference. Furthermore, such a method is likely to
fail making a good pruning decision due to the shortage of
calibration data, especially in single-batch inference cases
common in on-device scenarios.

To this end, we propose a training-based method for the
prompt-based depth pruning of large langauge models (Sec-
tion 5). Our method, coined Prompt-routed Dynamic Depth
Pruning (PuDDing), works in two steps.

1. Candidate omission set generation. We construct a small
yet diverse and performant family of omission sets. This
is done by drawing multiple splits of calibration data
from various task dataset, and then finding an omission
set which achieves low loss on each split; here, we use a
newly developed task-centric loss instead of perplexity.

2. Router training. We train a lightweight router which pre-
dicts the appropriate omission set from the given prompt.
This is done by generating a training dataset consisting
of prompt-loss pairs for each omission set, and training
the model to predict the loss from the prompt; routing
can be done by choosing the minimum-loss option.

Empirically, we find that the proposed PuDDing enjoys a
clear advantage over static depth pruning algorithms, achiev-
ing more than 4%p accuracy increase on zero-shot common-
sense reasoning tasks (Section 6). At the same time, as the
algorithm uses the router only once per each prompt, PuD-
Ding enjoys over 1.2× generation speedup over the dense
model, similar to the static depth pruning algorithms.

Our key contributions can be summarized as follows:

• Our observations reveal that optimal depth pruning de-
cisions may be highly depend on the task given at hand,

underscoring the need for task-dependent depth pruning.
• We consider the task of prompt-based depth pruning for

the first time (to our knowledge), and propose a training-
based strategy as a solution.

• Comparing with static depth pruning algorithms, our al-
gorithm achieves a much higher zero-shot accuracies on
various tasks, while being competitive in terms of the
computational efficiency.

Table 1. A high-level comparison of the proposed prompt-based
depth pruning framework with related depth pruning approaches:
Static depth pruning and dynamic token routing.

Task Adaptive Peak Memory Routing

Static Pruning (Song et al., 2024; Kim et al., 2024) ✗ Sparse -
Token Routing (Raposo et al., 2024; Wang et al., 2024) ✓ Dense Per token

Prompt-based depth pruning (this paper) ✓ Sparse Per prompt

2. Related Work
In this section, we provide an in-depth comparison of the
proposed framework against existing depth and width spar-
sity frameworks. See Table 1 for a concise summary.

2.1. Static Depth Pruning

Static depth pruning methods select and remove unnecessary
blocks from a pretrained LLM using various proxy metrics
to measure the importance of the blocks. ShortGPT (Men
et al., 2024) measures the block importance using the ex-
pected cosine similarity between the input and output activa-
tions of the block; a block that does not change the direction
of the activation is deemed unnecessary. Shortened-LLaMA
(Kim et al., 2024) directly measures the perplexity drop after
removing each transformer block, and SLEB (Song et al.,
2024) combines this idea with an iterative pruning.

Several recent works also focus on layer-level depth pruning,
instead of removing an entire transformer block. In partic-
ular, Siddiqui et al. (2024), He et al. (2024) discover that
pruning out self-attention layers have a much less significant
impact than removing the feed-forward layers.

Unlike these works, this paper aims to perform dynamic
depth pruning using the prompts for the downstream tasks;
to account for this difference, we design and use new
likelihood-based metrics to measure the block importance.

2.2. Dynamic Token Routing

Inspired by the success of mixture-of-experts (Jacobs et al.,
1991; Fedus et al., 2022), several recent works have devel-
oped mechanisms to route tokens through only a fraction
of all transformer blocks. Mixture-of-Depth (Raposo et al.,
2024) adopts the depth sparsity during the training phase
with a jointly trained router, to reduce the training cost of
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LLMs. Here, the trained router can also be used at infer-
ence. D-LLM (Wang et al., 2024) trains a router that can be
applied on pretrained LLMs to reduce their inference cost.

Our approach differs from both of these works in the sense
that it needs only a limited number of transformer blocks
active for a single input query (or prompt); the routing is
conducted once per input prompt, not per token.

2.3. Contextual Sparsity

Our work is most closely related to the idea of contex-
tual sparsity, where a lightweight router selects an input-
dependent subnetwork at inference time without updating
the base weights. In the context of width pruning, prior
works—Deja Vu (Liu et al., 2023), ShadowLLM (Akhauri
et al., 2024), Sirius (Zhou et al., 2024), and CATS (Lee et al.,
2024)—have demonstrated that context-aware routing can
be done with minimal or no degradation in task performance.
PuDDing extends this paradigm to depth pruning for the
first time: instead of skipping neurons or channels, our
router decides which entire transformer blocks to omit. This
preserves the original matrix shapes and avoids hardware
mismatches often caused by width pruning.

3. A Motivating Observation
Before describing the proposed framework, we briefly de-
scribe a motivating observation which demonstrate that:

The importance of a transformer block in a language
model may be highly task-dependent.

Setup. To show this point, we have compared the zero-shot
accuracies of the LLMs whose omission sets differ by a
single transformer block. More concretely, we compare
the performance of an omission set (b1, b2, . . . , bk−1, bk) to
another omission set (b1, b2, . . . , bk−1, b̃k), on the LLaMA
3.1-8B model. Here, we have used the SLEB (Song et al.,
2024) to generate an omission set, and then replaced a single
block to get another one. Then, we observe the impact of
such replacement on three commonsense reasoning tasks:
BoolQ, PIQA, and WinoGrande.

Result. Figure 2 illustrates our findings. We observe that
pruning out block 29 instead of block 30 has a two-sided
impact: On BoolQ, the change makes a dramatic drop in
accuracy (62.2% → 38.0%, 62.5% → 37.9%). However,
on PIQA and WinoGrande, we observe a slight accuracy
boost. This phenomenon suggests that the block 29 may
contain more knowledge relevant to answering BoolQ ques-
tions, while 30 may be more knowledgeable about PIQA
and WinoGrande. This observation highlights the need to
consider task variability during the selection of the omission
set. To formally address such need, this paper considers an

Figure 2. The impact of pruning the transformer block 29 vs. block
30. On the BoolQ dataset, pruning the block 29 instead of block
30 incurs a dramatic performance degradation, with over 20%p
drop. On the other hand, on PIQA and WinoGrande, the accuracy
does not change much, or even increases.

inference of task information from the prompt.

4. Problem Description
Inspired by the observations in Section 3, we now formalize
the problem of prompt-based depth pruning.

In a nutshell, given some pretrained LLM and a prompt,
the goal of the prompt-based depth pruning is to desig-
nate which transformer blocks should be removed from the
model to generate the most accurate response to the prompt.

More concretely, let x be the prompt given to the model,
and let W = (W1, . . . ,Wd) be the weight parameters of
a pretrained LLM consisting of d transformer blocks, with
Wi indicating the weights of the ith block. The prediction
quality of this language model is measured by the expected
loss between the model output and the ground-truth, i.e.,

L(W) := E[ℓ((x,y);W)], (1)

where ℓ((·, ·);W) is some loss function which also encap-
sulates the generative procedure of language model with
parameter W (e.g., perplexity). In static depth pruning, the
goal is to find which blocks to prune from the given LLM.
More formally, define omission set as a(n unordered) set of
transformer block indices

b = {b1, b2, . . . , bk} ⊆ {1, 2, . . . , d}, (2)

which designates which blocks will be omitted from the
target LLM. Then, let W\b be a sequence of d− k weights,
with bith block eliminated from the W. Then, the static
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depth pruning aims to solve the minimization

min
b:|b|≥k

L(W\b), (3)

given the depth constraint k designated by the operational
constraints, such as the desired latency or the peak memory.

Prompt-based Depth Pruning. The problem of prompt-
based depth pruning can be described as optimizing the
omission set as a function b̂(x), i.e., solving

min
b̂(·)

E
[
ℓ((x,y);W\b̂(x))

]
, (4)

subject to Pr
[
|b̂(x)| ≥ k

]
= 1.

Note that we are constraining the omission set to have the
cardinality greater than k for all x. In other words, the
pruned model should always have d− k or less blocks. This
is because we mainly consider the peak memory constraint,
i.e., the RAM cannot hold more than d− k blocks. Other-
wise, one can consider a slightly modified version of the
problem (4) with a probabilistic constraint.

5. Method
We now formally describe the proposed PuDDing (Prompt-
routed Dynamic Depth Pruning)—an algorithm to train a
router b̂(·) for the prompt-based depth pruning.

In a nutshell, PuDDing operates in two steps:

1. Generating candidate omission sets using the prompt-
answer dataset collected from various tasks (Section 5.1)

2. Training a router to predict the best option among the
candidate omission sets (Section 5.2)

During the inference phase, the given prompt is fed to the
router, which predicts which omission set (among the candi-
dates) one should use for the given prompt. Then, the model
parameters are loaded from the storage to the high-speed
memory to constitute the depth-pruned LLM (see Figure 3).

We note that this classification-based approach is in contrast
with the approach of dynamic token routing (Wang et al.,
2024), where one makes yes/no decisions for omitting each
block in a sequential manner; this change is to make the
router training easier and generalizable.

5.1. Candidate Omission Set Generation

The first step is to generate a candidate pool of omission
sets. That is, we generate a family of omission sets

B = {b1, . . . ,bm}, (5)

which will be used as the codomain of the router b̂(·), which
will simply be an m-class classifier.

Desirable properties of the candidate set B are as follows:

• Coverage: For any realistic prompt-answer pair (x,y)
from a wide range of tasks, the set B should contain at
least one bi with a small loss ℓ(y, f(x;W\bi)).

• Cardinality: The number of omission sets m should be
sufficiently small, so that one can train a nice predictor
for B with a limited number of samples.

To obtain these properties, we adopt the following strategy:
First, we collect t calibration datasets D1, . . . , Dt on a di-
verse set of downstream tasks. Then, on each calibration
dataset, we select the omission set that minimizes some loss
criterion, i.e., solve

bi = argmin
b

EDi

[
ℓ(y; f(x;W\b)

]
. (6)

Here, the minimization is done in a greedy manner, similar
to Song et al. (2024). We apply l different loss criteria on
each calibration dataset to get m = t× l omission sets.

Losses. As the loss function, we use new task-focused vari-
ants of the perplexity loss, which we call the task likelihood
losses. The perplexity measures the fluency of the generated
sentences by measuring the average log-likelihood losses
over the whole sequence. That is, for a sample sentence
z = (z1, z2, . . . , zT ), the perplexity is

ppl(z;W) = exp

(
− 1

T

T∑
i=1

log pi(zi|z<i;W)

)
, (7)

where pi(·|·;W) denotes the conditional generative prob-
ability of the target language model with parameters W,
at the ith token. We modify this loss to measure the likeli-
hood only the sequence that matters for on-task performance.
That is, if the given datum z can be broken down into the
prompt and answer pair:

z = (x,y) = (z1, . . . , zS︸ ︷︷ ︸
=x

, zS+1, . . . , zT︸ ︷︷ ︸
=y

), (8)

then we can define the task likelihood (tl) loss as:

tl(z;W) = − 1

T − S

T∑
i=S+1

log pi(zi|z<i;W). (9)

In addition, we also consider the task likelihood difference
(tld) loss, which is defined as follows: In many tasks, the
answer choices are limited (e.g. “true” or “false”). In such
cases, we can also use the likelihood difference of the correct
and wrong answers, i.e.,

tld(z;W) = tl((x,y);W)− tl((x,ywrong);W), (10)

where ywrong denotes the wrong version of the answer. We
use both tl(·) and tld(·) as our loss criteria.

We note that the task likelihood losses Equations (9) and (10)
is different from the perplexity (Equation (7)), in the sense
that we do not exponentiate the values. We use this version
as it empirically works better than the exponentiated one.
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Figure 3. A visual overview of the proposed pipeline. Whenever the prompt is given from the user, a trained router predicts which set of
blocks can be omitted with minimal loss, among the small number of candidate omission sets. Then, the LLM transformer blocks are
loaded from the storage (e.g., flash drive) to the high-speed memory (e.g., GPU RAM) except for the omitted blocks, saving the time and
energy for the data communication. Finally, the depth-pruned model operates and generates the text.

5.2. Router Training

After generating the candidate omission set B, we train a
router that maps the given prompt to the best omission set.
Roughly, this is done by first constructing a soft-labeled
dataset with task-specific datasets and then training a BERT-
based router on the constructed dataset (Devlin et al., 2019)

Dataset Construction. To construct the training dataset,
we first collect various prompt-answer pairs from the task
datasets, similarly to the calibration datasets in Section 5.1.
Then, for each sample, we compute the task likelihood
losses on all omission sets, and store them as a label vector.
That is, each datum inside the dataset takes the form (xi, si),
where xi is the prompt and the si is a length-m vector with

si =
(
tl((xi,yi);W

\b1), . . . , tl((xi,yi);W
\bm)

)
. (11)

Note that we no longer need to store the correct answers yi.

Router training. We train a router to accurately predict the
label vector s given the input prompt x, for all samples in
this dataset. That is, we train a function ŝ = f(x) such that
ŝ ≈ s holds. We use the MSE loss

MSE(s, ŝ) =
∥∥s− ŝ

∥∥2
2

(12)

to train the router. At inference, we will select the omission
set with the minimum-achieving index of the predicted ŝ.

Router architecture. We use a lightweight transformer-
based encoder as our router. More specifically, we insert a
single linear layer on pretrained BERT-base (Devlin et al.,
2019), and jointly fine-tune during the training. While this
router has more parameters (∼110M) than typical routers
that are used for dynamic token routing—such as D-LLM
(Wang et al., 2024) which uses 2-layer MLP—the computa-
tional cost is bearable as we route only once per prompt. In
our experiments, the routing cost typically takes up around
2− 4% of the total pre-fill cost.

6. Experiment
We now empirically validate the performance of the pro-
posed algorithm, PuDDing, on zero-shot tasks against the
static depth and width pruning baselines.

6.1. Experimental Setup

Models. We evaluate the proposed method on compressing
three popular open-weight language models. As the main
model, we use the LLaMA-3.1 model with 8B parameters
(Dubey et al., 2024). In addition, we evaluate on two lan-
guage models: Vicuna 1.5 with 7B (Chiang et al., 2023),
and OPT with 6.7B parameters (Zhang et al., 2022). We
use these models for two reasons. First, the models have an
appropriate scale for on-device deployments. Second, all
three models consist of 32 transformer blocks, and thus can
be compared with the same sparsity criterion.

Baselines. We mainly compare against four recent static
depth and width pruning baselines with open source.

• SLEB (Song et al., 2024): A depth pruning baseline that
iteratively selects the omission set based on perplexity.

• Shortend LLaMA (Kim et al., 2024): A depth pruning
algorithm which selects the omission set one-shot; here,
we compare with the version that uses perplexity as the
loss criterion and does not apply LoRA.

• FLAP (An et al., 2024): A retraining-free width pruning
algorithm based on structural fluctuation metric.

• SliceGPT (Ashkboos et al., 2024): Another width pruning
algorithm based on principal component analysis.

In addition, we also compare with “SLEB per prompt,”
which is simply SLEB which is conducted by using each
given prompt as the calibration data. As this option does not
work well in general, and requires a long inference time, we
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Table 2. Zero-shot accuracy comparisons of PuDDing against baseline compression algorithms on LLaMA-3.1 8B on commonsense
reasoning tasks. The best performances are marked in bold, and the runner-up is marked with underline.

Method Structure Pruned Blocks
(Sparsity)

Per-task Accuracies Average
Acc. (%)Arc-C Arc-E BoolQ HellaSwag PIQA WinoGrande

Dense - 0 53.50 81.52 82.20 78.81 79.98 73.40 74.90

FLAP Width - (20%) 26.54 46.80 62.32 46.93 64.58 58.56 50.96
SliceGPT Width - (20%) 34.30 65.15 44.52 60.55 73.67 56.43 50.28
SLEB Depth 7 (>21%) 34.90 66.25 49.11 61.60 74.37 57.22 57.24
SLEB per prompt Depth 7 (>21%) 33.44 50.59 57.95 53.57 63.44 56.51 52.58
Shortened LLaMA Depth 7 (>21%) 34.30 65.15 44.52 60.55 73.67 56.43 55.77

PuDDing (Ours) Depth 7 (>21%) 41.47 67.09 62.02 62.92 73.94 64.16 61.93 (+4.69)

FLAP Width - (15%) 33.19 60.02 69.45 58.18 71.16 61.88 58.98
SliceGPT Width - (15%) 32.59 59.60 49.82 58.59 67.14 64.56 55.38
SLEB Depth 5 (>15%) 39.59 70.58 58.17 67.16 75.63 63.77 62.48
Shortened LLaMA Depth 5 (>15%) 40.78 69.11 60.67 67.46 76.28 64.09 63.07

PuDDing (Ours) Depth 5 (>15%) 42.32 72.39 65.11 67.28 75.79 65.35 64.71 (+1.64)

FLAP Width - (10%) 36.43 66.20 69.69 63.29 74.10 66.61 62.72
SliceGPT Width - (10%) 38.14 68.90 63.67 65.47 70.78 66.30 62.21
SLEB Depth 3 (>9%) 45.73 76.01 68.93 71.96 77.53 68.98 68.19
Shortened LLaMA Depth 3 (>9%) 38.57 69.91 69.72 71.28 77.31 67.48 65.71

PuDDing (Ours) Depth 3 (>9%) 48.98 77.02 70.18 73.26 77.20 68.11 69.13 (+0.94)

Table 3. Zero-shot task accuracy comparison on LLaMA 3.1 8B,
OPT 6.7B, and Vicuna 1.5 7B. The best performances are marked
in bold, and the runner-up is marked with underline. We have
applied 20% sparsity (i.e., pruned seven blocks).

Method LLaMA 3.1 8B OPT 6.7B Vicuna 1.5 7B

Dense 74.90 62.51 70.49

FLAP 50.96 46.68 51.45
SliceGPT 50.28 55.45 59.11
SLEB 57.24 56.55 58.68
Shortened LLaMA 55.77 54.58 59.78

PuDDing (Ours) 61.93 58.37 60.01

only compare on a limited number of scenarios.

Dataset: Evaluation. We evaluate on the test splits of six
zero-shot commonsense reasoning tasks: ARC-Challenge
and ARC-Easy (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi
et al., 2020), and BoolQ (Clark et al., 2019).

Dataset: Calibration for Baselines. For the baseline algo-
rithms, we have used the calibration data designated in the
original papers. For SLEB, FLAP, and SliceGPT, we have
used the WikiText-2 (Merity et al., 2022). For Shortened
LLaMA, we have used the BookCorpus (Zhu et al., 2015).

Training. To generate the candidate omission set for our
algorithm, we have used 128 randomly drawn samples from
the training splits of five zero-shot commonsense reasoning

tasks: ARC-Challenge, ARC-Easy, HellaSwag, PIQA, and
WinoGrande. That is, we use total 10 omission sets (as we
use two different losses). For training the router, we have
used the full training splits. BoolQ dataset has been left
out in order to evaluate the generalization to unseen sets.
The router has been trained with AdamW with learning rate
10−5, weight decay 0.01, and batch size 32 for 10 epochs,
with 500 warm-up steps. Also, for WinoGrande dataset, we
use a tailored data pre-processing procedure; we describe
this in detail in Appendix A.

Hardware. We have mainly used NVIDIA RTX 6000 Ada
for evaluation and training. In addition, we have used cloud
instances of NVIDIA A100 for evaluation.

6.2. Main Experiment

Table 2 provides a comparison of zero-shot accuracies of
the model compression methods, on LLaMA-3.1 8B model.
From the table, we observe that PuDDing achieves the high-
est average accuracy on all sparsity levels tested. Especially
when 7 blocks have been pruned (over 20% sparsity), the
improvement over the best baselines is almost 3%p.

An interesting observation is the poor performance of
“SLEB per prompt,” which measures which block to remove
on the fly, by using the given prompt as a calibration dataset.
In fact, the performance is worse than the vanilla SLEB.
We hypothesize that this is because a single prompt usually
does not contain enough information to work as a good cali-
bration data. Our training-based strategy circumvents such
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Table 4. Zero-shot accuracy comparisons of PuDDing vs. other depth pruning methods on LLaMA-3.1 8B, with LoRA finetuning. The
best performances are marked in bold, and the runner-up is marked with underline.

Method Pruned Blocks
(Sparsity)

Per-task Accuracies Average
Acc. (%)Arc-C Arc-E BoolQ HellaSwag PIQA WinoGrande

Dense 0 53.50 81.52 82.20 78.81 79.98 73.40 74.90

SLEB + LoRA 7 (>21%) 45.39 74.92 69.05 70.92 78.35 64.40 67.17
Shortened LLaMA + LoRA 7 (>21%) 43.52 74.07 63.88 71.74 78.35 63.85 65.90
LLM-Streamline (w/ fine-tune) 7 (>21%) 44.80 70.12 70.06 67.15 72.63 71.74 66.08

PuDDing + LoRA (Ours) 7 (>21%) 45.39 75.34 71.96 71.58 77.26 66.54 68.01 (+0.84)

Table 5. Accuracy comparisons of PuDDing vs. other depth prun-
ing methods on LLaMA-3.1 8B in the unseen tasks that require
more complicated reasoning. The best performances are marked
in bold, and the runner-up is marked with underline.

Method
Pruned
Blocks OpenBookQA MathQA MMLU PubMedQA SciQ

Dense 0 44.60 39.53 63.49 75.80 96.00

SLEB 7 36.00 25.19 23.76 56.40 89.20
Shortened LLaMA 7 34.20 25.76 26.78 52.60 89.20

PuDDing 7 36.40 27.20 39.00 60.00 92.70

difficulty by training a router from the data.

Regarding the out-of-distribution generalization, we observe
that PuDDing also works well on unseen dataset (BoolQ).
PuDDing outperforms all other baselines except for FLAP,
which works extraordinarily well on this specific dataset.

In Table 3, we provide comparisons on other language mod-
els: Vicuna and OPT. We confirm that our algorithm works
better than other baselines under this setup as well.

6.3. LoRA Fine-tuning

Next, we compare the performance where we assume that
we can recover the accuracies using LoRA (Hu et al., 2022).
For PuDDing, we generate LoRA updates for each omis-
sion set (thus total 10 for these experiments). This requires
additional storage space for storing 10 separate copies of
LoRA weights for each omission set. However, this increase
only incurs ∼2.5% increase in the total storage space. For
training LoRA weights, we have followed the setup and hy-
perparameters used for LoRA training in shortened LLaMA
(Kim et al., 2024); we have used Alpaca dataset (Taori et al.,
2023) for training, as in the paper.

Table 4 provides LoRA fine-tuned results of depth pruning
algorithms on zero-shot commonsense reasoning tasks, for
LLaMA-3.1-8B pruned to 20% sparsity. We observe that
PuDDing continues to achieve the best performance among
all options evaluated. That is, the advantages of prompt-
adaptivity also exists after fine-tuning.

Table 6. Wall clock inference speed of the PuDDing-compressed
LLaMA-3.1 8B evaluated on NVIDIA A100 and RTX 6000 Ada.

A100 Pre-fill (TTFT) Pre-fill + Generation

Prompt Length 128 256 512 128 128 128
Gen. Length 1 1 1 128 256 512

Dense 0.137s 0.251s 0.505s 3.296s 6.634s 13.595s
PuDDing 0.109s 0.201s 0.393s 2.694s 5.375s 11.024s
→Router +0.004s + 0.005s +0.008s +0.004s +0.004s +0.004s

Speedup 1.21× 1.22× 1.23× 1.22× 1.23× 1.23×

RTX 6000 Ada Pre-fill (TTFT) Pre-fill + Generation

Prompt Length 128 256 512 128 128 128
Gen. Length 1 1 1 128 256 512

Dense 0.008s 0.171s 0.323s 4.923s 9.877s 19.973s
PuDDing 0.069s 0.134s 0.260s 3.946s 7.926s 16.039s
→Router +0.005s +0.005s +0.005s +0.005s +0.005s +0.005s

Speedup 1.19× 1.23× 1.22× 1.25× 1.25× 1.25×

6.4. More Complicated Tasks

In Table 5, we compare the performance of various depth
pruning algorithms on more complicated tasks, including
OpenBookQA (Mihaylov et al., 2018), MathQA (Amini
et al., 2019), and MMLU (Hendrycks et al., 2021). From
the results, we observe that PuDDing continues to perform
better than the baselines, even though these tasks have not
been observed during the training of the router.

7. Analysis
We now provide further analyses on PuDDing. In particular,
we provide the following analyses: Wall clock speedup
(Section 7.1), and visualization of omission sets for tasks
(Section 7.2). In Appendix B, we conduct ablation studies.

7.1. Wall-clock Speedup

We now provide wall-clock analyses and estimates on the
latency and throughput of the PuDDing-compressed models.

Inference. Table 6 presents the average wall-clock inference
time comparison between the dense and PuDDing-pruned
version of the LLaMA 3.1 8B, evaluated on NVIDIA A100
and RTX 6000 Ada. For PuDDing, we have pruned seven
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Figure 4. A visual illustration of the PuDDing’s pruning rate of each transformer block, given the prompts drawn from various zero-shot
tasks. The results are for the LLaMA 3.1 8B model, pruned to 20% sparsity (seven blocks removed). The color red indicates that the
blocks are likely to be pruned, and the color green indicates that the blocks are likely to be retained. We provide additional visualizations
on the other language models (OPT 6.7B and Vicuna 1.5 7B) in the Appendix C.

Table 7. Wall clock inference speed of the PuDDing-compressed
LLaMA-3.1 8B evaluated on edge devices (M3 pro, Apple).

M3 Pro (Apple) Pre-fill (TTFT) Pre-fill + Generation

Prompt Length 128 256 512 128 128 128
Gen. Length 1 1 1 128 256 512

Dense 0.177s 0.300s 0.480s 7.890s 15.970s 32.520s
PuDDing 0.138s 0.235s 0.376s 6.174s 12.497s 25.447s
→ Router 0.009s 0.016s 0.029s 0.009s 0.009s 0.009s

Speed Up 1.20× 1.20× 1.19× 1.28× 1.28× 1.28×

Table 8. The estimated time required to transfer the weight param-
eters of LLaMA-3.1 8B and PuDDing (with seven blocks pruned)
to NVIDIA A100 GPU through various communication channels.

Bandwidth Dense PuDDing

PCIe Gen4 x4 64GB/s 0.250s 0.198s
NVIDIA NVlink 600GB/s 0.027s 0.021s

layers (21.88% sparsity). We observe that PuDDing pro-
vides a consistent 1.19-1.23× speedup during the pre-fill
stage, and 1.22-1.25× speedup including the generation
stage. The total routing time takes up to 4-8ms, which can
be deemed negligible comparing with the overall latency.
Also, Table 7 presents results on edge devices (e.g., Apple
M3 Pro), showing consistent speedup. This outcome shows
that the proposed method is well-suited for both server-like
and edge-like hardwares.

Parameter loading. Table 8 presents the estimated time
required for loading the model parameters of LLaMA-3.1
8B (16GB in FP32) from the storage to the GPU. PuDDing
can save around 52ms on PCIe and 6ms on NVLink, which
is nonnegligibly large comparing with the computational
scale of running these models. However, a pitfall is that, for
repeated inference, PuDDing may require loading additional
weights to account for different prompts. This additional
cost can be minimized by loading only the previously un-
loaded blocks from the storage; in fact, many blocks overlap,
as we will demonstrate in Section 7.2.

7.2. Pruned Block vs. Task

Figure 4 depicts the distribution of the pruned transformer
blocks in LLaMA-3.1-8B model, given the prompts from
different tasks. Again, we consider the case where we drop
seven transformer blocks for each prompt.

From the figure, we make two intriguing observations: First,
several blocks are considered almost universally unneces-
sary. In particular, the blocks 20, 26, 27 are removed with
over 80% probability in all tasks. Similarly, there are certain
block which are almost never pruned, e.g., blocks 1–3 and
5–8. Second, regarding some blocks, the importance of
the block highly varies over task. For instance, transformer
block 4 is pruned with over 80% for ARC-Easy and ARC-
Challenge. On the other hand, for PIQA and WinoGrande,
the pruning rate is less than 40%; in these tasks, the blocks
9 and 10 are likelier to be less important.

We note that similar patterns can be observed for OPT and
Vicuna; see Appendix C for visualizations on these models.

8. Conclusion
In this paper, we have developed a new paradigm for the
depth pruning of large language models, where we dynami-
cally determine which blocks should be utilized for process-
ing the prompt given from the user. By doing so, we can
save both the memory access cost and the inference com-
putation, thus suitable for on-device deployment of large
language models. We have proposed PuDDing, an algo-
rithm to train a router using various task data. Through
our experiments, we have confirmed that such framework is
quite effective, clearly outperforming existing static depth
pruning algorithms consistently over multiple LLMs.

Limitations and future work. A notable limitation of the
proposed method is that we assume that we have access
to various task datasets. In particular, we have focused on
the case where we use LLMs for commonsense reasoning
tasks, instead of an open-ended language generation. A
promising future direction will be to develop new techniques
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to harness unlabeled text corpus, such as Alpaca or C4, to
generate diverse clusters of calibration data for attaining
corresponding omission sets.

Another limitation is a general lack of mechanisms to ac-
count for the different difficulties of the tasks. For some
tasks, it may be necessary to utilize all layers to generate
an answer with sufficiently high quality; on the other hand,
some tasks can be simply handled with very few layers.
While our decision to consider a fixed number of trans-
former blocks is motivated by the practical constraints of
on-device inference, we believe that utilizing variable-depth
can be even more effective whenever the on-device memory
is spacious but can be preempted to other processes.
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A. Pre-processing for the WinoGrande Dataset
The WinoGrande dataset, originally consisting of fill-in-the-blank sentences, was initially computed using the sentence-level
likelihood (sl) as follows:

sl(z;W) = − 1

T

T∑
i=1

log pi(zi|z<i;W). (13)

By reformulating the dataset into a Question-Answer format and evaluating the task likelihood (tl) score for the answer part
using Equation (9), performance improved significantly, from 61.09% to 64.16%.

B. Ablation Studies
We have conducted various ablation studies on the proposed algorithm, PuDDing. Below, we provide a summary of our key
findings, with corresponding pointers to the relevant section.

• Number of candidate omission sets (Appendix B.1): We have varied the number of candidate omission sets inside the set
B, and find that having 10 classes is sufficient for handling zero-shot tasks; the gain from adding omission sets quickly
saturates.

• Proposed task likelihood score (Appendix B.2): We compare the performance of the task likelihood-based routing and the
perplexity-based routing under both static and dynamic setups. We find that the using the task likelihood score leads to a
clear advantage in both scenarios.

• MSE loss for training (Appendix B.3): We have used the mean-squared error (MSE) loss to train the router using the soft
labels. Our experiments show that this leads to a slightly better performance than using the classification loss, namely the
cross-entropy loss.

B.1. Number of Candidate Omission Sets

Table 9. Results of zero-shot task accuracy with varying omission set sizes.

Number of
Omission Sets

Per-task Accuracies Average
Acc. (%)Arc-C Arc-E BoolQ HellaSwag PIQA WinoGrande

5 40.27 67.85 61.01 62.60 73.83 61.56 61.19
10 41.47 67.09 62.02 62.92 73.94 64.16 61.93
30 38.57 66.88 63.70 64.23 72.85 63.93 61.69

Table 9 shows the accuracy of zero-shot task with varying omission set sizes, comparing the impact of using 5, 10, and 30
omission sets across common-sense reasoning tasks.

Using only 5 omission sets results in a lower accuracy, with an average of 61.19%, as it shows insufficient performance for
optimal results. 30-set configuration, despite some task-specific advantages, does not lead to consistently higher performance.
In contrast, the 10-set configuration provides an improvement across multiple tasks, with a highest average accuracy of
61.93%, indicating that this size offers a better balance between performance and model efficiency.

B.2. Effectiveness of the Proposed Task Likelihood Score

Table 10. Zero-shot accuracy performance of static
pruning methods.
Method Metric Task-wise Average Acc. (%)

SLEB Batch-ppl ✗ 57.24
Batch-ppl ✓ 59.32

Static PuDDing (Ours) task likelihood (tl) ✓ 61.02

Table 11. Zero-shot accuracy performance of dynamic routing pruning
methods.
Method Metric Omission Set Selection Router Training Average Acc. (%)

SLEB Prompt-ppl per-prompt dynamic ✗ 52.58
Batch-ppl pre-selected 10 sets ✓ 58.19

PuDDing (Ours) task likelihood (tl) pre-selected 10 sets ✓ 61.93

Both dynamic and static pruning methods were set up on LLaMA-3.1 8B, with a sparsity of 20%, corresponding to the
pruning of seven blocks.
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Static pruning experiments in Table 10 show the experimental validation of task-adaptive pruning and our proposed tl
scoring method. First, we compare two pruning strategies using batch-PPL: one that applies a fixed omission set based on a
Wikitext-calibrated batch (57.24% accuracy) and another that dynamically selects omission sets per task (59.32% accuracy).
The improvement confirms the claim that different tasks require different layer sets. Next, keeping the task-wise adaptive
setting constant, we replace batch-PPL with our task likelihood (tl) loss for omission set selection. This further improves
accuracy from 59.32% to 61.02%, demonstrating that our method is more effective at identifying layers that impact quality
of task-specific inference.

By comparing Batch-PPL Router (58.19%) with PuDDing (Task Likelihood Loss) (61.93%) in Table 11, we observe that our
tl metric results in omission sets that generalize better across tasks, contributing to an additional performance gain. When
comparing these Table 11 results with Table 10, Batch-PPL static pruning (57.24%) improves with router training (58.19%),
and our method (60.12%) also benefits from router training, increasing to 61.93%. This validates that even within the same
task, different prompts favor slightly different omission sets, and adapting omission sets dynamically through router training
is essential for optimal pruning.

B.3. Using MSE Loss for Training

Table 12. Zero-shot accuracy comparison between three different training strategy on the router.
The best performances are marked in bold, and the runner-up is marked with underline.

Label Loss Per-task Accuracies Average
Acc. (%)Arc-C Arc-E BoolQ HellaSwag PIQA WinoGrande

One-hot Vector CE 41.21 66.29 59.66 61.44 72.96 59.35 60.15
Log-likelihood CE 39.67 67.80 61.77 60.80 73.56 59.04 60.44
Log-likelihood MSE 41.47 67.09 62.02 62.92 73.94 64.16 61.93

In Table 12, we present the result of zero-shot task accuracies in the different router training settings. For the label, a one-hot
vector signifies that the router learns only from the highest confidence value within the omission block set derived from the
training dataset. In contrast, the log-likelihood label allows the router to incorporate all confidence values during training.
Our findings show that training with log-likelihood label leads to improved average accuracy (from 60.16% to 61.93%).
Hence, we observe that the mean-squared error (MSE) loss function outperforms cross entropy (CE). As a result, in this case
for routers to train for finding optimal omission sets by given prompts, richer information in the label (i.e., un-chosen labels
are not assigned to zero values), and employing MSE loss enhances better performance.

B.4. Training the Router with Multi-Domain Calibration Datasets

Table 13. Zero-shot accuracy comparison of dense, PuDDing, and PuDDing-MultiDomain using diverse calibration datasets.

Method Average
Acc. (%)

Per-task Accuracies

Arc-C Arc-E BoolQ HellaSwag PIQA WinoGrande MathQA PubMedQA SciQ

Dense 73.42 53.50 81.52 82.20 78.81 79.98 73.40 39.53 75.80 96.00
PuDDing 61.28 41.47 67.09 62.02 62.92 73.94 64.16 27.27 60.00 92.70
PuDDing-MultiDomain 62.37 41.38 67.26 67.37 63.68 73.07 64.56 29.58 62.00 92.40

In Section 6, we construct omission sets using common-sense reasoning datasets that are widely used to evaluate language
models’ reasoning ability—ARC, PIQA, HellaSwag, and WinoGrande—to reflect popular usage scenarios. For the new
variant, PuDDing-MultiDomain, we conduct an additional experiment by incorporating calibration datasets from diverse
domains: MathQA (mathematics), PubMedQA (biomedical), and SciQ (science). To maintain consistency in sample size
with the original setting, we include only a subset of the original common-sense datasets—specifically, ARC-Easy and
WinoGrande—in this experiment. All other experimental settings follow the same setup described in Section 6.1.

We observe that PuDDing-MultiDomain achieves slightly improved average accuracy compared to the original PuDDing,
with noticeable gains in the newly introduced datasets (e.g., +2.31%p in MathQA, +2.00%p in PubMedQA). This indicates
that the router can benefit from more diverse calibration dataset, especially when deployed in tasks requiring domain-specific
knowledge. Overall, our method demonstrates consistent performance across both in-domain and out-of-domain tasks, and
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can be further customized to specific user applications by adjusting the coverage of the omission set pool.

B.5. Quantized PuDDing

Table 14. combined with other compression techniques
LLaMA-3.1-8B Average Arc-C Arc-E BoolQ HellaSwag PIQA WinoGrande
Dense 74.90 53.50 81.52 82.20 78.81 79.98 73.40
SLEB 57.24 34.90 66.25 49.11 61.60 74.37 57.22
Shortened LLaMA 55.77 34.30 65.15 44.52 60.55 73.67 56.43
PuDDing 61.93 41.47 67.09 62.02 62.92 73.94 64.16
PuDDing + W8A16 (AWQ) 61.68 41.30 67.00 61.50 62.95 73.72 63.61
PuDDing + W4A16 (AWQ) 58.58 37.37 61.45 60.64 57.55 71.71 62.75

In Table 14 presents the performance of the proposed method when combined with a representative compression technique
such as quantization (e.g. Activation-aware Weight Quantization (AWQ) (Lin et al., 2024)). Interestingly, we observe
that compressing the weights to 8-bit results in no performance degradation. Although 4-bit quantization introduces some
degradation, the performance still surpasses that of static pruning methods applied with BF16 precision.

C. Additional Visualizations
Figure 5 illustrates the dynamic block selection process in various tasks, highlighting that this process has also been analyzed
with different models to highlight how the block selection strategy varies not only varying tasks but also depending on the
specific architectures of the models.

(a) OPT 6.7B

(b) Vicuna 1.5 7B

Figure 5. A visual illustration of the PuDDing’s pruning rate of each transformer block, given the prompts drawn from various zero-shot
tasks. The results are for the OPT 6.7B model and vicuna 1.5 7B, pruned to 20% sparsity (seven blocks removed). The color red indicates
that the blocks are likely to be pruned, and the color green indicates that the blocks are likely to be retained.
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