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Abstract

The efficacy of large language models (LLMs) in understanding and generating
natural language has aroused a wide interest in developing prompt-based methods
to harness the power of black-box LLMs. Existing methodologies usually prioritize
a global optimization for finding the global optimum, which however will perform
poorly in certain tasks under budget constraints. This thus motivates us to re-think
the necessity of finding a global optimum in prompt optimization. To answer
this, we conduct a thorough empirical study on prompt optimization and draw two
major insights. Contrasting with the rarity of global optimum, local optima are
usually prevalent and well-performed, which can be more worthwhile for efficient
prompt optimization (Insight I). The choice of the input domain, including both
the generation and the representation of prompts, affects the identification of
well-performing local optima (Insight II). Inspired by these insights, we propose
a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO),
which incorporates a Neural Tangent Kernel-based derived Gaussian process into
standard zeroth-order optimization for an efficient search of well-performing local
optima in prompt optimization. Remarkably, ZOPO outperforms existing baselines
in terms of both the optimization performance and the query efficiency, which we
demonstrate through extensive experiments. Our implementation is available at
https://github.com/allen4747/ZOPO.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities for understanding and
generating natural languages [27, 41, 45]. Thanks to the instruction-following abilities of LLMs [28],
prompting—adding crafted, discrete prompts, or namely natural language text, to the input emerges
as an effective and lightweight approach to direct LLMs to generate specific, desired responses [20,
21]. Such an approach is of particular interest when users interact with state-of-the-art LLMs like
ChatGPT [25] and GPT-4 [24], which can only be accessed through black-box APIs (i.e., the interface
of black-box LLMs only accepts discrete texts as input). So, prompt optimization becomes a critical
effort in pursuing the optimal performance of black-box LLMs on downstream tasks.

Although human knowledge may subjectively guide prompt designs [21, 32], this process is commonly
time-intensive and its results are not always desirable in practice. To mitigate such human efforts
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and achieve better performance in optimizing crafted prompts, random sampling [48], Bayesian
optimization [3, 18], and evolutionary algorithms [10] have been proposed to generate and select
well-performing prompts automatically. However, most of these existing strategies prioritize global
optimization, dedicating substantial portions of the query budget to explore the entire search space
for the global optima and consequently making it query-inefficient in practice. Meanwhile, these
strategies typically implement their prompt optimization across various input domains (i.e., natural
texts [10, 48] or hidden embeddings [3, 18]), resulting in diverse performance outcomes in practice.
These results consequently inspire us to re-think the questions about the necessity of finding a global
optimum and the essence of the input domain for efficient and effective prompt optimization.

To answer these questions, we provide a thorough empirical study on prompt optimization. Firstly,
we visualize the performances of some randomly sampled prompt candidates on various tasks to show
that, in contrast to the scarcity of global optima, local optima are commonly prevalent and perform
reasonably well, making them more valuable for query-efficient prompt optimization (Insight I in
our Sec. 3.1). Secondly, we visualize the estimated accuracy distributions for a number of prompt
candidates and the corresponding function surfaces using various embeddings as their representation.
The results demonstrate that the selection of the input domain, including both the generation and
representation of prompt candidates, will influence the identification of high-performing prompts,
especially those local optimal ones (Insight II in our Sec. 3.2). These insights consequently highlight
the importance of local optima and input domain for efficient and effective prompt optimization.

Inspired by these insights, we novelly propose the Localized Zeroth-Order Prompt Optimization
(ZOPO) algorithm for a considerably improved prompt optimization as evidenced by Fig. 1. Moti-
vated by Insight II, we first propose a general domain transformation that utilizes LLMs for prompt
generation and existing embedding models for transforming these generated prompts into their corre-
sponding hidden representations, which thereby enjoys not only the remarkable generation ability
from any type of LLMs (white/black-box) but also the impressive representation ability from existing
embedding models for our prompt optimization (Sec. 4.1). Inspired by Insight I, we then leverage
a cutting-edge zeroth-order optimization (ZOO) method enhanced by a derived Gaussian process
for efficient gradient estimation [36] to underpin our localized prompt optimization, which goes one
step further by incorporating the Neural Tangent Kernel (NTK) [12] to handle the complex and high-
dimensional prompt optimization tasks (Sec. 4.2). Lastly, we present an uncertainty-informed local
exploration method designed to improve the gradient estimation in our derived NTK-GP framework,
thereby augmenting the practical performance of the ZOPO algorithm (Sec. 4.3).

To summarize, the contributions of our work include:

• To the best of our knowledge, we are the first to conduct a thorough empirical study in prompt
optimization to underscore the value of local optima and the essence of input domain for efficient
and effective prompt optimization (Sec. 3).

• Drawing on the insights gained from our empirical study, we design the ZOPO algorithm (Sec. 4)
which outperforms existing baselines in optimization performance and query efficiency.
• We conduct extensive studies to confirm the efficacy of our algorithmic framework and elucidate

the underlying principles or insights of our ZOPO algorithm (Sec. 5).

2 Problem Setup

Given an NLP task that is characterized by a data distribution D and a black-box LLM f(·), e.g.,
ChatGPT [25], discrete prompt optimization aims to generate a piece of human-readable text, namely
the prompt v, which will then be applied to the black-box LLM f(·) along with a test input x such
that the queried LLM output f([v;x]) is able to correctly predict the ground-truth label y for each
(x, y) ∼ D. This problem is then commonly framed as a black-box maximization problem over the
discrete language input domain Ω [3, 18]:

max
v∈Ω

F (v) ≜ E(x,y)∈DV
[R (f([v;x]), y)] (1)

where R (f([v;x]), y) is applied to measure the alignment between the LLM output f([v;x]) and
the groundtruth y, and DV is the validation set sampled from D. Note that the performance of the
optimal instruction found on DV (i.e., argmaxv F (v)) will be evaluated on a held-out test set DT .
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Figure 1: The performance profile for dif-
ferent methods on 20 tasks. A higher ρ(τ)
is better. More details in Sec. 5.
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Figure 2: The validation accuracy of 300 randomly
sampled prompts with the last token representation
on various tasks.

3 Empirical Study on Prompt Optimization

3.1 Local Optima vs. Global Optimum

In prompt optimization, methods like [3, 18] are generally more effective than the others [10, 48],
which is usually contributed to their usage of Bayesian optimization, a popular global optimization
strategy, that is able to find the global optimum in low-dimensional problems [22]. However, these
methods will perform poorly in certain prompt optimization tasks, e.g., cause_and_effect and
informal_to_formal from [11], indicating that they typically fail to find the global optimum in
these tasks given a limited query budget. This is likely because substantial portions of the budget are
wasted in these methods to explore the entire search space for the global optimum. However, is it
really necessary to find the global optimum in query-efficient prompt optimization?

To answer this question, we have employed a 3-dimensional scatter plot to visualize the performance
(differentiated by colors) for 300 randomly sampled prompt candidates on various tasks, whose
prompt embeddings (i.e., the last token embedding as in [18]) are reduced by t-distributed stochastic
neighbor embedding (t-SNE) (see more details in our Appx. D.1.1). The results are in Fig. 2 which
shows that the global optimum (i.e., the points achieving the highest accuracy) is consistently rare
for a range of prompt optimization tasks, making it extremely challenging to achieve this global
optimum in practice. In contrast, prompt optimization often features a number of local optima (e.g.,
the points achieving accuracy higher than 80% in taxonomy_animal of Fig. 2). Importantly, these
local optima commonly enjoy relatively good performances, suggesting that local optima shall be
more worthwhile to obtain in prompt optimization, especially for the scenarios of limited query
budgets, as summarized below.

Insight I

In contrast with the rarity of global optimum, local optima are usually prevalent and well-performed,
which is more worthwhile for query-efficient prompt optimization.

3.2 Essence of Input Domain

Besides, existing works [3, 10, 18] typically implement their prompt optimization across various
input domains, leading to a wide range of performances in practice. These results thus inspire us to
ask: How essential is the input domain for finding well-performing prompts, particularly the local
optimal ones? Thoroughly exploring this question is fundamental for the design of a well-performing
prompt optimization algorithm.

To answer this, we first visualize the accuracy distributions of 300 prompt candidates that are randomly
generated by Vicuna-13B and ChatGPT for various tasks to study the essence of prompt generation in
Fig. 3 (more details in Appx. D.1.2). Fig. 3 reveals that the prompt candidates produced by ChatGPT
(a black-box model) generally exhibit better performance than those produced by Vicuna-13B (a
white-box model), which has been widely applied in [3, 18] for prompt optimization. Importantly,
ChatGPT demonstrates a greater likelihood of generating locally optimal prompts (e.g., the ones of
accuracy higher than 0.8 in taxonomy_animal of Fig. 3). These results indicate that the ability to
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Figure 4: The function surfaces using the last token
(Vicuna-13B) or SBERT embedding.

generate well-performing local optima in prompt optimization usually varies for different models. So,
the selection of the prompt generation model is crucial for finding well-performing optima.

We then investigate the function surface (i.e., accuracy landscape) using two different embeddings
for prompt candidates in Fig. 4 (more details in Appx. D.1.2) where the embeddings are mapped
into a 2-dimensional domain using the t-SNE for better visualization. Interestingly, Fig. 4 unveils
that different embeddings will convey a varying number of well-performing local optima in practice.
Particularly, the last token embedding is usually able to produce a larger number of well-performing
local optima than the SBERT (i.e., a popular sentence embedding transformer [31]) embedding,
making it easier to enjoy a good prompt optimization performance on this domain, as validated in
Tab. 8. This therefore implies that the choice of the prompt embedding model is also essential for the
finding of well-performing optima. In all, we conclude our aforementioned insights as below.

Insight II

The choice of the input domain, including both the generation and the representation of prompt
candidates, affects the identification of well-performing local optima.

4 The ZOPO Algorithm

Given the insights established in our Sec. 3, we then propose our Localized Zeroth-Order Prompt
Optimization (ZOPO) algorithm (Algo. 1) for a better-performing as well as more query-efficient
prompt optimization. Specifically, following our Insight II, we first develop a more general transfor-
mation for the input domain of prompt optimization (Sec. 4.1), which can enjoy both the remarkable
generation ability from any type of LLMs (white/black-box) and the impressive representation ability
from many NLP models. Subsequent to this transformation, inspired by our Insight I, we propose
to use zeroth-order optimization (ZOO) with a derived NTK Gaussian process inspired from [36]
to find well-performing local optima (Sec. 4.2). Lastly, we introduce an uncertainty-informed local
exploration technique to refine the gradient estimation in our derived NTK Gaussian process, aiming
to enhance the performance of our ZOPO algorithm in practice (Sec. 4.3).

4.1 A More General Input Domain Transformation

As introduced in our Sec. 3.2, the choice of input domain (including the generation and representation
of candidates) significantly influences the ultimate performance in prompt optimization: Black-box
LLMs (e.g., ChatGPT) typically enjoy an advanced generation ability and different embedding models
(e.g., SBERT) have varying representative capacity for prompt optimization. This naturally inspires
us to develop an improved domain transformation that can utilize not only the remarkable generation
ability from white/black-box LLMs but also the impressive representation ability from certain NLP
models for our prompt optimization. To achieve this, we propose to make use of the prompt v ∈ Ω
generated from a LLM g(·) and subsequently transform it into a continuous hidden representation
z ∈ Z ⊂ Rd by other sentence embedding model h(·) for the optimization, i.e., v = h−1(z), where
(1) can then be re-framed as

max
z∈Z

F̃ (z) = E(x,y)∈D
[
R

(
f([h−1(z);x]), y

)]
. (2)

4



Algorithm 1 The ZOPO Algorithm

1: Input: the prompt generation model g(·), the prompt embedding model h(·), size of prompt
candidates m, iteration number T , prompt candidate set V = ∅, prompt embedding set Z = ∅

2: repeat
3: v ← g([Ddemo])
4: z ← h(v)
5: if v /∈ V then V ← V

⋃
{v}, Z ← Z

⋃
{z}

6: until |V| = m
7: for t = 1 to T do
8: if 1At

(zt) = 1 then do uncertainty-informed local exploration in Sec. 4.3
9: zt+1 = PZ(zt + ηtµt(zt))

10: Query zt+1 to yield F̃ (zt+1)
11: end for
12: z∗ ← argmaxz1:T F̃ (z)

13: Return h−1(z∗)

Of note, our input domain transformation and (2) enjoy a number of major advantages compared with
previous works: (a) Different from the direct optimization over the discrete and complex language
space v ∈ Ω in [10] where optimization algorithms in the numerical domain can hardly be applied,
our transformed input domain leads to a dense numerical space of lower dimension and therefore
allows the usage of query-efficient optimization algorithms for (2) (e.g., our Algo. 1). (b) Different
from the potential many-to-one mapping in the previous works [3, 18], i.e., the same discrete prompt v
may be generated by various continuous soft prompts s, we develop a one-to-one mapping where one
prompt generally has a unique hidden representation z, which thus can help eliminate the redundant
queries during optimization and ultimately lead to more query-efficient prompt optimization. (c)
Our domain transformation with an independent generation and representation process is capable
of enjoying the remarkable generation ability from any type of LLMs (white/black-box) and the
impressive representation ability from many embedding models whereas previous works are highly
restricted to the LLMs, thus leading to a wider application.

Practical Implementations. Before the start of the optimization on (2), we usually generate
numerous prompt candidates V = {v} and their corresponding representations Z = {z} (line 2-6 of
Algo. 1), where Z can be produced by an embedding model h(·). We store (z, v) in key-value pairs
for constructing the one-to-one inverse mapping h−1(·). Two practical methods are considered here
for prompt generation: (a) Feeding randomly sampled soft prompts s ∈ Rd and a few demonstrations
Ddemo into a white-box LLM g(·). (b) Sampling the output distribution of a black-box LLM g(·)
given a generation template filled with Ddemo. Specifically, if we consider the generation method
in (a), z can be chosen as the last token embedding from g(·) [18] or the soft prompt s [3] when
generating v. Here h(·) then represents a mapping function from v to z.

4.2 Local Optimization with Derived NTK-GP

As local optima are more prevalent than global optimum and can exhibit compelling performance for
prompt optimization tasks (Sec. 3.1), we propose to apply zeroth-order optimization (ZOO), particu-
larly gradient descent using estimated gradients, for a well-performing local prompt optimization on
our transformed input domain Z in Sec. 4.1. Unfortunately, existing ZOO algorithms are typically
query-inefficient as many additional queries are required for gradient estimation in every gradient
descent update [9, 23]. In light of this, we resort to the most recent ZoRD algorithm [36] where a
localized surrogate model will be applied for query-efficient gradient estimations.

According to [36], given a well-specified kernel function k(·, ·) such that the function F̃ is sampled
from a Gaussian process F̃ ∼ GP(0, k(·, ·)) or alternatively minG∼GP(0,k(·,·)) maxz∈Z |F̃ (z) −
G(z)| = 0 and the observed value r of function F̃ follows the Gaussian noise N (0, σ2), then
conditioned on the history of function queries Dt ≜ {(zτ , rτ )}tτ=1 of size t, ∇F̃ follows a derived
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Gaussian Process GP(µ(·),Σ(·, ·)) , i.e.,

∇F̃ ∼ GP
(
µt(·),Σ2

t (·, ·)
)
, (3)

in which the mean function µt(·) and the covariance function Σ2
t (·, ·) are defined as

µt(z) ≜ kt(z)
⊤ (

Kt + σ2I
)−1

rt ,

Σ2
t (z, z

′) ≜ k′′(z, z′)− kt(z)
⊤ (

Kt + σ2I
)−1

kt(z
′) .

(4)

Here, kt(z)
⊤ ≜ [∂zk(z, zτ )]

t
τ=1 is a d× t-dimensional matrix, Kt ≜ [k(zτ , k(zτ ′)]

t
τ,τ ′=1 is a t× t-

dimensional matrix, r⊤t ≜ [rτ ]
t
τ=1 is a t-dimensional column vector, and k′′(z, z′) ≜ ∂z∂z′k(z, z′)

is a d × d-dimensional matrix. As a result, µt(z) can be applied to estimate the gradient of the
black-box function F̃ at input z.

Of note, the underlying black-box function F̃ here is highly related to deep neural networks (DNN),
more specifically transformers. It naturally inspires us to apply the Neural Tangent Kernel (NTK)
[12] theory for a better approach to the aforementioned assumption of a well-specified kernel function
k(·, ·). This is because it has been widely proven that NTK is capable of well characterizing the
predictions of neural networks [2, 16, 34, 35] and therefore should be a better-specified kernel in the
setting of prompt optimization than the simple kernel (i.e., Matérn kernel) applied in ZoRD [36].
Specifically, given a neural network ϕ(θ, z) parameterized by θ ∈ Rp, we employ the following
empirical NTK as the kernel in (3) and (4):

k(z, z′) = ∇θϕ(θ, z)
⊤∇θϕ(θ, z)

∣∣∣
θ=θ0

(5)

where θ0 is the initialized parameter of neural network ϕ. By incorporating (5) into (4), we realize
the derived NTK-GP for the gradient estimation in our prompt optimization.

Based on this derived NTK-GP, we finally apply standard first-order optimization (e.g., stochastic
gradient descent) with projected gradients for our local prompt optimization. Specifically, in every
iteration t of our Algo. 1, the next promising prompt candidate will be selected via:

vt+1 = h−1 (PZ(zt + ηtµt(zt))) (6)

where PZ(z) ≜ argminz′∈Z ∥z − z′∥ is the projection function that projects the updated z ∈ Rd

into domain Z and ηt is learning rate.

Practical Implementations. Following the localized modeling principle, only the neighbors of z in
the query history Dt are used to calculate the gradient µt(z). As we do not know the exact DNN for
the underlying black-box function F̃ , we propose to approximate it using a small DNN, which can
work well thanks to the theoretically guaranteed universal approximation ability of DNNs [14, 33].
Our experiments in Sec. 5.3 will further validate the effectiveness of this implementation.

4.3 Uncertainty-Informed Local Exploration

Though the derived NTK-GP allows us to estimate the gradient at any z ∈ Z according to [36], we
introduce the following Prop. 1 to demonstrate that the error in gradient estimation at a specific input
z ∈ Z implies considerable variability, which is strongly correlated with the number of historical
queries that are effectively relevant for the gradient estimation at the specific input z ∈ Z . This insight,
in turn, motivates the creation of our uncertainty-informed local exploration approach, as opposed to
the adoption of the virtual update mechanism described in [36] for our prompt optimization strategy.

Proposition 1. Assume k(z, z′) ≤ α and ∥k′′(z, z)∥ ≤ κ for any z, z′ ∈ Z . Let δ ∈ (0, 1) and
Nz,β ≜ {z′ ∈ {zτ}tτ=1 | ∥∂zk(z′, z)∥

2 ≥ β} for given input z ∈ Z , the following holds with a
probability of at least 1− δ,

∥µt(z)−∇F (z)∥2 ≤ ω
∥∥Σ2

t (z)
∥∥ ≤ ωκ− ωβ/d

α+ σ2/|Nz,β |

where ω = d+ 2(
√
d+ 1) ln(1/δ) and Σ2

t (z) ≜ Σ2
t (z, z).
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Table 1: Average test accuracy with standard error (3 runs) for different methods on 20 instruction
induction tasks. We bold the highest accuracy when comparing ZOPO with baselines, and use
green cell to highlight the highest accuracy when comparing ZOPOGPT with baselines.
Tasks APE InstructZero INSTINCT EvoPrompt PB OPRO ZOPO ZOPOGPT

antonyms 63.7±14.2 82.7±0.7 84.7±0.3 84.0±0.0 78.0±3.6 79.0±2.2 85.2±3.2 84.0±1.4

auto_categorization 25.0±0.9 25.7±1.2 25.0±3.3 31.0±1.0 24.0±3.7 24.0±3.6 32.7±1.9 27.0±5.0

auto_debugging 29.2±3.4 37.5±0.0 29.2±3.4 33.0±7.2 25.0±0.0 37.5±0.0 41.7±15.6 29.2±5.9

cause_and_effect 57.3±8.9 81.3±1.1 58.7±8.7 84.0±13.9 82.7±10.0 82.7±10.0 94.7±3.7 80.0±14.2

common_concept 6.9±2.1 8.6±4.0 21.3±0.2 11.1±6.9 10.9±3.4 8.6±5.7 23.5±3.4 2.8±0.6

diff 67.3±26.7 69.3±22.2 100.0±0.0 27.3±42.2 71.3±27.6 100.0±0.0 100.0±0.0 100.0±0.0

informal_to_formal 57.4±0.3 53.1±0.2 55.3±0.0 51.6±0.9 54.2±4.5 48.0±0.8 61.3±2.7 61.9±2.9

letters_list 100.0±0.0 59.0±16.7 100.0±0.0 100.0±0.0 99.3±0.9 99.7±0.5 100.0±0.0 100.0±0.0

negation 75.3±1.1 77.7±1.4 81.7±0.3 86.0±0.0 70.7±4.0 73.3±6.6 86.3±0.5 77.7±2.6

object_counting 36.3±1.9 36.0±9.3 34.0±7.0 55.0±5.3 29.3±1.2 36.0±5.7 52.3±6.6 40.3±0.5

odd_one_out 63.3±1.4 61.3±8.7 70.0±1.6 10.0±0.0 66.7±0.9 47.3±22.2 32.0±11.3 68.7±2.5

orthography_starts_with 45.7±14.8 50.7±8.7 66.7±2.7 15.0±3.4 59.8±5.7 33.5±14.6 56.5±12.6 71.0±0.0

rhymes 15.7±6.4 100.0±0.0 100.0±0.0 59.7±3.1 45.0±10.7 23.0±14.7 100.0±0.0 61.0±2.8

second_word_letter 74.7±20.3 43.3±18.7 10.0±4.1 24.7±0.6 88.7±10.4 86.7±18.9 25.7±4.7 96.7±2.4

sentence_similarity 0.0±0.0 0.0±0.0 14.0±0.5 2.0±1.0 0.0±0.0 2.7±3.8 7.6±9.3 37.3±0.9

sum 67.3±26.7 100.0±0.0 100.0±0.0 100.0±0.0 98.3±1.7 100.0±0.0 100.0±0.0 100.0±0.0

synonyms 36.0±7.6 27.7±9.3 30.7±4.9 40.3±4.0 36.3±3.3 40.0±4.3 43.3±0.9 44.7±4.1

taxonomy_animal 34.7±23.4 71.7±8.4 85.7±6.0 83.0±4.6 29.7±38.5 30.0±41.0 90.0±7.1 92.3±0.5

word_sorting 33.0±3.7 31.0±11.4 51.3±0.3 48.0±21.3 45.7±1.7 50.3±5.8 60.0±4.2 60.3±3.1

word_unscrambling 44.0±13.9 55.0±1.7 63.3±0.7 51.3±4.5 51.0±6.2 61.3±2.1 59.3±2.8 58.3±1.9

The proof is given in Appx. A. Here, Nz,β denotes a set of historical input queries that are effectively
relevant for the gradient estimation at z where β can be regarded as a measure of effective relevance.
Prop. 1 shows that the gradient estimation error of (3) at a specific input z ∈ Z is bounded by
the norm of covariance matrix Σ2

t (z), which is related to the query set Nz,β of effective relevance.
Specifically, the gradient estimation error at different z varies if the effective relevance β and the
number of relevant queries |Nz,β | varies with z. When β or |Nz,β | becomes small during ZOO, the
gradient estimation error is likely increased, which will lead to poor performance in practice. This
likely will happen in prompt optimization especially considering the sparsity of prompt candidates
w.r.t. the continuous domain Rd. That is, both the effective relevance β and the number of relevant
queries |Nz,β | can be small due to this sparsity. As a consequence, additional input queries should be
conducted to increase both β and |Nz,β | for a better-performing prompt optimization.

To this end, we propose an uncertainty-informed local exploration method that utilizes additional input
queries from local searches to reduce predictive uncertainty and hence the gradient estimation error
in derived NTK-GP according to Prop. 1. Specifically, we propose the local exploration condition
informed by the local trajectory:

1At
(zt) =

{
1 zt ∈ At

0 zt /∈ At

where At = {zt|σ(zt−i) ≥ λ, ∀i ∈ [0, ξ]} is the condition that incorporates uncertainties and λ, ξ
are the thresholds. If this condition is met (i.e., 1At

(zt) = 1), we will query the neighbors of zt in
the local region to update our derived NTK-GP, thus improving its gradient estimation.

Practical Implementations. If we define the set of the n nearest neighbors of zt as Nt ⊆
Z s.t. |Nt| = n and ∀a ∈ Z \ Nt, ∥a − zt∥ ≥ maxb∈Nt

∥b − zt∥, we propose to query each
z ∈ Nt in the local region, whenever 1At

(zt) = 1.

5 Experiments

In this section, we perform prompt optimization for ChatGPT (i.e., the black-box LLM f(·)) with a
limited query budget of 165. We evaluate the performance of ZOPO against several strong baseline
methods, including APE [48], InstructZero [3], INSTINCT [18], EvoPrompt [10], PromptBreeder
(PB) [8], and OPRO [46], on 30 instruction induction tasks [11], 3 arithmetic reasoning tasks [4, 19,
29], and the GLUE benchmark [42]. The task-specific prompt is optimized for each task independently.
We use the performance profile [7], defined in Appx. C.1, as the overall evaluation metric that
measures the frequency (i.e., ρ(τ)) of a method within some distance (i.e., τ ) from the highest
accuracy achieved by any method. We defer more experimental details to Appx. C.
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5.1 Instruction Induction

Instruction induction tasks are commonly used to investigate the prompt optimization performance
by assessing LLM’s zero-shot in-context learning ability in previous works [3, 18, 48]. Although
our ZOPO is a general prompt optimization method given any prompt generation strategy, here
we follow the same setting of prompt generation from INSTINCT and InstructZero, only for fair
comparison. We also adopt the last token embedding from Vicuna-13B as the prompt embedding
(same as INSTINCT). Here Vicuna-13B is used to generate task-specific prompts by feeding random
soft prompts. More experimental details are deferred to Appx. C.3.

Superior performance of ZOPO. For better distinguishability, we follow the experimental setting
from Lin et al. [18] to display the results on 20 challenging tasks reported in Tab. 1, where ZOPO
significantly outperforms all baseline methods. Particularly, our ZOPO performs the best in 14 out
of the 20 tasks presented, while achieving the best performance profile across different τ (see Fig. 1)
compared with all baseline methods. For more results on all 30 tasks, refer to Tab. 3 in Appx. D.2,
where the ZOPO consistently outperforms existing methods.

Connecting ChatGPT with ZOPO. With our proposed domain transformation, we empirically
demonstrate that ZOPO is capable of performing numerical optimization on ChatGPT-generated
prompts. Specifically, we use the same generation method as in APE [48] to generate task-specific
prompts (i.e., V) from ChatGPT, and use a popular embedding model SBERT to provide the cor-
responding sentence embeddings (i.e., Z) for V . Then we apply ZOPO to perform optimization
over the given V and Z , which we name ZOPOGPT. The result of ZOPOGPT compared against
other baselines is shown in Tab. 1, with the corresponding performance profile shown in Fig. 9 in
App. D.2. Fig. 9 demonstrates that ZOPOGPT significantly outperforms other baselines, achiev-
ing the best performance in 10 out of the 20 tasks as shown in Tab. 1. Specifically, ZOPOGPT
achieves significantly higher accuracy on some challenging tasks such as second_word_letter and
sentence_similarity, which we attribute to the high-quality of prompt candidates generated by
ChatGPT. This is also consistent with our discussion on the input domain in Sec. 3.2. Here we could
not draw a direct comparison between ZOPO and ZOPOGPT, as the Vicuna last token embedding
is specifically associated with the prompt generation process in ZOPO and cannot be applied to
ZOPOGPT. However, using either ZOPO or ZOPOGPT is sufficient to outperform baseline methods,
which also provides the flexibility of prompt optimization in practice. Future research may consider
employing better embeddings to further improve the performance of ZOPOGPT.
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Figure 5: Comparison of the query efficiency between
ZOPO and baselines. The first and second rows show
the test and validation accuracies.

ZOPO has better query efficiency. To
justify that our local optimization method
is more query-efficient, we compare ZOPO
against baselines at different query budget
scales. The result shown in Fig. 5 illustrates
that ZOPO generally achieves better per-
formance with the same number of queries
compared with other baseline methods and
yields superior performance upon conver-
gence. We notice that ZOPO achieves
lower validation accuracy yet higher test ac-
curacy on the taxonomy_animal task than
INSTINCT, which suggests ZOPO likely
has better generalization ability. More re-
sults on other tasks in Fig. 10 in Appx. D.2
also indicate that ZOPO has consistent ad-
vantages.

5.2 Improving Chain-of-Thought Prompt

Reasoning prompts, e.g., "Let’s think step by step" (denoted as hand-craft), have been shown effective
in improving LLMs’ zero-shot multi-step reasoning performance [13, 15]. We show that ZOPO
can find a better chain-of-thought prompt across different arithmetic reasoning tasks, as evidenced
in Tab. 2. Particularly, ZOPO produces a better prompt "Let’s find the solution by using the given
information." on GSM8K [4] compared to other baselines, improving the performance from 71.80
(hand-craft) to 75.36. Refer to Appx. C.4 for more experimental details.
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Table 2: The performance of the best zero-shot CoT prompt found by different methods on three
reasoning tasks.

Method Task Best prompt Score

hand-craft AQUA-RAT Let’s think step by step. 52.36
InstructZero AQUA-RAT Let’s break down the problem. 54.33
INSTINCT AQUA-RAT I have a new solution. 54.72
EvoPrompt AQUA-RAT Let’s utilize the substitution method to find a solution,

then try it out together.
52.76

ZOPO AQUA-RAT Let’s find the solution by breaking down the problem. 54.72
hand-craft SVAMP Let’s think step by step. 76.25
InstructZero SVAMP Let’s use the equation. 79.50
INSTINCT SVAMP Let’s use our brains. 81.00
EvoPrompt SVAMP Let’s break down the issue at hand using promptal meth-

ods to gain a thorough analysis.
79.50

ZOPO SVAMP Let’s use logic to solve the problem. 81.00
hand-craft GSM8K Let’s think step by step. 71.80
InstructZero GSM8K Let’s use the prompt to solve the problem. 74.30
INSTINCT GSM8K Let’s think about it. 74.53
EvoPrompt GSM8K Let’s attempt to analyze the situation and give it a shot. 74.53
ZOPO GSM8K Let’s find the solution by using the given information. 75.36

5.3 Ablation Study

Verifying the essence of input domain. To fairly validate the importance of input domain on
prompt generation, we compare the optimization performances with different prompts generated
by Vicuna-13B and ChatGPT respectively, using the same embedding model SBERT (i.e., h(·)).
The result is shown in Table. 7 in Appx. D.6, with the performance profile in Fig. 11 suggesting
that applying ZOPO on ChatGPT-generated prompts is better. We ascribe its better performance to
ChatGPT’s remarkable prompt generation ability. This confirms the importance of the input domain
on prompt generation in our Insight II.

Besides, different embeddings (i.e., Z) of the same prompt candidates can potentially affect the
function landscape as shown in Fig. 4. Thus, we need to study the performance of ZOPO using
different embedding representations given the same set of prompts. We consider four different
embeddings here: the last token embedding from Vicuna-13B, the OpenAI embedding provided
through an API [26], the SBERT embedding, and a randomly projected embedding baseline. We
observe from Tab. 8 in Appx. D.6 that, although last token embedding is generally better, there are
certain tasks that OpenAI and SBERT embeddings perform equally well or better. Besides, random
embedding shows a distinct lesser performance. This again highlights the importance of using more
structured embeddings for prompt optimization and indicates the optimal choice of embedding can
be task-dependent. We discuss how we might find the best embedding model and further show the
generality of ZOPO by experimenting with more embedding models in Appx. D.6.

Study of NTK-GP and uncertainty-informed local exploration. We conducted additional ex-
periments to validate the NTK-GP (Sec. 4.2) and uncertainty-informed local exploration (Sec. 4.3)
components of ZOPO. We evaluated the impact of these components by testing two variants of
the ZOPO algorithm: (a) replacing the NTK component with Matérn kernel (as in ZoRD), and (b)
removing the uncertainty-informed local exploration. Comparisons of these variants against the
original ZOPO on instruction induction tasks (see Tab. 11 in Appx. D.7) highlight the significant
contributions of these components to ZOPO’s overall effectiveness.

Additional results. The results on the GLUE benchmark in Appx. D.3 consistently validate the
superior performance of ZOPO. We also demonstrate that ZOPO can handle prompt optimization
in the few-shot setting in Appx. D.4. We conduct further experiments to show ZOPO generalize to
different combinations of prompt generation models and black-box LLMs in Appx. D.5. We also
perform an ablation study to examine the impact of a larger size of the generated prompt candidates
(i.e., |V|) on ZOPO and ZOPOGPT in Appx. D.8, which suggests a relatively small set of strong
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prompt candidates (e.g., |V| = 500) is sufficient (compared with size 1000 or 2000). Additionally,
we provide more demonstrations of our empirical findings in Sec. 3 on other tasks in Appx. D.1.

6 Related Work

Soft Prompt Tuning. To control LLMs to perform specific downstream tasks (e.g., reasoning), soft
prompt tuning [17] is usually used as a lightweight method to fine-tune the LLMs by only optimizing
a continuous vector prepended to the input tokens using gradient descent, in contrast to fine-tuning
millions to billions of model parameters [37, 43]. However, when the gradient information of the
model is inaccessible, gradient-free prompt tuning methods [40, 39, 6] are developed to alleviate
human efforts in prompt design. Still, those efforts to optimize soft prompts have conventionally relied
on the white-box access to the embedding layers of LLMs, making it inapplicable to state-of-the-art
LLMs like ChatGPT [25] and GPT-4 [24] that can only be accessed through black-box APIs (i.e.,
only accept natural language as input).

Discrete Prompt Optimization. We refer to the process of optimizing discrete prompts as "prompt
optimization", which is also a more practical setting as black-box LLMs only accept discrete inputs.
Reinforcement learning-based methods [5, 47] focus on discrete token optimization but rely on the
output distribution of the LLMs, which is not accessible in black-box API LLMs (e.g., ChatGPT).
Zhou et al. [48] instead makes use of LLMs to produce promising candidate prompts through
resampling without applying specific optimizations. Some recent works, EvoPrompt [10] and PB [8],
further extend this model-free approach to evolutionary algorithms and design meta-prompts that
explicitly ask the LLM to perform iterative mutation and crossovers of existing prompt candidates.
Besides, Pryzant et al. [30] ask the LLM to perform implicit gradient descent on existing prompts;
OPRO [46] uses the LLM as an implicit optimizer to perform prompt optimization, where its designed
meta-prompt takes in the optimization trajectory and instructs the LLM to output a promising prompt
candidate. However, these methods rely on powerful LLMs (e.g., GPT-3.5) and typically require a
large number of iterations and queries to perform well. In this regard, InstructZero [3] leverages the
induction ability from other white-box LLM g(·) for generating the task-specific prompt v that is
conditioned on a continuous soft prompt s ∈ Rd. After that, the optimization on v can be transformed
into an optimization on the soft prompt s, where BO algorithms are employed for a global black-box
optimization. INSTINCT [18] further employs neural bandit algorithms and the last token embeddings
from the white-box LLM to further improve the prompt optimization performance. However, these
works prioritize a global optimization approach that emphasizes the exploration of the entire space.
With an empirical understanding of the underlying target function (i.e., the black-box API LLMs),
we propose a localized ZOO method that is in contrast to the global optimization approaches.

7 Conclusion

In this work, we first provide a thorough empirical study to understand the characteristics of the
target function, and then propose our ZOPO algorithm for prompt optimization. ZOPO embraces a
ZOO approach in pursuit of finding local optima efficiently. Extensive experiments on 30 instruction
induction tasks, 3 reasoning tasks, and the GLUE benchmark demonstrate the efficacy of ZOPO, and
ablation studies also validate the design principles and the generality of ZOPO. Besides, we propose
a domain transformation that connects powerful LLMs with remarkable embedding models, which
provides the flexibility of choices of input domains in prompt optimization. A limitation of this paper
is the lack of principle to select LLMs and embedding models in our input domain transformation for
better-performing prompt optimization, which we aim to explore in future work.
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Appendix A Proofs

A.1 Proof of Prop. 1

We follow the ideas in [36, 38] to prove our Prop. 1. To begin with, we first introduce the following
lemmas adapted from [36]:

Lemma A.1 (Thm. 1 in [36]). Let δ ∈ (0, 1) and ω ≜ d+ 2(
√
d+ 1) ln(1/δ). For any z ∈ Z and

any t ≥ 1, the following holds with probability of at least 1− δ,∥∥∥∇F̃ (z)− µt(z)
∥∥∥2 ≤ ω

∥∥Σ2
t (z)

∥∥ .

Lemma A.2 (Lemma B.4 in [36]). For any z ∈ Z and any t ≥ 1, the following holds∥∥Σ2
t (z)

∥∥ ≤ ∥∥Σ2
t−1(x)

∥∥ .

Proof of Prop. 1. Recall that the covariance function (refer to (4)) of our derived NTK-GP conditioned
on the history of function queries Dt ≜ {(zτ , rτ )}tτ=1 of size t will be

Σ2
t (z) = k′′(z, z)− kt(z)

⊤ (
Kt + σ2I

)−1
kt(z) . (7)

For any c ∈ R and z ∈ Z , define Nz,β ≜ {z′ ∈ {zτ}tτ=1 | ∥∂zk(z, z′)∥
2 ≥ β} with |Nz,β | = N ,

the following then holds on the set Nz,β :∥∥kN (z)⊤kN (z)
∥∥ (a)

≥ 1

d
tr
(
kN (z)⊤kN (z)

)
(b)
=

1

d
tr
(
kN (z)kN (z)⊤

)
(c)
=

1

d

N∑
n=1

∥∂zk(z, z′)∥
2

(d)

≥ Nβ

d

(8)

where (a) comes from the fact the maximum eigenvalue of a matrix is always larger or equal to its
averaged eigenvalues, (b) is based on tr(AB) = tr(BA), (c) is from the definition of kN (z), and
(d) results from the definition of Nz,β .

Meanwhile,

Σ2
t (z)

(a)

≼ k′′(z, z)− kN (z)⊤
(
KN + σ2I

)−1
kN (z)

(b)

≼ κI−
(
λmax (KN ) + σ2

)−1
kN (z)⊤kN (z)

(c)

≼ κI− kN (z)⊤kN (z)

Nα+ σ2

(d)

≼

(
κ− Nβ/d

Nα+ σ2

)
I

(9)

where (a) comes from Lemma A.2, (b) is based on the assumption of ∥k′′(z, z)∥ ≤ κ and the defi-
nition of maximum eigenvalue. In addition, (c) comes from λmax(KN ) ≤ N maxz,z′∈Nz,β

k(z, z′)
(i.e., the Gershgorin theorem) and the assumption that k(z, z′) ≤ α for any z, z′ ∈ Z , and (d) is
based on the results in (8).

Finally, by introducing the results above into Lemma A.1, we conclude the proof.
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Appendix B Broader Impacts

As LLMs have recently received great popularity in human society and their various applications
have significantly affected many aspects of society, it is important to make sure the technology related
to LLMs is helpful and harmless. Our work focuses on improving the performance of black-box
LLMs by automatically optimizing the prompts, which can significantly save human efforts in
prompt engineering. However, such work can be potentially used for malicious purposes. When an
adversarial user defines a harmful objective function, our work could be exploited to output harmful
prompts that lead to negative societal impacts. Therefore, we urge the black-box LLM API providers
to impose a security check for the prompt that prevents users from querying for malicious purposes.

Appendix C Details of Experimental Settings

C.1 Evaluation Metrics

Following previous works [48, 18], we use the F1 score for tasks including common_concept and in-
formal_to_formal; we use the exact set matching for orthography_starts_with and taxonomy_animal;
we use the set containing for synonyms; we use the exact matching metric for the rest of instruction
induction tasks; and we use the accuracy metric for the arithmetic reasoning datasets.

As the number of datasets is tremendous, we use the performance profile [7] as the evaluation metric
that measures the frequency (i.e., ρ(τ)) of a method within some distance (i.e., τ ) from the optimality
achieved by any method, defined below

ρm(τ) =
1

|Π|
|{π ∈ Π : r∗π − rπ,m ≤ τ}| (10)

where Π is the set of all tasks, rπ,m is the accuracy of method m on task π, and r∗π = max{rπ,m :
∀m ∈ M} is the best performance achieved by any method in M on task π. Specifically, ρ(0)
represents the number of tasks where a method achieves the best performance. Accordingly, we use
both ρ(0) and ρ(5) as the evaluation indicators in our tables to report the results.

C.2 Hyperparameters

For all experiments using ZOPO in this work, we set the learning rate to 0.01, the uncertainty
thresholds λ, ξ to 0.1 and 5 respectively, and the number n of nearest neighbors to query in local
exploration (Section 4.3) to 10. A neural network with 2 fully connected layers of size 32 and ReLU
activation functions is used in NTK-GP as the kernel. We use 20 nearest neighbors to fit the NTK-GP.

C.3 Instruction induction

In this subsection, we describe the experimental details of the instruction induction tasks.

C.3.1 Experimental Specifications

The same data partition and evaluation process as in previous works [48, 3, 18] is adopted in this
work, where, for each task, we optimize the generated prompt on a training set D, and report the
best-performing prompt’s inference accuracy on a held-out test set DT . Specifically, 5 examples
are sampled from the training set as the demonstrations (i.e., Ddemo) for instruction induction, and
another sampled 20 examples from the training set are used as the validation set DV to evaluate the
objective function value as in Equation (1). The total query budget for each instruction induction task
is fixed at 165 for all methods.

C.3.2 Implementation Details

To comprehensively compare with the baseline methods, we use GPT-3.5-turbo-0301 (supported by
OpenAI API) as the black-box model for prompt evaluation and Vicuna-13B-v1.1 as the white-box
LLM (i.e., g(·)) to generate the task-specific prompts by feeding g(·) with randomly sampled soft
prompts and Ddemo, which is the same as InstructZero and INSTINCT. In the experiments, we only
generate 500 prompt candidates for ZOPO (i.e., |V| = 500). Similarly, we also use 40 out of the 165
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queries for random initialization of our optimization method, which could serve as the only global
exploration of the function landscape at the beginning of local optimization.

To tackle the high dimensionality of soft prompt (i.e., 5120 for one token embedding as in Vicuna-
13B) in optimization, InstructZero and INSTINCT use random projection to project the soft prompt
into a much smaller intrinsic dimension (e.g., 100). This intrinsic dimension may empirically affect
the quality of generated prompts, as shown in Lin et al. [18]. Therefore, tuning the intrinsic dimension
and the soft token length could lead to better performance. Previous methods (i.e., InstructZero
and INSTINCT) perform a grid search over the intrinsic dimension in {50, 100, 200} and the soft
token length {3, 5, 10} on the validation set and report the accuracy on a held-out test set using
the best prompt found using the validation set. We also adopt this technique in ZOPO here for fair
comparison. The soft prompt will be concatenated with the tokenized embedding of the prompt
generation template to generate task-specific prompt from Vicuna-13B. The prompt generation
template and the prompt evaluation template are shown below in the bounding boxes.

Prompt Generation Template (Soft Prompt)

Input: ⟨INPUT⟩
Output: ⟨OUTPUT⟩
Input: ⟨INPUT⟩
Output: ⟨OUTPUT⟩
Input: ⟨INPUT⟩
Output: ⟨OUTPUT⟩
Input: ⟨INPUT⟩
Output: ⟨OUTPUT⟩
Input: ⟨INPUT⟩
Output: ⟨OUTPUT⟩
The prompt was to?

Evaluation Template

prompt: ⟨prompt (i.e., v)⟩
Input: ⟨TEST INPUT⟩
Output:

We directly use the reported results of APE, IntructZero, and INSTINCT from Lin et al. [18]
for comparison, and we report the results of EvoPrompt with our re-implementation. For a fair
comparison, we also use Vicuna-13B for generating the initial prompt population (of size 20) for
EvoPrompt, and we use GPT-3.5 turbo to perform the genetic algorithm in EvoPrompt and generate
its new prompts. Using GPT-3.5 turbo to generate new prompts will help improve EvoPrompt’s
performance, as compared with using the relatively smaller model Vicuna-13B.

C.3.3 Experimental Details on Query Efficiency

To facilitate a more comprehensive comparison of different prompt optimization methods at different
query budget scales, we set the maximum query budget to 200, and report the test accuracy of the
best prompt found on the validation set with each incremental query budget, as shown in Fig. 5 in the
main text. We report the mean accuracy and standard error, using 3 runs with different random seeds.
For InstructZero, INSTINCT, and ZOPO, we directly fix the intrinsic dimension for generating the
soft prompt as 10 and the number of soft tokens as 5, without using the validation set to perform a
grid search over the intrinsic dimension and the number of soft tokens.
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ChatGPT Prompt Generation Template

I gave a friend an prompt. Based on the prompt they
produced the following input-output pairs:

Input: ⟨INPUT⟩
Output: ⟨OUTPUT⟩
Input: ⟨INPUT⟩
Output: ⟨OUTPUT⟩
Input: ⟨INPUT⟩
Output: ⟨OUTPUT⟩
Input: ⟨INPUT⟩
Output: ⟨OUTPUT⟩
Input: ⟨INPUT⟩
Output: ⟨OUTPUT⟩

The prompt was to

C.3.4 Experimental Details on ZOPOGPT

For our experiment on ZOPOGPT in the main text, we apply ZOPO on ChatGPT (i.e., GPT-3.5 turbo)
generated prompts. We follow the generation template from APE [48], as shown above, to generate
task-specific prompts from ChatGPT. To generate various prompts using the APE method, we need
to sample different sets of demonstrations (i.e., Ddemo) from the training set, and, for each Ddemo,
we also need to randomly sample from the ChatGPT’s response by setting a high temperature (e.g.,
0.95). To maintain the same size of prompt candidates as in the previous experimental setting of
ZOPO, we also generate 500 prompt candidates for each instruction induction task. To harness the
representation power of existing embedding models, we adopt the sentence transformer model [31]
“all-mpnet-base-v2” from HuggingFace to generate the high-dimensional sentence embedding for
each generated prompt from ChatGPT.

C.4 Improving Chain-of-Thought Prompt

To improve the zero-shot chain-of-thought prompt performance on arithmetic reasoning tasks, we
make use of the LLM’s induction ability and enable LLMs to generate different chain-of-thought
prompt candidates by providing some example chain-of-thought prompts. We consider the evaluation
of our method on three arithmetic reasoning datasets (i.e., GSM8K[4], AQUARAT[19], SVAMP[29]).
Similar as APE [48], we use all data from the test set for GSM8K and AQUARAT, and we sample
400 data points from AQUARAT’s test set to evaluate the corresponding test accuracy. For all these
three datasets, we sample 200 data points from their training dataset respectively as their individual
validation dataset.

We follow the experimental setting of Lin et al. [18]: use the soft prompt to generate prompts from
Vicuna-13B with a fixed intrinsic dimension of 1000 and search the soft token length {3, 5, 10} on
the validation set. The corresponding prompt generation template is given below.
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Prompt Generation Template for Chain-of-Thought

I have some prompt examples for solving school math
problems.

prompt:
Let’s figure it out!

prompt:
Let’s solve the problem.

prompt:
Let’s think step by step.

Write your new prompt that is different from
the examples to solve the school math problems.

prompt:

C.5 Details on Compute Resources

All experiments are conducted on a server with Intel(R) Xeon(R) CPU and NVIDIA H100 GPUs. We
mainly perform the prompt optimization for the GPT-3.5-Turbo model (for which OpenAI charged
USD 0.5 per 1M tokens for input and USD 1.5 per 1M tokens for output). The time of execution of
our algorithm on each prompt optimization task (e.g., any task in the 30 instruction induction tasks)
normally takes less than 20 minutes, where the actual time would depend on OpenAI API’s response
speed.
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Appendix D Additional Results

D.1 Extended Empirical Study on Function Landscape

In Section 3, we have empirically studied the landscape of the target function and incorporated the
findings into the design of ZOPO. In the main text, we have demonstrated the results on three in-
struction induction datasets, including taxonomy_animal, cause_and_effect, and informal_to_formal.
Here we use more datasets to validate our findings. Due to the large size of instruction induction
tasks (i.e., 30 tasks in total) and the query budget limit (i.e., it incurs monetary costs when we query
the objective function ChatGPT to evaluate the prompt on the given task), we only experiment with
few more randomly chosen tasks here to further validate our findings.

D.1.1 Local Optima vs. Global Optimum

To validate our local optimization design, we study the local optima in the function landscape, by
using a 3-dimensional (reduced by t-SNE) scatter plot to represent the prompt embeddings (last token
embeddings from Vicuna-13B). Here we provide the empirical results on more instruction induction
tasks, shown in Fig. 6. The heatmap color represents the validation accuracy of the corresponding
prompt. This allows us to interpret the local optima visually, and we conclude that many local optima
can already exhibit compelling performance.

word_sorting sentiment synonyms singular_to_plural common_concept

0.0

0.5

1.0

Figure 6: The validation accuracy of 300 randomly sampled prompts with the last token representation
on various tasks.

D.1.2 Essense of Input Domain

Prompt Generation To study the prompt quality of different prompt generation methods, we
compare the prompts generated from Vicuna-13B and those generated from ChatGPT (i.e., GPT
3.5 turbo). For Vicuna-13B, we use the randomly sampled soft prompts with a fixed intrinsic
dimension of 200 and a number token length of 10. For ChatGPT, we randomly sample prompts
from the ChatGPT’s response by using the APE generation template filled with random example
demonstrations. For each generation method on each task, we generate 300 random prompts, and we
query the target function with all prompts. We show the validation accuracy distribution of prompts
generated by the two methods on four more (due to budget constraints) tasks here in Fig. 7. It
demonstrates that ChatGPT has a larger probability of generating prompts with higher accuracy, also
with a larger mean. The result shows that ChatGPT-generated prompts are generally better, further
validating our finding of the importance of the input domain.
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Figure 7: The estimated accuracy distribution of prompts generated by Vicuna-13B or ChatGPT on
various instruction induction tasks, where the vertical dotted line indicates the mean performance.
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Prompt Embedding The complexity of modeling the target function depends on its function
landscape defined by the embedding domain. To empirically analyze the black-box target function,
we show the accuracy landscape of different tasks, where we reduce the dimension of the prompt
embedding (we use the last token embedding of Vicuna-13B here) to 2 by using t-SNE. The loss
landscape is visualized in the surface plot shown in Fig. 8. We observe that different optimization
methods achieve similar performances on tasks like sentiment and singular_to_plural, as they have
many good local optima. For other challenging tasks with complex function landscapes, the good
local optima are less, but our methods can still achieve superior performance. This validates our
insight that there are many good local optima in the embedding space.
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Figure 8: The function surfaces on various tasks using the last token embedding from Vicuna-13B as
the representation for prompt candidates that are generated by Vicuna-13B, with contour plots shown
below.
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D.2 Comparison on Instruction Induction Tasks

In Section 5.1 of the main text, we compared our methods with other baselines on 20 challenging
instruction induction tasks. Here we provide the full results on 30 instruction induction tasks in
Section 5.1.

Table 3: Average test accuracy with standard error (3 runs) for the best prompt found by different
methods for all 30 instruction induction tasks.

Tasks APE InstructZero INSTINCT EvoPrompt PB OPRO ZOPO ZOPOGPT

active_to_passive 100.0±0.0 99.7±0.3 97.0±2.5 100.0±0.0 99.0±0.8 100.0±0.0 100.0±0.0 100.0±0.0

antonyms 63.7±14.2 82.7±0.7 84.7±0.3 84.0±0.0 78.0±3.6 79.0±2.2 85.2±3.2 84.0±1.4

auto_categorization 25.0±0.9 25.7±1.2 25.0±3.3 31.0±1.0 24.0±3.7 24.0±3.6 32.7±1.9 27.0±5.0

auto_debugging 29.2±3.4 37.5±0.0 29.2±3.4 33.0±7.2 25.0±0.0 37.5±0.0 41.7±15.6 29.2±5.9

cause_and_effect 57.3±8.9 81.33±1.1 58.7±8.7 84.0±13.9 82.7±10.0 82.7±10.0 94.7±3.7 80.0±14.2

common_concept 6.9±2.1 8.6±4.0 21.3±0.2 11.1±6.9 10.9±3.4 8.6±5.7 23.5±3.4 2.8±0.6

diff 67.3±26.7 69.3±22.2 100.0±0.0 27.3±42.2 71.3±27.6 100.0±0.0 100.0±0.0 100.0±0.0

first_word_letter 100.0±0.0 100.0±0.0 93.0±5.3 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

informal_to_formal 57.4±0.3 53.1±0.2 55.3±0.0 51.6±0.9 54.2±4.5 48.0±0.8 61.3±2.7 61.9±2.9

larger_animal 89.7±0.5 90.0±4.1 93.7±0.3 87.3±3.1 73.3±9.1 90.7±4.1 92.3±2.9 92.7±1.2

letters_list 100.0±0.0 59.0±16.7 100.0±0.0 100.0±0.0 99.3±0.9 99.7±0.5 100.0±0.0 100.0±0.0

negation 75.3±1.1 77.7±1.4 81.7±0.3 86.0±0.0 70.7±4.0 73.3±6.6 86.3±0.5 77.7±2.6

num_to_verbal 99.7±0.3 100.0±0.0 100.0±0.0 100.0±0.0 98.3±1.7 100.0±0.0 100.0±0.0 100.0±0.0

object_counting 36.3±1.9 36.0±9.3 34.0±7.0 55.0±5.3 29.3±1.2 36.0±5.7 52.3±6.6 40.3±0.5

odd_one_out 63.3±1.4 61.3±8.7 70.0±1.6 10.0±0.0 66.7±0.9 47.3±22.2 32.0±11.3 68.7±2.5

orthography_starts_with 45.7±14.8 50.7±8.7 66.7±2.7 15.0±3.4 59.8±5.7 33.5±14.6 56.5±12.6 71.0±0.0

periodic_elements 92.7±2.2 86.7±6.1 92.7±2.7 98.0±1.2 95.3±2.5 93.3±0.9 100.0±0.0 94.7±3.1

rhymes 15.7±6.4 100.0±0.0 100.0±0.0 59.7±3.1 45.0±10.7 23.0±14.7 100.0±0.0 61.0±2.8

second_word_letter 74.7±20.3 43.3±18.7 10.0±4.1 24.7±0.6 88.7±10.4 86.7±18.9 25.7±4.7 96.7±2.4

sentence_similarity 0.0±0.0 0.0±0.0 14.0±0.5 2.0±1.0 0.0±0.0 2.7±3.8 7.6±9.3 37.3±0.9

sentiment 91.3±1.4 87.7±2.4 89.7±1.4 93.0±0.0 81.7±6.0 57.2±39.9 93.5±0.5 89.3±2.1

singular_to_plural 100.0±0.0 98.7±1.1 100.0±0.0 100.0±0.0 98.0±0.8 100.0±0.0 100.0±0.0 100.0±0.0

sum 67.3±26.7 100.0±0.0 100.0±0.0 100.0±0.0 98.3±1.7 100.0±0.0 100.0±0.0 100.0±0.0

synonyms 36.0±7.6 27.7±9.3 30.7±4.9 40.3±4.0 36.3±3.3 40.0±4.3 43.3±0.9 44.7±4.1

taxonomy_animal 34.7±23.4 71.7±8.4 85.7±6.0 83.0±4.6 29.7±38.5 30.0±41.0 90.0±7.1 92.3±0.5

translation_en-de 84.0±0.5 82.3±0.1 84.0±0.5 85.0±0.0 71.3±11.9 79.7±4.0 85.3±0.5 84.7±0.6

translation_en-es 87.0±0.0 87.3±0.1 88.0±0.0 82.3±7.4 81.7±1.7 85.3±2.4 85.3±2.1 86.3±2.5

translation_en-fr 88.7±0.3 87.7±0.0 83.0±2.1 80.7±4.5 76.7±8.0 86.0±2.2 91.0±0.0 86.7±2.1

word_sorting 33.0±3.7 31.0±11.4 51.3±0.3 48.0±21.3 45.7±1.7 50.3±5.8 60.0±4.2 60.3±3.1

word_unscrambling 44.0±13.9 59.0±5.3 63.3±0.7 51.3±4.5 51.0±6.2 61.3±2.1 59.3±2.8 58.3±1.9

# best-performing tasks 4 4 10 7 1 6 18 15
performance profile ρ(5) 0.37 0.43 0.57 0.47 0.27 0.43 0.87 0.73
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The performance profile of ZOPOGPT compared against other baseline methods is shown in Fig. 9.
This corresponds to the result shown in Tab. 1.
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Figure 9: The performance profile of ZOPOGPT compared against other baseline methods on 20
instruction induction tasks.

We also provide additional results on other instruction induction tasks to compare ZOPO against
baseline methods in terms of query efficiency. The result is shown in Fig. 10.
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Figure 10: Comparison of the query efficiency between ZOPO and other existing baselines on
various instruction induction tasks.
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D.3 Results on the GLUE Benchmark

We here follow the same experimental setting as our previous experiments on the instruction induction
tasks and apply the prompt optimization on the GLUE benchmark, which consists of several more
traditional natural language processing tasks. The result in Tab. 4 shows that our method ZOPO is
still able to achieve advanced performance when compared with other baselines.

Table 4: Test accuracy achieved by different methods on GLUE tasks.

Tasks APE InstructZero INSTINCT EvoPrompt PromptBeeder OPRO ZOPO
CoLA 82.0 79.0 72.0 65.0 54.0 0.0 65.0
MNLI-m 72.0 70.0 66.0 72.0 69.0 71.0 70.0
MNLI-mm 71.0 40.0 66.0 64.0 56.0 52.0 73.0
MRPC 66.0 76.0 71.0 71.0 28.0 0.0 76.0
QNLI 80.0 83.0 78.0 77.0 83.0 84.0 83.0
QQP 78.0 79.0 83.0 43.0 72.0 75.0 83.0
RTE 83.0 86.0 74.0 76.0 20.0 79.0 83.0
SST-2 92.0 97.0 93.0 93.0 91.0 85.0 92.0
# best-performing tasks 2 3 1 1 0 1 3
performance profile ρ(5) 0.875 0.875 0.375 0.375 0.25 0.25 0.875

D.4 Few-shot Setting

Our algorithm ZOPO is in fact able to handle the few-shot settings as evidenced by the results in
Tab. 5 below. Interestingly, the performance of our ZOPO is even better in a few-shot setting, which
is reasonable since in-context exemplars will help the black-box models better understand the context
and the output format of the task, and consequently will be able to lead to a better performance than
the zero-shot setting. In this few-shot experiment, we provide exemplars for prompt evaluation and
also report the test accuracy of the best prompt with exemplars provided.

Table 5: Test accuracy achieved by ZOPO under zero-shot and few-shot settings on instruction
induction tasks.

Tasks Zero-shot Few-shot (5)

antonyms 81.0 86.0
auto_categorization 38.0 34.0
auto_debugging 37.5 50.0
cause_and_effect 92.0 92.0
common_concept 19.6 10.2
diff 97.0 99.0
informal_to_formal 63.4 46.9
letters_list 100.0 100.0
negation 86.0 90.0
object_counting 57.0 55.0
odd_one_out 6.0 36.0
orthography_starts_with 44.0 67.0
rhymes 98.0 65.0
second_word_letter 16.0 65.0
sentence_similarity 18.0 27.0
sum 100.0 100.0
synonyms 44.0 25.0
taxonomy_animal 97.0 62.0
word_sorting 57.0 62.0
word_unscrambling 61.0 62.0
# best-performing tasks 10 13
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D.5 Results of Different Combinations of Generation and Evaluation Models

We use further experiments to show that our method can generalize to different prompt generation
models and different black-box API LLMs for prompt evaluation (as f(·)). Specifically, we here
consider two open-sourced models: Vicuna-13B and WizardLM-13B [44] for the prompt generation
and we use their corresponding last token embeddings in our algorithm. For the black-box API LLMs,
we consider GPT-3.5 (the one considered in our main text), PaLM2 [1], and GPT-4. In total, we have
six combinations. Tab. 6 shows the results of different combinations on the instruction induction
tasks. The results show that our ZOPO performs well on all these black-box API models (with
GPT-4 performing the best on most tasks), which further verifies the generality of our method when a
different black-box LLM f(·) is considered in the objective function in Eq. 1. We also notice that
the Vicuna model generally performs better than the WizardLM model, which suggests it is more
suitable for prompt generation and representation when applying our method ZOPO.

Table 6: Test accuracy on instruction induction tasks with different black-box LLMs f(·) considered
in the objective function in Eq. 1.

Prompt Generation/Embedding LLM Vicuna Vicuna Vicuna WizardLM WizardLM WizardLM

Black-box LLM (Objective Function) GPT-3.5 PaLM2 GPT-4 GPT-3.5 PaLM2 GPT-4

antonyms 81.0 80.0 85.0 80.0 80.0 88.0
auto_categorization 38.0 24.3 37.0 19.0 1.0 3.0
auto_debugging 37.5 33.3 25.0 25.0 37.5 37.5
cause_and_effect 92.0 96.0 96.0 48.0 76.0 68.0
common_concept 19.6 7.9 19.3 14.8 18.2 13.5
diff 97.0 100.0 100.0 99.0 100.0 100.0
informal_to_formal 63.4 50.1 51.5 44.8 53.1 41.9
letters_list 100.0 94.0 100.0 100.0 95.0 100.0
negation 86.0 80.7 84.0 73.0 79.0 73.0
object_counting 57.0 57.3 57.0 49.0 48.0 59.0
odd_one_out 6.0 14.7 68.0 36.0 24.0 26.0
orthography_starts_with 44.0 60.0 72.0 34.0 30.0 13.0
rhymes 98.0 84.0 86.0 53.0 90.0 100.0
second_word_letter 16.0 22.0 99.0 1.0 18.0 93.0
sentence_similarity 18.0 0.0 5.0 11.0 0.0 0.0
sum 100.0 72.0 100.0 98.0 100.0 100.0
synonyms 44.0 35.3 41.0 36.0 16.0 39.0
taxonomy_animal 97.0 86.3 100.0 95.0 77.0 97.0
word_sorting 57.0 19.3 66.0 0.0 1.0 0.0
word_unscrambling 61.0 12.7 71.0 51.0 14.0 58.0
# best-performing tasks 9 2 10 1 3 7
performance profile ρ(5) 0.7 0.2 0.8 0.25 0.25 0.45
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D.6 Verifying the Essence of Input Domain

Prompt Generation To fairly compare the effect of prompts generated by Vicuna-13B and Chat-
GPT in terms of the optimization performance by using ZOPO, we adopt the same embedding
representations here, that is we use the SBERT embedding model for both prompts generated by
Vicuna-13B and ChatGPT. For the prompt generation process, we fix the number of prompt candidates
for both methods to 500. The result of the comparison on 20 instruction induction tasks is shown
in Table. 7, where the corresponding performance profile shown in Fig. 11 suggests that applying
ZOPO on ChatGPT-generated prompts is better than applying it on Vicuna-generated prompts. This
again confirms the importance of the choice of the input domain (i.e., the prompt generation).
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Figure 11: The corresponding performance
profile for results shown in Tab. 7.

Table 7: Fair comparison of the optimization perfor-
mance of ZOPO with different generated prompts
but the same embedding model (i.e., SBERT).

Tasks Vicuna-13B ChatGPT
antonyms 78.3±4.5 84.0±1.4

auto_categorization 29.7±2.9 27.0±5.0

auto_debugging 41.7±15.6 29.2±5.9

cause_and_effect 86.7±7.5 80.0±14.2

common_concept 24.9±0.0 2.8±0.6

diff 8.0±7.1 100.0±0.0

informal_to_formal 62.0±3.3 61.9±2.9

letters_list 100.0±0.0 100.0±0.0

negation 82.0±2.9 77.7±2.6

object_counting 45.3±10.3 40.3±0.5

odd_one_out 20.0±3.3 68.7±2.5

orthography_starts_with 51.0±6.1 71.0±0.0

rhymes 100.0±0.0 61.0±2.8

second_word_letter 24.3±6.0 96.7±2.4

sentence_similarity 10.3±14.6 37.3±0.9

sum 100.0±0.0 100.0±0.0

synonyms 40.3±1.7 44.7±4.1

taxonomy_animal 91.7±2.1 92.3±0.5

word_sorting 62.7±0.5 60.3±3.1

word_unscrambling 53.0±0.0 58.3±1.9

25



Prompt Embedding Here we analyze how different embeddings affect the optimization of ZOPO.
We first generate a fixed set of prompts of size 500 from Vicuna-13B as those in Tab. 1. For the same
set of prompts, we consider four different embeddings here: (a) the Last Token embedding from
Vicuna-13B (b) the OpenAI embedding obtained through its embedding model “text-embedding-ada-
002" API. [26], (c) the SBERT embedding obtained through the sentence transformer (“all-mpnet-
base-v2” from HuggingFace), and (d) the Random embedding obtained by randomly projecting
the Vicuna embedding into the same dimension. The dimensions of the four embeddings (from
(a) to (d)) are 1536, 756, and 5120 respectively. We compare the optimization performance of the
four embeddings using ZOPO and the results are shown in Tab. 8. We observe although last token
embedding is generally better, there are certain tasks that OpenAI and SBERT embeddings perform
equally well or better, which indicates the optimal choice of embedding can be task-dependent.
Intuitively, random embedding is not representative. Its lesser performance shown in Tab. 8 again
confirms our Insight II in Sec. 3.2, which says the choice of embedding/input domain is important in
prompt optimization.

Table 8: Average test accuracy with standard error (3 runs) for the best prompt found by ZOPO with
four different embeddings on 20 instruction induction tasks.

Tasks Last Token (5120) OpenAI (1536) SBERT (756) Random (5120)

antonyms 85.2±3.2 76.7±0.4 78.3±4.5 79.3±3.4

auto_categorization 32.7±1.9 31.0±2.9 29.7±2.9 32.3±1.7

auto_debugging 41.7±15.6 29.2±5.9 41.7±15.6 37.5±17.7

cause_and_effect 94.7±3.7 82.7±6.8 86.7±7.5 68.0±8.6

common_concept 23.5±3.4 24.4±1.5 24.9±0.0 22.4±1.8

diff 100.0±0.0 94.7±3.1 8.0±7.1 15.7±7.4

informal_to_formal 61.3±2.7 59.4±2.4 62.0±3.3 58.5±3.7

letters_list 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

negation 86.3±0.5 82.3±1.9 82.0±2.9 84.0±2.2

object_counting 52.3±6.6 51.7±6.1 45.3±10.3 51.7±6.2

odd_one_out 32.0±11.3 24.0±8.6 20.0±3.3 20.0±12.3

orthography_starts_with 56.5±12.6 56.0±4.3 51.0±6.1 46.7±4.7

rhymes 100.0±0.0 68.7±21.5 100.0±0.0 96.3±2.4

second_word_letter 25.7±4.7 24.3±5.2 24.3±6.0 24.3±4.5

sentence_similarity 7.6±9.3 10.3±14.6 10.3±14.6 6.3±6.4

sum 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

synonyms 43.3±0.9 40.0±0.0 40.3±1.7 42.3±3.1

taxonomy_animal 90.0±7.1 91.7±2.6 91.7±2.1 89.3±6.2

word_sorting 60.0±4.2 63.0±1.4 62.7±0.5 59.7±3.8

word_unscrambling 59.3±2.8 56.3±1.7 53.0±0.0 47.3±4.2

# best-performing tasks 15 5 8 2

To demonstrate the generality of ZOPO, we provide more results below to show we are not focusing
on a specific combination of LLMs and embedding models. For the same optimization objective
(i.e., we still perform prompt optimization for ChatGPT), we further study our ZOPO with more
choices of embedding models and pair it with different black-box LLMs for prompt generation (i.e.,
GPT-4). We consider three more embedding models from HuggingFace and OpenAI, including
"Instructor-Large", "MiniLM-L6-v2", and "text-embedding-3-small" in Tab. 9 below, as well another
black-box model (i.e., GPT-4) for prompt generation in Tab. 10 below.

Note that, in our main text, we use the Vicuna-13B model as the prompt generation model mainly for
the fair comparison against baselines (i.e., InstructZero and INSTINCT), and we can tell from Tab. 9
that the Vicuna embedding is a good embedding to use in prompt optimization. The result from
Tab. 10 suggests choosing a better embedding model (i.e., Instructor-Large) for GPT-4 generated
prompts can even further improve its performance.

Can we possibly find the best embedding model? As we have shown in our previous experiments,
the best choice for the embedding model can be task-dependent. To find the suitable paired embedding
model without enumerating every embedding model, we could possibly analyze the variance Ve of
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the eigenvalues of the covariance matrix of the embeddings (i.e., Z). The eigenvalues represent the
variances along the principal directions (eigenvectors) of the embeddings. If the embeddings are
distributed with equal spacing in the high-dimensional space, we would expect the eigenvalues to
be approximately equal (i.e., low variance). Intuitively, if the embeddings are in such representative
space with equal spacing, it could help function modeling.

Therefore, if such variance Ve is small, the optimization performance using such an embedding
model is more likely to be better. Based on the test accuracies from Tab. 9 and Tab. 10, we show
that there exists a sufficiently high negative Spearsman’s correlation (i.e., the average correlation is
-0.47) between Ve and the performance of ZOPO using different embedding models on each task.
Therefore, we can check every embedding prior to the experiment, and it can be done efficiently.
We acknowledge that this approach is not perfect and finding the best embedding model is not the
main focus of this work. By finding the best pair of generation and embedding models for prompt
optimization, we believe our ZOPO algorithm can be further boosted. We would like to take it as a
potential future direction.

Table 9: Test accuracy achieved by ZOPO (Vicuna-13B for prompt generation) with different
embeddings on GLUE tasks.

Tasks Vicuna Instructor-Large MiniLM-L6-v2 text-embedding-3-small

CoLA 65.0 70.0 58.0 60.0
MNLI-m 70.0 67.0 71.0 71.0
MNLI-mm 73.0 62.0 73.0 62.0
MRPC 76.0 73.0 73.0 73.0
QNLI 83.0 78.0 83.0 83.0
QQP 83.0 82.0 82.0 82.0
RTE 83.0 78.0 75.0 82.0
SST-2 92.0 91.0 91.0 91.0
# best-performing tasks 6 1 3 2
performance profile ρ(5) 1.00 0.88 0.75 0.75

Table 10: Test accuracy achieved by ZOPOGPT-4 (GPT-4 for prompt generation) with different
embeddings on GLUE tasks

Tasks SBERT Instructor-Large MiniLM-L6-v2 text-embedding-3-small

CoLA 77.0 78.0 79.0 76.0
MNLI-m 73.0 73.0 74.0 69.0
MNLI-mm 72.0 77.0 77.0 69.0
MRPC 68.0 71.0 65.0 71.0
QNLI 83.0 83.0 84.0 83.0
QQP 81.0 76.0 74.0 75.0
RTE 84.0 86.0 81.0 82.0
SST-2 96.0 96.0 93.0 93.0
# best-performing tasks 2 4 4 1
performance profile ρ(5) 1.0 1.0 0.75 0.75
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D.7 Study of NTK-GP and Uncertainty-Informed Local Exploration

To validate the effectiveness of the components, namely NTK-GP (in Sec. 4.2) and uncertainty-
informed local exploration (in Sec. 4.3) of ZOPO, we perform controlled experiments to replace these
components. Specifically, we (a) replace the NTK component with Matérn kernel (as in the recent
ZOO method ZoRD), and (b) remove the uncertainty-informed local exploration feature. We evaluate
the two settings on 20 instruction induction tasks. The result shown in Table 11 illustrates these two
settings are both significantly worse than the original ZOPO, which validates the effectiveness of
NTK-GP and uncertainty-informed local exploration.

Table 11: Ablation study of the design components in ZOPO showing the average test accuracy
reported with standard error (3 runs) on 20 instruction induction tasks.

Tasks ZOPO ZOPO w/o NTK ZOPO w/o Local Exploration
antonyms 85.2±3.2 79.7±9.0 78.7±3.1

auto_categorization 32.7±1.9 34.7±3.7 28.3±4.9

auto_debugging 41.7±15.6 29.2±5.9 25.0±0.0

cause_and_effect 94.7±3.7 93.3±1.9 85.3±6.8

common_concept 23.5±3.4 9.2±4.1 22.0±5.6

diff 100.0±0.0 13.7±6.1 13.7±6.1

informal_to_formal 61.3±2.7 63.4±0.0 63.4±0.0

letters_list 100.0±0.0 100.0±0.0 100.0±0.0

negation 86.3±0.5 85.7±0.5 84.7±3.3

object_counting 52.3±6.6 39.0±7.1 51.7±6.2

odd_one_out 32.0±11.3 14.7±5.0 32.0±8.6

orthography_starts_with 56.5±12.6 49.3±8.2 46.3±9.7

rhymes 100.0±0.0 90.7±0.5 93.3±6.6

second_word_letter 25.7±4.7 25.7±6.8 19.7±6.8

sentence_similarity 7.6±9.3 0.0±0.0 0.0±0.0

sum 100.0±0.0 93.7±9.0 100.0±0.0

synonyms 43.3±0.9 38.3±0.9 39.7±2.5

taxonomy_animal 90.0±7.1 74.7±15.1 91.3±4.1

word_sorting 60.0±4.2 29.3±12.7 56.3±0.9

word_unscrambling 59.3±2.8 47.3±0.9 50.0±4.2

# best-performing tasks 17 4 5
performance profile ρ(5) 1.0 0.35 0.5
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D.8 Study of ZOPO with More Prompt Candidates

Intuitively, generating more prompt candidates offers a closer approximation to the true function
landscape. As our optimization method ZOPO is operated under a given set of prompt candidates,
we here conduct an ablation study to examine the impact of a larger size of the generated prompt
candidates (i.e., |V|) on the optimization performance. For ZOPO, we use random soft prompts to
feed Vicuna-13B and generate prompts until V = 500 or V = 2000. We compare the optimization
results of ZOPO using the two different sizes of prompts, and the results are shown in Table 12.
We also follow the APE generation template to prompt ChatGPT to generate different sizes of
prompt candidates and use SBERT to produce their embeddings. For ChatGPT-generated prompts
in ZOPOGPT, we also consider two settings, V = 500 or V = 1000 (due to budget constraint). The
corresponding result is shown in Table 13. We observe from the two tables that a larger set of prompt
candidates may not necessarily lead to strictly better performance, and generating a relatively small
set of strong prompt candidates (e.g., of size 500) is already good enough when we aim to find the
optimal prompt.

Table 12: Ablation study of different sizes of
prompt candidates in ZOPO.

Tasks |V| = 500 |V| = 2000

antonyms 85.2±3.2 86.3±0.9

auto_categorization 32.7±1.9 37.3±1.2

auto_debugging 41.7±15.6 33.3±11.8

cause_and_effect 94.7±3.7 94.7±1.9

common_concept 23.5±3.4 17.0±6.1

diff 100.0±0.0 100.0±0.0

informal_to_formal 61.3±2.7 56.6±4.1

letters_list 100.0±0.0 100.0±0.0

negation 86.3±0.5 86.3±0.5

object_counting 52.3±6.6 53.0±6.5

odd_one_out 32.0±11.3 20.7±6.6

orthography_starts_with 56.5±12.6 46.0±6.9

rhymes 100.0±0.0 100.0±0.0

second_word_letter 25.7±4.7 35.3±27.5

sentence_similarity 7.6±9.3 24.7±6.1

sum 100.0±0.0 100.0±0.0

synonyms 43.3±0.9 40.0±3.3

taxonomy_animal 90.0±7.1 91.3±7.6

word_sorting 60.0±4.2 59.0±6.4

word_unscrambling 59.3±2.8 54.7±3.3

# best-performing tasks 14 12
performance profile ρ(5) 0.9 0.8

Table 13: Ablation study of different sizes of
prompt candidates in ZOPOGPT.

Tasks |V| = 500 |V| = 1000

antonyms 84.0±1.4 80.3±1.2

auto_categorization 27.0±5.0 28.3±2.4

auto_debugging 29.2±5.9 37.5±10.2

cause_and_effect 80.0±14.2 78.7±3.8

common_concept 2.8±0.6 11.7±6.8

diff 100.0±0.0 100.0±0.0

informal_to_formal 61.9±2.9 57.2±8.9

letters_list 100.0±0.0 99.3±0.5

negation 77.7±2.6 75.0±1.6

object_counting 40.3±0.5 41.3±1.2

odd_one_out 68.7±2.5 72.0±0.0

orthography_starts_with 71.0±0.0 71.3±0.9

rhymes 61.0±2.8 100.0±0.0

second_word_letter 96.7±2.4 99.7±0.5

sentence_similarity 37.3±0.9 0.0±0.0

sum 100.0±0.0 100.0±0.0

synonyms 44.7±4.1 45.3±1.7

taxonomy_animal 92.3±0.5 89.3±1.9

word_sorting 60.3±3.1 54.3±7.0

word_unscrambling 58.3±1.9 60.3±2.5

# best-performing tasks 10 12
performance profile ρ(5) 0.85 0.9
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D.9 Best Prompts Found

We list the best prompts discovered by our method ZOPO for every instruction induction task here in
Table 14, which corresponds to the results in Table 3.

Table 14: The best prompts discovered by our method ZOPO for every instruction induction task,
where “*” indicates the best prompt is found by ZOPOGPT for that task.

Task Best prompt
active_to_passive The prompt was to convert the given sentence into passive voice.
antonyms The prompt was to rewrite the given words into their opposite meaning. So, “humor-

less" becomes “humorous", “depressing" becomes “cheerful", “unwrap" becomes
“wrap", “consumptive" becomes “generative", “uncoil" becomes “coil".

auto_categorization The prompt was to input the given names and output the corresponding apparel. For
example, the input “Nature Nanotechnology, Annual Review of Biochemistry, and
The Lancet Neurology" would output as “top journals".

auto_debugging The prompt was to write a program that would take the given input and output
the expected output. For example, the first input was a simple calculation, and the
expected output was “2550". The second input was a class definition with a method,
and the expected output was “5".

cause_and_effect The prompt was to identify the sentence that is the cause and the sentence that is the
effect in each pair of sentences. The input sentences are given, and the output is the
cause sentence.

common_concept The prompt was to create a series of pairs of inputs and outputs, where the outputs are
related to the inputs in some way. For example, the inputs “guitars" and “pendulums"
are related to the output of “involve oscillations.

diff The prompt was to subtract the second number from the first number. For example,
the first input would be 41 and the second input would be 13, so the output would be
28 (41 - 13). The same process would be applied for the other inputs and outputs.

first_word_letter The prompt was to create a program that takes a single input (a word representing
a legal concept or term) and outputs a corresponding letter of the alphabet that
represents that concept or term.
For example, if the input is “year", the program should output “y".

informal_to_formal* The prompt was to rephrase each input sentence using a more formal or polite
language.

larger_animal The prompt was to create a program that takes two input animals and outputs the
animal that is bigger. The program uses the “>=" operator to compare the size of the
first animal to the size of the second animal. If the first animal is bigger, the program
outputs the first animal.

letters_list The prompt was to create a program that takes a single word input (e.g. “year") and
outputs a concatenated string of letters and spaces that approximates the pronuncia-
tion of that word (e.g. “y e a r").

negation The prompt was to flip the truth value of the input statements. For example, if the
input statement is “Cany Ash and Robert Sakula are both Architects," the output
should be “Cany Ash and Robert Sakula are not Architects.

num_to_verbal The prompt was to write a program that takes a number as input and outputs the
number in words, using the appropriate number formatting. The examples provided
in the input show the expected output for each number.

object_counting The prompts were to provide the output of a given input, where the input is a list of
items and the output is a number representing the total count of those items. The
examples given in the prompt show how the prompts should be used to generate the
desired output.

odd_one_out* The prompt was to identify the word that is most different from the others in the
group.
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orthography_starts_with* The prompt was to identify the first word that begins with a specific letter in each
sentence.

periodic_elements The prompts were to write a program that takes an input value and outputs the
corresponding element name based on that value.
For example, if the input is 24, the program would output “chromium.

rhymes The prompts were to create a program that takes in a word as input and outputs a
related word based on a specific set of rules. The rules are as follows: If the input
word starts with “tri", the output should be “slip".

second_word_letter* The prompt was to “Identify and return the second letter of the input word".
sentence_similarity* The prompt was to create two different sentences that have similar meanings but are

not identical. The output of each input-output pair indicates how closely the two
sentences match in terms of meaning.

Explanation of outputs:
- 5 - perfectly: The two sentences are very similar in meaning and can be considered
as equivalent.
- 3 - probably: The two sentences have some similarities in meaning but there are
also some differences, making it less certain that they are equivalent.
- 2 - possibly: The two sentences have some similarities but also significant
differences, making it unlikely that they are equivalent.
- 1 - probably not: The two sentences have very different meanings and are unlikely
to be considered as equivalent.
- 0 - definitely not: The two sentences have no similarity in meaning and cannot be
considered as equivalent.

sentiment The prompt was to classify the given reviews as positive or negative based on the
given input and output. The output is positive when the review is positive, and
negative when the review is negative.

singular_to_plural The prompt was to convert the input words to their plural form by adding “s" to the
end of the word. This was done by using the “replace" function in Excel, which
allows you to replace a specific text string with another text string.

sum The prompt was to write a program that takes two numbers as input and outputs their
sum as the result. The program uses the ‘scanf‘ function to read the input numbers
from the user, and the ‘printf‘ function to display the result.

synonyms* The prompt was to create a list of words that are synonyms or closely related to the
given word.

taxonomy_animal* The prompt was to select all the animals in the input and output them in the order
they appear.

translation_en-de The prompts were to input various words and have the model generate the corre-
sponding output in German. It appears that the model was successful in generating
the desired output for each of the input words provided. If there are any additional
prompts or clarification needed, please let me know.

translation_en-es The prompts were to translate a set of words from Spanish to English using the
provided translation table.

translation_en-fr The prompt was to input a word and then output the corresponding word in French.
It appears that the input and output words are being matched correctly, with the
exception of the word “initiative," which should have the output “initiative" in French,
not “enterprise.

word_sorting* The prompt was to alphabetize the input list in ascending order and provide the
resulting output as a list.

word_unscrambling The prompt was to create a program that takes an input word and outputs the
corresponding word with the letters rearranged in order. For example, given the input
“eccpat", the program should output “accept".
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have provided extensive experimental results to validate the efficacy of our
proposed method. The claims are also empirically supported.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are mentioned in Sec. 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions and proofs are included in the Appx. A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included all the necessary information to implement our algorithm,
and the experimental details to conduct the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have included our code in the supplementary materials with exact com-
mands. The code will be uploaded to GitHub upon acceptance of the work.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental details are specified in Appx. C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the average accuracy with standard error (3 runs) in our tables, and
plot the error bar for the query efficiency experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computing resources needed to reproduce the experiments are stated in
Appx. C.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adopts the ethical practices mentioned in the Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Both potential positive and negative societal impacts are discussed in Appx. B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No new data or models in this work will be released. All data and models
involved in this work have no risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The sources of the datasets are cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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