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ABSTRACT

Time series contain diverse pattern information, and many studies have leveraged
these patterns to enhance representations for more accurate forecasting. A key
challenge lies in how to organize multi-scale patterns for effective information
aggregation. Previous studies typically partition sequences into multi-scale pat-
tern segments and organize them into chain or tree structures, employing neural
networks to aggregate features and improve predictive performance. However,
information transmission in chain structures is strictly linear and accumulative,
while tree structures can aggregate multiple patterns but remain constrained by
hierarchical limitations. Moreover, segments at the same or neighboring scales do
not necessarily exhibit strong dependencies.
To overcome these limitations, we propose the Network of Patterns (NoP), which
flexibly connects all relevant pattern segments to enable interactions between any
nodes. We further introduce a Pattern Passing strategy to efficiently propagate and
aggregate pattern information across this network, achieving more comprehen-
sive integration. Experimental results demonstrate that NoP not only effectively
encapsulates informative pattern signals but also establishes new state-of-the-art
performance on multiple time series forecasting benchmarks, surpassing chain-
and tree-based methods.

1 INTRODUCTION

Recently, time series forecasting has been widely applied in fields such as weather forecasting (Allen
et al., 2025), energy dispatch (Hu et al., 2022), traffic flow (Jiang et al., 2021), and other areas (Luo
et al., 2021; Cheng et al., 2022). Time series contain diverse pattern information, and many stud-
ies have leveraged these patterns to enhance representations for more accurate forecasting. A key
challenge lies in how to organize multi-scale patterns for effective information aggregation.

As shown in Figure 1, previous studies typically partition sequences into multiscale pattern segments
and organize them into chains (Wu et al., 2023; Wang et al., 2024a) or tree structures (Wu et al.,
2024) to aggregate information within the same scale or between adjacent scales, thus enriching
feature representations and improving forecast accuracy.

Figure 1: Three types of pattern-segment structures: Chain-of-Patterns (left), Tree-of-Patterns
(middle) and Network-of-Patterns (right).
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(a) Pattern segments from the Electricity dataset. (b) Attention scores between segments

Figure 2: We design a model called SegmentTST (Segment Time Series Transformer; see Appendix
A for details). The model applies Fourier analysis to identify the top-K dominant periods and parti-
tions the sequence into pattern segments (Figure 2a). These segments are then zero-padded, aligned,
and fed into Transformer to model inter-segment dependencies. By visualizing the attention scores
of SegmentTST trained on the Electricity dataset (UCI)(Figure 2b), we can observe that segments
of the same or neighboring scales do not necessarily exhibit strong dependencies (red box), whereas
cross-scale dependencies may exist even when segments neither overlap nor are nested (orange box).

However, information transmission in chain structures is strictly linear and accumulative while tree
structures can aggregate multiple patterns but remain constrained by hierarchical limitations. More-
over, segments at the same scale or neighboring scales do not necessarily exhibit strong dependen-
cies. In contrast, cross-scale dependencies may exist even when segments neither overlap nor are
nested (See Figure 2a).

To address these limitations, we introduce the Network of Pattern (NoP). First, we partition the
time series into multi-scale segments and construct the pattern network, which flexibly connects
all relevant pattern segments via edges defined by Spectrum KL Divergence (SKL), a divergence
measuring their discrepancy in the frequency domain. Each edge of the network links pattern with
potential dependencies. To aggregate information across the entire network, we incorporate a learn-
able virtual pattern embedding that is pointed to by all segments. Subsequently, information across
patterns is fused through stacked pattern passing blocks. Our experiments demonstrate that NoP not
only markedly encapsulates informative pattern information, but also achieves new state-of-the-art
(SOTA) results on multiple time series forecasting benchmarks (Zhou et al., 2021; Spyros Makri-
dakis, 2018) compared with chain-and tree-based methods.

Key Contributions:

• We organize multi-scale patterns into a network structure and to construct edges by us-
ing Spectrum KL Divergence, thereby overcoming the limitations of chain and tree-based
structures.

• We propose the Pattern Passing mechanism, which leverages network-based message pass-
ing to enhance pattern representation and aggregation. Experiments demonstrate, both
qualitatively and quantitatively, that this mechanism effectively strengthens pattern model-
ing.

2 PRELIMINARIES AND RELATED WORK

2.1 PROBLEM DEFINITION

Let X = [x1,x2, . . . ,xH ]⊤ ∈ RH×C be a multivariate time series, where xt ∈ RC is the ob-
servation of C variables at time step t. The forecasting task seeks to predict the next L steps:
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Y = [xH+1,xH+2, . . . ,xH+L]
⊤ ∈ RL×C . We train a model to output Ŷ that approximates the

ground truth Y.

2.2 GRAPH NEURAL NETWORKS

A graph is defined as G = (V,E), with node set V = {v1, v2, . . . , vN} and edge set E. Graph
Neural Networks (GNNs) learn node embeddings by iteratively aggregating features from local
neighborhoods via a message-passing scheme.

Let h(0)
i = xi be the initial feature of node vi. At layer l, the node embedding h

(l)
i ∈ Rd is updated

as
h
(l)
i = UPDATE(l)

(
h
(l−1)
i , AGGREGATE(l)

(
{h(l−1)

j | j ∈ N (i)}
))

, (1)

where N (i) denotes the neighbors of node vi. The function AGGREGATE(l)(·) applies a
permutation-invariant operation (e.g. mean, sum, max) to collect messages from neighbors, and
UPDATE(l)(·) combines these messages with the previous state of the node to produce the new
embedding.

2.3 RELATED WORK

Pattern Segment based Models. Recent years have witnessed numerous works that segment
time series into subsequences and organize them into chain or tree structures for feature extraction.
Timesnet (Wu et al., 2023), PDF (Dai et al., 2024), AMD (Hu et al., 2025a) and TimeMixer++ (Wang
et al., 2024a) decompose time series into multi-scale pattern segments and concatenate them with
identical pattern scales to capture 2D temporal variations in series exhibiting multi-period features.
Peri-midFormer (Wu et al., 2024) arranges multi-scale periodic segments into pyramid structures,
utilizing periodic pyramid attention mechanisms to reveal latent relationships between periodic
segments at different scales. In contrast to existing pattern segmentation and feature propagation
approaches, this paper introduces a novel network-structured temporal representation that enables
flexible cross-pattern interactions through network message passing, achieving significant improve-
ments in long- and short-term forecasting performance.

Graph Neural Networks based Models. GNNs have achieved notable success in time series
forecasting (Cini et al., 2025) by leveraging message-passing to infer inter-channel relationships
from multivariate time series based on temporal order (Wu et al., 2021). STGCN (Yu et al., 2017),
DCRNN (Li et al., 2018) and MTGNN (Wu et al., 2020) integrate time series to structural graph
to capture spatiotemporal dependencies. StemGNN (Cao et al., 2020) and FourierGNN (Yi et al.,
2023) further combine graph convolution with Fourier transform to model both structural and dy-
namic features, capturing complex channel-wise interactions. In contrast to earlier point-based graph
constructions, MSGNet (Cai et al., 2024) extracts multi-scale temporal features using segment-based
modeling, improving temporal pattern recognition. Ada-MSHyper (Shang et al., 2024) downsam-
ples the sequence into multiple scales and builds a hypergraph at each scale based on single time
steps, enabling both intra- and inter-scale interactions. TimeFilter (Hu et al., 2025b) constructs a
graph over all patches across channels, removes irrelevant correlations through filtering, and lever-
ages a graph neural network to model spatio-temporal dependencies.

However, MSGNet only considers intra-scale interactions while neglecting cross-scale dependen-
cies. Although Ada-MSHyper incorporates inter-scale interactions, its downsampling strategy fails
to capture fine-grained temporal variations. TimeFilter, while effective at modeling spatio-temporal
dependencies among all patches, overlooks the multi-scale characteristics of temporal dynamics. In
contrast, NoP partitions the sequence into multi-scale segments and organizes them into a network
structure, thereby modeling relationships across arbitrary scales while preserving temporal variation.

3 METHODOLOGY

In this section, we describe three core components of our approach: (1) a divergence measuring
pattern segments discrepancy in frequency-domain; (2) construction of Pattern Network; and (3)
Pattern Passing mechanism for feature extraction. The overall architecture of NoP is shown in
Figure 3.
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Readout

Virtual Pattern Embedding

Pattern Message&Aggregate

Pattern Network Construction

Fast Fourier Transform

NoP

SKL-based edges

pattern segementing

topk frequecncy

Graph Attention Layer

Norm

Feed Forward

N×

Pattern Passing Blocks

virtual pattern

multi-scale 

  pattern   

Projection

virtual pattern

Figure 3: The overall architeture of NoP. The raw time series is first transformed using FFT to
identify the top-k frequency components, which are then used to partition the series into pattern
segments. A pattern network is subsequently constructed based on SKL computed between these
pattern segments. Before feeding the network into the Pattern Passing Blocks, a virtual pattern is
inserted to aggregate information from the entire graph. After N -hop pattern passing, the represen-
tation of the virtual pattern is passed through a linear layer to produce the final output.

3.1 MEASURING PATTERN DISCREPANCY

Pattern segments are of variable lengths; thus, methods such as cosine similarity or Pearson corre-
lation require padding for length alignment, which may introduce bias into the results. Fortunately,
prior work (Yang & Wei, 2011; Fang et al., 2012) has demonstrated that zero-padding can align
spectra without distorting their shapes, allowing us to compare pattern similarity directly in the
frequency domain.

To this end, we propose Spectrum KL divergence, a divergence to quantify pattern similarity in the
frequency domain. Given N pattern segments of variable lengths, we first zero-pad them to obtain
aligned segments{Pi}Ni=1 with uniform length H . Unlike previous approaches that rely on point-
wise differences (Wang et al., 2025b;a), we normalize the spectra into probability distributions and
employ Kullback–Leibler (KL) divergence for comparison:

DKL(Pa ∥Pb) = KL
(
ϕ
(
F(Pa)

)
∥ϕ

(
F(Pb)

))
(2)

where F and ϕ(·) denote the Discrete Fourier Transform operator and softmax function, respectively.
This enables us to measure pattern discrepancy holistically, based on the overall distribution of
frequency components(Kudrat et al., 2025). We then construct a pattern discrepancy matrix D ∈
RN×N for network pruning, where Dab = DKL(Pa ∥Pb).

3.2 PATTERN NETWORK CONSTRUCTION

We decompose the time series into seasonal and trend components, and construct the pattern network
on the seasonal component where patterns are more clearly expressed. For each channel, given its
seasonal component Xseason ∈ RH , we compute its amplitude spectrum:

A = Amp
(
FFT(Xseason)

)
, {f1, . . . , fk} = argTopk(A), pi =

⌈H
fi

⌉
,

where FFT(·) is the Fast Fourier Transform (FFT) operator and Amp(·) is the amplitude calculation
function against the frequency spectrum. We enforce the frequency component fk = 1 so that
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periods cover all scales and then obtain k period lengths {p1, . . . , pk}. Each frequency fi yields
fi segments {Sni }

fi
n=1 of length pi, which are zero-padded to length H to produce aligned nodes

{Pi, . . . ,PN}, where N =
∑

i fi.

Using the discrepancy D = [da,b]N×N , We prune the pattern network by retaining the k edges with
the smallest divergences:

E =
{
(b→a) | da,b ∈ Bottomk

(
{du,v | u ̸= v}

)}
, k =

⌈
m (N − 1)N

⌉
, (3)

where da,b denotes the discrepancy between Pa and Pb. Here k =
⌈
m (N − 1)N

⌉
for sampling

ratio m ∈ (0, 1], yielding a sparse directed network. This edge construction encourages node to
aggregate pattern from highly relevant neighbors in the pattern network.

3.3 PATTERN PASSING

Virtual Pattern Embedding. To globally aggregate patterns from all pattern segments, we insert
a virtual pattern P0 into the pattern graph. We denote the virtual pattern embedding after the l-th
Pattern Passing Block as h(l)

V ∈ RD. This learnable embedding continuously aggregates information
from all pattern segments during the pattern passing process.

Pattern Passing Block. We then stack L Pattern Passing Blocks. Denote h(0)
i ∈ RD the embedded

input of node i. Each block updates

h
(l)
i = MLP

(
LN

(
GAT

(
h
(l−1)
i , {h(l−1)

j | j → i}
)))

, (4)

where graph-attention layer (Velickovic et al., 2017) (GAT) attends to neighbors (j → i) , followed
by layer norm (LN) and an MLP.

Readout. After L blocks, we extract the virtual pattern embedding h
(L)
V and project to produce

the seasonal forecast: Ŷseason = Linear
(
h
(L)
V

)
. We similarly project the trend component and sum

to obtain the final output: Ŷ = Ŷseason + Ŷtrend.

4 EXPERIMENTS

We conducted extensive experiments to investigate the following research questions: RQ1: Does
organizing pattern segements into a network structure outperform chain and tree structures? RQ2:
Does the Patterns Passing mechanism in the NoP enhance the patterns and lead to improved pre-
dictive performance? RQ3: Can NoP achieve performance comparable to or even surpass that of
representative forecasting models?

4.1 EXPERIMENTAL SETTINGS

Datasets. For long term forecasting, we adopt 7 real-world benchmark datasets from various ap-
plication scenarios, including ETT (Zhou et al., 2021),Weather (Wetterstation), ECL (UCI) and
Exchange (Lai et al., 2018). The look-back window H is fixed at 96, and the forecasting horizon
L is set to {96, 192, 336, 720} for all long-term forecasting tasks. For short term forecasting, we
adopt M4 benchmark (Spyros Makridakis, 2018) which contains the yearly, quarterly and monthly
collected univariate marketing data.

Baselines. To address RQ3, we compare NoP with two categories of baselines. The first include
pattern segment-based models such as TimesNet (Wu et al., 2023), PDF (Dai et al., 2024), and
Peri-midFormer (Wu et al., 2024). The second covers representative forecasting models, includ-
ing GNN-based approaches (TimeFilter, MSGNet (Hu et al., 2025b; Cai et al., 2024)), Transformer-
based methods (TQNet, iTransformer, PatchTST (Lin et al., 2025; Liu et al., 2023; Nie et al., 2022)),
and an MLP-based method (DLinear (Zeng et al., 2023)). Notably, both TimesNet and PDF adopt
CNN architectures as part of their design. Some pattern segement-based methods were not in-
cluded because their architectural designs make it difficult to isolate the effect of the chain (or tree)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

structure on predictive performance. All the experiments are conducted three times to eliminate
randomness. More details about the datasets and evaluation metrics we used are listed in Appendix
B.1 and Appendix B.2, respectively. In Appendix B.3, we detail the network structure and training
hyperparameter configuration used in the experiment.

4.2 NETWORK V.S. CHAIN AND TREE (RQ1)

Setup. We evaluated the impact of different pattern segments structures on long-term forecast-
ing task. To address RQ1, we controlled the attention masks of SegmentTST(More details in Ap-
pendix A) to organize the pattern segments into chain, tree, and network structures, denoted as
SegmentTST(Chain), SegmentTST(Tree), and SegmentTST(Network), respectively. Except for the
different attention mask used during the attention, these models share the same model settings.

Table 1: Long term forecasting task on different pattern segement structures. The results are
avaergaed from four different forecasting length {96, 192, 336, 720}. Red: best, Blue: second best.
The full results are shown in Table 7.

Datasets ETTm1 ETTm2 ETTh1 ETTh2 Weather Electricity Exchange
Methods MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SegmentTST(Chain) 0.405 0.413 0.338 0.386 0.469 0.465 0.497 0.485 0.247 0.300 0.199 0.292 0.339 0.398
SegmentTST(Tree) 0.403 0.413 0.344 0.389 0.461 0.462 0.491 0.481 0.258 0.297 0.191 0.283 0.385 0.415

SegmentTST(Network) 0.399 0.413 0.327 0.376 0.455 0.456 0.467 0.467 0.244 0.297 0.185 0.278 0.353 0.406
NoP 0.377 0.395 0.278 0.324 0.434 0.439 0.373 0.402 0.244 0.274 0.167 0.260 0.349 0.396

Results As shown in Table 1, the SegmentTST(Network) consistently achieves superior perfor-
mance in long-term forecasting, with noticeable improvements over both SegmentTST(Chain) and
SegmentTST(Tree) across all seven datasets. This indicates that organizing pattern segments into a
network structure is generally more suitable for forecasting tasks. As an enhanced version of Seg-
mentTST(Network), NoP further improves predictive performance by leveraging the Pattern Passing
mechanism to better capture and aggregate global information within the network.

4.3 NOP V.S. BASELINES.

Setup We conducted both long- and short-term forecasting tasks on pattern segment-based mod-
els and representative forecasting models to comprehensively assess their predictive performance.
Furthermore, we decomposed the forecasting results to assess how effectively NoP enhances pattern
representations and aggregations.

Visualization (RQ2). We decompose the forecasting results of TimesNet, PDF, Peri-midFormer,
and NoP on the Electricity and ETTh2 datasets into trend and seasonal components, and visualize
the seasonal part, as the pattern network is constructed solely on the seasonal component. The
visualization is shown in Figure 4. As observed, NoP produces seasonal components that are closer
to ground truth, highlighting the effectiveness of combining the pattern network with the pattern
passing mechanism. In addition, NoP achieves predictive performance that matches or even exceeds
that of other representative forecasting models on multiple benchmarks.

4.3.1 RESULTS (RQ3)

Tables 2 and 3 show that NoP achieves state-of-the-art performance among pattern-segment-based
models that based on chain or tree structures, particularly on the ETTm1, ETTh2, and Electricity
datasets. Unlike ETTh2 and Electricity, which exhibit relatively monotonic and well-defined pat-
terns, ETTm1 contains more diverse and complex dynamics, making it especially challenging to
accurately capture inter-segment dependencies. By flexibly connecting correlated pattern segments,
NoP overcomes the inherent hierarchical limitations of chain- or tree-based structures and deliv-
ers significantly stronger performance on ETTm1 than on ETTh2 and Electricity. Moreover, NoP
consistently outperforms representative forecasting baselines across most datasets, highlighting its
superior generalization ability.
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Ground Truth
TimesNet
PDF
PerimidFormer
NoP

(a) Raw time series of ECL

Ground Truth
TimesNet
PDF
PerimidFormer
NoP

(b) Raw time series of ETTh2

Ground Truth
TimesNet
PDF
PerimidFormer
NoP

(c) Seasonal components of ECL

Ground Truth
TimesNet
PDF
PerimidFormer
NoP

(d) Seasonal components of ETTh2

Figure 4: The visualization of raw time series and decomposed seasonal components from raw time
series, compared with TimesNet, PDF and Peri-midFormer.

Table 2: Long term forecasting task on pattern segement-based models and representative fore-
casting models. The results are avergaed from four different forecasting length {96, 192, 336, 720}.
Red: best, Blue: second best. (* means former). The full results are shown in Table 8.

Methods NoP TimesNet PDF Peri-mid* TimeFilter MSGNet TQNet iTrans* PatchTST DLinear
(Ours) (2023) (2024) (2024) (2025b) (2024) (2025) (2023) (2022) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.377 0.395 0.412 0.416 0.395 0.403 0.409 0.410 0.381 0.396 0.398 0.411 0.390 0.401 0.407 0.412 0.388 0.402 0.403 0.407

ETTm2 0.278 0.324 0.295 0.333 0.287 0.331 0.290 0.328 0.275 0.323 0.288 0.330 0.281 0.324 0.292 0.336 0.291 0.335 0.346 0.396

ETTh1 0.434 0.439 0.476 0.465 0.435 0.433 0.455 0.446 0.464 0.446 0.452 0.452 0.448 0.437 0.462 0.454 0.451 0.449 0.461 0.458

ETTh2 0.373 0.402 0.417 0.428 0.376 0.402 0.400 0.416 0.393 0.412 0.396 0.417 0.387 0.406 0.383 0.407 0.387 0.412 0.559 0.518

Weather 0.244 0.274 0.262 0.288 0.254 0.277 0.262 0.283 0.243 0.272 0.249 0.278 0.249 0.275 0.260 0.281 0.259 0.281 0.266 0.318

ECL 0.167 0.260 0.196 0.296 0.218 0.300 0.178 0.267 0.167 0.263 0.194 0.300 0.177 0.270 0.175 0.267 0.204 0.294 0.225 0.319

Exchange 0.349 0.396 0.418 0.443 0.353 0.398 0.388 0.417 0.376 0.410 0.399 0.430 0.363 0.404 0.377 0.415 0.373 0.409 0.371 0.423

Average 0.317 0.356 0.354 0.381 0.331 0.363 0.340 0.367 0.328 0.360 0.339 0.374 0.328 0.360 0.337 0.367 0.336 0.369 0.376 0.405

Table 3: Short term forecasting task on pattern segement-based models and representative fore-
casting models. The prediction lenghs are {6, 48} and results are weighted averaged from sev-
eral datasets under different sample intervals. The full results are shown in Table 9. (TMixer is
TimeMixer)

Methods NoP TimesNet Peri-mid* iTrans* PatchTST DLinear LightTS Pyra* Stationary FED* TMixer Re*
(Ours) (2023) (2024) (2023) (2022) (2023) (2022) (2022a) (2022b) (2022) (2024b) (2020)

SMAPE 11.837 11.888 11.897 13.233 12.866 12.500 11.962 13.616 12.780 12.605 11.885 12.805
MASE 1.596 1.607 1.607 1.850 1.734 1.678 1.609 1.843 1.756 1.677 1.598 1.777
OWA 0.854 0.858 0.859 0.972 0.928 0.899 0.862 0.984 0.930 0.903 0.856 0.937

4.4 ABLATION STUDIES

Setup. To assess the contribution of key components in NoP, we performed ablation studies on
long-term forecasting tasks. The results are presented in Table 4.The table reports the impact on
performance when different components of NoP are removed. w/o FFT constructs the pattern net-
work by directly segmenting the time series into patches, without applying FFT-based segmentation.
w/o Network organizes the segmented patterns into a tree structure instead of building a network.
w/o PPB performs attention mechanism to aggregate information. w/o Virtual Pattern applies
average pooling over the network without virtual pattern, and uses the pooled representation for
forecasting.

7
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Table 4: Ablation studies on long-term forecasting task to assess the key components of NoP. The
results are avergaed from four different forecasting length {96, 192, 336, 720}. Red: best, Blue:
second best.

Datasets ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather Exchange
Variants MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

w/o FFT 0.417 0.418 0.285 0.332 0.480 0.482 0.403 0.421 0.259 0.286 0.188 0.275 0.395 0.416
w/o Network 0.388 0.401 0.282 0.327 0.471 0.457 0.387 0.409 0.253 0.281 0.167 0.260 0.363 0.404

w/o PPB 0.390 0.402 0.284 0.329 0.463 0.454 0.397 0.413 0.256 0.282 0.169 0.263 0.392 0.420
w/o Virtual Pattern 0.386 0.401 0.282 0.327 0.455 0.449 0.391 0.410 0.251 0.278 0.167 0.260 0.371 0.408

NoP 0.377 0.395 0.278 0.324 0.434 0.439 0.373 0.402 0.244 0.274 0.167 0.260 0.349 0.396

Segment 3 and Its Incoming Segments

1

2 3 4

5 6 87

Pattern Segments

Adjacent Matrix Segment 5 and Its Incoming Segments(Subset)

Figure 5: Visualization of two segments from the pattern network constructed on the Electricity
dataset, along with their incoming connections(to better observe similarities across patterns, we
vertically shifted the segments and omitted part of the incoming connections for clarity). “Seg. 3 S.
2[32:62]” denotes the 3rd Segment in the pattern network, located at the 2nd Scale, corresponding
to time steps 32–62 in the original sequence. The pattern network flexibly links segments with
fluctuations comparable to Segments 3 and 5, thereby enabling mutual reinforcement through the
aggregation of similar patterns and overcoming the hierarchical constraints inherent to chain- or
tree-structured models.

Results. The results in the Table 4 indicate that the FFT partitions pattern segments more effec-
tively than Patch. This is because manually fixing patch lengths may inadvertently split or merge
pattern segments, highlighting the need to model multi-scale segment information. In addition, the
results on the Weather dataset suggest that, in a few cases, connecting pattern segments using a tree
structure can also yield satisfactory performance. However, in most scenarios, the network structure
enhanced with the Pattern Passing mechanism consistently achieves the best predictive performance.

4.5 MODEL ANALYSIS

Case Study on Pattern Network Construction. We analyzed the pattern network constructed on
the Electricity dataset and visualized two segments along with their incoming neighbors, as illus-
trated in Figure 5. To better observe the similarity among different patterns, we vertically shifted
the segments and omitted part of the incoming connections for clarity. The pattern network flex-
ibly connects segments that exhibit comparable fluctuations to Segments 3 and 5, enabling them
to reinforce themselves by aggregating information from similar patterns. This design overcomes
the hierarchical constraints imposed by chain- or tree-structured models. We further analyze the
hyper-parameters related to pattern network construction in Appendix C.
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(a) Influence of look-back horizon on long term pre-
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Figure 6: Hyper-parameters sensitivity analysis (left) and complexity analysis (right).

Influence of Look-Back Horizon. We study the effect of input length on pattern-segment-based
models by varying the look-back window over {48, 96, 192, 336, 512} time steps. As shown in
Figure 6a, NoP leverages the richer pattern information present in longer sequences to strengthen its
pattern representations, yielding superior predictive performance compared with other models across
all look-back windows. However, as the look-back window grows further, the number of novel
patterns decreases and noise accumulates, which constrains all models; consequently, performance
gains become marginal and can even decline.

Efficiency Analysis. We analyze the model complexity on the long-term forecasting task using
the ETTh1 dataset with the same batch size. Specifically, we consider the number of trainable
parameters, GPU memory usage, and MSE as evaluation metrics. As shown in Figure 6b, NoP
achieves the lowest MSE with fewer parameters, demonstrating its potential to achieve excellent
forecasting performance with less computational resources.

5 CONCLUSION

In this work, we introduced a method for time series forecasting called NoP. It decomposes time
series into pattern segments, a metric for quantifying pattern similarity in the frequency domain, and
organizes them into pattern network. The Pattern Passing mechanism is then employed to propagate
and aggregate information across the network. Extensive experiments demonstrate that NoP not only
markedly enhances the modeling of pattern, but also achieves new state-of-the-art results on mul-
tiple time series forecasting benchmarks compared to chain- or tree-based methods. However, like
other pattern segment-based methods, NoP does not model the relationships among pattern segments
across different channels, thereby overlooking the inter-variable dependencies. In future work, we
plan to explore the potential for incorporating channel-wise correlations into such frameworks.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation was involved. All datasets used, including ETT (Zhou et al., 2021), Weather (Wetter-
station), ECL (UCI), Exchange (Lai et al., 2018) and M4 benchmark Spyros Makridakis (2018),
were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We
have taken care to avoid any biases or discriminatory outcomes in our research process. No person-
ally identifiable information was used, and no experiments were conducted that could raise privacy
or security concerns. We are committed to maintaining transparency and integrity throughout the
research process.
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. This
paper describes all experimental settings in detail, including, the hyperparameters of the neural
network in NoP, the model training configuration, and the dataset partitioning. We will open source
the code used in this work in the future.
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A ARCHITECTURE OF SEGMENTTST

We introduce SegmentTST (Segment Time Series Transformer) for time-series forecasting. The
model first applies Fourier analysis to extract the top-K dominant periods and partitions the original
sequence into pattern segments, which are aligned via zero padding as described in Section 3.2,
yielding P = {Pi}Ni=1. These aligned segments are then embedded before modeling inter-segment
dependencies:

Z = Proj
(
Stack(P)

)
∈ RN×D, (5)

where Stack(·) concatenates the padded pattern segments, and Proj : RH → RD denotes a linear
projection layer. The resulting representations are processed by a stacked Transformer encoder (Nie
et al., 2022) with a masking mechanism:

Z′ = StackedEncoder(Z,Mask), (6)

where Mask ∈ RN×N is used to block unrelated pattern segments, thereby organizing dependencies
into chain, tree, or network structures. Specifically, the tree-structured mask follows the implemen-
tation in Peri-midFormer (Wu et al., 2024), while the network-structured mask is constructed as
described in Section 3. Depending on whether a mask is applied and its type, we obtain four vari-
ants: SegmentTST, SegmentTST(chain), SegmentTST(tree), and SegmentTST(network).

Finally, we apply average pooling to Z′ and pass the result through a linear layer to generate the
forecast Ŷ :

Ŷ = Proj
(
Mean(Z′)

)
∈ RL. (7)

B IMPLEMENTATION DETAILS

In this section, we first introduce in detail the datasets used in the long-term and short-term time
series forecasting tasks, including the division of training sets, test sets, and validation sets. We then
further introduce the evaluation metrics used in the time series forecasting tasks. All experiments
and deep neural networks training are implemented in PyTorch on 4 NVIDIA RTX 4090 24GB
GPU.

B.1 DOWNSTREAM TASKS DATASETS DETAILS

We utilize 8 datasets including ETTh1, ETTh2, ETTm1, ETTm2 (Zhou et al., 2021), Electricity
(UCI), Weather (Wetterstation), and Exchange (Lai et al., 2018) to conduct long-term time series
forecasting experiments,with a detailed description of the dataset provided in Table 5. Our model,
NoP, employ input series of lookback lengths 96, with forecast horizons of {96, 192, 336, 720}.
For short-term forecasting experiments, we employ the M4 (Spyros Makridakis, 2018) benchmark
dataset, predicting data of various frequencies.

B.2 METRICS

We assess the five TSA tasks using various metrics. For long-term forecasting and imputation tasks,
we employ mean squared error (MSE) and mean absolute error (MAE). For short-term forecast-
ing, we utilize symmetric mean absolute percentage error (SMAPE), mean absolute scaled Error
(MASE), and overall weighted average (OWA), with OWA being a metric unique to the M4 compe-
tition. The calculations for these metrics are as follows:

MSE =

n∑
i=1

(yi − ŷi)
2
, (8)

MAE =

n∑
i=1

|yi − ŷi| , (9)

SMAPE =
200

T

T∑
i=1

∣∣∣Xi − Ŷi

∣∣∣
|Xi|+

∣∣∣Ŷi

∣∣∣ , (10)
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Table 5: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Information (Frequency)

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (Hourly)

(Long-term) Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)

M4-Yearly 1 6 (23000, 0, 23000) Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Finance

Forecasting M4-Monthly 1 18 (48000, 0, 48000) Industry

(short-term) M4-Weakly 1 13 (359, 0, 359) Macro

M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

MAPE =
100

T

T∑
i=1

∣∣∣Xi − Ŷi

∣∣∣
|Xi|

, (11)

MASE =
1

T

T∑
i=1

∣∣∣Xi − Ŷi

∣∣∣
1

T−q

∑T
j=q+1 |Xj −Xj−q|

, (12)

OWA =
1

2

[
SMAPE

SMAPENaı̈ve2
+

MASE

MASENaı̈ve2

]
, (13)

where, yi is the ground truth value, ŷi is the model prediction, q is the periodicity of the time series
data. X, Ŷ ∈ RT×C are the ground truth and prediction results of the future with T time points and
C dimensions. Xi means the i-th future time point.

B.3 EXPERIMENT CONFIGURATION OF NOP

Table 6: Experiment configuration of NoP. All the experiments use the Adam (Kingma & Ba, 2017)
optimizer with the default hyperparameter configuration for (β1, β2) as (0.9, 0.999).

Task / Configurations Hyper-parameters Training Process
k layers dmodel LR Loss Batch Size Epochs

Long-term Forecasting 2-5 1-3 64-768 0.001 0.0005 0.0003 0.0001 MSE 16 10
Short-term Forecasting 2-5 1-3 64-768 0.001 0.0005 0.0003 0.0001 SMAPE 16 10

C HYPER-PARAMETERS SENSITIVITY ANALYSIS.

We conduct hyperparameter sensitivity analysis on the long-term forecasting task using the ETT
datasets. When evaluating the sensitivity of hyperparameter k, we fix the edge ratio m = 0.2; when
analyzing m, we fix k = 5. Increasing k (Figure 7b) produces more diverse pattern segments, and
the resulting aggregation enriches the pattern representation, thereby improving prediction perfor-
mance. However, an excessive number of segments introduces noise, which interferes with pattern
aggregation. A similar phenomenon is observed for the sampling ratio m (Figure 7a): when m is
too small, important segment connections may be overlooked, while overly large values cause noisy
segments to disrupt aggregation.
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Figure 7: Hyper-parameters sensitivity analysis.

D FULL RESULTS

D.1 FULL RESULTS OF DIFFERENT PATTERN SEGMENT STRUCTURES (TABLE 7)

D.2 FULL RESULTS OF LONG TERM FORECASTING TASK (TABLE 8)

D.3 FULL RESULTS OF SHORT TERM FORECASTING TASK (TABLE 9)

E LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
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Table 7: Full results of different pattern segment structures. The results are avergaed from four
different forecasting length {96, 192, 336, 720}. Red: best, Blue: second best.

Methods NoP SegmentTST(chain) SegmentTST(tree) SegmentTST(Network)

Datasets \Horizon MSE MAE MSE MAE MSE MAE MSE MAE

96 0.314 0.354 0.340 0.376 0.338 0.376 0.332 0.375
192 0.355 0.379 0.380 0.394 0.380 0.394 0.378 0.398
336 0.392 0.405 0.413 0.418 0.411 0.418 0.409 0.420
720 0.448 0.441 0.485 0.463 0.483 0.462 0.478 0.459

ETTm1

Avg 0.377 0.395 0.405 0.413 0.403 0.412 0.399 0.413

96 0.176 0.259 0.204 0.292 0.190 0.283 0.185 0.276
192 0.241 0.302 0.280 0.352 0.280 0.357 0.267 0.337
336 0.297 0.339 0.360 0.408 0.377 0.410 0.353 0.405
720 0.397 0.396 0.507 0.494 0.530 0.507 0.505 0.483

ETTm2

Avg 0.278 0.324 0.338 0.386 0.344 0.389 0.327 0.376

96 0.374 0.399 0.389 0.409 0.382 0.404 0.375 0.399
192 0.428 0.431 0.435 0.439 0.431 0.435 0.422 0.430
336 0.465 0.457 0.487 0.472 0.485 0.471 0.475 0.465
720 0.471 0.470 0.565 0.539 0.547 0.538 0.546 0.531

ETTh1

Avg 0.435 0.439 0.469 0.465 0.461 0.462 0.455 0.456

96 0.295 0.347 0.311 0.371 0.314 0.372 0.311 0.369
192 0.367 0.392 0.416 0.440 0.418 0.439 0.416 0.437
336 0.408 0.429 0.531 0.509 0.510 0.497 0.481 0.478
720 0.420 0.438 0.729 0.618 0.722 0.615 0.660 0.584

ETTh2

Avg 0.373 0.402 0.497 0.485 0.491 0.481 0.467 0.467

96 0.162 0.209 0.177 0.236 0.171 0.232 0.170 0.230
192 0.208 0.251 0.208 0.270 0.208 0.273 0.207 0.271
336 0.263 0.291 0.267 0.320 0.318 0.313 0.266 0.317
720 0.343 0.344 0.334 0.373 0.335 0.371 0.333 0.370

Weather

Avg 0.244 0.274 0.246 0.300 0.258 0.297 0.244 0.297

96 0.138 0.233 0.176 0.269 0.167 0.259 0.162 0.253
192 0.155 0.248 0.184 0.277 0.175 0.267 0.170 0.263
336 0.172 0.266 0.201 0.295 0.192 0.286 0.186 0.280
720 0.202 0.294 0.236 0.328 0.228 0.321 0.222 0.314

ECL

Avg 0.167 0.260 0.199 0.292 0.191 0.283 0.185 0.277

96 0.081 0.199 0.081 0.202 0.082 0.203 0.080 0.202
192 0.173 0.295 0.170 0.308 0.168 0.303 0.204 0.320
336 0.320 0.407 0.295 0.412 0.473 0.471 0.318 0.419
720 0.823 0.683 0.810 0.671 0.818 0.681 0.808 0.685

Exchange

Avg 0.349 0.396 0.339 0.398 0.385 0.414 0.353 0.406

Average 0.317 0.356 0.359 0.390 0.358 0.387 0.346 0.381
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Table 8: Full results of long term forecasting task on pattern segement-based models and repre-
sentative forecasting models. The results are avergaed from four different forecasting length {96,
192, 336, 720}. Red: best, Blue: second best. (* means former)

Methods NoP Timesnet PDF Peri-mid* TimeFilter MSGNet TQNet iTrans* PatchTST DLinear
Datasets (Ours) (2023) (2024) (2024) (2025b) (2024) (2025) (2023) (2022) (2023)

Horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.314 0.354 0.331 0.372 0.336 0.371 0.334 0.370 0.321 0.359 0.319 0.366 0.329 0.363 0.343 0.377 0.324 0.365 0.345 0.372
192 0.355 0.379 0.397 0.402 0.374 0.389 0.382 0.391 0.360 0.382 0.376 0.397 0.370 0.388 0.381 0.395 0.367 0.389 0.382 0.391
336 0.392 0.405 0.427 0.427 0.405 0.409 0.417 0.418 0.388 0.403 0.417 0.422 0.396 0.407 0.419 0.418 0.400 0.409 0.414 0.414
720 0.448 0.441 0.493 0.463 0.466 0.444 0.501 0.461 0.456 0.438 0.481 0.458 0.465 0.447 0.487 0.457 0.460 0.445 0.473 0.450E

T
T

m
1

Avg 0.377 0.395 0.412 0.416 0.395 0.403 0.409 0.410 0.381 0.396 0.398 0.411 0.390 0.401 0.407 0.412 0.388 0.402 0.403 0.407

96 0.176 0.259 0.185 0.265 0.182 0.267 0.174 0.255 0.171 0.257 0.177 0.262 0.177 0.258 0.185 0.271 0.182 0.266 0.194 0.293
192 0.241 0.302 0.256 0.310 0.247 0.308 0.249 0.304 0.237 0.300 0.247 0.307 0.241 0.302 0.254 0.314 0.250 0.311 0.283 0.360
336 0.297 0.339 0.314 0.345 0.309 0.346 0.319 0.349 0.296 0.338 0.312 0.346 0.305 0.341 0.315 0.352 0.313 0.350 0.376 0.423
720 0.397 0.396 0.424 0.412 0.409 0.402 0.418 0.405 0.397 0.397 0.414 0.403 0.402 0.398 0.413 0.407 0.417 0.412 0.529 0.509E

T
T

m
2

Avg 0.278 0.324 0.294 0.333 0.287 0.331 0.290 0.328 0.275 0.323 0.287 0.330 0.281 0.324 0.292 0.336 0.291 0.335 0.346 0.396

96 0.374 0.399 0.409 0.425 0.373 0.392 0.382 0.403 0.384 0.401 0.390 0.411 0.375 0.394 0.394 0.409 0.381 0.400 0.396 0.411
192 0.428 0.431 0.469 0.460 0.420 0.420 0.436 0.434 0.444 0.431 0.442 0.442 0.430 0.425 0.447 0.440 0.429 0.433 0.446 0.441
336 0.465 0.457 0.507 0.478 0.459 0.441 0.492 0.455 0.490 0.452 0.480 0.468 0.478 0.446 0.490 0.464 0.475 0.460 0.490 0.468
720 0.471 0.470 0.521 0.497 0.488 0.480 0.508 0.490 0.537 0.498 0.494 0.488 0.507 0.485 0.517 0.501 0.517 0.501 0.513 0.511E

T
T

h1

Avg 0.435 0.439 0.476 0.465 0.435 0.433 0.455 0.446 0.464 0.446 0.452 0.452 0.448 0.437 0.462 0.454 0.451 0.449 0.461 0.458

96 0.295 0.347 0.331 0.372 0.293 0.345 0.312 0.358 0.297 0.343 0.328 0.371 0.290 0.339 0.300 0.350 0.301 0.351 0.348 0.401
192 0.367 0.392 0.429 0.423 0.370 0.392 0.388 0.403 0.381 0.400 0.402 0.414 0.385 0.400 0.380 0.399 0.374 0.398 0.473 0.474
336 0.408 0.429 0.450 0.451 0.415 0.428 0.443 0.443 0.430 0.440 0.435 0.443 0.426 0.434 0.422 0.432 0.429 0.439 0.588 0.539
720 0.420 0.438 0.459 0.466 0.425 0.443 0.455 0.459 0.466 0.465 0.417 0.441 0.448 0.451 0.429 0.447 0.443 0.461 0.829 0.656E

T
T

h2

Avg 0.373 0.402 0.417 0.428 0.376 0.402 0.400 0.415 0.393 0.412 0.396 0.417 0.387 0.406 0.383 0.407 0.387 0.412 0.559 0.518

96 0.162 0.209 0.171 0.222 0.171 0.212 0.157 0.201 0.158 0.204 0.163 0.212 0.162 0.207 0.176 0.215 0.177 0.219 0.197 0.258
192 0.208 0.251 0.234 0.273 0.219 0.254 0.244 0.273 0.205 0.248 0.212 0.254 0.221 0.257 0.226 0.258 0.222 0.258 0.237 0.296
336 0.263 0.291 0.284 0.306 0.275 0.296 0.283 0.303 0.264 0.292 0.272 0.299 0.267 0.289 0.281 0.299 0.281 0.299 0.282 0.332
720 0.343 0.344 0.358 0.352 0.352 0.346 0.364 0.354 0.344 0.345 0.350 0.348 0.346 0.344 0.359 0.350 0.355 0.348 0.347 0.385W

ea
th

er

Avg 0.244 0.274 0.262 0.288 0.254 0.277 0.262 0.283 0.243 0.272 0.249 0.278 0.249 0.275 0.260 0.281 0.259 0.281 0.266 0.318

96 0.138 0.233 0.167 0.271 0.190 0.272 0.151 0.245 0.137 0.234 0.165 0.274 0.141 0.238 0.148 0.240 0.180 0.272 0.210 0.302
192 0.155 0.248 0.186 0.288 0.198 0.283 0.168 0.259 0.160 0.255 0.184 0.292 0.159 0.253 0.165 0.256 0.188 0.279 0.210 0.305
336 0.172 0.266 0.203 0.304 0.217 0.303 0.184 0.268 0.173 0.270 0.195 0.302 0.178 0.273 0.179 0.271 0.204 0.295 0.223 0.319
720 0.202 0.294 0.227 0.322 0.265 0.341 0.207 0.297 0.198 0.292 0.231 0.332 0.230 0.318 0.208 0.298 0.245 0.328 0.258 0.350E

C
L

Avg 0.167 0.260 0.196 0.296 0.218 0.300 0.177 0.267 0.167 0.263 0.194 0.300 0.177 0.270 0.175 0.267 0.204 0.294 0.225 0.319

96 0.081 0.199 0.115 0.246 0.082 0.200 0.083 0.199 0.087 0.203 0.102 0.230 0.087 0.204 0.094 0.216 0.088 0.205 0.093 0.226
192 0.173 0.295 0.213 0.335 0.173 0.295 0.190 0.307 0.186 0.306 0.195 0.317 0.178 0.300 0.184 0.307 0.189 0.309 0.184 0.324
336 0.320 0.407 0.367 0.440 0.324 0.411 0.401 0.458 0.334 0.417 0.359 0.436 0.340 0.420 0.336 0.422 0.327 0.415 0.328 0.435
720 0.823 0.683 0.978 0.753 0.833 0.686 0.879 0.702 0.897 0.713 0.940 0.738 0.849 0.690 0.893 0.716 0.886 0.706 0.879 0.705

E
xc

ha
ng

e

Avg 0.349 0.396 0.418 0.443 0.353 0.398 0.388 0.417 0.376 0.410 0.399 0.430 0.363 0.404 0.377 0.415 0.373 0.409 0.371 0.423

Average 0.317 0.356 0.354 0.381 0.331 0.363 0.340 0.367 0.328 0.360 0.339 0.374 0.328 0.360 0.337 0.367 0.336 0.369 0.376 0.405
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Table 9: Full results of short term forecasting task on pattern segement-based models and repre-
sentative forecasting models. The prediction lenghs are {6, 48} and results are weighted averaged
from several datasets under different sample intervals. Red: best, Blue: second best. (* means
former, TMixer is TimeMixer)

Methods NoP TimesNet Peri-mid* iTrans* PatchTST DLinear LightTS Pyra* Stationary FED* TMixer Re*
Metircs (Ours) (2023) (2024) (2023) (2022) (2023) (2022) (2022a) (2022b) (2022) (2024b) (2020)

SMAPE 13.386 13.463 13.483 13.724 13.677 14.340 13.444 14.594 13.717 13.508 13.369 13.752
MASE 3.043 3.058 3.080 3.157 3.049 3.112 3.022 3.269 3.078 3.051 3.009 3.088Year.
OWA 0.792 0.797 0.800 0.817 0.802 0.830 0.792 0.858 0.807 0.797 0.787 0.809

SMAPE 10.055 10.069 10.037 13.473 10.922 10.510 10.252 11.654 10.958 10.706 10.131 10.900
MASE 1.178 1.175 1.170 1.722 1.326 1.241 1.183 1.392 1.325 1.263 1.186 1.316Quart.
OWA 0.886 0.886 0.882 1.240 0.979 0.930 0.897 1.037 0.981 0.947 0.893 0.975

SMAPE 12.713 12.760 12.795 13.674 14.200 13.382 12.798 14.963 13.917 13.925 12.762 13.949
MASE 0.939 0.947 0.948 1.068 1.111 1.007 0.957 1.165 1.097 1.062 0.940 1.096Month.
OWA 0.882 0.887 0.889 0.976 1.015 0.937 0.894 1.066 0.998 0.982 0.884 0.999

SMAPE 4.855 4.995 4.912 5.598 5.658 5.122 5.324 5.605 6.302 4.888 5.085 6.611
MASE 3.256 3.346 3.260 3.957 3.626 3.608 3.410 3.966 4.064 3.244 3.403 4.492Others.
OWA 1.024 1.053 1.031 1.213 1.167 1.108 1.098 1.215 1.304 1.026 1.072 1.404

SMAPE 11.837 11.888 11.897 13.233 12.866 12.500 11.962 13.616 12.780 12.605 11.885 12.805
MASE 1.596 1.607 1.607 1.850 1.734 1.678 1.609 1.843 1.756 1.677 1.598 1.777Avg.
OWA 0.854 0.858 0.859 0.972 0.928 0.899 0.862 0.984 0.930 0.903 0.856 0.937

18


	Introduction
	Preliminaries and Related Work
	Problem Definition
	Graph Neural Networks
	Related work

	Methodology
	Measuring Pattern Discrepancy
	Pattern Network Construction
	Pattern Passing

	Experiments
	Experimental Settings
	Network v.s. Chain and Tree (RQ1)
	NoP v.s. Baselines.
	Results (RQ3)

	Ablation Studies
	Model Analysis

	Conclusion
	Architecture of SegmentTST
	Implementation Details
	Downstream Tasks Datasets Details
	Metrics
	Experiment configuration of NoP

	Hyper-Parameters Sensitivity Analysis.
	Full Results
	Full Results of Different Pattern Segment Structures (Table 7)
	Full Results of Long Term Forecasting Task (Table 8)
	Full Results of short Term Forecasting Task (Table 9)

	LLM Usage

