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Abstract
The latest Text-to-Speech (TTS) systems can produce speech with

voice quality and naturalness comparable to human speech. Yet the

demand for large amount of high-quality data from target speak-

ers remains a significant challenge. Particularly for long-form ex-

pressive reading, target speaker’s training speech that covers rich

contextual information are needed. In this paper a novel design of

context-aware speech pre-trained model is developed for expressive

TTS based on contrastive learning. The model can be trained with

abundant speech data without explicitly labelled speaker identities.

It captures the intricate relationship between the speech expres-

sion of a spoken sentence and the contextual text information. By

incorporating cross-modal text and speech features into the TTS

model, it enables the generation of coherent and expressive speech,

which is especially beneficial when there is a scarcity of target

speaker data. The pre-trained model is evaluated first in the task of

Context-Speech retrieval and then as the integral part of a zero-shot

TTS system. Experimental results demonstrate that the pretraining

framework effectively learns Context-Speech representations and

significantly enhances the expressiveness of synthesized speech.

Audio demos are available at: https://ccsp2024.github.io/demo/.
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tion (HCI);Human computer interaction (HCI); • Computing
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Artificial intelligence.
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1 Introduction
Text-to-Speech (TTS) has experienced significant advancements

in recent years, driven by breakthroughs in artificial intelligence,

particularly in the field of deep learning. The autoregressive TTS

framework, exemplified by the combination of the Tacotron se-

ries [25, 31] and WaveNet [17], has significantly improved the nat-

uralness of synthesized speech. Subsequently, non-autoregressive

models [10, 12, 21, 23, 24] drastically accelerating the speech syn-

thesis process while retaining high quality. Recently, zero-shot TTS

system have emerged [2, 26, 30], pushing the envelope further by

synthesizing voices they have never been trained on directly.

Most of these models are capable of generating speech quality

close to the human level, but they mainly focus on single-sentence

speech modeling. There are many scenarios requiring speech syn-

thesized in a context-aware manner, such as audiobook, conver-

sational speech, and long-form news reading. A straightforward

solution is to leverage external information from contextual data

into TTS modeling [7, 33, 35]. However, this approach demands

a significant amount of high-quality, long-form voice data, which

is extremely scarce and hard to obtain for most target speakers.

Additionally, given contextual text information, constructing the

correlation between it and the current sentence’s speech expres-

sion is a non-trivial task. As prosody features are commonly used

to represent speech expression, many works focus on predicting

prosody information from the input text [19, 23, 28] to improve TTS

performance. Nonetheless, efforts to model the prosody considering

context beyond the current sentence [34] remain limited due to the

requirement for long-form data from the target speaker.

In this paper, we propose a Contrastive Context-Speech Pre-

training (CCSP) framework to learn cross-modal representations

invloving information from both contextual text and current speech

expression. As shown in Figure 1, the CCSP model is trained by

a large amount of contextual voice data. With no requirement on

explicit speaker identification, the CCSP model can leverage as

more as possible contextual voice data from different speakers. For

https://orcid.org/0009-0009-5624-1704
https://ccsp2024.github.io/demo/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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example, Librivox[9] provides huge number of public domain audio-

book data read by volunteers from around the world. By leveraging

extensive contextual voice data into cross-modal representation

learning, the CCSP can align the features of context and speech

within a shared space, resulting in enriched feature representations.

For instance, the text modality features derived from the surround-

ing context encapsulate speech representation, and conversely, the

speech modality features of the spoken sentence are imbued with

contextual information.

After obtaining the pretrained CCSP model, we can inject con-

textual information into downstream TTS model for any target

speaker without considering if there is enough contextual voice

data. Figure 1 illustrates the strategic utilization of CCSP model in

different stages of TTS model. In the TTS training phase, where

paired speech-text data is available, CCSP model is used to generate

context-aware speech modality features for the current sentence.

These enriched speech modality features enable the TTS system

to learn how to produce speech that not only aligns with the con-

tent but also reflects the surrounding context. During the inference

stage, where the TTS model must generate speech solely from text,

the CCSP model comes into play by providing text modality fea-

tures that capture the speech expression related information. These

text modality features effectively replace the speech modality fea-

tures used in the training phase, resulting in context-aware speech

synthesis with a heightened level of expressiveness.

The key contributions of our work can be summarized as:

• We propose a contrastive context-speech pretraining (CCSP)

framework to learn cross-modal representations containing

both contextual text information and the speech expression

of the spoken sentence.

• By integrating cross-modal information from the CCSPmodel

into the downstream TTS system, we can create context-

aware voice generation model for any speaker, circumvent-

ing the limitation of obtaining sufficient contextual voice

data from the target speaker.

• We conduct context-speech retrieval and downstream TTS

tasks to evaluate the proposed CCSP model. Experiments

demonstrate that the CCSP model is able to learn effec-

tive cross-modal representations, and that integrating these

learned features enhance the expressiveness of the down-

stream TTS model, particularly in long-form reading.

2 Related Work
2.1 Cross-Modal Feature Learning
Cross-modal feature learning is a powerful approach for bridging

the semantic gap between various data types, like text and images,

or text and audio. By learning representations that capture the un-

derlying relationships acrossmodalities, thesemodels can perform a

wide range of tasks that require an understanding of multiple types

of input. A representative work of cross-modal feature learning is

CLIP [22] (Contrastive Language-Image Pretraining). It leverages a

dual-encoder architecture comprising: an image encoder and a text

encoder, which are trained to project images and text into a shared

embedding space. Using a contrastive loss function [18], CLIP is

trained on a diverse and large-scale dataset of image-text pairs to

Figure 1: The overall concept of CCSP and its integration
strategy with the TTS system. The CCSP model is trained on
abundant contextual voice data without the need for explicit
speaker identification. Once the model is pre-trained, the
speech-based representation is utilized to guide the training
phase of the TTS model. In contrast, the context-based rep-
resentation is employed during the inference stage.

maximize the similarity between corresponding image-text pairs

while minimizing it for non-corresponding ones.

Similar cross-modal feature learning works between language

and speech are wav2vec 2.0 [1], HuBERT [8], and w2v-BERT [4].

These work have underscored the ability to utilize extensive speech

data to enhance speech processing tasks, particularly in the domain

of ASR (Automatic Speech Recognition). These cross-modal fea-

tures tend to prioritize the extraction of semantic features from

speech while potentially underrepresenting supra-segmental fea-

tures beyond semantics like prosody. For instance, given the same

sentence spoken by different speakers or in different expression

manner, the goal of an ASR system is to obtain the same text output.

Conversely, as a one-to-many task, TTS systems need to produce

correct pronunciation and replicate the spoken way of those words.

CLAP (Contrastive Language-Audio Pretraining) [5, 32] is a cross-

modal feature learning framework designed for text and audio,

using specialized pre-trained encoders. Compared to the previ-

ously mentioned speech encoding approach, the audio encoder [3]

utilized in [32] captures a wider range of shifts and patterns by

interpreting audio spectrograms as visual images. Additionally, the

text input in such language-audio pretraining tasks is typically a de-

scription rather than a transcription of the speech, which extends

the modeling goal from local semantic understanding to global

pattern description to some extent.

2.2 Context-aware Text-to-Speech
The development of context-aware TTS systems has been driven by

the quest to produce speech that mirrors the nuanced expressive-

ness of human speech across different contexts. This advancement

is crucial for applications that demand high expressiveness, such

as audiobook narration, where the system must convey the mood

of the story, or in long-form content reading, where maintaining
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listener engagement through varied intonation is essential. Tradi-

tional TTS systems, while effective in generating intelligible speech,

often fall short in capturing the emotional nuances and situational

contexts that are intrinsic to natural speech. To bridge this gap, re-

searchers have been exploring various methods to endow synthetic

speech with a more dynamic and context-sensitive prosody. This

includes techniques in local and global context modeling.

Local context modeling in TTS focuses on information from the

textual environment within the sentence or the phonetic details

surrounding the speech segment. This includes modeling the nu-

ances of pronunciation, intonation, and timing based on nearby

words or segments. For instance, Char2Wav [27] represents an early

approach to generate speech from characters by a sequence-to-

sequence model that accounts for local phonetic contexts. Recently,

Conformer [6] combine convolutional layers for detailed local con-

text modeling and enhances the expressiveness of generated voice

for TTS system [16]. CLAPSpeech [36] employs the CLAP frame-

work to learn prosody from text context, which is also focus on

modeling local context at the phoneme/word level. These models

primarily concentrate on local context modeling without consider-

ing broader context information beyond the current sentence.

Global context modeling aims to capture information from an

extensive scope beyond the current sentence, potentially encom-

passing preceding and succeeding contexts or the entire paragraph.

This approach enables the TTS system to generate speech that

is contextually appropriate and expressive. For instance, cross-

sentence information can be utilized by a Bert feature-based con-

textual encoder [7]. ParaTTS [35] and ContextSpeech [33] consider

contextual information from both paragraph text and speech. Addi-

tionally, graph-based conversational TTS systems [13, 14] model

cross-sentence information by treating them as connected graph

nodes. These models involve global contextual information but

require parallel contextual voice data from the target speaker.

3 Contrastive Context-Speech Pre-training
In this section, we will introduce the Contrastive Context-Speech

Pretraining (CCSP) framework, which is illustrated in Figure 2. It

comprises three components: the context branch, the speech branch,

and the contrastive loss mechanism. The speech branch focuses

on processing and understanding the acoustic signals, while the

context branch deals with the surrounding textual information. The

contrastive loss functions as the bridge between the two, aligning

the vector spaces of both modalities to facilitate cross-modal repre-

sentation learning. The main objective is to learn the associative

information between the context and the current speech. In the

following subsections, we will provide a detailed exploration of

each component within our system.

3.1 Context Branch
To avoid concentrating on modeling the transcription-related se-

mantic information during the feature alignment, we use the sur-

rounding context (preceding and following) as the text input and

the current sentence’s text is omitted. This design is driven by:

• In a TTS system, the input is text and the output is speech.

During the TTS modeling process, the current sentence text

is provided, carrying with it inherent semantic and prosodic

information directly. There exist various explicit modeling

methods designed to predict prosody from the text input.

Our focus shift to learn the prosody relationship between

surrounding context and the current speech.

• Retaining the current sentence text would cause the cross-

modal representation learning to be predominantly influ-

enced by transcription-related semantic information. Our

objective is to employ the context as a prompt to generate

natural and expressive speech. Therefore, excluding the cur-

rent sentence text force the modelling to focus on context &

speech expression correlation.

As shown in Figure 2, the context branch takes the contexts

(preceding𝑊 words and following𝑊 words) as input and then

go through a pretrained text encoder to produce three context

embeddings, denoted as 𝐸𝐶
𝑃
, 𝐸𝐶

𝐹
, and 𝐸𝐶

𝐴
. Here, 𝐸𝐶 indicates the

embeddings produced by context branch. Based on that, 𝐸𝐶
𝑃
repre-

sents the average text representation derived from the preceding

context, 𝐸𝐶
𝐹
corresponds to that from the following context, and

𝐸𝐶
𝐴
is the combined average text representation obtained from both

the preceding and following contexts. The pretrained text encoder

we used in our experiments is RoBERTa-base [15].

3.2 Speech Branch
3.2.1 Audio Representation. In the speech modeling branch, the

input speech is initially processed as audio data by the methodology

described in [32]. At first, mel-spectrograms are extracted from the

variable-length audio samples. These spectrograms are then passed

through a feature fusion module to be integrated to a fix length

(10s). To be more specific, if the input audio < 10𝑠 , we first repeat

the input audio and then pad it with zeros. If the input audio > 10𝑠 ,

we downsample the audio to a global input of 10s. Additionally, we

extract three separate 10s clips from the beginning, middle, and end

1

3
of the input to serve as local inputs. These four 10s audio segments

are combined into a single feature by the feature fusion method

described in [32]. The employed pre-trained audio encoder, HT-

SAT model [3], is an audio transformer architecture incorporating

a hierarchical structure with a token-semantic module to obtain an

effective audio representation, denoted as 𝐸𝐴 .

3.2.2 Prosody Representation. To enrich the cross-modal repre-

sentation with more supra-segmental information, we incorporate

prosody features, pitch and duration, into the speech modeling

branch. Initially, we extract frame-level pitch sequence and dura-

tion information. The prosody encoder is then utilized to generate

positional prosody features as Equation 1. For each frame 𝑖 , 𝑃𝑣
𝑖
repre-

sents the pitch value. The pitch value is then processed through 𝑃𝐸,

a convolution layer-based pitch encoding module, transforming the

scalar pitch value into an𝑚-dimensional vector. Additionally, 𝑃𝑑
𝑖

indicates the phoneme index corresponding to frame 𝑖 , and 𝑃𝑆 (𝑃𝑑
𝑖
)

retrieves the positional embedding according to the method es-

tablished by [29]. By summing these components, we acquire the

positional prosody feature, 𝐸𝑃
𝑖
.

𝐸𝑃𝑖 = 𝑃𝐸 (𝑃𝑣𝑖 ) + 𝑃𝑆 (𝑃𝑑𝑖 ) (1)

𝐸𝑃x = 𝐺𝑅𝑈 (𝐸𝑃𝑥1 , 𝐸
𝑃
𝑥2
, ..., 𝐸𝑃𝑥𝑇 ) (2)

𝐸𝑆x = 𝑝𝑟𝑜 𝑗 ( [𝐸𝑃x |𝐸𝐴]) (3)
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Figure 2: The Overall Framework of CCSP. The Speech Branch takes audio as input, goes through a prosody encoder and a
pre-trained audio encoder, and then the outputs are concatenated to form the Audio & Prosody Features. The Context Branch
takes the preceding and following context as input, goes through a pre-trained text encoder to obtain the Context Features.
Finally, a contrastive loss function will be used to align the features from different modalities.

After obtaining the frame-level positional prosody features, we

employ a GRU layer to derive a global prosody feature, denoted as

𝐸𝑃x , for speech segment x in Equation 2. {𝑥1, 𝑥2, ..., 𝑥𝑇 } are frames

belonging to x. Subsequently, the Audio & Prosody Feature for

speech segment x, 𝐸𝑆x , is acquired by concatenating the prosody

feature (𝐸𝑃x ) with the Audio feature (𝐸𝐴), followed by a projection

as in Equation 3. As depicted in Figure 2, three Audio & Prosody

Features are generated: 𝐸𝑆
𝐵
, 𝐸𝑆

𝐴
and 𝐸𝑆

𝐸
, corresponding to speech

segment “Beginning”, “All” and “End”. An assumption here is that

the preceding context predominantly influences the beginning part

of the current sentence, whereas the following context mainly im-

pacts the end part of the current sentence. To be more specific,

speech segments 𝐵, 𝐴 and 𝐸 refer to the first 𝑠 seconds, the entire

sentence, and the last 𝑠 seconds, respectively.

3.3 Contrastive Learning
To effectively learn representations that integrate information from

dual modalities, it is essential to align the feature spaces of the re-

spective modal representations. Building on the approaches of [22,

32], we simultaneously train the speech and context branches

with the objective of maximizing the cosine similarity between

the modality representations. Within a batch size of 𝑁 , we gener-

ate 𝑁 2
context-speech pairings. Each pair is processed through its

corresponding branch, resulting in three textual features (𝐸𝐶
𝑃
, 𝐸𝐶

𝐴
,

and 𝐸𝐶
𝐹
) and three speech features (𝐸𝑆

𝐵
, 𝐸𝑆

𝐴
, and 𝐸𝑆

𝐸
). This process

forms 𝑁 2
pairings each for (𝐸𝐶

𝑃
, 𝐸𝑆

𝐵
), (𝐸𝐶

𝐴
, 𝐸𝑆

𝐴
), and (𝐸𝐶

𝐹
, 𝐸𝑆

𝐸
). The

goal for these pairings is to optimize the similarity scores for the

𝑁 intra-sample pairs while reducing similarity for the 𝑁 (𝑁 − 1)
inter-sample pairs. The loss function, 𝐿, based on symmetric cross

entropy (𝑓𝑆𝐶𝐸 ), is detailed in Equation 4, encapsulating this align-

ment objective.

𝐿 = 𝑓𝑆𝐶𝐸 ( [𝐸𝑆𝐴,1, ..., 𝐸
𝑆
𝐴,𝑁 ], [𝐸𝐶𝐴,1, ..., 𝐸

𝐶
𝐴,𝑁 ])

+ 𝑓𝑆𝐶𝐸 ( [𝐸𝑆𝐵,1, ..., 𝐸
𝑆
𝐵,𝑁 ], [𝐸𝐶𝑃,1, ..., 𝐸

𝐶
𝑃,𝑁 ])

+ 𝑓𝑆𝐶𝐸 ( [𝐸𝑆𝐸,1, ..., 𝐸
𝑆
𝐸,𝑁 ], [𝐸𝐶𝐹,1, ..., 𝐸

𝐶
𝐹,𝑁 ]) (4)

𝑓𝑆𝐶𝐸 ( [𝐸𝑆x,1, ..., 𝐸
𝑆
x,𝑁 ], [𝐸𝐶x,1, ..., 𝐸

𝐶
x,𝑁 ])

=
1

2𝑁

𝑁∑︁
𝑖=1

(
𝑙𝑜𝑔

𝑒𝑥𝑝 (𝐸𝑆x,𝑖 · 𝐸
𝐶
x,𝑖/𝜏)∑𝑁

𝑗=1 𝑒𝑥𝑝 (𝐸𝑆x,𝑖 · 𝐸
𝐶
x, 𝑗/𝜏)

+ 𝑙𝑜𝑔
𝑒𝑥𝑝 (𝐸𝐶x,𝑖 · 𝐸

𝑆
x,𝑖/𝜏))∑𝑁

𝑗=1 𝑒𝑥𝑝 (𝑒𝑥𝑝 (𝐸𝐶x,𝑖 · 𝐸
𝑆
x, 𝑗/𝜏))

)
(5)

4 Downstream Task
4.1 Context-Speech Retrieval
As the CCSP model is designed to learn cross-modal representa-

tions between context and speech, cross-modal retrieval task is a

straightforward way to verify the effectiveness of the learned repre-

sentation. Context-to-Speech Retrieval task is selecting the most

relevant context instance from a set {𝐸𝐶x,1, 𝐸
𝐶
x,2, ...} for a given speech

representation, 𝐸𝑆x,𝑖 . Conversely, Speech-to-Context Retrieval
task is finding the most corresponding speech statement from a

collection {𝐸𝑆x,1, 𝐸
𝑆
x,2, ...}, given a context instance 𝐸𝐶x,𝑖 . Compared

with evaluation on TTS system, these Context-Speech Retrieval

tasks leverage the cross-modal representations produced by the
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CCSP model directly, obviating the need for an additional modeling

process. Therefore, these two retrieval tasks can serve as a rapid

verification method to help us validate and adjust the parameters

of the CCSP model. They also offer an objective benchmark for

further development and refinement.

4.2 Expressive Text-to-Speech
Given the pre-trained CCSP model, we utilize the NaturalSpeech

2 (NS2)[26] framework as the backbone TTS system to evaluate

whether the pre-trained model enhances the expressiveness of the

TTS model by delivering effective contextual information. Figure 3

illustrates the NS2 model’s architecture and the way to inject cross-

modal representations from CCSP model. The components of a

baseline NS2 model can be described as: 1) Phoneme Encoder. This

component encodes the input text into a phoneme sequence, which

serves as a linguistic prior for the model. 2) Prosody (pitch/duration)

Predictors. Alongside the phoneme encoder, prosody predictors es-

timate the duration of each phoneme and the pitch contour for the

speech synthesis process. These components are crucial for achiev-

ing natural prosody and intonation in the synthesized speech. 3)

Audio Codec. The audio codec is composed by a encoder, a residual

vector-quantizer (RVQ) and a decoder. Codec encoder downsample

the input audio and the RVQ converts the reuslt to a sequence of

latent vectors. While the codec decoder reconstructs the speech

waveform from these latent vectors. 4) Diffusion Model. The diffu-

sion model generates the sequence of latent vectors conditioned on

the phoneme sequence and the outputs from the duration and pitch

predictors. 5) Speech Prompt Encoder. To facilitate the zero-shot ca-

pabilities, the model employs in-context learning, which allows the

model to adapt to new speaker characteristics by being conditioned

on a speech prompt. The speech prompt is randomly segmented

from the ground truth speech during training. For inference, we uti-

lize a speech segment less than 10 seconds from an unseen speaker

as reference to generate synthesised samples for testing.

The speaker embedding generated by the speech prompt en-

coder will influence both prosody feature prediction and sound

reconstruction. Since prosody information is an essential part of

the expressiveness of the generated voice, we incorporate cross-

modal representations from CCSP into the speaker embedding to

jointly affect the prosody feature predictor. More specifically, 𝐸𝑆
𝐴

from the Speech Branch of CCSP serves as the injected embedding

during training, while 𝐸𝐶
𝐴
from the Context Branch is used during

inference. This approach is taken because ground-truth speech is

always available during TTS training, whereas context information

is provided or can be generated by a GPT-service [20] during in-

ference. Based on this injection strategy, we can conduct effective

contextual modeling for any target speaker even without contextual

voice data.

5 Evaluation
5.1 Dataset
LibriVox LibriVox [9] is a unique online project that harnesses

the power of volunteers to create free, public domain audiobooks

from texts that are also in the public domain. As audiobook data,

Librivox contains a wealth of contextual voice data, which aligns

with our requirements for training the CCSP model. We down-

loaded and processed approximately 15,000 hours of data, which

Figure 3: NS2 Model with CCSP Features. The CCSP embed-
dings are added to the speaker embedding to exert a com-
bined effect on the prosody feature predictor. The 𝐸𝑆

𝐴
from

the Speech Branch of CCSP is injected during training, while
the 𝐸𝐶

𝐴
from the Context Branch is used during inference.

included data segmentation, alignment, and feature extraction. In

our experiments, we utilize two datasets: the complete∼15,000-hour
collection, LibriVox-B, and a subset consisting of ∼1,500 hours,
LibriVox-S, primarily to compare the impact of dataset size on the

performance of the CSSP model.

LibriTTS-R We use LibriTTS-R [11] as the target data for our

TTS task as it is a multi-speaker TTS corpus without ground-truth

contextual information. LibriTTS-R is an enhanced version of the

original LibriTTS [37] corpus. LibriTTS is a text-to-speech corpus

crafted from LibriVox audiobooks. It is optimized for TTS research

with features like 24kHz audio for better spectral content, precise

text-to-audio alignment, and a diverse range of speakers and ac-

cents, primarily in English. LibriTTS-R improves the audio quality

by applying speech restoration techniques to the original LibriTTS

recordings, which contains 585 hours of data from 2,456 speakers.

5.2 Evaluation Metrics
Objective TestWe evaluate the performance of both Context-to-

Speech Retrieval and Speech-to-Context Retrieval tasks using the

objective metricmAP@10 (mean Average Precision at rank 10). The

computation of mAP@10 is presented in Equation 6, where 𝑞 is

the index of a query sample, 𝑄 is the total number of test samples,

and 𝑝𝑞 indicates the rank position of the correctly matched sample

for the 𝑞𝑡ℎ query after sorting by their corresponding logit values.

For our experiments, we employed a test set reserved from the

LibriVox-B dataset, comprising 𝑄 = 1024 samples.

𝑚𝐴𝑃@10 =
1

𝑄

𝑄∑︁
𝑞=1

1

𝑝𝑞 + 1

∗ 𝑟𝑒𝑙 (𝑞) (6)

𝑟𝑒𝑙 (𝑞) =
{
1, if 𝑝𝑞 < 10

0, else
(7)
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To assess an expressive TTS system, we perform an objective test

by computing the Normalized Pitch Dynamic Score. This metric cap-

tures the mean pitch variation at the syllable level and normalizes it

to a 0-1 range using a sigmoid function. A greater normalized pitch

dynamic score indicates a richer variation in pitch sequence, sug-

gesting a higher level of expressiveness in the synthesized speech.

Subjective Test For a perceptual assessment of the impact brought

by CCSP features to the TTS model, we conduct subjective tests,

including the Preference Test and Comparative Mean Opinion Score
(CMOS). The Preference test is a blind listening test that assesses

whether listeners can detect a difference between two audio sam-

ples and express a preference for one over the other. The outcome of

this test is expressed in percentages, showing the proportion of test

sample pairs where listeners preferred either system A or system

B, along with the percentage of cases where there was ’No pref-

erence’. For the CMOS test, listeners compare the expressiveness

of speech generated by two TTS systems. Unlike the preference

test, CMOS test requires listeners to not only choose which sample

they consider better but also to rate the extent of its superiority

or preference on a scale from -3 to +3, with the reference samples

assigned a score of 0. In our experimental setup, we engaged 9

native speakers to do the evaluation in a quiet environment.

We create two test sets, a sentence-based test set with 50 cases

and a paragraph-based test set with 30 cases. Each paragraph case is

composed by 2 to 5 sentences. As paragraph tests involve longer test

samples, which add to the complexity for reviewers, we offer higher

rewards to participants of paragraph-based evaluations. The scripts

for these tests were generated by the GPT-service [20], ensuring a

unbiased selection of content for evaluation.

5.3 Analysis on CCSP Model
Context LengthWe conducted experiments to study the impact

of different context lengths on the performance of the CCSP model.

Context Length during Training. Intuitively, a longer context in-
put would provide the model with more information, potentially

leading to improved results. However, the observations from Fig-

ure 4 challenge this assumption. The figure depicts the mAP@10

metric on the LibriVox-B dataset, with the left graph and right

graph representing the Context-to-Speech retrieval task and the

Speech-to-Context retrieval task respectively. The context length

of 20 refers to a maximum limitation of 20 preceding words and

20 following words during the training stage. From the result, we

found that both retrieval tasks favored a 20-context instead of the

longer one, 80-context, along with the increase of training epochs.

There could be several reasons for these observations. 1) While

providing more context has the potential to furnish additional in-

formation for the model, the impact of this text tends to decrease

as the distance from the target sentence grows, especially when

we attempt to model the relationship between the context and the

speech expression. 2) The actual context length of each sentence

in the dataset might be limited. In Figure 6, we present the distri-

bution of the actual context length on the LibriVox-B dataset. The

distribution reveals that a significant majority of sentences (> 40%)

possess a context length less than 20. This observation may offer a

plausible explanation for the experimental results.

Figure 4: Analysis on Context Length - Training. Both re-
trieval tasks favored the 20-context instead of the 80-context
along with the increase of training epochs.

Figure 5: Analysis on Context Length - Inference. 1) Matched
training and inference context lengths leads to optimal
model performance. 2) A 20-20 (training-inference) context
length configuration excels over other pairings.

Figure 6: Context Length Distribution of LibriVox-B Dataset.
Over 40% of sentences have a context length shorter than 20.

Context Length during Inference. Additionally, we investigated
the impact of context length employed during the inference stage.

Figure 5 demonstrates the results for two models, trained with

context lengths of 20 and 80, respectively. It is apparent that both

models perform optimally when the context length during inference

matches that used at the training phase. Overall, The combination

of a 20-20 (training-inference) context length outperformed other

configurations. Considering these findings, we decided to proceed

with the 20-20 context length configuration in our subsequent ex-

periments. This is based not only on the performance but also on

the advantage of saving memory.

Prosody Length. To enclasp more speech expression related in-

formation, we incorporate prosody features in speech branch to

enhance the cross-modal representation learning. As introduced
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Figure 7: Analysis on Prosody Length. 5-second configuration
significantly outperforms the 10-second setting.

in Section 3.2.1, the speech data with variant length are processed

in a fixed duration of 10 seconds through a feature fusion function.

The optimal duration of prosody features remains an additional

parameter for analysis. As detailed in Section 3.2.2, three types of

prosody features are extracted from the current sentence: “Begin-

ning", “All”, and “End”. These are then fused with the audio feature.

The “Beginning” prosody feature aligns with the preceding context

and the “End” prosody feature aligns with the following context.

Figure 7 contrasts the performance of CCSP models utilizing differ-

ent prosody feature lengths, specifically 5s and 10s. The 10-second

durationmatches the length of the processed audio feature, whereas

the 5-second duration is half as long. As shown in Figure 7, the

5-second configuration significantly outperforms the 10-second

setting in both Context-to-Speech and Speech-to-Context retrieval

tasks. This suggests that: 1) longer prosody representations might

present increased complexity and difficulty for effective modeling,

2) the influence of context on prosody is primarily concentrated

around the immediate context—meaning the beginning part of the

speech is most influenced by the preceding context, while the end

part of the speech is most affected by the following context. Based

on these findings, we will adopt a 5-second length for prosody

feature in our subsequent experiments.

5.4 Analysis on Expressive TTS system

Experimental Setting. Aswementioned in Section 4.2, we use NS2

as our backbone TTS model, which is a state-of-the-art zero-shot

TTS system. The configuration of the NS2 model is consistent to

that presented in the original publication. The additional contextual

embeddings are processed through a 512x512 linear projection layer

before being added to speaker embedding. We employ two baseline

NS2 model with different training strategies:

• NS2-Amodel, trained from scratch by the LibriTTS-R dataset.

• NS2-B model, initially trained on the Librivox-B dataset and

subsequently fine-tuned on the LibriTTS-R dataset. It serves

as an enhanced baseline, employing an equal amount of data

as the pre-trained CCSP model, to validate the proposed

framework’s effectiveness while isolating the variable of

additional data input.

The NS2+CCSP model, the NS2 model with injection of CCSP fea-

tures, is trained on the LibriTTS-R dataset in the same manner as

the NS2-A model. Within this framework, the CCSP model serves

Figure 8: Preference Test on Sentence / Paragraph Test Set.
NS2+CCSP model is favored over the baseline model in both.

Table 1: Normalized Pitch Dynamic Score. NS2-B model
slightly surpasses NS2-A; NS2+CCSP notably excels, high-
lighting influence from CCSP.

Test Set NS2-A NS2-B NS2+CCSP

Sentence 0.27 0.28 0.36

Paragraph 0.28 0.31 0.39

Table 2: CMOS on Sentence / Paragraph Test Set. The
NS2+CCSP model attains CMOS improvements in both.

Test Set NS2-B NS2+CCSP

Sentence 0.000 0.493

Paragraph 0.000 0.146

as a feature generator. It is trained on the LibriVox-B dataset and

produces features with a dimensionality of 512.

Experimental Analysis. We conduct both objective test and sub-

jective test to do evaluation on the NS2+CCSP model.

Objective Test. Objective evaluations were conducted on three

models, NS2-A, NS2-B and NS2+CCSP,by calculating the Normal-
ized Pitch Dynamic Score. Results presented in Table 1 cover both

sentence-based and paragraph-based test sets. The NS2-B model

shows a slight improvement in score over the NS2-A model, which

indicates the prosody variance improved by data augmentation.

Notably, the NS2+CCSP model demonstrates a substantial increase

in score. This suggests that while data augmentation through adap-

tation provides a modest enhancement, the incorporation of the

CCSP model, which leverages cross-modal contextual information

from extensive datasets, significantly enriches the expressiveness

of the text-to-speech (TTS) synthesis.

Subjective Test. Building on the objective analysis, subjective

evaluations were conducted to further compare the performance

of the NS2-B and NS2+CCSP models. These evaluations included a

preference test and a Comparison Mean Opinion Score (CMOS) test.

Figure 8 presents the preference scores for the subjective evaluation

of the NS2+CCSP and NS2-B models. In the sentence-based test

set, the NS2+CCSP model was preferred 69% of the time, with a

’No Preference’ response at 9%, and the NS2-B model preferred
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Table 3: Ablation Study by CMOS Test. Our ablation studies
are conducted from three aspects: model framework, input
data construction and data size.

NS2+CCSP 0.000

NS2+CCSP_without-prosody -0.094

NS2+CCSP_curtext -0.084

NS2+CCSP_LibriVox-S -0.204

22% of the time. For the paragraph-based test set, the preference

scores are 53%, 18%, 29% correspondingly. Both of them suggest the

NS2+CCSP model is favored over the baseline model in the listener

preference tests. Table 2 presents the CMOS results, indicating that

the NS2+CCSP model attains CMOS improvements of 0.493 and

0.146 for the sentence-based and paragraph-based test sets, respec-

tively. It is noteworthy that the enhancement is more pronounced in

the sentence-based test set than in the paragraph-based set, which

can be attributed to the intrinsic challenges of comparing and eval-

uating the more complex, longer content. These results affirm the

proposed model’s overall advancements in producing more natural

and expressive synthesized speech from sentences to paragraphs.

5.5 Ablation study
In this section, we delve into the efficacy of the individual com-

ponents of the CCSP model through a series of ablation study.

Table 3 presents the CMOS test outcomes comparing variants of

the NS2+CCSP model to the proposed model. Notice that the test

set used here is the sentence-based one.

Speech Branch. Figure 9 shows the performance of CCSP model

on the Context-to-Speech and Speech-to-Context retrieval tasks,

focusing on two variants: one without the audio feature and one

without the prosody feature. 1) Without audio feature. The variant
with only the prosody feature in the speech branch shows a marked

decrease in performance. It highlights the significant role of the

pre-trained audio encoder, which benefits from large-scale data

training. 2)Without prosody feature. The variant without prosody
feature retains the original CLAP structure performs comparable

to the standard CCSP model during the initial stages of training.

But after five epochs, the CCSP model that integrates the prosody

feature demonstrates its superiority. The CMOS regression (-0.094)

between NS2+CCSP and NS2+CCSP_without-prosody models fur-

ther verifies the effectiveness of integrating of prosody features.

Context Branch. We examine the effectiveness of using surround-

ing context as the text modality input of cross-modal representation

learning framework by reverting the context back to the current

speech’s transcription. The CMOS test results (-0.084) for the variant

NS2+CCSP_curtext model in Table 3 confirms the significance of

broader contextual information for enhancing TTS expressiveness.

Data Size. Figure 10 illustrates the advantages of scaling up data

size for retrieval tasks. Subsequently, we developed a corresponding

variant, the NS2+CCSP_LibriVox-S model to compare with the

NS2+CCSPmodel. This variant use cross-modal features from CCSP

model trained by a smaller dataset, LibriVox-S, which is described in

Section 5.1. The CMOS test result (-0.204) in Table 3 shows that the

cross-modal contextual embeddings, derived from the CCSP model

Figure 9: Ablation Study on Speech Branch. Both audio en-
coding and prosody encoding in the speech branch improves
the CCSP’s effectiveness on retrieval tasks.

Figure 10: Analysis on Data Size. Increasing data size notably
enhances performance on retrieval tasks.

trained on a larger dataset, significantly enhance the expressiveness

of the TTS system.

6 Conclusion
In this paper, we present the Contrastive Context-Speech Pretrain-

ing (CCSP) model, designed to enhance expressive TTS systems.

Our pretraining framework focuses on learning effective cross-

modal representations that capture the relationship between global

contextual information and the current speech expression. Through

the utilization of abundant contextual speech data and explicit

prosody modeling, the generated features demonstrate their effi-

cacy in both the Context-to-Speech and Speech-to-Context retrieval

tasks. By strategically integrating these cross-modal representations

into a downstream TTS system, we observe a significant improve-

ment in the expressiveness of the generated speech, as evidenced by

both subjective test and objective test. Overall, our proposed CCSP

framework proves beneficial for expressive TTS systems, particu-

larly in scenarios where there is a dearth of sufficient high-quality,

long-form speech data for the target speaker.

Future Work and Impact Statements. •While the CCSP framework

has shown promising results in learning cross-modal representa-

tions and enhancing the expressiveness of synthesized speech, this

work can be further refined by 1) improved fine-grained control

over expressions and 2) broadening its application to various down-

stream tasks such as speech-to-speech generation and speech style

annotation tasks. • This work enhances TTS expressiveness with

limited target speaker data, which promises improvements in user

experience across digital media and accessibility. However, it also

raises ethical concerns like creating challenges in authenticity veri-

fication and potentially facilitating misinformation.
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