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Abstract
LLM watermarks stand out as a promising way to
attribute ownership of LLM-generated text. One
threat to watermark credibility comes from spoof-
ing attacks, where an unauthorized third party
forges the watermark, enabling it to falsely at-
tribute arbitrary texts to a particular LLM. De-
spite recent work demonstrating that state-of-the-
art schemes are, in fact, vulnerable to spoofing,
no prior work has focused on post-hoc methods
to discover spoofing attempts. In this work, we
for the first time propose a reliable statistical
method to distinguish spoofed from genuinely wa-
termarked text, suggesting that current spoofing
attacks are less effective than previously thought.
In particular, we show that regardless of their
underlying approach, all current learning-based
spoofing methods consistently leave observable
artifacts in spoofed texts, indicative of watermark
forgery. We build upon these findings to propose
rigorous statistical tests that reliably reveal the
presence of such artifacts and thus demonstrate
that a watermark has been spoofed. Our experi-
mental evaluation shows high test power across
all learning-based spoofing methods, providing
insights into their fundamental limitations and
suggesting a way to mitigate this threat. We make
all our code available here.

1. Introduction
The abilities of large language models (LLMs) to generate
human-like text at scale (Bubeck et al., 2023; Dubey et al.,
2024) come with a growing risk of potential misuse. This
makes reliable detection of machine-generated text increas-
ingly important. Researchers have proposed the concept of
watermarking: augmenting generated text with an impercep-
tible signal that can later be detected to attribute ownership
of a text to a specific LLM (Kirchenbauer et al., 2023; Kudi-
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tipudi et al., 2024; Christ et al., 2024b). As such watermarks
are actively deployed on top of consumer LLMs (Dathathri
et al., 2024a) and widely embraced by regulators (Biden,
2023; CEU, 2024), ensuring their reliability is crucial.

LLM watermarks To embed a signal, at each step of
generation, using a private key ξ, the watermark algorithm
scores each token, preferentially sampling higher-scoring
ones. While a wide range of watermarking schemes have
been proposed (Christ et al., 2024b; Kuditipudi et al., 2024;
Aaronson, 2023), the most studied and at this time the only
ones deployed in prominent consumer LLMs (Dathathri
et al., 2024a) are from the Red-Green (Kirchenbauer et al.,
2023) family. In Red-Green watermarks, the algorithm
uses ξ and a few previous tokens (context) to partition the
vocabulary into green and red tokens. It then increases the
probability of sampling green tokens. Given a text, the
watermark detector first computes the color of each token
under ξ, wherein a high proportion of green tokens in this
color sequence indicates watermarked text.

Spoofing attacks Recent works have demonstrated tar-
geted attacks on Red-Green watermarks that allow for imper-
sonating (spoofing) the watermark (Sadasivan et al., 2023;
Jovanović et al., 2024; Gu et al., 2024; Zhang et al., 2024).
In spoofing attacks, a malicious actor (spoofer) generates,
without knowing the private key ξ, a text that is detected
as watermarked. State-of-the-art attacks are learning-based
and adhere to a common pipeline (see App. J for a full
taxonomy). First, the malicious actor queries the targeted
model to build a dataset D of genuinely watermarked text.
Then, by either applying statistical methods (Jovanović et al.,
2024), integer programming (Zhang et al., 2024), or fine-
tuning (Gu et al., 2024), the spoofer learns how to forge
the watermark and can generate watermarked text without
additional queries to the original model (Step 1 in Figure 1).

Being able to generate spoofed text at scale poses a serious
threat to the credibility of watermarks. Spoofed text can be
falsely attributed to the model provider, causing reputational
damage, or used as an argument to evade accountability
(Zhou et al., 2024). Moreover, in the case of multi-bit
watermarks that embed client IDs in generated text (Wang
et al., 2024), spoofing attacks can be used to impersonate
and incriminate a specific user.
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Figure 1: Overview of why spoofed text contains measurable artifacts. First, in (1), the spoofer generates a dataset D of
ξ-watermarked texts from which they learn the watermark. As (2) illustrates, when later generating text, the spoofer is better
at sampling a green token if (and only if) the context and the sampled token were in D. This uncertainty introduces artifacts
in the spoofed text. In contrast, the genuine watermarking algorithm is consistent with respect to the context and hence
contains no such artifacts. Lastly, in (3), we build statistical tests for discovery of these artifacts, distinguishing between
spoofed and ξ-watermarked texts even if their Z-scores Zξ computed using the watermark detector are the same.

Discovering spoofing attempts In this work, we show
for the first time that state-of-the-art spoofing attacks leave
artifacts in the generated text that can be used to distinguish
between spoofed text and text generated with knowledge
of the private key (Step 2 in Figure 1). This suggests that,
unlike previously thought, simply fooling the watermark
detector is not enough to generate text that is indistinguish-
able from genuine watermarked text. The high-level intu-
ition behind these artifacts is that, at each step of generation,
a spoofer has a chance to emit a green token only if the
context and that token are present in their training data D,
previously obtained by querying the watermarked model.
If the context is not in D, the spoofer is forced to select
the next token independently of its color. Leveraging these
artifacts, we construct statistical tests that can effectively
distinguish between spoofed text and genuine watermarked
text generated with the private key (Step 3 in Figure 1).

In addition to enabling the discovery of spoofing attempts
on widely researched, deployed, and attacked Red-Green
watermarking schemes, we show in App. G that our tests
generalize to all schemes that are vulnerable to learning-
based spoofing (Aaronson, 2023; Kuditipudi et al., 2024).

Key contributions Our main contributions are:

• We provide the first in-depth analysis of artifacts
in spoofed text, highlighting common limitations of
learning-based watermark spoofing methods (§3).

• We design rigorous statistical tests to practically distin-
guish spoofed and genuine watermarked texts (§4).

• We provide extensive validation of our test hypotheses
and empirically show that our tests achieve arbitrarily
high power given a long enough text (§5).

2. Background and Related Work
In this section we introduce the necessary background on
LLM watermarking, and discuss related work.

LLM watermarks Given a sequence of tokens (text) from
a vocabulary Σ, an autoregressive language model (LM) M
outputs a logit vector l of unnormalized next-token proba-
bilities, used to sample the next token. LM watermarking is
a process of embedding a signal within the generated text ω
using a private key ξ, such that this signal is later detectable
by any party with access to ξ using a watermark detector Dξ .
We set Dξ(ω) = 1 if the signal is detected. We call a text ω
generated by the watermarking algorithm a ξ-watermarked
text, and a text where Dξ = 1 a watermarked text.

The most prominent approach to LLM watermarking are
Red-Green watermarks (Kirchenbauer et al., 2024; Zhao
et al., 2024; Lee et al., 2024; Wu et al., 2024; Yoo et al.,
2024; Fernandez et al., 2023; Liu et al., 2023; Fairoze et al.,
2023; Ren et al., 2024; Lu et al., 2024; Guan et al., 2024;
Zhou et al., 2024; Dathathri et al., 2024a), which all share a
common structure. Let ωt ∈ Σ be the token generated by
the LM at step t, h ∈ N the watermark’s context size (we
refer to h previous tokens ωt−h:t−1 as the context), ξ ∈ N
the watermark’s private key, H : Σh → N a hash function,
PRF : N × N → P(Σ) a pseudorandom function, and
γ, δ ∈ R watermark parameters. At each step t, PRF uses
the hash of the context H(ωt−h:t−1) and the private key ξ
to partition the vocabulary Σ into two colors, γ|Σ| green
tokens (greenlist) and the remaining red tokens (redlist),
where γ is the watermark parameter. To insert the water-
mark, we modify the logit vector lt by increasing the logit
of each green token by δ > 0. While many hash functions
H have been proposed (Kirchenbauer et al., 2024), we fo-
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cus on two variants proposed in Kirchenbauer et al. (2023):
SumHash and SelfHash. The shift by δ increases the ratio of
green tokens in generated text, which is detectable by the de-
tector. Namely, given a text ω ∈ ΣT , the watermark detector
Dξ determines the number of green tokens ngreen and com-
putes Zξ(ω) = (ngreen − γT )/

√
Tγ(1− γ), which under

the null hypothesis follows a standard normal distribution.
Finally, Dξ(ω) = 1 (i.e., ω is considered watermarked) if
Zξ(ω) > ρ. As in Kirchenbauer et al. (2023), we set ρ = 4.

Other alternative approaches to LLM watermarks are pro-
posed by, among else, Christ et al. (2024b); Kuditipudi et al.
(2024); Hu et al. (2024); Aaronson (2023). Among these,
prior work demonstrates learning-based spoofing attacks on
Kuditipudi et al. (2024) and Aaronson (2023) (see App. G).

LLM watermark spoofing A threat to watermark cred-
ibility are spoofing attacks, as they can lead to falsely at-
tributing text ownership to a model provider. One type of
spoofing attack is piggyback spoofing (Pang et al., 2024),
where an attacker substitutes a few tokens in a genuinely
watermarked text to produce a spoofed text, simply lever-
aging the robustness of the watermarking scheme. Another
type of spoofing attacks is step-by-step spoofing (Pang et al.,
2024; Zhou et al., 2024; Wu & Chandrasekaran, 2024),
where for every spoofed text, the attacker queries the water-
marked model at each step of its generation process. Lastly,
state-of-the-art spoofing attacks are learning-based spoof-
ing attacks (Jovanović et al., 2024; Gu et al., 2024; Zhang
et al., 2024), where an attacker first queries the watermarked
model to build a watermarked dataset D and then learns
the watermark from such a dataset. Unlike the two other
spoofing techniques, learning-based spoofers are able to
produce arbitrary watermarked text at a low cost without
relying on the attacked model during generation. We extend
the discussion on watermark spoofing in App. J.

Among learning-based spoofers, there are two approaches
that generalize across most Red-Green schemes: Steal-
ing (Jovanović et al., 2024) and sampling-based Distilla-
tion (Gu et al., 2024). Stealing approximately infers the
vocabulary splits by comparing the frequencies of tokens in
D (conditioned on the same context) with human-generated
text, and uses this information to generate spoofed text using
an auxiliary LM. In contrast, Distillation directly fine-tunes
an auxiliary LM on D, effectively distilling the watermark
into the model’s weights. Both Stealing and Distillation
are applicable on Red-Green schemes, but Distillation also
expands to other schemes (see App. G).

Spoofing defenses Some watermarking schemes have
been specifically designed for attribution and hence are more
resistant to spoofing (Zhou et al., 2024; Christ et al., 2024b;
Christ & Gunn, 2024; Fairoze et al., 2023). Yet, in their
focus on providing attribution, they trade off other desirable

watermark properties (Jovanović et al., 2024; Kirchenbauer
et al., 2024), preventing their practical adoption (Dathathri
et al., 2024b). Similarly, even in Red-Green schemes, higher
values of the context length h reduce the success rate of
spoofing at the cost of watermark robustness.

Broader work on LLM watermarking Other directions
in the realm of LLM watermarking includes scrubbing at-
tacks (Jovanović et al., 2024; Wu & Chandrasekaran, 2024;
Chang et al., 2024), detection of the presence of a watermark
(Tang et al., 2023; Gloaguen et al., 2025; Liu et al., 2025;
Gao et al., 2025), and attempts to imprint the watermark
into the model weights (Li et al., 2024; Christ et al., 2024a).

3. Can Spoofing Attempts Be Discovered?
In this section, we discuss the discoverability of spoofing,
introduce the problem of distinguishing ξ-watermarked and
spoofed texts, and formalize it within a hypothesis testing
framework (§3.1). We describe the intuition behind our
approach (§3.2), that we later present in detail in §4.

3.1. Problem statement

Current spoofing methods (spoofers) are typically evaluated
based on their success rate in generating high-quality wa-
termarked text. Yet, due to the limitation of learning from
a finite dataset of watermarked text, we hypothesize that
these spoofers, despite adopting fundamentally different
approaches, may all leave similar artifacts in spoofed texts.

Showing the existence of such artifacts would give valuable
insight into the shared limitations of current state-of-the-art
watermark spoofers. Moreover, reliably identifying them
would enable us to distinguish between ξ-watermarked and
spoofed texts, lowering the effective accuracy of spoofers,
without compromising other desirable properties, as is often
the case when trying to specifically design watermarking
schemes more resistant to spoofing (see §2).

Concretely, we assume the perspective of the model provider
with a private key ξ and a model M. We receive a text
ω ∈ ΣT that is flagged as watermarked by our detector Dξ,
and aim to decide whether it was generated using our private
key ξ, or by a spoofing method. Our threat model also
includes the case where we receive a set of texts from the
same source, whose concatenation we denote as ω ∈ ΣT for
simplicity (see the bottom of §4.2 for details). We assume
that our private key ξ was not simply leaked; else, spoofed
texts are hardly distinguishable from ξ-watermarked texts.

Formalization Determining whether a text ω was spoofed
can be formulated within the hypothesis testing framework:

H0 : The text ω is ξ-watermarked,
H1 : The text ω is spoofed.

(1)
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We introduce the random variable Ω ∈ ΣT and the received
text ω ∈ ΣT is a realization of Ω. We note that the distri-
bution of Ω under the null hypothesis and its distribution
under the alternative hypothesis are different. Similarly,
let X ∈ {0, 1}T be the associated sequence of (non-i.i.d.)
Bernoulli random variables, where Xt = 1 represents the
event where the token t is green, and let x ∈ {0, 1}T be the
observed color of ω under Dξ (realization of X). In this
hypothesis testing framework, the challenge is to build a
statistic S(Ω) that satisfies two key properties. First, the dis-
tribution of S(Ω) under the null hypothesis should be known
in order to rigorously control the Type 1 error. Second, the
distributions of S(Ω) under the null and S(Ω) under the
alternative should be different, enabling us to distinguish
spoofed and ξ-watermarked texts.

3.2. Artifact: dependence between the color sequence
and the context

Next, we explain why spoofed texts contain observable
artifacts, as was illustrated in Figure 1.

A simple example To expand on this intuition, we start by
considering an example of a perfect spoofer that produced
the text ω ∈ ΣT , and knows the color of a token ωt, if
and only if ωt−h:t ∈ D, where D is the training data of
the spoofer. Otherwise, if ωt−h:t ̸∈ D, we assume that the
spoofer has chosen ωt independently of its color. Let ID :
Σh+1 → {0, 1} be the indicator function of the presence of
a (h+1)-gram in D. ID can be interpreted as the knowledge
the spoofer has over the vocabulary splits. From above, we
can assume that for all t ∈ {h+ 1, . . . , T}:

P (Xt = 1|ID(Ωt−h:t) = 1) ≥ P (Xt = 1|ID(Ωt−h:t) = 0)

if the text is spoofed; (2a)
P (Xt = 1|ID(Ωt−h:t) = 1) = P (Xt = 1|ID(Ωt−h:t) = 0)

if the text is ξ-watermarked. (2b)

Equations (2a) and (2b) reflect that the knowledge of the
vocabulary split at token t helps the spoofer to color ωt

green, which is its original goal. For a ξ-watermarked text,
the knowledge of a potential spoofer has no influence on its
coloring. Hence, we may be able to use ID to distinguish
whether a sentence is spoofed or not. We now generalize
this intuition to more realistic spoofing scenarios.

Color sequence depends on the context distribution In
practice, learning how to spoof may require observing an
(h+1)-gram multiple times. Moreover, spoofing techniques
may, albeit not necessarily explicitly, have different levels
of certainty regarding the color of a token given a context.
Therefore, we generalize ID : Σh+1 → [0, 1] to be the
function of the frequencies of (h+1)-grams in D. We make
a natural assumption that the higher the frequency of ωt−h:t

in D, the more certain a spoofer is regarding the color of the
token ωt. For now, we will also assume that for each token
in ξ-watermarked text, ID is independent of its observed
color. For ∀t ∈ {h+ 1, . . . , T}, we assume:

Xt is not independent from ID(Ωt−h:t)

if the text is spoofed; (3a)
Xt is independent from ID(Ωt−h:t)

if the text is ξ-watermarked. (3b)

This dependence between the color and ID(Ωt−h:t) results
in spoofing artifacts under the alternative.

Influence of the LM Counterintuitively, the indepen-
dence assumed in Eq. (3b) may be violated. To generate
ωt, the model provider first computes the logit vector lt
knowing ω<t. Then, it computes the greenlist defined by
PRF (H(ωt−h:t−1), ξ), and increases the logits of green
tokens by δ. Finally, it samples from the newly defined
probability distribution to generate the token ωt. The green-
list itself is thus indeed independent of ID(Ωt−h:t). Yet,
lt was originally computed using ω<t due to the autore-
gressive property of the model M, and hence may not be
independent of ID(Ωt−h:t).

To illustrate this point, consider a case where the token
wt is the only viable continuation of ωt−h:t−1, i.e., lt is
low-entropy. Then, Bayes’ theorem implies that ID(ωt−h:t)
is likely to be high. On the other hand, the logit increase
of δ has less influence on the sampling, as it is less likely
to cause a token other than wt to be sampled—thus, the
color of wt is effectively random, i.e., P (Xt = 1) ≈ γ,
even for ξ-watermarked text. Hence, the events P (Xt =
1) ≈ γ and ID(Ωt−h:t) is high, are correlated, as they occur
simultaneously in case of low entropy. We investigate this
dependence pattern and confirm it experimentally in App. C.

With this in mind, to properly control for Type 1 error,
we need to design a test statistic S where this dependence
pattern is known or can be learned for ξ-watermarked texts.
Moreover, to maintain power, we aim to distinguish this
dependence from the dependence present in the case of
spoofed text, as described above in Equations (3a) and (3b).

4. Designing a Test Statistic
We proceed to introduce our test statistic S, deriving funda-
mental results regarding its distribution under the indepen-
dence assumption from Eq. (3b), and in the more general
case where it may be violated (§4.1). Then, we present and
discuss two concrete instantiations of S (§4.2).

4.1. Controlling the distribution

We introduce the main results regarding the distribution of
S(Ω) under the null hypothesis.
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Color-score correlation Let ω ∈ ΣT , sampled from Ω,
denote the text of length T received by the model provider,
x ∈ {0, 1}T , sampled from X , denote its color sequence
under Dξ, and y ∈ [0, 1]T denote a sequence of scores for
each token sampled from a sequence of T random variables
Y . We defer the construction of Y to §4.2, where we will
build on the intuition from §3.2. As the test statistic, we use
the sample Pearson correlation coefficient between x and y,

S(ω) =

∑T
t=1(xt − x̄)(yt − ȳ)√∑T

t=1(xt − x̄)2
∑T

t=1(yt − ȳ)2
. (4)

Independence case We first study the distribution of S(Ω)
under the assumption that Xi and Yi are independent for
all i, as in Eq. (3b) (we refer to this as cross-independence
between X and Y ). From this assumption, we derive:

Lemma 4.1. Under the cross-independence between X and
Y , and technical assumptions (detailed in App. I), we have
the convergence in distribution

ZS(Ω) :=
√
TS(Ω)

d−→ N (0, 1) .

We defer the proof to App. I. Therefore, given a text ω, we
can compute a p-value using a two-sided Z-test on the statis-
tic ZS(ω), which is sampled from a standard normal distri-
bution. We will refer to this test as the Standard method.

The general case In practice, however, the assumption of
cross-independence between X and Y does not always hold
(see §3.2). We make a modeling assumption motivated by
the results from the independent case. Let µΩ := E[S(Ω)].
Under the null hypothesis (and the practical considerations
outlined below), we assume that

√
TS(Ω) ∼ N (µΩ, 1). (5)

Compared to Lemma 4.1, the difference is that the normal
distribution is offset by µΩ. This introduces a key challenge:
finding a way to estimate µΩ. To this end, we propose to
use ω≤c, a prefix of ω of length c, to prompt our model
M to generate a new sequence ω′ of length T ′ := T − c
(which is a realization of Ω′). In practice, we set c = 25.
Given the shared prefix, we expect that Ω>c ∼ Ω′ and hence
that E[S(Ω>c)] = E[S(Ω′)] = µΩ. Then we introduce the
statistic ZR(Ω,Ω

′), defined by

ZR(ω, ω
′) =

S(ω>c)− S(ω′)√
1/(T − c) + 1/T ′

. (6)

Under the null hypothesis, we have that ZR(Ω,Ω
′) ∼

N (0, 1), as S(ω>c) and S(ω′) are two independent sam-
ples from a normal distribution. Therefore, in the general
case, at the cost of higher computational complexity (since

we need to use the model to generate the new text), we
can, as in the independent case, compute a p-value using a
Z-test on the statistic ZR(ω, ω

′), which is sampled from a
standard normal distribution. We later refer to this test as
the Reprompting method. For consistency, in Reprompting
experiments in §5, we use T to implicitly refer to T − c. We
additionally study Reprompting in greater details in App. F.

4.2. Concrete instantiations

In this section we instantiate the score sequence Y and
propose practical modifications to S.

Construction of the token score We propose two instan-
tiations of the score function Y : one that closely follows
the intuition from §3.2, and another that aims to achieve
the independence assumption from Lemma 4.1. Achieving
cross-independence allows the construction of a test that
does not require reprompting the model, hence reducing
computational complexity.

(h+1)-gram score For the first instantiation, the idea is
to directly approximate ID, the function of (h+ 1)-grams
frequencies in D. As D is not known to the model provider,
we approximate it with a text corpus D̃. We define

yt := ID̃(ωt−h:t). (7)

In practice, we set D̃ to C4 (Raffel et al., 2020). We study the
influence of D̃ in App. D. Finally, to reduce the required size
of D̃ needed to obtain a good estimate of ID, we compute
the frequency of unordered (h + 1)-grams. Because the
independence assumption from Lemma 4.1 is not met here
(see §5.1), we use Reprompting with this score.

Unigram score For the second instantiation, the intuition
is to trade-off between cross-independence and reflecting
ID. Let f : Σ → [0, 1] be the unigram frequency in human
generated text. We define

yt := f(ωt−h). (8)

We look at the unigram frequency furthest from t, to make
the dependence between X and Y negligible. Yet, we re-
main within the context window so yt partially reflects the
information from ID(ωt−h:t) and hence still allows distin-
guishing spoofed and ξ-watermarked texts. We will see
in §5.1 that cross-independence is satisfied for SumHash
h = 3. Hence, in settings where cross-independence is
verified, we use this score with the Standard method.

Practical considerations In practice, we add modifica-
tions to the statistic S. First, as suggested in Kirchenbauer
et al. (2023), we ignore repeated h-grams in the sequence
ω. This is required to enforce the independence assumption
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within X and the independence within Y . Second, to limit
the influence of outliers on the score, we use the Spear-
man rank correlation instead of the Pearson correlation and
further apply a Fisher transformation. This means that in
Eq. (19), x and y are respectively replaced by R(x) and
R(y), where R is the rank function. Hence, the statistic
S(ω) used in practice is defined as the arctanh of

T∑
t=1

(R(x)t −R(x))(R(y)t −R(y))√
T∑

t=1
(R(x)t −R(x))2

T∑
t=1

(R(y)t −R(y))2

. (9)

Therefore, we also use the variance
√

1.06
T−3 instead of

√
1
T

to reflect the influence of the rank function, as suggested in
Fieller et al. (1957) for the i.i.d. case.

Combining texts Given a set of texts from a single source,
we concatenate all its elements to create a single text
of size T . In particular, let n ∈ N and ω1, · · · , ωn ∈
ΣT1 ×· · ·×ΣTn such that T1+ · · ·+Tn = T for a given T .
For the Standard method, we set ω := ω1 ◦ · · · ◦ωn. For the
Reprompting method, we compute ω′1, · · · , ω′n indepen-
dently enforcing T ′

i = Ti−c and then set ω′ := ω′
1◦· · ·◦ω′

n

and define ω>c := ω1
>c◦· · ·◦ωn

>c. We verify experimentally
in App. B that the concatenation operation has no influence
on the distribution of the statistic. Our experiments with
large T in §5 are thus conducted on concatenated texts.

Extending to other watermarking schemes The frame-
work can naturally be extended to most other watermarking
schemes. On a high level, a watermarking scheme is a se-
quence of random vectors ζt and a mapping w : RΣ×RΣ →
RΣ such that the next token is sampled according to the logit
vector w(lt, ζt) instead of lt. In the case of Red-Green wa-
termark, ζt is simply the coloring of the vocabulary, and we
set xt = ζt[ωt] in Eq. (4). Hence, for any other schemes,
when setting xt = ζt[ωt], the results from §4.1 still hold.
We show concrete instantiations of x and experiment eval-
uation of our method for both AAR (Aaronson, 2023) and
KTH (Kuditipudi et al., 2024) in App. G.

5. Experimental Evaluation
We present the results of our experimental evaluation.
In §5.1, we validate the normality assumptions from §4.1.
In §5.2, we validate the control of Type 1 error and evaluate
the power of the tests from §4 on both spoofing techniques
introduced in §2: Stealing (Jovanović et al., 2024) and Dis-
tillation (Gu et al., 2024). In App. A, we compare the test
results across a wider range of spoofer LMs, and we show
additional results with a different watermarked model M,
parameter combinations, and another prompt dataset. In

App. G, we show that the tests generalize to two additional
watermarking schemes, AAR (Aaronson, 2023) and KTH
(Kuditipudi et al., 2024), which only Distillation can spoof.

Experimental setup We primarily focus on the KGW
SumHash scheme, using a context size h ∈ {1, 2, 3} and
γ = 0.25. For h ∈ {1, 2}, we set δ = 2. For h = 3, we use
δ = 4 for Stealing to ensure high spoofing rates and note that
Distillation is unable to reliably spoof in this setting, and
therefore is excluded from our h = 3 experiments. In each
experiment, we generate either spoofed or ξ-watermarked
continuations of prompts sampled from the news-like C4
dataset (Raffel et al., 2020), following the methodology
from prior work of Kirchenbauer et al. (2023). For each
parameter combination, we generate 10,000 continuations,
each being between 50 and 400 tokens long. Then, we con-
catenate continuations (see §4.2) to reach the targeted token
length T . Finally, each concatenated continuation is filtered
by the watermark detector, and only watermarked sequences
are kept. We use those concatenated continuations to com-
pute the test statistic S. In practice, we have on average a
total of 106/T samples per parameter combination.

We match the experimental setup from Jovanović et al.
(2024) and Gu et al. (2024). In particular, we use LLAMA2-
7B as the watermarked model. More specifically, in line
with their original setups, we use the instruction fine-tuned
version for Stealing and the completion version for Distil-
lation. For the spoofer LM, we use MISTRAL-7B as the
attacker for Stealing and PYTHIA-1.4B as the attacker for
Distillation. Finally, for the spoofer training data D, we use
ξ-watermarked completions of C4. For Stealing, D is com-
posed of 30,000 samples, each 800 tokens long, whereas for
Distillation, D is composed of 640,000 samples, each 256
tokens long. We further study the impact of |D| in App. E.

5.1. Validating the normality assumption

In §4 we discuss two cases, each relying on one fundamental
assumption. The Independence case: we assume indepen-
dence between the color sequence X and scores Y , from
which we derive the normality of S(Ω) with a known mean
(Lemma 4.1). For this case, we use the Standard method
with the unigram score (Eq. (8)). The General case: we
alternatively assume that S(Ω) is normally distributed with
an unknown mean (Eq. (5)). Here, we use the Reprompting
method with the (h+ 1)-gram score (Eq. (7)). In Figure 2,
we test the Independence case assumption by validating if
ZS(Ω) with the Standard method and unigram score fol-
lows a standard normal distribution (Top), and the General
case assumption by validating the same for ZR(Ω,Ω

′) with
the Reprompting method and (h+ 1)-gram score (Bottom).
We additionally perform both a Kolmogorov-Smirnov test
for standard normality and a Pearson’s normality test (not
necessarily standard normal).
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Figure 2: Histograms of ZS(Ω) (top) and ZR(Ω,Ω
′) (bottom), with y-axes scaled to represent normalized density. The top

row is computed using the unigram score and the Standard method, and the second row is computed using the (h+ 1)-gram
score and the Reprompting method. A green line indicates that the N (0, 1) hypothesis is not rejected (top p-value), an
orange line that a normality test is not rejected (bottom p-value), and a red line that both are rejected at 5%.
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Figure 3: Experimental rejection rate of ξ-watermarked text on LLAMA2 7B.

Regarding the Independence case, we see that in the top
row, ZS(Ω) follows a standard normal distribution only for
h = 3. This confirms our intuition behind the unigram score:
as h increases, the dependency between Xt and f(Ωt−h)
becomes negligible. Hence, for h = 3, we may use the
Standard method with the unigram score.

For the General case, we see in the bottom row that the
histogram approximately matches the standard normal dis-
tribution for h = 2, 3 and that the normality assumption
always holds. Overall, these results suggest that the assump-
tions behind the Reprompting method are sound, allowing it
(with the (h+1)-gram score) to be used for all tested param-
eter combinations. Hence, all results in §5.2 are computed
with the Reprompting method and (h+ 1)-gram score.

5.2. Evaluating the spoofing detection tests

To ensure the statistical test is sound, we check whether
the Type 1 error rate is properly controlled. This means
that, under the null, letting p be the resulting p-value, for all

rejection rates α ∈ [0, 1],

P (p ≤ α) ≤ α. (10)

We further evaluate the test power on Stealing and Distilla-
tion, i.e. how effective it is at distinguishing spoofed text
from ξ-watermarked text. Additionally, we show in App. H
that the Type 1 error rate remains properly controlled in the
case of ξ-watermarked text that has been edited by humans.

Type 1 error To evaluate Type 1 error, we compare the
experimental rejection rate under the null hypothesis against
the set rate α. Per Eq. (10), if the test controls Type 1 error
well, we expect the curve to be below the identity function.

In Figure 3, we show the experimental rejection rate of
ξ-watermarked text on LLAMA2-7B (both instruction fine-
tuned and completion models) for different values of h and
T . We observe that the experimental rejection rates align
closely with the identity function. These results show that,
in practice, setting a rejection rate of α guarantees that the
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Figure 4: Experimental True Positive Rate of spoofed text. The dotted lines are the identity and serve as a reference for the
expected rejection rate under the null. Since, in practice, a low false positive rate (α) is desirable, the logarithmic scale on α
highlights the true positive rate at low α values.

Table 1: Experimental FPR and TPR for both spoofers at α ∈ {1%, 5%}, for different h and T . h = 3 (R) denotes the
Reprompting method with (h+ 1)-gram score while h = 3 (S) denotes the Standard method with unigram score. All other
entries are for the Reprompting method with (h+ 1)-gram score.

T = 500 T = 1000 T = 2000 T = 3000

Spoofer
FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

STEALING

h = 1 0.00 0.62 0.04 0.81 0.00 0.93 0.04 0.99 0.01 1.00 0.05 1.00 0.01 1.00 0.07 1.00
h = 2 0.01 0.16 0.04 0.35 0.00 0.37 0.04 0.59 0.01 0.73 0.05 0.88 0.01 0.91 0.04 0.97
h = 3 (R) 0.01 0.47 0.05 0.73 0.01 0.85 0.05 0.95 0.01 0.99 0.05 1.00 0.01 1.00 0.06 1.00
h = 3 (S) 0.01 0.27 0.05 0.53 0.01 0.55 0.04 0.80 0.01 0.88 0.03 0.97 0.00 0.97 0.03 1.00

DISTILLATION
h = 1 0.01 0.48 0.04 0.71 0.01 0.86 0.05 0.96 0.01 1.00 0.06 1.00 0.01 1.00 0.03 1.00
h = 2 0.01 0.57 0.06 0.78 0.01 0.91 0.06 0.97 0.01 1.00 0.05 1.00 0.00 1.00 0.07 1.00

experimental False Positive Rate of the test is indeed α.

Test power To evaluate the power of the test, we com-
pute the empirical true rejection rate (i.e., TPR) under the
alternative hypothesis for a given threshold α.

In Table 1, we provide the experimental False Positive Rate
(FPR, rejection under the null) and True Positive Rate (TPR,
rejection under the alternative) for a fixed value of α. For
T = 3000, under all tested scenarios, we achieve more
than 90% TPR at a rejection rate of 1%. This suggests that,
given a long enough text (or concatenation of text), spoofed
text from both state-of-the-art methods can be distinguished
from ξ-watermarked text with high accuracy and reliable
control over the false positive rate. Moreover, we see that the
Reprompting method yields higher power than the Standard
method for all values of T . Yet, the Standard method, in the
cases where it is applicable, does not require prompting the
model M, and thus may still be preferable.

Additionally, in Figure 4, we show the evolution of the TPR
with respect to α. We observe that for any fixed α ∈ [0, 1],
the power at α converges to 1 as T grows. This indicates
that the test can achieve arbitrary TPR at α, given suffi-
ciently long text. Also, we see that despite the fundamental
differences between the two spoofing techniques, the texts
produced by both Stealing and Distillation can be distin-
guished with the same test. This highlights that the intuition

behind our approach (§3.2) is general and that it points to a
fundamental limitation of current spoofing techniques.

6. Conclusion
In this work, building on the intuition that spoofed text con-
tains artifacts reflecting the spoofer’s knowledge, we suc-
cessfully constructed statistical tests to distinguish between
spoofed and genuine watermarked texts. The tests behave
similarly on the studied spoofers, and across a wide range of
watermark settings. Our results show that spoofed text can
be reliably distinguished from genuine watermarked text
with arbitrary accuracy given long enough text, and high-
light shared limitations of current learning-based spoofers.

Limitations While we can provide an experimental eval-
uation of power on current state-of-the-art spoofers, the
proposed tests come with no theoretical guarantee of power.
We build our tests on reasonable assumptions regarding the
limitations of learning-based spoofing techniques. Yet, we
hypothesize that spoofing techniques that adaptively learn
the vocabulary split may avoid leaving similar artifacts in
generated text. Designing such attacks can be an interesting
path for future work. Additionally, to have high power, our
tests require that the total length of the input texts is not too
small. Future work could try to improve the efficiency of
our method from this perspective.
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Impact Statement
This paper presents a detailed analysis of texts produced
by learning-based spoofing methods and proposes a way to
mitigate spoofing issues. While our findings can be used to
improve the stealth of future spoofing methods, we believe
that improving the understanding of watermark spoofing
outweighs the potential misuse of our work.
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Table 2: Experimental FPR and TPR for Stealing and Distillation using Dolly instead of C4 as the basis for the generation of
ω. The row h = 3 (R) corresponds to the Reprompting method with (h+ 1)-gram score whereas h = 3 (S) corresponds to
the Standard method with unigram score. Else only the Reprompting method with (h+ 1)-gram score is used.

T = 200 T = 500 T = 1000

Spoofer
FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

FPR
@1%

TPR
@1%

FPR
@5%

TPR
@5%

STEALING

h = 1 0.00 0.12 0.00 0.28 0.00 0.41 0.02 0.67 0.00 0.80 0.01 0.92
h = 2 0.00 0.03 0.04 0.15 0.00 0.12 0.04 0.28 0.01 0.34 0.08 0.50
h = 3 (R) 0.01 0.25 0.03 0.42 0.02 0.51 0.05 0.81 0.01 0.87 0.05 0.97
h = 3 (S) 0.00 0.16 0.02 0.43 0.00 0.27 0.02 0.51 0.01 0.48 0.04 0.75

DISTILLATION
h = 1 0.01 0.14 0.05 0.33 0.00 0.42 0.02 0.64 0.00 0.69 0.02 0.83
h = 2 0.02 0.12 0.07 0.27 0.01 0.36 0.07 0.59 0.02 0.67 0.07 0.84

Table 3: Experimental Rejection Rate (RR) for Stealing with SelfHash and h = 3 for both ξ-watermarked text and spoofed
text.

T = 200 T = 500 T = 1000 T = 2000

Experiment Method Spoofer LM
RR

@1%
RR

@5%
RR

@1%
RR

@5%
RR

@1%
RR

@5%
RR

@1%
RR

@5%

ξ-watermarked
Reprompting / 0.01 0.04 0.00 0.03 0.00 0.01 0.00 0.03

Standard / 0.00 0.03 0.00 0.02 0.01 0.02 0.00 0.01

STEALING

Reprompting
LLAMA2-7B 0.12 0.30 0.31 0.59 0.70 0.90 0.99 1.00
GEMMA-2B 0.14 0.30 0.45 0.73 0.83 0.93 1.00 1.00

MISTRAL-7B 0.10 0.29 0.38 0.63 0.79 0.93 1.00 1.00

Standard
LLAMA2-7B 0.03 0.13 0.06 0.20 0.11 0.35 0.32 0.63
GEMMA-2B 0.03 0.14 0.07 0.26 0.15 0.40 0.36 0.62

MISTRAL-7B 0.05 0.22 0.15 0.39 0.35 0.63 0.74 0.88

A. Additional Experimental Results
In this section, we conduct several thorough ablation studies. We evaluate the test using a different dataset as base prompts
(App. A.1), with a different variation of the watermark scheme (App. A.2), using another watermarked model (App. A.3),
using other spoofer models (App. A.4), and using both a different watermarked and spoofer model in App. A.5. In all
additional settings tested, the results are similar to those presented in §5, which emphasizes the validity of the test and shows
that the spoofing artifacts studied are a fundamental property of learning-based spoofers.

Unlike in §5, we generate 1,000 continuations per parameter combination for the ablation study. It means that on average
we have 105/T samples per parameter combination.

A.1. Mitigating potential methodological biases

Here, we use the same settings as §5 (Stealing and Distillation with SumHash, different values of h, and for h = 3, both
the Reprompting and Standard methods), but use text continuations of prompts sampled from Dolly (Conover et al., 2023)
instead of the C4 dataset. We show that the methodology used to generate the spoofed and ξ-watermarked texts has no
influence on the results.

In Table 2, we show the experimental FPR and TPR at α of 1% and 5%. The results are similar to those on C4 from Table 1:
the Type 1 error is controlled, and the power is similar. This suggests that the methodology we use to generate the prompts
does not influence the results. Hence, we can expect that for most texts ω, the empirical results presented hold, and that if ω
is spoofed, the spoofer’s artifacts remain present and discoverable.
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Table 4: Experimental Rejection Rate (RR) for Stealing with MISTRAL7B as M at α of 1% and 5% on both ξ-watermarked
text and spoofed text.

T = 200 T = 500 T = 1000 T = 2000

Experiment Method Spoofer LM
RR

@1%
RR

@5%
RR

@1%
RR

@5%
RR

@1%
RR

@5%
RR

@1%
RR

@5%

ξ-watermarked
Reprompting / 0.02 0.05 0.03 0.08 0.00 0.04 0.00 0.02

Standard / 0.01 0.04 0.01 0.02 0.00 0.02 0.00 0.02

STEALING

Reprompting
LLAMA2-7B 0.45 0.73 0.89 1.00 0.99 1.00 1.00 1.00
GEMMA-2B 0.48 0.90 0.97 1.00 1.00 1.00 1.00 1.00

MISTRAL-7B 0.59 0.81 0.97 1.00 1.00 1.00 1.00 1.00

Standard
LLAMA2-7B 0.19 0.41 0.25 0.60 0.45 0.79 0.83 0.95
GEMMA-2B 0.21 0.48 0.40 0.66 0.64 0.81 0.85 0.96

MISTRAL-7B 0.27 0.55 0.70 0.88 0.94 0.99 0.99 1.00

Table 5: Experimental FPR at α = 1% and α = 5% with SumHash h = 2, across spoofer LMs. Bold corresponds to the
case where both the spoofer and watermarked models are the same.

T = 200 T = 500 T = 1000 T = 2000

Experiment Spoofer LM
TPR
@1%

TPR
@5%

TPR
@1%

TPR
@5%

TPR
@1%

TPR
@5%

TPR
@1%

TPR
@5%

STEALING

LLAMA2-7B 0.07 0.16 0.14 0.34 0.36 0.62 0.68 0.88
GEMMA-2B 0.02 0.17 0.09 0.32 0.29 0.52 0.61 0.82

MISTRAL-7B 0.05 0.16 0.16 0.35 0.37 0.59 0.73 0.88

DISTILLATION
LLAMA2-7B 0.20 0.46 0.60 0.80 0.94 0.99 1.00 1.00
PYTHIA-1.4B 0.27 0.55 0.57 0.78 0.91 0.97 1.00 1.00

A.2. Results for the SelfHash scheme

Next, we focus on SelfHash with h = 3 and δ = 4 for Stealing. We use both the Reprompting and the Standard method
with their respective score functions (§4.2).

In Table 3, we show the experimental FPR at α = 1% and α = 5% for ξ-watermarked and spoofed text. Similarly to the
SumHash variant, the Type 1 error is properly controlled for both the Standard and the Reprompting methods. Moreover, the
empirical power scaling with T is similar to the SumHash scheme from Table 1. This means that the spoofing artifacts are
not tied to a specific scheme, but rather represent a fundamental limitation of learning-based watermark spoofing techniques
such as Stealing and Distillation. Additionally, we also see that the power of the Standard method at a fixed T is lower than
that of the Reprompting method. This confirms the expected trade-off of the unigram score: enforcing cross-independence
is traded for power (§4.2).

A.3. Alternative watermarked model

In this experiment, we use MISTRAL-7B as the watermarked model M for SumHash at h = 3 on Stealing. We do not use a
different M for Distillation, as Distillation was only empirically validated on LLAMA2-7B (Gu et al., 2024).

In Table 4, we show the experimental FPR at α of 1% and 5% for ξ-watermarked text and spoofed text on different spoofer
LMs. Similar to the results in Table 1, the Type 1 error is controlled in both the Reprompting and Standard methods.
Moreover, the power scaling with T is also similar to the results from Table 1. This suggests that the model M used by the
model provider has no influence on the artifacts left by spoofing attempts on such a model.

A.4. Influence of the spoofer model

In this experiment, we run our tests on SumHash with h = 2, using for Stealing LLAMA2-7B, MISTRAL-7B and GEMMA
2B, and for Distillation LLAMA2-7B and PYTHIA-1.4B.
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Figure 5: Evolution of E[ZR(Ω,Ω
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Figure 6: ROC curves with LLAMA3-8B as the watermarked model, Stealing with QWEN2.5-7B as the spoofer model, and
h = 3 with Reprompting.

In Figure 5, we show the evolution of the expected value of ZR(Ω,Ω
′) for spoofed texts with respect to T , across different

spoofer LMs. We see that the evolution of the average Z-score is similar across all models and both spoofing techniques.
This suggests that the choice of the spoofer LM has almost no influence on the test power.

Additionally, in Table 5, we show the FPR and TPR for the 5 spoofer LMs tested. For T = 2000, we obtain similar results
across all models, with a TPR at 1% of at least 60% for Stealing and 100% for Distillation, similar to the results from §5.2.
Moreover, counterintuitively, a spoofer using the same model as the model owner does not significantly lower the test power.
This suggests that the artifacts we are detecting in spoofed text indeed reflect the lack of knowledge of the spoofer (§3.2),
and not the difference between the LM used by the spoofer and the LM used by the model provider.

A.5. Alternative watermarked and spoofer model

In this experiment, we use LLAMA3-8B as the watermarked model M with SumHash at h = 3, and we spoof using Stealing
with QWEN2.5-7B as the spoofer model.

Figure 6 shows the ROC curves of our detection test using these alternative models. We see that our test remains valid, with
the Type I error being properly controlled (solid line) and the power remaining high (dashed line). This suggests that neither
the model M used by the model provider nor the spoofer model influences the artifacts left by spoofing attempts.

B. Validating the Concatenation Procedure
In this section, we experimentally validate the claim that concatenating texts ω according to the procedure from §4.2 has no
influence on the resulting distribution of the statistic.
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Figure 8: Histogram of ZS(W ) for ξ-watermarked text with (h+ 1)-gram score and Standard method.

Experimental setup Let W = (ω1, . . . , ωn) be a corpus of n texts of the same length, and W ′ the corresponding corpus of
Reprompting texts of the same length T . Let X,X ′ ∈ {0, 1}n×T be the color matrices of the corpora, and Y, Y ′ ∈ [0, 1]n×T

be the associated (h+ 1)-gram score matrices of the corpora. For permutations σ ∈ Sn×T , we define σ(X)i,j = Xσ((i,j))

and σ(Y )i,j = Yσ((i,j)). We define σ(W ) as the shuffled corpus with the corresponding σ(X) color and σ(Y ) score. Given
σ ∈ Sn×T , we test the hypothesis that shuffling has no influence on the distribution of ZR(W,W ′),

ZR(σ(W ), σ(W ′)) ∼ ZR(W,W ′), (11)

where ZR(W,W ′) := (ZR(ω1, ω
′
1), . . . , ZR(ωn, ω

′
n)). The shuffling operation can be interpreted as a concatenation of

texts of length 1. Hence, if the shuffling has no influence, this implies that the concatenation of texts of longer length has no
influence either. To test for the equality of distribution, we use a Mann-Whitney U rank test.

Results In practice, we generate n = 1000 ξ-watermarked and spoofed texts of length 175 and their corresponding
T = 150-length Reprompting text corpora. We sample σ ∈ Sn×T uniformly in Sn×T . In Figure 7, we show the resulting
histogram of ZR(W,W ′) and ZR(σ(W ), σ(W ′)). The histograms between the non-shuffled and shuffled versions perfectly
overlap for both the ξ-watermarked texts and the spoofed texts. Moreover, the resulting p-values from the Mann-Whitney
U rank test are 0.86 and 0.44, respectively. Hence, we can conclude that Eq. (11) is verified and that the concatenation
procedure has no influence on the distribution of the statistic.

C. Dependence Between the Context Distribution and the Color
In this section, we study in detail the dependence between the color of token ωt and ID(ωt−h:t) in ξ-watermarked text from
§3.2.

Problem statement We recall that D is the training data of the spoofer, and ID is the function of frequencies of
h + 1-grams in D. In §3.2, we hypothesize that low entropy is a common factor that implies ID(Ωt−h:t) is high and
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Figure 9: Left: Evolution of the p-value distribution with the Total Variation distance between D and D̃. Note that the
x-scale is not linear. Right: Evolution of the p-value distribution for different choices of D̃. Each p-value is computed with
1000-token long completions. The whiskers are set at 0.5 of the IQR for visibility.

P (Xt = 1) ≈ γ. Under such an assumption, we therefore expect the correlation between the observed color sequence x and
the (ID(ωt−h:t))∀t∈{h,...,T} to be negative. In other words, we expect ZS(ω) with the (h+ 1)-gram score to be negative for
ξ-watermarked text.

Results We verify this claim by computing ZS(ω) with the (h+ 1)-gram score for a corpus W of 1000 ξ-watermarked
texts, each of length T = 500. In Figure 8, we see the histograms of ZS(W ) for different values of h. We see that for all
h, Ê[ZS(W )] is indeed negative. Furthermore, we notice that the histograms appear normally distributed, agreeing with
the assumption underlying the Reprompting method (Eq. (5)). Therefore, these results show that the proposed intuitive
explanation of the dependence due to M is coherent, and further highlight the need for the Reprompting method in order to
build a statistic with a known distribution when using the (h+ 1)-gram score.

D. Influence of the Training Dataset
In this section, we study the influence of D̃ on our ability to detect spoofed texts. As we do not know the true distribution
of D, we hope that using a different dataset does not significantly affect our results. We study the influence of D̃ on both
Stealing and Distillation methods with SumHash h = 1.

Evolution with the TV distance First, we analyze the influence of the choice of D̃ in a controlled setting. We let D̃0

be the counts of the different (h+ 1)-grams in D. We then build a perturbed dataset D̃ϵ by adding centered normal noise
with standard deviation ϵ to D̃0. Finally, we compute the total variation distance between D̃ϵ and D. In Figure 9 (left), we
observe that the p-values increase on average with the total variation distance between D̃ϵ and D. This confirms the intuition
that the better the estimate of D, the more powerful our tests are. Furthermore, it appears that the p-values increase slowly
with the total variation distance, which suggests that the choice of D̃ is not crucial for obtaining a powerful test.

Comparing different training datasets We run the test for different choices of D̃ (C4 (Raffel et al., 2020), Dolly (Conover
et al., 2023), Wikipedia (WikimediaFoundation), Repliqa (Monteiro et al., 2024), and Math (Fourrier et al., 2023)) as well as
D̃ := D for comparison. In Figure 9 (right), we see that even the Math dataset has reasonable p-values for Stealing despite
our experimental evaluations using significantly different prompt completions from news articles. This confirms that our test
is robust to the choice of D̃.

Lastly, given a received watermarked text ω, a model provider could adjust the choice of D̃ based on the topic of ω. Such a
heuristic could ensure that the choice of D̃ is always relevant, and further mitigate its impact on the test power.
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Figure 10: Experimental True Positive Rate of spoofed text with different sizes of D. The size of D is measured in training
steps, where each step comprises 16, 284 tokens.

E. Influence of the Size of the Spoofer Training Data
In this section, we study how the power of the test is impacted by the size of the training dataset D. We show that increasing
the spoofer training dataset reduces the presence of artifacts at a slow rate, and hence is not an effective way to remove the
spoofing artifacts.

We run the test for Distillation with LeftHash, h = 1, LLAMA2-7B as the watermarked model, and PYTHIA-1.4B as the
spoofer model. We train the spoofer with different sizes of D. We note that, for practicality, the smaller instances of D
are subsets of the larger ones. Otherwise, we run the same experimental procedure as in §5.2, but using only n = 1000
completions.

We see in Figure 10 that the influence of increasing the spoofer training dataset D is very mild. This suggests that, even
though increasing the spoofer training data indeed lowers the power of the test, the rate at which it does so is so slow that it
is not an effective way to hide spoofing artifacts. Indeed, a 9-time increase in the size of D only reduced the TPR at 0.1
percent from 94 percent to 87 percent with T = 1000.

F. Influence of the Reprompting
In this section, we study in greater detail the impact of the Reprompting method. Specifically, in App. F.1 we find that
estimating the prompts compared to using the original prompts only has a minor impact, and in App. F.2 we show that using
a fixed corpus to estimate the correlation directly (i.e., µΩ from Eq. (5)) leads to a non-controllable Type 1 error. Hence, the
Reprompting method is needed to, in practice, properly control the Type 1 error.

F.1. Impact of Estimating the Prompts

In this part, we analyze whether the distribution shift between the original prompts and the estimated prompts significantly
influences our test power.

We run the detection test using the Reprompting statistic (Eq. (6)) once with the original prompt and once without. Otherwise,
we use LLAMA2-7B as the watermarked model and MISTRAL-7B as the spoofer model with Stealing, h = 1, and the same
experimental setup as in §5. Figure 11 (left) shows the ROC curve with and without using the original prompts. As expected,
we find that estimating the prompt consistently slightly degrades the TPR (at worst a 5% TPR at 1% FPR decrease). This
suggests that, for non-adversarial cases, the drift incurred by using the beginning of the received text as a proxy for the
prompt has minimal impact on our detection accuracy.

F.2. Using a Fixed Corpus Instead of Reprompting

In this part, we show that using a fixed estimate of the correlation distribution for any text leads to an uncontrollable Type I
error, hence justifying why the Reprompting method is needed.
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Figure 11: (Left) Influence of the prompt estimation with Reprompting: ROC curves with LLAMA2-7B as the watermarked
model, Stealing with MISTRAL-7B as the spoofer model, and h = 1. The dotted black line corresponds to the identity
function as a reference. (Right) ROC curves with LLAMA2-7B as the watermarked model, distillation with LLAMA2-7B as
the spoofer model, and h = 2, using a fixed corpus of ξ-watermarked text to estimate the average watermarked correlation.

0.0 0.2 0.4 0.6 0.8 1.0
, h=3

0.0

0.2

0.4

0.6

0.8

1.0

Re
je

ct
io

n 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0
, h=4

FPR
TPR
T: 100
T: 200
T: 500

Figure 12: Rejection rates for the Reprompting method on the AAR watermark with h = 3 and h = 4. The solid lines
correspond to ξ-watermarked text and the dashed lines to Distillation-spoofed text.

We first generate a corpus of 512k tokens of ξ-watermarked text using LLAMA2-7B as the watermarked model and h = 2,
generated using 50-token-long prompts from OPENWEBTEXT. For a text ω, to compute a p-value, we directly apply Eq. (6),
where we replace the "reprompted correlation" S(ω′) with the fixed correlation estimate from the corpus, independent of
ω. In Figure 11 (right), we show the ROC curve of such modified detection text using Distillation with LLAMA2-7B as a
spoofer. We see that the FPR is higher than what we would expect, suggesting that the estimated mean does not capture the
true mean. This is why Reprompting, albeit more costly, is more reliable in practice.

G. Extending the Method to Other Schemes
While we design our method to detect spoofing attempts on Red-Green schemes (Kirchenbauer et al., 2023), as these are
the primary target of several spoofing works, we show that the method can be generalized to other watermarking schemes.
Excluding the unigram scheme by Zhao et al. (2024), which Zhang et al. (2024) shows can be perfectly spoofed, we can
study the AAR scheme from Aaronson (2023), as well as one of the KTH schemes from Kuditipudi et al. (2024), as both
schemes were shown to be spoofable via Distillation (Gu et al., 2024).

AAR watermark In the AAR watermark, h previous tokens are hashed using a private key ξ to obtain a score ri uniformly
distributed in [0, 1] for each token index i in the vocabulary Σ. Given pi, the original model probability for token index i,
the next token is then deterministically chosen as the token i∗ that maximizes r1/pi

i .
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Figure 13: Rejection rates for the Reprompting method on the KTH watermark with s ∈ {1, 4, 256}. The solid lines
correspond to ξ-watermarked text and the dashed lines to Distillation-spoofed text.

Given a text ω ∈ ΣT , we naturally generalize Eq. (4) by defining x ∈ RT as xt = − log rωt , whereas previously xt was the
color of the t-th token. The rest of the method remains identical.

We evaluate both the FPR and TPR of our test using h ∈ {3, 4}, LLAMA2-7B as both the watermarked model and the
attacker model, the Reprompting method, and the same experimental procedure as in §5, except that we generate only
n = 500 completions. We discarded h = 2 as the watermarked model output was too low-quality and repetitive (Gu et al.,
2024). In Figure 12, we see that the generalized method can successfully detect spoofed text with a 90% TPR at a rejection
rate of 1% for 500 tokens. In fact, it is even more powerful than the detection in the Red-Green scheme, where we achieved
a similar TPR at 1% with 3000 tokens (§5.2). However, the test hypothesis appears slightly violated, as the empirical FPR at
1% is around 2% for both h = 3 and h = 4.

KTH watermark In the KTH watermark (EXP variant), a single watermark key sequence of length nkey, ξ =
ξ1, . . . , ξnkey , is uniformly distributed, where each ξi ∈ [0, 1]|Σ|. To generate the j-th token (modulo nkey), the wa-

termark samples the token i∗ that maximizes
(
ξji

)1/pi

. Additionally, to allow more diversity in the generated text, the key
is randomly shifted by a constant at each query. As in Gu et al. (2024), we denote by s the number of allowed shifts.

Given a text ω ∈ ΣT , we naturally generalize Eq. (4) by defining x ∈ RT as xt = log(1− ξtωt
), whereas previously xt was

the color of token t. To account for the permutation of the key, we further replace log(1− ξtωt
) with the Levenshtein cost

introduced in Kuditipudi et al. (2024). Moreover, the scheme, being based on a fixed key, lacks any context h that can be
used to compute the N-gram score yt (Eq. (7)). Following the intuition from Gu et al. (2024) that, in the limit, their spoofing
ability comes from learning contiguous watermarked sequences of length nkey, we suspect that setting h ≈ nkey would
enable greater test power. In practice, due to practical constraints, we set h = 5. The rest of the method remains unchanged.

We evaluate both the FPR and TPR of our test, using s = 4, and s = 256, along with a key of length nkey = 256, on
LLAMA2-7B as both the watermarked model and the attacker model, the Reprompting method, and the same experimental
procedure as in §5, except that we generate only n = 500 completions. In Figure 13, we see that this generalized method
can successfully detect spoofed text for both s = 4 and s = 256, albeit with a TPR of 65% at a confidence of 99% for s = 4
and TPR of 30% for s = 256. In all three cases however, the Type 1 error is controlled, i.e., empirical FPR corresponds to
the theoretical FPR.

H. Influence of Human Modifications on FPR
Here, we study the behavior of ξ-watermarked text that has subsequently been edited by humans. We consider two different
use cases. The first is the case of cropping. Given a ξ-watermarked text, we assume a human inserts non-watermarked
text in the middle. This corresponds to a plausible use case of LLMs, where humans merge generated text with their own.
Second, we consider paraphrasing. Given a ξ-watermarked text, we paraphrase it using DIPPER (Krishna et al., 2023).

We evaluate the FPR of human-modified text using h = 3 on both the Standard and Reprompting methods and follow a
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Figure 14: Experimental rejection rate of mixed ξ-watermarked text and human text on LLAMA2-7B for both the Reprompt-
ing method (left) and the Standard method (right) at different percentages of human text. Each mixed text is in total 500
tokens long.
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Figure 15: Experimental rejection rate of paraphrased ξ-watermarked text on LLAMA2-7B for both the Reprompting method
(left) and the Standard method (right).

similar experimental procedure as in §5, except that we generate only n = 500 samples. Given a percentage ρ, for each
generated C4 prompt completion of length T , we randomly insert another random human text sampled from C4 such that ρ
percent of the resulting text is human-generated. We used this procedure for ρ ∈ {0.01, 0.05, 0.1, 0.2}. As in §5, we apply
the test only on text that appears watermarked according to the original watermark detector. In Figure 14, we see that even
for the highest percentage of human text (20%), the test properly controls Type 1 error.

We evaluate the FPR of the paraphrased text using h = 3 on both the Standard and Reprompting methods and follow a
similar experimental procedure as in §5, except that we generate only n = 1000 samples. We note that we apply the test only
on text that is considered watermarked by the original watermark detector. In Figure 15, we see that the test still properly
controls Type I error for both methods and for different text lengths.

Both results show that a rejection rate of α still guarantees an experimental FPR of α, even if the ξ-watermarked texts have
been altered by humans.

I. Proof of Lemma 4.1
In this section, we detail the proof of Lemma 4.1.

First, let’s recall some statistical results that we need.
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Theorem I.1 (Lindeberg CLT). Let Xn,1, ..., Xn,n be independent random variables in Rd with mean zero. If for all ε > 0

n∑
k=1

E[||Xn,k||21{||Xn,k|| > ε}] → 0, (Lindeberg Condition) (12)

and
n∑

k=1

cov(Xn,k) → V, (13)

then
n∑

k=1

Xn,k
d−→ N (0, V ). (14)

Theorem I.2 (Delta method). Let X1, ..., Xn be a sequence of random variables in Rd, if

√
n(Xn − µ)

d−→ N (0, V ), (15)

and u : Rd → R is differentiable at µ, with ∇u(µ) ̸= 0, then

√
n(u(Xn)− u(µ))

d−→ N (0,∇u(µ)TV∇u(µ)). (16)

Now we proceed to prove Lemma 4.1. We first state the result formally.

Lemma 4.1. Let X := X1, . . . , XT be a sequence of independent (non i.i.d) Bernoulli random variables, and gi =
P (Xi = 1). Let Y := Y1, . . . , YT be a sequence of i.i.d. random variables. Let Ω = (X,Y ). Assuming that, for all
i ∈ {0, . . . , T}, Xi and Yi are independent, that there exist g(1), g(2) ∈ [0, 1] such that

lim
T→∞

1

T

T∑
i=1

(gi − g(1)) = O

(
1

T

)
and lim

T→∞

1

T

T∑
i=1

g2i = g(2), (17)

and assuming that Y admits at least 4 moments µY , µY 2 , µY 3 , µY 4 . Then, we have that

ZS(Ω) :=
√
TS(Ω)

d−→ N (0, 1) .

Proof. Let wi := (Xi, Yi, X
2
i , Y

2
i , XiYi). Let Xn,k = (wi−E[wi])√

n
. We recall the definition of S,

S(Ω) =

∑T
t=1(Xt − X̄T )(Yt − ȲT )√∑T

t=1(Xt − X̄T )2
∑T

t=1(Yt − ȲT )2
. (18)

=

1
T

∑T
t=1 XtYt −

(
1
T

∑T
t=1 Xt

)(
1
T

∑T
t=1 Yt

)
√

1
T

∑T
t=1 X

2
t −

(
1
T

∑T
t=1 Xt

)2√
1
T

∑T
t=1 Y

2
t −

(
1
T

∑T
t=1 Yt

)2 , (19)

where X̄T denotes the mean of X1:T .

The proof goes as follows:

• First, we show that the sum of the covariance matrix of Xn,k converges (Eq. (13)).

• Then, we show that Xn,k satisfies the Lindeberg condition (Eq. (12)). We can then apply the Lindeberg theorem to
show that wi converges to a normal distribution.

• Finally, we apply the Delta method (Theorem I.2) to show that S(Ω) is normally distributed.
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We have that for all i ̸= j, wi is independent of wj . For each i, we have

Cov(wi) =


gi(1−gi) 0 gi(1−gi) 0 µY gi(1−gi)

0 −µ2
Y +µY 2 0 −µY µY 2+µY 3 gi(−µ2

Y +µY 2)
gi(1−gi) 0 gi(1−gi) 0 µY gi(1−gi)

0 −µY µY 2+µY 3 0 −(µY 2)
2
+µY 4 gi(−µY µY 2+µY 3)

µY gi(1−gi) gi(−µ2
Y +µY 2) µY gi(1−gi) gi(−µY µY 2+µY 3) gi(−µ2

Y gi+µY 2)

 ,

where we denote µY k as the k-th moment of Y .

Then, using Eq. (17), we have that 1/T
∑T

i=1 Cov(wi) =
∑T

i=1 Cov(Xn,i) converges towards V ∈ R5×5, defined as

V =


g(1)−g(2) 0 g(1)−g(2) 0 µY (g(1)−g(2))

0 −µ2
Y +µY 2 0 −µY µY 2+µY 3 g(1)(−µ2

Y +µY 2)
g(1)−g(2) 0 g(1)−g(2) 0 µY (g(1)−g(2))

0 −µY µY 2+µY 3 0 −(µY 2)
2
+µY 4 g(1)(−µY µY 2+µY 3)

µY (g(1)−g(2)) g(1)(−µ2
Y +µY 2) µY (g(1)−g(2)) g(1)(−µY µY 2+µY 3) −µ2

Y g(2)+µY 2g
(1)

 .

We have completed the first step of the proof.

Now we want to show that Xn,i satisfies the Lindeberg condition (Eq. (12)). Let ε > 0. Because Xi, Yi ∈ [0, 1], we

have that for all i ≤ n, ∥Xn,i∥ ≤
√

10
n . There exists n0 > 0 such that ∀n ≥ n0,

√
10
n < ε. Therefore, ∀n ≥ n0,∀k ≤

n,1{∥Xn,k∥ > ε} = 0. So, for all n ≥ n0,

n∑
k=1

E[||Xn,k||21{||Xn,k|| > ε}] = 0. (20)

Hence, we have shown that for all ε > 0,

n∑
k=1

E[||Xn,k||21{||Xn,k|| > ε}] → 0. (21)

Therefore, using the Lindeberg CLT (Theorem I.1), we have that

1√
T

T∑
i=1

(wi − E(wi))
d−→ N (0, V ). (22)

We have completed the second step of the proof. Now, we want to apply the Delta method (Theorem I.2) to show that S(ω)
is normally distributed.

Let µw := limT→∞ 1/T
∑T

i=1 E[wi] = (g, µY , g, µY 2 , gµY ). We introduce

Ei =
1√
T

T∑
i=1

E[wi]− µw (23)

=
√
T

(
1

T

T∑
i=1

E[wi]− µw

)
(24)

= O

(
1√
T

)
(Using Eq. (17)). (25)

Therefore, we have
1√
T

T∑
i=1

(wi − µw) =
1√
T

T∑
i=1

(wi − E[wi]) + Ei
d−→ N (0, V ). (26)

Let u : R5 → R be defined as
u(x) =

x5 − x1x2√
(x3 − x2

1)(x4 − x2
2)
. (27)
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We have that S(Ω) = u
(
1/T

∑T
i=1 wi

)
(using Eq. (19)) and u(µw) = 0, and therefore using the Delta method (Theo-

rem I.2) we have that √
TS(Ω)

d−→ N
(
0,∇u(µw)

TV∇u(µw)
)
. (28)

Because ∇u(µw)
TV∇u(µw) = 1, we have shown that

√
TS(Ω)

d−→ N (0, 1). (29)

J. Extended Discussion of the State of Watermark Spoofing
In this section, we overview of the state of the field of watermark spoofing to further motivate our work and highlight its
practical implications. In App. J.1, we identify three categories of spoofing techniques and highlight learning-based spoofing
techniques as the most practically relevant. We put our findings in this context, discussing the potential for adaptive spoofing
that does not leave artifacts in the spoofed text. In App. J.2 we discuss how latest schemes attempt to tackle the issue of
spoofing.

J.1. Approaches to spoofing

Learning-based spoofing As explained in §1, learning-based spoofing operates in two phases. In the first phase, the
spoofer queries the model to generate a dataset D of ξ-watermarked text. From this dataset D, the spoofer learns the
watermark, which allows them to generate spoofed text. In the second phase, using their knowledge and a private LM, the
spoofer can generate arbitrary watermarked text at scale, without having to query the original model again. In particular,
spoofed texts can be created as answer to any prompt, even the one that would be refused by the original LLM, which
gives learning-based spoofers great flexibility, and illustrates the potential threat they pose. Additionally, as long as the cost
of the first phase is reasonable, learning-based spoofing is cost-effective, as the subsequent per-spoofed-text cost is zero.
Learning-based spoofing includes the works of Jovanović et al. (2024); Gu et al. (2024); Zhang et al. (2024).

Piggyback spoofing As discussed in §2, the second family of spoofing techniques is piggyback spoofing, introduced
by (Pang et al., 2024), which directly exploits the desirable robustness property of the watermarks. Given a ξ-watermarked
sentence, the attacker modifies a few tokens to alter the meaning of the original sentence while maintaining the watermark,
interpreting the result as an instance of spoofing. While illustrating the potential drawbacks of high robustness, this comes
with several caveats. First, abusing the robustness of the watermark naturally raises the question of the boundary between
spoofed text and edited ξ-watermarked text. Indeed, mixing human and LM text is a realistic use of LMs, and it is agreed
that watermarks should account for this use (Kirchenbauer et al., 2023; Kuditipudi et al., 2024). Second, piggyback spoofing
is limited in the scope of text it can generate, as it relies on the original model to generate the majority of the text. This
greatly reduces the flexibility of the attack, i.e., does not allow the attacker to generate texts on harmful topics that would be
refused by the watermarked model. Finally, the same property makes the cost of spoofing scale with the number of spoofed
texts, as the attacker needs to query the original model each time.

Step-by-step spoofing Finally, as also briefly mentioned in §2, a third category of spoofing techniques is step-by-step
spoofing. This line of works considers spoofing techniques that require queries at each step of the generation process of
every spoofed text (Pang et al., 2024; Zhou et al., 2024; Wu & Chandrasekaran, 2024), using the feedback obtained this
way to choose the next token. While they have higher flexibility compared to piggyback spoofing, a key limitation of these
techniques is the high cost, even compared to piggyback spoofing. Further, some of these methods assume access to the
watermark detector itself (sometimes also its confidence score) to obtain the desired feedback, which is not always realistic.
For instance, in the case of the first public large-scale deployment of a watermark, SynthID-Text, Google does not provide
public access to the watermark detector.

Summary In summary, learning-based spoofing is the most practically relevant category of spoofing techniques, as it is
cost-effective, flexible, and does not require querying the original model for each spoofed text. Another advantage from the
perspective of our research question is the fact that current learning-based methods are based on fundamentally different
principles, making the question of their common limitations relevant and interesting. In this work, we study that question,
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showing that all learning-based spoofers leave visible artifacts in spoofed text, which can be leveraged to distinguish between
spoofed and ξ-watermarked text.

J.2. Spoofing-aware watermarking schemes

The field of watermarking is evolving rapidly, as explained in §2, with different schemes proposed in the literature. We
distinguish two approaches to watermarks in LMs. The first one is the statistical approach, notably including schemes from
Kirchenbauer et al. (2023); Kuditipudi et al. (2024); Aaronson (2023), which place great emphasis on watermark robustness
and practicality. The second is the cryptographic approach, with schemes stemming from Christ et al. (2024b), which focus
primarily on watermark security and rigorous guarantees.

In particular, schemes with cryptographic features have not been shown to be vulnerable to spoofing attacks. Yet, they
enhance security by trading off other key watermark properties, such as robustness to watermark removal. Moreover, recent
work (Zhou et al., 2024) suggests merging both fields to create a watermarking scheme that is not only more robust to
watermark removal but also to watermark spoofing. However, they show that their approach trades off with generation
quality. This highlights that, from the perspective of a model provider, there is no single scheme that is the most desirable.
Hence, choosing a particular scheme is a complex task that involves navigating the tradeoffs between different properties.
From this perspective, our work provides new evidence that schemes derived from (Kirchenbauer et al., 2023) are harder to
spoof than previously thought (as these attempts can be detected by observing the artifacts), and can help model providers
adjust their expectations.
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