

SESEMMI FOR LINKEDMUSIC: DEMOCRATIZING ACCESS
TO MUSICAL ARCHIVES VIA LARGE LANGUAGE MODELS

Anonymous Authors
Anonymous Affiliations

anonymous@ismir.net

ABSTRACT 1

Currently, there are over one hundred music metadata da-2

tabases online; comprehensively answering even simple 3

questions often means querying dozens of them separately. 4

This fragmentation makes large-scale, cross-cultural, or 5

longitudinal research difficult and time-consuming. The 6

LinkedMusic initiative aims to solve this problem by com-7

bining these databases in one place. The ingested data are 8

stored in RDF format and can be queried using SPARQL, 9

a querying language. 10

However, SPARQL’s complexity makes it prohibi-11

tively difficult for most users to use effectively. Our pro-12

ject, the Search Engine System for Enhancing Music 13

Metadata Interoperability (SESEMMI), aims to overcome 14

this barrier by providing a natural language interface for 15

LinkedMusic. Using Large Language Models (LLMs), it 16

translates the user’s plain-language queries into SPARQL 17

queries that retrieve results from all integrated databases. 18

In this paper, we conduct the first systematic study of 19

the ability of LLMs in translating Natural Language Que-20

ries (NLQ) to SPARQL in the domain of music metadata 21

research. We evaluate five models on twenty music-do-22

main NLQ-to-SPARQL pairs with manually prepared 23

ground-truth outputs. Results indicate that Claude 24

Sonnet 4 achieves the highest accuracy of 100.0% on sin-25

gle-database queries in both zero- and one-shot contexts 26

and 46.7% for complex zero-shot cross-database queries. 27

1. INTRODUCTION 28

The abundance of specialized online music metadata re-29

positories, ranging from folk-music archives to vast cross-30

genre music encyclopedias, has created a wealth of schol-31

arly and cultural resources. However, the heterogeneity of 32

their data schemas poses a fundamental barrier to cross-33

collection search and analysis. For example, to answer a 34

question like “Find all works commissioned by Isabella 35

d’Este that have a surviving manuscript and a recording 36

made after 1980”, today’s musicologists must navigate 37

multiple disparate platforms, reconcile inconsistent identi-38

fiers, and stitch together results by hand. Furthermore, 39

1 https://openrefine.org Accessed 29 July 2025.
2 https://www.wikidata.org Accessed 9 August 2025.

these websites often lack the nuanced search functionality 40

required to answer precise questions. 41

The LinkedMusic project aims to address these issues 42

by merging these music metadata databases into a single 43

data lake, which is a vast network of raw data with incon-44

sistent schemas. We begin this process by obtaining a 45

dump of the databases, usually in tabular format (e.g., 46

CSV), then use OpenRefine1 with its Reconciliation API 47

to match and link as many values as possible to their cor-48

responding Wikidata 2 Uniform Resource Identifiers 49

(URIs). For instance, the string “Charlie Parker” would be 50

replaced with <http://www.wikidata.org/entity/Q103767>. 51

After reconciliation is complete, we convert each dataset 52

to Resource Description Framework (RDF) format3 and 53

merge them into a single knowledge graph, hosted in an 54

OpenLink Virtuoso graph database,4 which is queryable 55

using SPARQL Protocol and RDF Query Language 56

(SPARQL), the W3C standard for RDF data. This reposi-57

tory will be searchable online via the Search Engine Sys-58

tem for Enhancing Music Metadata Interoperability 59

(SESEMMI). The overall process is illustrated in Figure 1. 60

However, querying the LinkedMusic data lake presents 61

a significant challenge since crafting SPARQL queries is 62

3 https://www.w3.org/wiki/RDF Accessed 9 August 2025.
4 https://virtuoso.openlinksw.com Accessed 9 August 2025.

 © Anonymous Authors. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Anonymous Authors, “SESEMMI for LinkedMusic: Democratizing Ac-
cess to Musical Archives via Large Language Models”, submitted to
LLM4MA, 2025.

Figure 1. LinkedMusic overall process.

an intricate process that is impractically complex for most 63

end users. Our solution is to utilize Large Language Mod-64

els (LLMs), which show significant promise in translating 65

musical Natural Language Queries (NLQ) to SPARQL [1–66

2]. Furthermore, LLMs closely align with LinkedMusic’s 67

goal for accessibility, not only by lowering the technical 68

barriers to use, but also in their multilingual nature. 69

Our primary contributions are threefold. First, while 70

NLQ to Structured Query Language (SQL) and general-71

domain NLQ to SPARQL have grown in interest, translat-72

ing NLQ to SPARQL over heterogeneous music-metadata 73

graphs remains unexplored. Currently, and to the best of 74

our knowledge, we present the first systematic study of 75

NLQ to SPARQL in the music domain, demonstrating its 76

feasibility and identifying specific hurdles such as Wiki-77

data “Q” identifier retrieval and effectively communi-78

cating a complex ontology (a structured representation of 79

concepts and their relationships). Second, we empirically 80

evaluate and benchmark five LLMs across NLQ to 81

SPARQL tasks, divided into four challenge types, ranging 82

from simple single database queries to cross-database fed-83

erated queries with Wikidata. Last, we provide practical 84

insights by analyzing our use of prompt-engineering strat-85

egies that aim to maximize SPARQL accuracy and offer 86

guidelines for implementing NLQ search tools over com-87

plex datasets. 88

The remainder of the paper is organized as follows. Sec-89

tion 2 reviews related work in NLQ to SPARQL and NLQ 90

to SQL tasks. Section 3 details our methods, including 91

prompt design, dataset construction, and evaluation. Sec-92

tion 4 presents experimental results and discusses possibil-93

ities for methodology refinement. Lastly, Section 5 con-94

cludes and outlines steps for future work. 95

2. BACKGROUND 96

While research translating natural language into formal da-97

tabase queries dates back to the 1970s [3], interest in this 98

area has grown significantly since the emergence of 99

LLMs [4]. This section surveys the conversion of natural 100

language to both SPARQL and SQL, with the latter being 101

more established, but methodologically similar. 102

2.1 Natural Language Query to SPARQL 103

Historically, approaches to SPARQL query generation 104

have included neural networks [5–6], Markov models [7], 105

and rule- or template-based methods [8–11]. However, the 106

field has become increasingly dominated by LLMs, which 107

continue to improve at an astonishing rate [12–14]. 108

At the same time, while LLMs show incredible poten-109

tial, they often yield inconsistent results. LLMs frequently 110

return correct templates with critical errors that prevent the 111

SPARQL output from retrieving the desired entities, par-112

ticularly in zero-shot contexts (contexts with no examples 113

given) [15]. This often stems from incorrect entity linking, 114

which is the ability to match natural language terms to en-115

tities within a graph [15–16]. LLMs may also incorrectly 116

5 https://bird-bench.github.io Accessed 29 July 2025.
6 https://spider2-sql.github.io Accessed 29 July 2025.

retrieve external identifiers [2] or misunderstand the un-117

derlying knowledge graph, which itself might be of poor 118

quality [16]. 119

A common strategy for mitigating these issues is in-120

context learning, more specifically, few-shot chain-of-121

thought prompting, where the provided examples guide 122

LLMs through intermediate reasoning steps [1, 17]. 123

The reverse problem has also been investigated, where 124

SPARQL queries are explained by converting them to nat-125

ural language [18]. 126

2.2 Natural Language Query to SQL 127

Although SQL and SPARQL are different database query 128

languages, many of the strategies used in NLQ to SQL can 129

be applied effectively to NLQ to SPARQL. While ap-130

proaches in NLQ to SQL were initially predominantly 131

rule-based methods, they were overtaken by pre-trained 132

language models (PLMs), and later LLMs around 133

2023 [4]. 134

On the other hand, while LLM-based methods for NLQ 135

to SQL show significant promise, they still have many lim-136

itations. Firstly, they are often trained and tested on just 137

one database, meaning that they generalize poorly and 138

struggle to query over multiple databases, especially if the 139

schemas differ for each one. In addition, many of the best-140

performing approaches, like agents, have high token costs 141

that can make them prohibitively expensive to implement 142

at scale. Finally, and perhaps most importantly, while 143

LLM-based methods are rapidly improving, they are still 144

outperformed by human experts [4]. 145

On the BIRD-SQL benchmark [19], which contains 146

over 12,751 unique question-SQL pairs with 95 databases 147

across 37 professional domains, the best model, Long-148

Data-SQL, 5 achieves 77.53% accuracy compared to 149

92.96% for humans. Meanwhile, WindAgent + Claude-4-150

Sonnet6 has achieved the top score of 58.32% accuracy on 151

Spider 2.0-Snow, a dataset where correct responses for the 152

632 NLQ-to-SQL problems often require more than 100 153

lines of code and the ability to parse sub-databases with 154

over 1,000 columns [20]. 155

3. METHODOLOGY 156

While there are plans to add dozens more databases, the 157

LinkedMusic data lake currently contains five sub-data-158

bases totalling over 352 million RDF triples: MusicBrainz 159

[21], Digital Image Archive of Medieval Music (DIAMM) 160

[22], The Global Jukebox [23], Dig That Lick 1000 [24], 161

and The Session.7 Each sub-database was reconciled to 162

Wikidata using OpenRefine with human verification for 163

edge cases that could not be reconciled automatically. 164

They were then converted to RDF format, uploaded to an 165

OpenLink Virtuoso graph database, and queried via Virtu-166

oso’s built-in SPARQL endpoint. 167

7 https://thesession.org Accessed 29 July 2025.

To evaluate the models’ performance, a custom test da-168

taset of twenty NLQ/SPARQL pairs with ground-truth 169

SPARQL was manually built. These questions were 170

grouped into four challenge types of increasing difficulty 171

(see Table 1), with five questions per challenge (one ques-172

tion per sub-database for Challenges 1–3). 173

During exploratory testing, we investigated methods 174

such as prompt chaining, which breaks complex tasks into 175

smaller, linked prompts. We also experimented with the 176

deep-research feature (e.g., multi-step reasoning and 177

chain-of-thought exploration) and even attempted emo-178

tional appeals, like begging or threatening the model. 179

These approaches did not appear to improve results. 180

Difficulties encountered during the exploratory phase 181

were numerous and often unexpected, including an issue 182

where the SPARQL output was syntactically correct, but 183

conflicted with Virtuoso’s SPARQL query optimizer. To 184

teach the LLM how to better cooperate with Virtuoso, we 185

needed to add two lines to our prompt. 186

After extensive exploratory testing, a general all-pur-187

pose system prompt (see Appendix) was designed, which 188

wraps around the natural language input and asks the LLM 189

to return the corresponding SPARQL as output. 190

In total, five LLMs were tested: Claude Sonnet 4, 8 191

Gemini 2.5 Flash, 9 Gemini 2.5 Pro 10 GPT-4o, 11 and 192

OpenAI o4-mini.12 Each model was evaluated three times 193

through the browser in a zero- or one-shot context (i.e., 194

zero or one example provided) and was given the full on-195

tology of the LinkedMusic data lake in Turtle format,13 a 196

compact and human-readable RDF format. For example, 197

Figure 2 shows a diagram of the ontology for the Dig That 198

Lick 1000 database. 199

For one-shot tests, the provided sample NLQ/SPARQL 200

pair (see Appendix) was a separate Challenge 4 cross-da-201

tabase query that was designed to maximize the likelihood 202

that the model would be shown the most relevant SPARQL 203

query-building strategies. For each test, a new chat win-204

dow was opened with the memory feature disabled. 205

Browser-based tools like ChatGPT’s web search feature 206

were enabled. Evaluation was conducted on a pass/fail ba-207

8 https://www-cdn.an-
thropic.com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf
Accessed 9 August 2025.
9 https://storage.googleapis.com/model-cards/documents/gemini-2.5-
flash.pdf Accessed 9 August 2025.
10 https://storage.googleapis.com/model-cards/documents/gemini-2.5-
pro.pdf Accessed 9 August 2025.

sis, with models passing if the generated SPARQL re-208

turned the exact same number of results as the handwritten 209

ground-truth SPARQL. The full queries, prompts, pro-210

vided ontology, and results can be accessed via our GitHub 211

repository.14 212

4. RESULTS AND DISCUSSION 213

The experimental results, shown in Figure 3, reveal several 214

notable patterns. As expected, our data show a pronounced 215

inverse correlation between query complexity and model 216

accuracy across all evaluated systems. Challenge 1 que-217

ries, representing straightforward single-database re-218

trieval, yielded the highest aggregate accuracy of 63.3%, 219

while Challenge 4 queries dropped down to 26.0% on av-220

erage. This highlights the substantial difficulties inherent 221

in generating accurate SPARQL queries across large 222

knowledge graphs. 223

The implementation of one-shot prompting did not 224

yield consistent performance improvements, with some 225

models exhibiting marginal performance decreases in one-226

11 https://cdn.openai.com/gpt-4o-system-card.pdf Accessed 9 August
2025.
12 https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-
e7758f3722c1/o3-and-o4-mini-system-card.pdf Accessed 9 August
2025.
13 https://www.w3.org/TR/turtle Accessed 29 July 2025.
14 https://github.com/ANONYMOUS

Challenge Description Example Query
Challenge 1 Retrieve information that can be found on a single

sub-database’s website.
Find all compositions by William Byrd in
DIAMM.

Challenge 2 Retrieve information that is stored in a single sub-
database but cannot be found through the website.

Find all different time signatures for jigs in The
Session.

Challenge 3 Retrieve anything that can be found on a single
sub-database plus Wikidata.

Find the average number of record labels that fe-
male singers in MusicBrainz have signed with.

Challenge 4 Retrieve any information in the entire
LinkedMusic data lake and Wikidata.

Find all works commissioned by Isabella d’Este
that have a surviving manuscript and a recording
made after 1980.

Table 1. List of query challenge types, descriptions, and example queries.

Figure 2. Dig That Lick 1000 ontology. Dig That Lick 1000
entities were reconciled to Wikidata using the properties
shown above.

shot versus zero-shot conditions, suggesting potential in-227

terference from the provided exemplar. 228

As illustrated in Figure 4, which shows the combined 229

results for zero- and one-shot tests aggregated by LLM, 230

Claude Sonnet 4 achieved the highest overall accuracy, 231

scoring 100.0% on Challenge 1 questions for both zero- 232

and one-shot contexts and an average of 73.3% across all 233

challenges in zero-shot contexts. 234

Across all models and challenges, the most common is-235

sues involved misunderstanding the underlying graph con-236

tent, with LLMs often failing to parse the representation of 237

Wikidata-reconciled items within the graph database and 238

entity links between sub-graphs. Wikidata “Q” identifiers 239

were often incorrect, and in rare cases, no SPARQL was 240

produced. We also observed moderate variance between 241

attempts, with queries frequently being successful for one 242

or two out of three attempts. 243

5. CONCLUSION AND FUTURE WORK 244

This study presents the first systematic investigation of 245

NLQ to SPARQL translation using LLMs in the music do-246

main and introduces SESEMMI as a solution for querying 247

heterogeneous music metadata within the LinkedMusic 248

data lake. Through our evaluation of five LLMs across 249

twenty test cases, we demonstrate both the feasibility and 250

current difficulties in this approach. 251

Results indicate that performance decreases signifi-252

cantly with query complexity, ranging from simple single-253

database retrieval to cross-database federated queries with 254

Wikidata. Claude Sonnet 4 achieved the highest average 255

accuracy of 73.3% for zero-shot contexts, with 100.0% ac-256

curacy on both zero- and one-shot single database queries 257

and 46.7% accuracy on zero-shot cross-database queries. 258

Our findings contribute to the growing field of semantic 259

query generation, particularly highlighting domain-spe-260

cific issues such as entity linking, Wikidata “Q” identifier 261

retrieval, and the complexities of communicating hetero-262

geneous ontologies to LLMs. While the results show 263

promise for making specialized music repositories more 264

accessible to researchers and scholars, they also under-265

score the need for refinement in prompt engineering strat-266

egies and model architectures. 267

As LinkedMusic expands with the addition of more mu-268

sic databases, we will investigate the capacity of these 269

methods to scale to a larger dataset with a greater variety 270

of sub-databases. Future work should also systematically 271

test different prompting approaches, including using 272

chain-of-thought prompting and providing more examples. 273

Furthermore, more advanced LLM implementations, such 274

as an agent that performs API calls, should be tested. This 275

could allow the model to break down the problem into 276

smaller steps like retrieving the relevant ontology or per-277

forming a function call for Wikidata Q identifier retrieval. 278

Moreover, the effect of changing parameters like tempera-279

ture should also be investigated. 280

As LLMs improve, these methods offer a promising 281

path toward making specialized music databases more ac-282

cessible to researchers and practitioners who lack technical 283

query expertise. 284

6. REFERENCES 285

[1] J. D’Abramo, A. Zugarini, and P. Torroni, “Investi-286

gating Large Language Models for Text-to-SPARQL 287

Generation,” in Proc. 4th Int. Workshop Knowl.-Aug-288

mented Methods Natural Lang. Process., W. Shi, W. 289

Figure 3: Average performance for various LLMs in zero- and one-shot contexts across four natural language query chal-
lenges of increasing difficulty. Each test was performed three times, and the results were averaged.

Figure 4: Average performance by LLM for zero- and one-
shot contexts combined across four natural language query
challenges of increasing difficulty. Each test was performed
three times, and the results were averaged.

Yu, A. Asai, M. Jiang, G. Durrett, H. Hajishirzi, and 290

L. Zettlemoyer, Eds., Albuquerque, NM, USA, May 291

2025, pp. 66–80. doi: 292

10.18653/v1/2025.knowledgenlp-1.5. 293

[2] V. Emonet, J. Bolleman, S. Duvaud, T. Mendes de 294

Farias, and A. C. Sima, “LLM-based SPARQL 295

Query Generation from Natural Language over Fed-296

erated Knowledge Graphs,” in Proc. Special Session 297

Harmonising Generative AI Semantic Web Technol. 298

(HGAIS 2024), R. Alharbi, J. de Berardinis, P. Groth, 299

A. Meroño Peñuela, E. Simperl, and V. Tamma, Eds., 300

Baltimore, MD, USA, Nov. 2024. Accessed: July 18, 301

2025. [Online]. Available: https://ceur-ws.org/Vol-302

3953/355.pdf 303

[3] D. Waltz, “Natural Language Access to a Large Data 304

Base: An Engineering Approach,” in Proc. 4th Int. 305

Joint Conf. Artificial Intell. (IJCAI), Tbilisi, USSR, 306

Sept. 1975, pp. 868–872. [Online]. Available: 307

https://www.ijcai.org/Proceedings/75/Pa-308

pers/129.pdf 309

[4] X. Liu et al., “A Survey of Text-to-SQL in the Era of 310

LLMs: Where are We, and Where are We Going?,” 311

IEEE Trans. Knowl. Data Eng., early access, July 24, 312

2025. doi: 10.1109/TKDE.2025.3592032. 313

[5] F. F. Luz and M. Finger, “Semantic Parsing Natural 314

Language into SPARQL: Improving Target Lan-315

guage Representation with Neural Attention,” Mar. 316

12, 2018, arXiv:1803.04329. doi: 317

10.48550/arXiv.1803.04329. 318

[6] X. Yin, D. Gromann, and S. Rudolph, “Neural Ma-319

chine Translating from Natural Language to 320

SPARQL,” Future Gener. Comput. Syst., vol. 117, pp. 321

510–519, Apr. 2021, doi: 10.1016/j.fu-322

ture.2020.12.013. 323

[7] Y.-H. Chen, E. J.-L. Lu, and T.-A. Ou, “Intelligent 324

SPARQL Query Generation for Natural Language 325

Processing Systems,” IEEE Access, vol. 9, pp. 326

158638–158650, Nov. 2021, doi: 327

10.1109/ACCESS.2021.3130667. 328

[8] C. Pradel, O. Haemmerlé, and N. J. Hernandez, “Nat-329

ural Language Query Interpretation into SPARQL 330

Using Patterns,” in Proc. 4th Int. Workshop Consum. 331

Linked Data (COLD 2013), Sydney, Australia, Oct. 332

2013, pp. 1–12. Accessed: July 25, 2025. [Online]. 333

Available: https://hal.science/hal-01143219 334

[9] M. Dubey, S. Dasgupta, A. Sharma, K. Höffner, and 335

J. Lehmann, “AskNow: A Framework for Natural 336

Language Query Formalization in SPARQL,” in Se-337

mantic Web. Latest Adv. New Domains, H. Sack, E. 338

Blomqvist, M. d’Aquin, C. Ghidini, S. P. Ponzetto, 339

and C. Lange, Eds., Heraklion, Greece: Springer In-340

ternational Publishing, June 2016, pp. 300–316. doi: 341

10.1007/978-3-319-34129-3_19. 342

[10] N. Steinmetz, A.-K. Arning, and K.-U. Sattler, “From 343

Natural Language Questions to SPARQL Queries: A 344

Pattern-based Approach,” in Proc. Datenbanksys-345

teme Business, Technol. Web (BTW 2019), T. Grust 346

et al., Eds., in Gesellschaft für Informatik, vol. P-289. 347

Rostock, Germany, Mar. 2019, pp. 289–308. doi: 348

10.18420/btw2019-18. 349

[11] H. Jung and W. Kim, “Automated Conversion from 350

Natural Language Query to SPARQL Query,” J. In-351

tell. Inf. Syst., vol. 55, pp. 501–520, Dec. 2020, doi: 352

10.1007/s10844-019-00589-2. 353

[12] J. Lehmann, P. Gattogi, D. Bhandiwad, S. Ferré, and 354

S. Vahdati, “Language Models as Controlled Natural 355

Language Semantic Parsers for Knowledge Graph 356

Question Answering,” in Proc. 26th Eur. Conf. Artif. 357

Intell. (ECAI 2023), K. Gal, A. Nowé, G. J. Nalepa, 358

R. Fairstein, and R. Rǎdulescu, Eds., in Frontiers in 359

Artificial Intelligence and Applications, vol. 372. 360

Kraków, Poland: IOS Press, Oct. 2023, pp. 1348–361

1356. doi: 10.3233/FAIA230411. 362

[13] S. Yang, M. Teng, X. Dong, and F. Bo, “LLM-Based 363

SPARQL Generation with Selected Schema from 364

Large Scale Knowledge Base,” in Knowl. Graph Se-365

mantic Comput.: Knowl. Graph Empowers Artif. 366

General Intell. (CCKS 2023), H. Wang, X. Han, M. 367

Liu, C. Gong, Y. Liu, and N. Zhang, Eds., Shenyang, 368

Springer Singapore, Aug. 2023, pp. 304–316. doi: 369

10.1007/978-981-99-7224-1. 370

[14] M. R. A. H. Rony, U. Kumar, R. Teucher, L. Kovri-371

guina, and J. Lehmann, “SGPT: A Generative Ap-372

proach for SPARQL Query Generation from Natural 373

Language Questions,” IEEE Access, vol. 10, pp. 374

70712–70723, July 2022, doi: 375

10.1109/ACCESS.2022.3188714. 376

[15] D. Bustamante and H. Takeda, “SPARQL Genera-377

tion with Entity Pre-trained GPT for KG Question 378

Answering,” Feb. 01, 2024, arXiv:2402.00969. doi: 379

10.48550/arXiv.2402.00969. 380

[16] I.-V. Hernandez-Camero, E. Garcia-Lopez, A. Gar-381

cia-Cabot, and S. Caro-Alvaro, “Context-Aware 382

Few-Shot Learning SPARQL Query Generation 383

from Natural Language on an Aviation Knowledge 384

Graph,” Mach. Learn. Knowl. Extr., vol. 7, no. 2, p. 385

52, June 2025, doi: 10.3390/make7020052. 386

[17] H. M. Zahera, M. Ali, M. A. Sherif, D. Moussallem, 387

and A.-C. Ngonga Ngomo, “Generating SPARQL 388

from Natural Language Using Chain-of-Thoughts 389

Prompting,” in Proc. 20th Int. Conf. Semantic Syst. 390

(SEMANTiCS 2024), A. Salatino et al., Eds., in Stud-391

ies on the Semantic Web, vol. 60. Amsterdam, Neth-392

erlands: IOS Press, Sept. 2024, pp. 353–368. doi: 393

10.3233/SSW240028. 394

[18] A.-C. Ngonga Ngomo, L. Bühmann, C. Unger, J. 395

Lehmann, and D. Gerber, “Sorry, i don’t speak 396

SPARQL: Translating SPARQL Queries into Natural 397

Language,” in Proc. 22nd Int. Conf. World Wide Web 398

(WWW ’13), in WWW ’13. Rio de Janeiro, Brazil: 399

Association for Computing Machinery, May 2013, 400

pp. 977–988. doi: 10.1145/2488388.2488473. 401

[19] J. Li et al., “Can LLM Already Serve as a Database 402

Interface? A Big Bench for Large-scale Database 403

Grounded Text-to-SQLs,” in Proc. 37th Int. Conf. 404

Neural Inf. Process. Syst. (NeurIPS 2023), New Or-405

leans, LA, USA: Curran Associates Inc., Dec. 2023, 406

pp. 42330–42357. Accessed: July 29, 2025. [Online]. 407

Available: https://proceedings.neurips.cc/pa-408

per_files/pa-409

per/2023/file/83fc8fab1710363050bbd1d4b8cc0021410

-Paper-Datasets_and_Benchmarks.pdf 411

[20] F. Lei et al., “Spider 2.0: Evaluating Language Mod-412

els on Real-World Enterprise Text-to-SQL Work-413

flows,” in Proc. Int. Conf. Learn. Representations 414

(ICLR), Singapore: Curran Associates, Inc., Apr. 415

2025. Accessed: July 31, 2025. [Online]. Available: 416

https://openreview.net/forum?id=XmProj9cPs 417

[21] A. Swartz, “MusicBrainz: A Semantic Web Service,” 418

IEEE Intell. Syst., vol. 17, no. 1, pp. 76–77, Feb. 2002, 419

doi: 10.1109/5254.988466. 420

[22] A. Wathey, M. Bent, and J. Craig-McFeely, “The Art 421

of Virtual Restoration: Creating the Digital Image 422

Archive of Medieval Music (DIAMM),” in The Vir-423

tual Score, Volume 12: Representation, Retrieval, 424

Restoration, W. Hewlett B. and E. Selfridge-Field, 425

Eds. Cambridge, MA, USA: The MIT Press, 2001, ch. 426

15, pp. 227–240. Accessed: July 29, 2025. [Online]. 427

Available: https://doi.org/10.7551/mit-428

press/2058.003.0019 429

[23] A. L. C. Wood et al., “The Global Jukebox: A Public 430

Database of Performing Arts and Culture,” PLoS 431

ONE, vol. 17, no. 11, Nov. 2022, Art. no. e0275469. 432

doi: 10.1371/journal.pone.0275469. 433

[24] C. Stover, “Dig That Lick (DTL): Analyzing Large-434

Scale Data for Melodic Patterns in Jazz Perfor-435

mances,” J. Am. Musicol. Soc., vol. 74, no. 1, pp. 436

195–214, Apr. 2021, doi: 437

10.1525/jams.2021.74.1.195. 438

7. APPENDIX 439

The full prompt used in testing is provided below. Note 440

that <<USER INPUT>> would be replaced with the nat-441

ural language query being tested. For brevity, the ontology 442

has been replaced with <<ONTOLOGY>>. However, it can 443

be accessed via our GitHub repository.15 444

I have a graph database containing musical linked 445
data from various databases. As much of the in-446
formation as possible is reconciled against Wik-447
idata. 448
 449
Please write me a SPARQL query to perform the 450
following query: 451
 452
<<USER_INPUT>> 453
 454
When an entity is reconciled against Wikidata, 455
wdt:P2888 is used to point to the reconciled Wik-456
idata entity. 457
When an entity has a wdt:P31 triple, it contains 458
information about the subclass that the entity is 459
a part of (e.g. for mb:Artist, the wdt:P31 can 460
point to human, musical group, etc). 461
 462

15 https://github.com/ANONYMOUS

The steps you should follow are: 463
1. Examine the ontology and extract the relevant 464
parts. 465
2. Using that ontology, figure out which Q-IDs 466
you need and perform web searches to find them. 467
3. Using the ontology and the Q-IDs, build the 468
final SPARQL query. 469
 470
Please follow these instructions: 471
- When asked to return a list of entities, please 472
always return both the label (when available) and 473
the URI for the entities. 474
- When finding Q-IDs to match against, search the 475
web to get the best and most accurate results. 476
- Ensure that the Q-IDs that you've found are 477
correct by performing another web search. 478
- Please scan all entities across all databases to 479
find out which one(s) correspond to the query, and 480
only select the relevant databases and entities. 481
- For any entity you search for within the 482
LinkedMusic graph (not in Wikidata), please add a 483
triple that uses the rdf:type property to explic-484
itly verify its type. 485
- Do not use Wikidata to verify the type of enti-486
ties, please instead use the LinkedMusic types, 487
using the rdf:type property. 488
 - The only exception to this is when local 489
entities have a wdt:P31 triple (like mb:Artist), 490
then it is fine to check that triple using wdt:P31 491
in the local LinkedMusic graph, but never in a 492
federated query. 493
- If you need data that is not located in the 494
LinkedMusic graph, i.e. when there is no property 495
for the information you need directly present in 496
the ontology I give you, please use a federated 497
query with Wikidata using the <https://query.wik-498
idata.org/sparql> endpoint, but only do so if the 499
information doesn't appear at all in the 500
LinkedMusic graph ontology. 501
- Please ensure that you've fully reviewed the 502
LinkedMusic ontology and extracted the relevant 503
parts before performing federated queries. 504
- Please also double-check that you're not trying 505
to use properties that do not appear in the on-506
tology, unless they are a part of a federated 507
query. 508
- When performing a federated query, ensure that 509
the SPARQL query is efficient and will not create 510
an unnecessarily high amount of requests. 511
- When resolving a Wikidata Q-ID, you must use 512
the provided ontology to determine the linking 513
path. 514
 - If a property's object is another defined 515
class in the ontology (e.g., diamm:City wdt:P17 516
diamm:Country), your query must first navigate to 517
that class and then use its wdt:P2888 property to 518
get the Q-ID. 519
 - If a property's object is described by a 520
literal string (e.g., ts:Session wdt:P17 "coun-521
try"@en), you should assume the property links 522
directly to the Wikidata URI. 523
- Once the SPARQL query is finalized, please re-524
read it and double-check that all QIDs are cor-525
rect. 526
- For MusicBrainz, very few mb:Recording entities 527
are reconciled against Wikidata since Wikidata 528
does not carry information about specific record-529
ings, only about the actual songs, so it's better 530
to match reconciled data against mb:Work entities 531
rather than mb:Recording 532
 533
Please follow these constraints: 534
- Do not use string matching; instead check 535
against Wikidata Q-IDs. The only exception to this 536
is when the query explicitly requests finding en-537
tities based on text/string content (e.g., 'find 538

tracks with X in the title', 'find artists whose 539
names contain Y', 'search for works with Z in the 540
description'). In such cases, use appropriate 541
SPARQL string matching functions like CONTAINS(), 542
REGEX(), or similar. 543
- Do not use the SELECT ... FROM syntax for named 544
graphs. Please instead use the SELECT { GRAPH ... 545
{ ... } } syntax. 546
- Do not put any triples verifying the type of 547
entities (using wdt:P31 or rdf:type) in federated 548
query SERVICE blocks. 549
- Do not use Wikidata to retrieve labels unless 550
directly asked to in the query. please prioritize 551
as much as possible retrieving labels from the 552
LinkedMusic database. 553
- Do not put any federated query SERVICE blocks 554
inside a GRAPH block. 555
- Do not put any federated query SERVICE blocks 556
inside an OPTIONAL block. 557
- Do not use a nested SELECT clause inside a 558
SERVICE block. 559
- To avoid the Virtuoso error SP031, use a 560
subquery before the SERVICE call for federated 561
queries 562
- To avoid the Virtuoso error SP031, ensure every 563
variable is assigned a value in a valid scope 564
before it's used in a FILTER, BIND, or OPTIONAL 565
block. 566
 567
Please remember that the SPARQL query will not 568
work, and you will have failed your task, if you 569
do not follow these constraints and instructions. 570
Please also be very diligent with your search for 571
the correct Q-IDs, as they are one of the key 572
parts of the SPARQL query. 573
 574
Here are the 5 databases currently in LinkedMusic, 575
and the IRIs for their RDF graphs: 576
- All triples for DIAMM are stored in the 577
<https://linkedmusic.ca/graphs/diamm/> graph, 578
and their entity types use the `diamm:` prefix. 579
- All triples for Dig That Lick are stored in the 580
<https://linkedmusic.ca/graphs/dig-that-lick/> 581
graph, and their entity types use the `dtl:` pre-582
fix. 583
- All triples for The Session are stored in the 584
<https://linkedmusic.ca/graphs/thesession/> 585
graph, and their entity types use the `ts:` pre-586
fix. 587
- All triples for The Global Jukebox are stored 588
in the <https://linkedmusic.ca/graphs/theglob-589
aljukebox/> graph, and their entity types use the 590
`gj:` prefix. 591
- All triples for MusicBrainz are stored in the 592
<https://linkedmusic.ca/graphs/musicbrainz/> 593
graph, and their entity types use the ̀ mb:` prefix. 594
 595
The following is a graph representation of the on-596
tology of all the data in the database, for all 5 597
databases. Here is how to interpret this ontology: 598
- The subject are the LinkedMusic entity types 599
(accessed using rdf:type) 600
- The predicates are the properties that those 601
entities have 602
- The objects are described as below: 603
 - When the object is another class: If a prop-604
erty's object is another defined class in the on-605
tology (e.g., diamm:City wdt:P17 diamm:Country), 606
your query must first navigate to that diamm:Coun-607
try class and then use its wdt:P2888 property to 608
get the Q-ID. 609
 - When the object is a placeholder for an 610
entity: If a property's object is a generic place-611
holder string that stands in for an entity's name 612
(e.g., "country"@en, "instance of"@en, "per-613
former"@en, "exact match"@en), assume the prop-614
erty in the actual graph links directly to a Wik-615
idata URI. 616

 - When the object is a data value: If a prop-617
erty's object is a string that represents a data 618
type (e.g., "publication date"@en, "coordinate 619
location"@en, "label"), assume the property in the 620
actual graph links to a literal value (a date, a 621
string, coordinates, etc.) and not a Wikidata URI. 622
 623
<<Ontology>> 624
 625
REMEMBER: Please find the correct QIDs 626
 627
As an example, here is a query and the associated 628
SPARQL query. 629
User query: Find all musical works that were com-630
posed in Mexico City. 631
SPARQL query: 632
```SPARQL 633 
SELECT ?work ?workLabel 634 
WHERE { 635 
  # Wikidata Q-ID for Mexico City 636 
  VALUES ?cityQID { wd:Q1489 } 637 
 638 
  { 639 
    # Search for works in the MusicBrainz graph 640 
    GRAPH <https://linkedmusic.ca/graphs/mu-641 
sicbrainz/> { 642 
      ?work rdf:type mb:Work . 643 
 644 
      { ?work wdt:P1071 ?locationObject . } # lo-645 
cation of creation 646 
      UNION 647 
      { ?work wdt:P4647 ?locationObject . } # lo-648 
cation 649 
 650 
      # Handle both direct links to an Area and 651 
links to a Place within an Area 652 
      { 653 
        # Case 1: The location is the city/area 654 
itself 655 
        ?locationObject rdf:type mb:Area . 656 
        BIND(?locationObject AS ?cityArea) 657 
      } 658 
      UNION 659 
      { 660 
        # Case 2: The location is a venue (Place), 661 
so we find its containing city (Area) 662 
        ?locationObject rdf:type mb:Place . 663 
        ?locationObject wdt:P131 ?cityArea . 664 
        ?cityArea rdf:type mb:Area . 665 
      } 666 
 667 
      # Match the final city/area to Mexico City's 668 
Q-ID 669 
      ?cityArea wdt:P2888 ?cityQID . 670 
 671 
      OPTIONAL { ?work rdfs:label ?workLabel . } 672 
    } 673 
  } 674 
  UNION 675 
  { 676 
    # Search for compositions in the DIAMM graph 677 
    GRAPH <https://linkedmusic.ca/graphs/diamm/> 678 
{ 679 
      ?work rdf:type diamm:Composition . 680 
       681 
      ?work wdt:P361 ?source . 682 
      ?source rdf:type diamm:Source . 683 
      ?source wdt:P131 ?city . 684 
      ?city rdf:type diamm:City . 685 
       686 
      ?city wdt:P2888 ?cityQID . 687 
 688 
      OPTIONAL { ?work rdfs:label ?workLabel . } 689 
    } 690 
  } 691 
} 692 
``` 693 


