
  
 

SESEMMI FOR LINKEDMUSIC: DEMOCRATIZING ACCESS 
TO MUSICAL ARCHIVES VIA LARGE LANGUAGE MODELS 

Anonymous Authors 
Anonymous Affiliations 

anonymous@ismir.net 

ABSTRACT 1 

Currently, there are over one hundred music metadata da-2 

tabases online; comprehensively answering even simple 3 

questions often means querying dozens of them separately. 4 

This fragmentation makes large-scale, cross-cultural, or 5 

longitudinal research difficult and time-consuming. The 6 

LinkedMusic initiative aims to solve this problem by com-7 

bining these databases in one place. The ingested data are 8 

stored in RDF format and can be queried using SPARQL, 9 

a querying language.  10 

However, SPARQL’s complexity makes it prohibi-11 

tively difficult for most users to use effectively. Our pro-12 

ject, the Search Engine System for Enhancing Music 13 

Metadata Interoperability (SESEMMI), aims to overcome 14 

this barrier by providing a natural language interface for 15 

LinkedMusic. Using Large Language Models (LLMs), it 16 

translates the user’s plain-language queries into SPARQL 17 

queries that retrieve results from all integrated databases. 18 

In this paper, we conduct the first systematic study of 19 

the ability of LLMs in translating Natural Language Que-20 

ries (NLQ) to SPARQL in the domain of music metadata 21 

research. We evaluate five models on twenty music-do-22 

main NLQ-to-SPARQL pairs with manually prepared 23 

ground-truth outputs. Results indicate that Claude 24 

Sonnet 4 achieves the highest accuracy of 100.0% on sin-25 

gle-database queries in both zero- and one-shot contexts 26 

and 46.7% for complex zero-shot cross-database queries. 27 

1. INTRODUCTION 28 

The abundance of specialized online music metadata re-29 

positories, ranging from folk-music archives to vast cross-30 

genre music encyclopedias, has created a wealth of schol-31 

arly and cultural resources. However, the heterogeneity of 32 

their data schemas poses a fundamental barrier to cross-33 

collection search and analysis. For example, to answer a 34 

question like “Find all works commissioned by Isabella 35 

d’Este that have a surviving manuscript and a recording 36 

made after 1980”, today’s musicologists must navigate 37 

multiple disparate platforms, reconcile inconsistent identi-38 

fiers, and stitch together results by hand. Furthermore, 39 

 
1 https://openrefine.org Accessed 29 July 2025. 
2 https://www.wikidata.org Accessed 9 August 2025. 

these websites often lack the nuanced search functionality 40 

required to answer precise questions. 41 

The LinkedMusic project aims to address these issues 42 

by merging these music metadata databases into a single 43 

data lake, which is a vast network of raw data with incon-44 

sistent schemas. We begin this process by obtaining a 45 

dump of the databases, usually in tabular format (e.g., 46 

CSV), then use OpenRefine1 with its Reconciliation API 47 

to match and link as many values as possible to their cor-48 

responding Wikidata 2  Uniform Resource Identifiers 49 

(URIs). For instance, the string “Charlie Parker” would be 50 

replaced with <http://www.wikidata.org/entity/Q103767>. 51 

After reconciliation is complete, we convert each dataset 52 

to Resource Description Framework (RDF) format3 and 53 

merge them into a single knowledge graph, hosted in an 54 

OpenLink Virtuoso graph database,4 which is queryable 55 

using SPARQL Protocol and RDF Query Language 56 

(SPARQL), the W3C standard for RDF data. This reposi-57 

tory will be searchable online via the Search Engine Sys-58 

tem for Enhancing Music Metadata Interoperability 59 

(SESEMMI). The overall process is illustrated in Figure 1.  60 

However, querying the LinkedMusic data lake presents 61 

a significant challenge since crafting SPARQL queries is 62 

3 https://www.w3.org/wiki/RDF Accessed 9 August 2025. 
4 https://virtuoso.openlinksw.com Accessed 9 August 2025. 
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Figure 1. LinkedMusic overall process.  



  
 
an intricate process that is impractically complex for most 63 

end users. Our solution is to utilize Large Language Mod-64 

els (LLMs), which show significant promise in translating 65 

musical Natural Language Queries (NLQ) to SPARQL [1–66 

2]. Furthermore, LLMs closely align with LinkedMusic’s 67 

goal for accessibility, not only by lowering the technical 68 

barriers to use, but also in their multilingual nature.  69 

Our primary contributions are threefold. First, while 70 

NLQ to Structured Query Language (SQL) and general-71 

domain NLQ to SPARQL have grown in interest, translat-72 

ing NLQ to SPARQL over heterogeneous music-metadata 73 

graphs remains unexplored. Currently, and to the best of 74 

our knowledge, we present the first systematic study of 75 

NLQ to SPARQL in the music domain, demonstrating its 76 

feasibility and identifying specific hurdles such as Wiki-77 

data “Q” identifier retrieval and effectively communi-78 

cating a complex ontology (a structured representation of 79 

concepts and their relationships). Second, we empirically 80 

evaluate and benchmark five LLMs across NLQ to 81 

SPARQL tasks, divided into four challenge types, ranging 82 

from simple single database queries to cross-database fed-83 

erated queries with Wikidata. Last, we provide practical 84 

insights by analyzing our use of prompt-engineering strat-85 

egies that aim to maximize SPARQL accuracy and offer 86 

guidelines for implementing NLQ search tools over com-87 

plex datasets. 88 

The remainder of the paper is organized as follows. Sec-89 

tion 2 reviews related work in NLQ to SPARQL and NLQ 90 

to SQL tasks. Section 3 details our methods, including 91 

prompt design, dataset construction, and evaluation. Sec-92 

tion 4 presents experimental results and discusses possibil-93 

ities for methodology refinement. Lastly, Section 5 con-94 

cludes and outlines steps for future work. 95 

2. BACKGROUND 96 

While research translating natural language into formal da-97 

tabase queries dates back to the 1970s [3], interest in this 98 

area has grown significantly since the emergence of 99 

LLMs [4]. This section surveys the conversion of natural 100 

language to both SPARQL and SQL, with the latter being 101 

more established, but methodologically similar. 102 

2.1 Natural Language Query to SPARQL 103 

Historically, approaches to SPARQL query generation 104 

have included neural networks [5–6], Markov models [7], 105 

and rule- or template-based methods [8–11]. However, the 106 

field has become increasingly dominated by LLMs, which 107 

continue to improve at an astonishing rate [12–14].  108 

At the same time, while LLMs show incredible poten-109 

tial, they often yield inconsistent results. LLMs frequently 110 

return correct templates with critical errors that prevent the 111 

SPARQL output from retrieving the desired entities, par-112 

ticularly in zero-shot contexts (contexts with no examples 113 

given) [15]. This often stems from incorrect entity linking, 114 

which is the ability to match natural language terms to en-115 

tities within a graph [15–16]. LLMs may also incorrectly 116 

 
5 https://bird-bench.github.io Accessed 29 July 2025. 
6 https://spider2-sql.github.io Accessed 29 July 2025. 

retrieve external identifiers [2] or misunderstand the un-117 

derlying knowledge graph, which itself might be of poor 118 

quality [16].  119 

A common strategy for mitigating these issues is in-120 

context learning, more specifically, few-shot chain-of-121 

thought prompting, where the provided examples guide 122 

LLMs through intermediate reasoning steps [1, 17].  123 

The reverse problem has also been investigated, where 124 

SPARQL queries are explained by converting them to nat-125 

ural language [18]. 126 

2.2 Natural Language Query to SQL 127 

Although SQL and SPARQL are different database query 128 

languages, many of the strategies used in NLQ to SQL can 129 

be applied effectively to NLQ to SPARQL. While ap-130 

proaches in NLQ to SQL were initially predominantly 131 

rule-based methods, they were overtaken by pre-trained 132 

language models (PLMs), and later LLMs around 133 

2023 [4]. 134 

On the other hand, while LLM-based methods for NLQ 135 

to SQL show significant promise, they still have many lim-136 

itations. Firstly, they are often trained and tested on just 137 

one database, meaning that they generalize poorly and 138 

struggle to query over multiple databases, especially if the 139 

schemas differ for each one. In addition, many of the best-140 

performing approaches, like agents, have high token costs 141 

that can make them prohibitively expensive to implement 142 

at scale. Finally, and perhaps most importantly, while 143 

LLM-based methods are rapidly improving, they are still 144 

outperformed by human experts [4]. 145 

On the BIRD-SQL benchmark [19], which contains 146 

over 12,751 unique question-SQL pairs with 95 databases 147 

across 37 professional domains, the best model, Long-148 

Data-SQL, 5 achieves 77.53% accuracy compared to 149 

92.96% for humans. Meanwhile, WindAgent + Claude-4-150 

Sonnet6 has achieved the top score of 58.32% accuracy on 151 

Spider 2.0-Snow, a dataset where correct responses for the 152 

632 NLQ-to-SQL problems often require more than 100 153 

lines of code and the ability to parse sub-databases with 154 

over 1,000 columns [20]. 155 

3. METHODOLOGY 156 

While there are plans to add dozens more databases, the 157 

LinkedMusic data lake currently contains five sub-data-158 

bases totalling over 352 million RDF triples: MusicBrainz 159 

[21], Digital Image Archive of Medieval Music (DIAMM) 160 

[22], The Global Jukebox [23], Dig That Lick 1000 [24], 161 

and The Session.7  Each sub-database was reconciled to 162 

Wikidata using OpenRefine with human verification for 163 

edge cases that could not be reconciled automatically. 164 

They were then converted to RDF format, uploaded to an 165 

OpenLink Virtuoso graph database, and queried via Virtu-166 

oso’s built-in SPARQL endpoint.  167 

7 https://thesession.org Accessed 29 July 2025.  



  
 

To evaluate the models’ performance, a custom test da-168 

taset of twenty NLQ/SPARQL pairs with ground-truth 169 

SPARQL was manually built. These questions were 170 

grouped into four challenge types of increasing difficulty 171 

(see Table 1), with five questions per challenge (one ques-172 

tion per sub-database for Challenges 1–3).  173 

During exploratory testing, we investigated methods 174 

such as prompt chaining, which breaks complex tasks into 175 

smaller, linked prompts. We also experimented with the 176 

deep-research feature (e.g., multi-step reasoning and 177 

chain-of-thought exploration) and even attempted emo-178 

tional appeals, like begging or threatening the model. 179 

These approaches did not appear to improve results. 180 

Difficulties encountered during the exploratory phase 181 

were numerous and often unexpected, including an issue 182 

where the SPARQL output was syntactically correct, but 183 

conflicted with Virtuoso’s SPARQL query optimizer. To 184 

teach the LLM how to better cooperate with Virtuoso, we 185 

needed to add two lines to our prompt.  186 

After extensive exploratory testing, a general all-pur-187 

pose system prompt (see Appendix) was designed, which 188 

wraps around the natural language input and asks the LLM 189 

to return the corresponding SPARQL as output. 190 

In total, five LLMs were tested: Claude Sonnet 4, 8 191 

Gemini 2.5 Flash, 9  Gemini 2.5 Pro 10  GPT-4o, 11  and 192 

OpenAI o4-mini.12 Each model was evaluated three times 193 

through the browser in a zero- or one-shot context (i.e., 194 

zero or one example provided) and was given the full on-195 

tology of the LinkedMusic data lake in Turtle format,13 a 196 

compact and human-readable RDF format. For example, 197 

Figure 2 shows a diagram of the ontology for the Dig That 198 

Lick 1000 database.  199 

For one-shot tests, the provided sample NLQ/SPARQL 200 

pair (see Appendix) was a separate Challenge 4 cross-da-201 

tabase query that was designed to maximize the likelihood 202 

that the model would be shown the most relevant SPARQL 203 

query-building strategies. For each test, a new chat win-204 

dow was opened with the memory feature disabled. 205 

Browser-based tools like ChatGPT’s web search feature 206 

were enabled. Evaluation was conducted on a pass/fail ba-207 

 
8 https://www-cdn.an-
thropic.com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf  
Accessed 9 August 2025. 
9 https://storage.googleapis.com/model-cards/documents/gemini-2.5-
flash.pdf Accessed 9 August 2025. 
10 https://storage.googleapis.com/model-cards/documents/gemini-2.5-
pro.pdf Accessed 9 August 2025. 

sis, with models passing if the generated SPARQL re-208 

turned the exact same number of results as the handwritten 209 

ground-truth SPARQL. The full queries, prompts, pro-210 

vided ontology, and results can be accessed via our GitHub 211 

repository.14  212 

4. RESULTS AND DISCUSSION 213 

The experimental results, shown in Figure 3, reveal several 214 

notable patterns. As expected, our data show a pronounced 215 

inverse correlation between query complexity and model 216 

accuracy across all evaluated systems. Challenge 1 que-217 

ries, representing straightforward single-database re-218 

trieval, yielded the highest aggregate accuracy of 63.3%, 219 

while Challenge 4 queries dropped down to 26.0% on av-220 

erage. This highlights the substantial difficulties inherent 221 

in generating accurate SPARQL queries across large 222 

knowledge graphs. 223 

The implementation of one-shot prompting did not 224 

yield consistent performance improvements, with some 225 

models exhibiting marginal performance decreases in one-226 

11 https://cdn.openai.com/gpt-4o-system-card.pdf Accessed 9 August 
2025. 
12 https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-
e7758f3722c1/o3-and-o4-mini-system-card.pdf Accessed 9 August 
2025. 
13 https://www.w3.org/TR/turtle Accessed 29 July 2025. 
14 https://github.com/ANONYMOUS 

Challenge Description Example Query 
Challenge 1 Retrieve information that can be found on a single 

sub-database’s website. 
Find all compositions by William Byrd in 
DIAMM. 

Challenge 2 Retrieve information that is stored in a single sub-
database but cannot be found through the website. 

Find all different time signatures for jigs in The 
Session. 

Challenge 3 Retrieve anything that can be found on a single 
sub-database plus Wikidata. 

Find the average number of record labels that fe-
male singers in MusicBrainz have signed with. 

Challenge 4 Retrieve any information in the entire 
LinkedMusic data lake and Wikidata. 

Find all works commissioned by Isabella d’Este 
that have a surviving manuscript and a recording 
made after 1980. 

Table 1. List of query challenge types, descriptions, and example queries. 

Figure 2. Dig That Lick 1000 ontology. Dig That Lick 1000 
entities were reconciled to Wikidata using the properties 
shown above. 



  
 

shot versus zero-shot conditions, suggesting potential in-227 

terference from the provided exemplar. 228 

As illustrated in Figure 4, which shows the combined 229 

results for zero- and one-shot tests aggregated by LLM, 230 

Claude Sonnet 4 achieved the highest overall accuracy, 231 

scoring 100.0% on Challenge 1 questions for both zero- 232 

and one-shot contexts and an average of 73.3% across all 233 

challenges in zero-shot contexts. 234 

Across all models and challenges, the most common is-235 

sues involved misunderstanding the underlying graph con-236 

tent, with LLMs often failing to parse the representation of 237 

Wikidata-reconciled items within the graph database and 238 

entity links between sub-graphs. Wikidata “Q” identifiers 239 

were often incorrect, and in rare cases, no SPARQL was 240 

produced. We also observed moderate variance between 241 

attempts, with queries frequently being successful for one 242 

or two out of three attempts. 243 

5. CONCLUSION AND FUTURE WORK 244 

This study presents the first systematic investigation of 245 

NLQ to SPARQL translation using LLMs in the music do-246 

main and introduces SESEMMI as a solution for querying 247 

heterogeneous music metadata within the LinkedMusic 248 

data lake. Through our evaluation of five LLMs across 249 

twenty test cases, we demonstrate both the feasibility and 250 

current difficulties in this approach.  251 

Results indicate that performance decreases signifi-252 

cantly with query complexity, ranging from simple single-253 

database retrieval to cross-database federated queries with 254 

Wikidata. Claude Sonnet 4 achieved the highest average 255 

accuracy of 73.3% for zero-shot contexts, with 100.0% ac-256 

curacy on both zero- and one-shot single database queries 257 

and 46.7% accuracy on zero-shot cross-database queries. 258 

Our findings contribute to the growing field of semantic 259 

query generation, particularly highlighting domain-spe-260 

cific issues such as entity linking, Wikidata “Q” identifier 261 

retrieval, and the complexities of communicating hetero-262 

geneous ontologies to LLMs. While the results show 263 

promise for making specialized music repositories more 264 

accessible to researchers and scholars, they also under-265 

score the need for refinement in prompt engineering strat-266 

egies and model architectures. 267 

As LinkedMusic expands with the addition of more mu-268 

sic databases, we will investigate the capacity of these 269 

methods to scale to a larger dataset with a greater variety 270 

of sub-databases. Future work should also systematically 271 

test different prompting approaches, including using 272 

chain-of-thought prompting and providing more examples. 273 

Furthermore, more advanced LLM implementations, such 274 

as an agent that performs API calls, should be tested. This 275 

could allow the model to break down the problem into 276 

smaller steps like retrieving the relevant ontology or per-277 

forming a function call for Wikidata Q identifier retrieval. 278 

Moreover, the effect of changing parameters like tempera-279 

ture should also be investigated. 280 

As LLMs improve, these methods offer a promising 281 

path toward making specialized music databases more ac-282 

cessible to researchers and practitioners who lack technical 283 

query expertise. 284 
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7. APPENDIX 439 

The full prompt used in testing is provided below. Note 440 

that <<USER INPUT>> would be replaced with the nat-441 

ural language query being tested. For brevity, the ontology 442 

has been replaced with <<ONTOLOGY>>. However, it can 443 

be accessed via our GitHub repository.15 444 

I have a graph database containing musical linked 445 
data from various databases. As much of the in-446 
formation as possible is reconciled against Wik-447 
idata. 448 
 449 
Please write me a SPARQL query to perform the 450 
following query: 451 
 452 
<<USER_INPUT>> 453 
 454 
When an entity is reconciled against Wikidata, 455 
wdt:P2888 is used to point to the reconciled Wik-456 
idata entity. 457 
When an entity has a wdt:P31 triple, it contains 458 
information about the subclass that the entity is 459 
a part of (e.g. for mb:Artist, the wdt:P31 can 460 
point to human, musical group, etc). 461 
 462 

 
15 https://github.com/ANONYMOUS 

The steps you should follow are: 463 
1. Examine the ontology and extract the relevant 464 
parts. 465 
2. Using that ontology, figure out which Q-IDs 466 
you need and perform web searches to find them. 467 
3. Using the ontology and the Q-IDs, build the 468 
final SPARQL query. 469 
 470 
Please follow these instructions: 471 
- When asked to return a list of entities, please 472 
always return both the label (when available) and 473 
the URI for the entities. 474 
- When finding Q-IDs to match against, search the 475 
web to get the best and most accurate results. 476 
- Ensure that the Q-IDs that you've found are 477 
correct by performing another web search. 478 
- Please scan all entities across all databases to 479 
find out which one(s) correspond to the query, and 480 
only select the relevant databases and entities. 481 
- For any entity you search for within the 482 
LinkedMusic graph (not in Wikidata), please add a 483 
triple that uses the rdf:type property to explic-484 
itly verify its type. 485 
- Do not use Wikidata to verify the type of enti-486 
ties, please instead use the LinkedMusic types, 487 
using the rdf:type property. 488 
    - The only exception to this is when local 489 
entities have a wdt:P31 triple (like mb:Artist), 490 
then it is fine to check that triple using wdt:P31 491 
in the local LinkedMusic graph, but never in a 492 
federated query. 493 
- If you need data that is not located in the 494 
LinkedMusic graph, i.e. when there is no property 495 
for the information you need directly present in 496 
the ontology I give you, please use a federated 497 
query with Wikidata using the <https://query.wik-498 
idata.org/sparql> endpoint, but only do so if the 499 
information doesn't appear at all in the 500 
LinkedMusic graph ontology. 501 
- Please ensure that you've fully reviewed the 502 
LinkedMusic ontology and extracted the relevant 503 
parts before performing federated queries. 504 
- Please also double-check that you're not trying 505 
to use properties that do not appear in the on-506 
tology, unless they are a part of a federated 507 
query. 508 
- When performing a federated query, ensure that 509 
the SPARQL query is efficient and will not create 510 
an unnecessarily high amount of requests. 511 
- When resolving a Wikidata Q-ID, you must use 512 
the provided ontology to determine the linking 513 
path. 514 
    - If a property's object is another defined 515 
class in the ontology (e.g., diamm:City wdt:P17 516 
diamm:Country), your query must first navigate to 517 
that class and then use its wdt:P2888 property to 518 
get the Q-ID. 519 
    - If a property's object is described by a 520 
literal string (e.g., ts:Session wdt:P17 "coun-521 
try"@en), you should assume the property links 522 
directly to the Wikidata URI. 523 
- Once the SPARQL query is finalized, please re-524 
read it and double-check that all QIDs are cor-525 
rect. 526 
- For MusicBrainz, very few mb:Recording entities 527 
are reconciled against Wikidata since Wikidata 528 
does not carry information about specific record-529 
ings, only about the actual songs, so it's better 530 
to match reconciled data against mb:Work entities 531 
rather than mb:Recording 532 
 533 
Please follow these constraints: 534 
- Do not use string matching; instead check 535 
against Wikidata Q-IDs. The only exception to this 536 
is when the query explicitly requests finding en-537 
tities based on text/string content (e.g., 'find 538 



  
 
tracks with X in the title', 'find artists whose 539 
names contain Y', 'search for works with Z in the 540 
description'). In such cases, use appropriate 541 
SPARQL string matching functions like CONTAINS(), 542 
REGEX(), or similar. 543 
- Do not use the SELECT ... FROM syntax for named 544 
graphs. Please instead use the SELECT { GRAPH ... 545 
{ ... } } syntax. 546 
- Do not put any triples verifying the type of 547 
entities (using wdt:P31 or rdf:type) in federated 548 
query SERVICE blocks. 549 
- Do not use Wikidata to retrieve labels unless 550 
directly asked to in the query. please prioritize 551 
as much as possible retrieving labels from the 552 
LinkedMusic database. 553 
- Do not put any federated query SERVICE blocks 554 
inside a GRAPH block. 555 
- Do not put any federated query SERVICE blocks 556 
inside an OPTIONAL block. 557 
- Do not use a nested SELECT clause inside a 558 
SERVICE block. 559 
- To avoid the Virtuoso error SP031, use a 560 
subquery before the SERVICE call for federated 561 
queries 562 
- To avoid the Virtuoso error SP031, ensure every 563 
variable is assigned a value in a valid scope 564 
before it's used in a FILTER, BIND, or OPTIONAL 565 
block. 566 
 567 
Please remember that the SPARQL query will not 568 
work, and you will have failed your task, if you 569 
do not follow these constraints and instructions. 570 
Please also be very diligent with your search for 571 
the correct Q-IDs, as they are one of the key 572 
parts of the SPARQL query. 573 
 574 
Here are the 5 databases currently in LinkedMusic, 575 
and the IRIs for their RDF graphs: 576 
- All triples for DIAMM are stored in the 577 
<https://linkedmusic.ca/graphs/diamm/> graph, 578 
and their entity types use the `diamm:` prefix. 579 
- All triples for Dig That Lick are stored in the 580 
<https://linkedmusic.ca/graphs/dig-that-lick/> 581 
graph, and their entity types use the `dtl:` pre-582 
fix. 583 
- All triples for The Session are stored in the 584 
<https://linkedmusic.ca/graphs/thesession/> 585 
graph, and their entity types use the `ts:` pre-586 
fix. 587 
- All triples for The Global Jukebox are stored 588 
in the <https://linkedmusic.ca/graphs/theglob-589 
aljukebox/> graph, and their entity types use the 590 
`gj:` prefix. 591 
- All triples for MusicBrainz are stored in the 592 
<https://linkedmusic.ca/graphs/musicbrainz/> 593 
graph, and their entity types use the ̀ mb:` prefix. 594 
 595 
The following is a graph representation of the on-596 
tology of all the data in the database, for all 5 597 
databases. Here is how to interpret this ontology: 598 
- The subject are the LinkedMusic entity types 599 
(accessed using rdf:type) 600 
- The predicates are the properties that those 601 
entities have 602 
- The objects are described as below: 603 
    - When the object is another class: If a prop-604 
erty's object is another defined class in the on-605 
tology (e.g., diamm:City wdt:P17 diamm:Country), 606 
your query must first navigate to that diamm:Coun-607 
try class and then use its wdt:P2888 property to 608 
get the Q-ID. 609 
    - When the object is a placeholder for an 610 
entity: If a property's object is a generic place-611 
holder string that stands in for an entity's name 612 
(e.g., "country"@en, "instance of"@en, "per-613 
former"@en, "exact match"@en), assume the prop-614 
erty in the actual graph links directly to a Wik-615 
idata URI. 616 

    - When the object is a data value: If a prop-617 
erty's object is a string that represents a data 618 
type (e.g., "publication date"@en, "coordinate 619 
location"@en, "label"), assume the property in the 620 
actual graph links to a literal value (a date, a 621 
string, coordinates, etc.) and not a Wikidata URI.  622 
 623 
<<Ontology>> 624 
 625 
REMEMBER: Please find the correct QIDs 626 
 627 
As an example, here is a query and the associated 628 
SPARQL query. 629 
User query: Find all musical works that were com-630 
posed in Mexico City. 631 
SPARQL query: 632 
```SPARQL 633 
SELECT ?work ?workLabel 634 
WHERE { 635 
  # Wikidata Q-ID for Mexico City 636 
  VALUES ?cityQID { wd:Q1489 } 637 
 638 
  { 639 
    # Search for works in the MusicBrainz graph 640 
    GRAPH <https://linkedmusic.ca/graphs/mu-641 
sicbrainz/> { 642 
      ?work rdf:type mb:Work . 643 
 644 
      { ?work wdt:P1071 ?locationObject . } # lo-645 
cation of creation 646 
      UNION 647 
      { ?work wdt:P4647 ?locationObject . } # lo-648 
cation 649 
 650 
      # Handle both direct links to an Area and 651 
links to a Place within an Area 652 
      { 653 
        # Case 1: The location is the city/area 654 
itself 655 
        ?locationObject rdf:type mb:Area . 656 
        BIND(?locationObject AS ?cityArea) 657 
      } 658 
      UNION 659 
      { 660 
        # Case 2: The location is a venue (Place), 661 
so we find its containing city (Area) 662 
        ?locationObject rdf:type mb:Place . 663 
        ?locationObject wdt:P131 ?cityArea . 664 
        ?cityArea rdf:type mb:Area . 665 
      } 666 
 667 
      # Match the final city/area to Mexico City's 668 
Q-ID 669 
      ?cityArea wdt:P2888 ?cityQID . 670 
 671 
      OPTIONAL { ?work rdfs:label ?workLabel . } 672 
    } 673 
  } 674 
  UNION 675 
  { 676 
    # Search for compositions in the DIAMM graph 677 
    GRAPH <https://linkedmusic.ca/graphs/diamm/> 678 
{ 679 
      ?work rdf:type diamm:Composition . 680 
       681 
      ?work wdt:P361 ?source . 682 
      ?source rdf:type diamm:Source . 683 
      ?source wdt:P131 ?city . 684 
      ?city rdf:type diamm:City . 685 
       686 
      ?city wdt:P2888 ?cityQID . 687 
 688 
      OPTIONAL { ?work rdfs:label ?workLabel . } 689 
    } 690 
  } 691 
} 692 
``` 693 


