

SESEMMI FOR LINKEDMUSIC: DEMOCRATIZING ACCESS
TO MUSICAL ARCHIVES VIA LARGE LANGUAGE MODELS

ABSTRACT

Currently, there are over one hundred music metadata
databases online; comprehensively answering even simple
questions often means querying dozens of them separately.
This fragmentation makes large-scale, cross-cultural, or
longitudinal research difficult and time-consuming. The
LinkedMusic initiative aims to solve this problem by
combining these databases in one place. The ingested data
are stored in RDF format and can be queried using
SPARQL, a querying language.

However, SPARQL’s complexity makes it
prohibitively difficult for most users to use effectively. Our
project, the Search Engine System for Enhancing Music
Metadata Interoperability (SESEMMI), aims to overcome
this barrier by providing a natural language interface for
LinkedMusic. Using Large Language Models (LLMs), it
translates the user’s plain-language queries into SPARQL
queries that retrieve results from all integrated databases.

In this paper, we conduct the first systematic study of
the ability of LLMs in translating Natural Language
Queries (NLQ) to SPARQL in the domain of music
metadata research. We evaluate five models on twenty
music-domain NLQ-to-SPARQL pairs with manually
prepared ground-truth outputs. Results indicate that
Claude Sonnet 4 achieves the highest accuracy of 100.0%
on single-database queries in both zero- and one-shot
contexts and 46.7% for complex zero-shot cross-database
queries.

1. INTRODUCTION

The abundance of specialized online music metadata
repositories, ranging from folk-music archives to vast
cross-genre music encyclopedias, has created a wealth of
scholarly and cultural resources. However, the
heterogeneity of their data schemas poses a fundamental

1 https://openrefine.org Accessed 29 July 2025.

barrier to cross-collection search and analysis. For
example, to answer a question like “Find all works
commissioned by Isabella d’Este that have a surviving
manuscript and a recording made after 1980”, today’s
musicologists must navigate multiple disparate platforms,
reconcile inconsistent identifiers, and stitch together
results by hand. Furthermore, these websites often lack the
nuanced search functionality required to answer precise
questions.

The LinkedMusic project aims to address these issues
by merging these music metadata databases into a single
data lake, which is a vast network of raw data with
inconsistent schemas. We begin this process by obtaining
a dump of the databases, usually in tabular format (e.g.,
CSV), then use OpenRefine1 with its Reconciliation API
to match and link as many values as possible to their
corresponding Wikidata 2 Uniform Resource Identifiers
(URIs). For instance, the string “Charlie Parker” would be
replaced with <http://www.wikidata.org/entity/Q103767>.
After reconciliation is complete, we convert each dataset

2 https://www.wikidata.org Accessed 9 August 2025.

Liam Pond1, 2 Linnea Kirby1* Sichen Meng1* Simon Ngassam1*
Sebastien Chow1* Dylan Hillerbrand1 Ichiro Fujinaga1, 2

1 Schulich School of Music, McGill University
2 Centre for Interdisciplinary Research in Music Media and Technology

*Denotes equal contribution
{liam.pond, linnea.kirby, simon.ngassam, sebastien.chow}@mail.mcgill.ca,

{sichen.meng2, dylan.hillerbrand, ichiro.fujinaga}@mcgill.ca

 © L. Pond, L. Kirby, S. Meng, S. Ngassam, S. Chow, D.
Hillerbrand, and I. Fujinaga. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: L. Pond,
L. Kirby, S. Meng, S. Ngassam, S. Chow, D. Hillerbrand, and I. Fujinaga,
“SESEMMI for LinkedMusic: Democratizing Access to Musical
Archives via Large Language Models”, in 1st Workshop on Large
Language Models for Music & Audio (LLM4MA), Daejeon, South Korea,
2025.

Figure 1. LinkedMusic overall process.

to Resource Description Framework (RDF) format3 and
merge them into a single knowledge graph, hosted in an
OpenLink Virtuoso graph database,4 which is queryable
using SPARQL Protocol and RDF Query Language
(SPARQL), the W3C standard for RDF data. This
repository will be searchable online via the Search Engine
System for Enhancing Music Metadata Interoperability
(SESEMMI). The overall process is illustrated in Figure 1.

However, querying the LinkedMusic data lake presents
a significant challenge since crafting SPARQL queries is
an intricate process that is impractically complex for most
end users. Our solution is to utilize Large Language
Models (LLMs), which show significant promise in
translating musical Natural Language Queries (NLQ) to
SPARQL [1–2]. Furthermore, LLMs closely align with
LinkedMusic’s goal for accessibility, not only by lowering
the technical barriers to use, but also in their multilingual
nature.

Our primary contributions are threefold. First, while
NLQ to Structured Query Language (SQL) and general-
domain NLQ to SPARQL have grown in interest,
translating NLQ to SPARQL over heterogeneous music-
metadata graphs remains unexplored. Currently, and to the
best of our knowledge, we present the first systematic
study of NLQ to SPARQL in the music domain,
demonstrating its feasibility and identifying specific
hurdles such as Wikidata “Q” identifier retrieval and
effectively communicating a complex ontology (a
structured representation of concepts and their
relationships). Second, we empirically evaluate and
benchmark five LLMs across NLQ to SPARQL tasks,
divided into four challenge types, ranging from simple
single database queries to cross-database federated queries
with Wikidata. Last, we provide practical insights by
analyzing our use of prompt-engineering strategies that
aim to maximize SPARQL accuracy and offer guidelines
for implementing NLQ search tools over complex datasets.

The remainder of the paper is organized as follows.
Section 2 reviews related work in NLQ to SPARQL and
NLQ to SQL tasks. Section 3 details our methods,
including prompt design, dataset construction, and
evaluation. Section 4 presents experimental results and
discusses possibilities for methodology refinement. Lastly,
Section 5 concludes and outlines steps for future work.

2. BACKGROUND

While research translating natural language into formal
database queries dates back to the 1970s [3], interest in this
area has grown significantly since the emergence of
LLMs [4]. This section surveys the conversion of natural
language to both SPARQL and SQL, with the latter being
more established, but methodologically similar.

2.1 Natural Language Query to SPARQL

Historically, approaches to SPARQL query generation
have included neural networks [5–6], Markov models [7],
and rule- or template-based methods [8–11]. However, the

3 https://www.w3.org/wiki/RDF Accessed 9 August 2025.
4 https://virtuoso.openlinksw.com Accessed 9 August 2025.

field has become increasingly dominated by LLMs, which
continue to improve at an astonishing rate [12–14].

At the same time, while LLMs show incredible
potential, they often yield inconsistent results. LLMs
frequently return correct templates with critical errors that
prevent the SPARQL output from retrieving the desired
entities, particularly in zero-shot contexts (contexts with
no examples given) [15]. This often stems from incorrect
entity linking, which is the ability to match natural
language terms to entities within a graph [15–16]. LLMs
may also incorrectly retrieve external identifiers [2] or
misunderstand the underlying knowledge graph, which
itself might be of poor quality [16].

A common strategy for mitigating these issues is in-
context learning, more specifically, few-shot chain-of-
thought prompting, where the provided examples guide
LLMs through intermediate reasoning steps [1, 17].

The reverse problem has also been investigated, where
SPARQL queries are explained by converting them to
natural language [18].

2.2 Natural Language Query to SQL

Although SQL and SPARQL are different database query
languages, many of the strategies used in NLQ to SQL can
be applied effectively to NLQ to SPARQL. While
approaches in NLQ to SQL were initially predominantly
rule-based methods, they were overtaken by pre-trained
language models (PLMs), and later LLMs around
2023 [4].

On the other hand, while LLM-based methods for NLQ
to SQL show significant promise, they still have many
limitations. Firstly, they are often trained and tested on just
one database, meaning that they generalize poorly and
struggle to query over multiple databases, especially if the
schemas differ for each one. In addition, many of the best-
performing approaches, like agents, have high token costs
that can make them prohibitively expensive to implement
at scale. Finally, and perhaps most importantly, while
LLM-based methods are rapidly improving, they are still
outperformed by human experts [4].

On the BIRD-SQL benchmark [19], which contains
over 12,751 unique question-SQL pairs with 95 databases
across 37 professional domains, the best model,
LongData-SQL,5achieves 77.53% accuracy compared to
92.96% for humans. Meanwhile, WindAgent + Claude-4-
Sonnet6 has achieved the top score of 58.32% accuracy on
Spider 2.0-Snow, a dataset where correct responses for the
632 NLQ-to-SQL problems often require more than 100
lines of code and the ability to parse sub-databases with
over 1,000 columns [20].

3. METHODOLOGY

While there are plans to add dozens more databases, the
LinkedMusic data lake currently contains five sub-
databases totalling over 352 million RDF triples:
MusicBrainz [21], Digital Image Archive of Medieval
Music (DIAMM) [22], The Global Jukebox [23], Dig That

5 https://bird-bench.github.io Accessed 29 July 2025.
6 https://spider2-sql.github.io Accessed 29 July 2025.

Lick 1000 [24], and The Session.7 Each sub-database was
reconciled to Wikidata using OpenRefine with human
verification for edge cases that could not be reconciled
automatically. They were then converted to RDF format,
uploaded to an OpenLink Virtuoso graph database, and
queried via Virtuoso’s built-in SPARQL endpoint.

To evaluate the models’ performance, a custom test
dataset of twenty NLQ/SPARQL pairs with ground-truth
SPARQL was manually built. These questions were
grouped into four challenge types of increasing difficulty
(see Table 1), with five questions per challenge (one
question per sub-database for Challenges 1–3).

During exploratory testing, we investigated methods
such as prompt chaining, which breaks complex tasks into
smaller, linked prompts. We also experimented with the
deep-research feature (e.g., multi-step reasoning and
chain-of-thought exploration) and even attempted
emotional appeals, like begging or threatening the model.
These approaches did not appear to improve results.

Difficulties encountered during the exploratory phase
were numerous and often unexpected, including an issue
where the SPARQL output was syntactically correct, but
conflicted with Virtuoso’s SPARQL query optimizer. To
teach the LLM how to better cooperate with Virtuoso, we
needed to add two lines to our prompt.

After extensive exploratory testing, a general all-
purpose system prompt (see Appendix) was designed,
which wraps around the natural language input and asks
the LLM to return the corresponding SPARQL as output.

In total, five LLMs were tested: Claude Sonnet 4, 8
Gemini 2.5 Flash, 9 Gemini 2.5 Pro, 10 GPT-4o, 11 and
OpenAI o4-mini.12 Each model was evaluated three times
through the browser in a zero- or one-shot context (i.e.,
zero or one example provided) and was given the full
ontology of the LinkedMusic data lake in Turtle format,13
a compact and human-readable RDF format. For example,
Figure 2 shows a diagram of the ontology for the Dig That
Lick 1000 database.

For one-shot tests, the provided sample NLQ/SPARQL
pair (see Appendix) was a separate Challenge 4 cross-

7 https://thesession.org Accessed 29 July 2025.
8 https://www-
cdn.anthropic.com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf
Accessed 9 August 2025.
9 https://storage.googleapis.com/deepmind-media/Model-Cards/Gemini-
2-5-Flash-Model-Card.pdf Accessed 3 October 2025.
10 https://modelcards.withgoogle.com/assets/documents/gemini-2.5-
pro.pdf Accessed 3 October 2025.

database query that was designed to maximize the
likelihood that the model would be shown the most
relevant SPARQL query-building strategies. For each test,
a new chat window was opened with the memory feature
disabled. Browser-based tools like ChatGPT’s web search
feature were enabled. Evaluation was conducted on a
pass/fail basis, with models passing if the generated
SPARQL returned the exact same number of results as the
handwritten ground-truth SPARQL. The full queries,
prompts, provided ontology, and results can be freely
accessed online.14

4. RESULTS AND DISCUSSION

The experimental results, shown in Figure 3, reveal several
notable patterns. As expected, our data show a pronounced
inverse correlation between query complexity and model
accuracy across all evaluated systems. Challenge 1
queries, representing straightforward single-database
retrieval, yielded the highest aggregate accuracy of 63.3%,
while Challenge 4 queries dropped down to 26.0% on
average. This highlights the substantial difficulties

11 https://cdn.openai.com/gpt-4o-system-card.pdf Accessed 9 August
2025.
12 https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-
e7758f3722c1/o3-and-o4-mini-system-card.pdf Accessed 9 August
2025.
13 https://www.w3.org/TR/turtle Accessed 29 July 2025.
14 https://docs.google.com/spreadsheets/d/1Bsb1fZXPUGgqAMfNQeCf
4J5l0p5rLhTQMCwRc0ZVrFs/edit?usp=sharing

Challenge Description Example Query
Challenge 1 Retrieve information that can be found on a single

sub-database’s website.
Find all compositions by William Byrd in
DIAMM.

Challenge 2 Retrieve information that is stored in a single sub-
database but cannot be found through the website.

Find all different time signatures for jigs in The
Session.

Challenge 3 Retrieve anything that can be found on a single
sub-database plus Wikidata.

Find the average number of record labels that
female singers in MusicBrainz have signed with.

Challenge 4 Retrieve any information in the entire
LinkedMusic data lake and Wikidata.

Find all works commissioned by Isabella d’Este
that have a surviving manuscript and a recording
made after 1980.

Table 1. List of query challenge types, descriptions, and example queries.

Figure 2. Dig That Lick 1000 ontology. Dig That Lick
1000 entities were reconciled to Wikidata using the
properties shown above.

inherent in generating accurate SPARQL queries across
large knowledge graphs.

The implementation of one-shot prompting did not
yield consistent performance improvements, with some
models exhibiting marginal performance decreases in one-
shot versus zero-shot conditions, suggesting potential
interference from the provided exemplar.

As illustrated in Figure 4, which shows the combined
results for zero- and one-shot tests aggregated by LLM,
Claude Sonnet 4 achieved the highest overall accuracy,
scoring 100.0% on Challenge 1 questions for both zero-
and one-shot contexts and an average of 73.3% across all
challenges in zero-shot contexts.

Across all models and challenges, the most common
issues involved misunderstanding the underlying graph
content, with LLMs often failing to parse the
representation of Wikidata-reconciled items within the
graph database and entity links between sub-graphs.
Wikidata “Q” identifiers were often incorrect, and in rare
cases, no SPARQL was produced. We also observed
moderate variance between attempts, with queries
frequently being successful for one or two out of three
attempts.

5. CONCLUSION AND FUTURE WORK

This study presents the first systematic investigation of
NLQ to SPARQL translation using LLMs in the music
domain and introduces SESEMMI as a solution for
querying heterogeneous music metadata within the
LinkedMusic data lake. Through our evaluation of five
LLMs across twenty test cases, we demonstrate both the
feasibility and current difficulties in this approach.

Results indicate that performance decreases
significantly with query complexity, ranging from simple
single-database retrieval to cross-database federated
queries with Wikidata. Claude Sonnet 4 achieved the
highest average accuracy of 73.3% for zero-shot contexts,
with 100.0% accuracy on both zero- and one-shot single
database queries and 46.7% accuracy on zero-shot cross-
database queries.

Our findings contribute to the growing field of semantic
query generation, particularly highlighting domain-
specific issues such as entity linking, Wikidata “Q”
identifier retrieval, and the complexities of communicating
heterogeneous ontologies to LLMs. While the results show
promise for making specialized music repositories more
accessible to researchers and scholars, they also
underscore the need for refinement in prompt engineering
strategies and model architectures.

As LinkedMusic expands with the addition of more
music databases, we will investigate the capacity of these
methods to scale to a larger dataset with a greater variety
of sub-databases4. Future work should also systematically
test different prompting approaches, including using
chain-of-thought prompting and providing more examples.
Furthermore, more advanced LLM implementations, such
as an agent that performs API calls, should be tested. This
could allow the model to break down the problem into
smaller steps like retrieving the relevant ontology or
performing a function call for Wikidata Q identifier
retrieval. Moreover, the effect of changing parameters like
temperature should also be investigated.

As LLMs improve, these methods offer a promising
path toward making specialized music databases more
accessible to researchers and practitioners who lack
technical query expertise.

Figure 3: Average performance for various LLMs in zero- and one-shot contexts across four natural language query
challenges of increasing difficulty. Each test was performed three times, and the results were averaged.

Figure 4: Average performance by LLM for zero- and one-
shot contexts combined across four natural language query
challenges of increasing difficulty. Each test was performed
three times, and the results were averaged.

6. ACKNOWLEDGEMENTS

This project is supported in part by the Social Sciences and
Humanities Research Council of Canada (SSHRC 895-
2022-1004) and the Fonds de Recherche du Québec
(FRQSC SE3-303927). Ces travaux ont bénéficié d’un
octroi (https://doi.org/10.69777/367582) du Fonds de
recherche du Québec.

7. REFERENCES

[1] J. D’Abramo, A. Zugarini, and P. Torroni,
“Investigating Large Language Models for Text-to-
SPARQL Generation,” in Proc. 4th Int. Workshop
Knowl.-Augmented Methods Natural Lang. Process.,
W. Shi, W. Yu, A. Asai, M. Jiang, G. Durrett, H.
Hajishirzi, and L. Zettlemoyer, Eds., Albuquerque,
NM, USA, May 2025, pp. 66–80. doi:
10.18653/v1/2025.knowledgenlp-1.5.

[2] V. Emonet, J. Bolleman, S. Duvaud, T. Mendes de
Farias, and A. C. Sima, “LLM-based SPARQL
Query Generation from Natural Language over
Federated Knowledge Graphs,” in Proc. Special
Session Harmonising Generative AI Semantic Web
Technol. (HGAIS 2024), R. Alharbi, J. de Berardinis,
P. Groth, A. Meroño Peñuela, E. Simperl, and V.
Tamma, Eds., Baltimore, MD, USA, Nov. 2024.
Accessed: July 18, 2025. [Online]. Available:
https://ceur-ws.org/Vol-3953/355.pdf

[3] D. Waltz, “Natural Language Access to a Large Data
Base: An Engineering Approach,” in Proc. 4th Int.
Joint Conf. Artificial Intell. (IJCAI), Tbilisi, USSR,
Sept. 1975, pp. 868–872. [Online]. Available:
https://www.ijcai.org/Proceedings/75/Papers/129.pd
f

[4] X. Liu et al., “A Survey of Text-to-SQL in the Era of
LLMs: Where are We, and Where are We Going?,”
IEEE Trans. Knowl. Data Eng., early access, July 24,
2025. doi: 10.1109/TKDE.2025.3592032.

[5] F. F. Luz and M. Finger, “Semantic Parsing Natural
Language into SPARQL: Improving Target
Language Representation with Neural Attention,”
Mar. 12, 2018, arXiv:1803.04329. doi:
10.48550/arXiv.1803.04329.

[6] X. Yin, D. Gromann, and S. Rudolph, “Neural
Machine Translating from Natural Language to
SPARQL,” Future Gener. Comput. Syst., vol. 117, pp.
510–519, Apr. 2021, doi:
10.1016/j.future.2020.12.013.

[7] Y.-H. Chen, E. J.-L. Lu, and T.-A. Ou, “Intelligent
SPARQL Query Generation for Natural Language
Processing Systems,” IEEE Access, vol. 9, pp.
158638–158650, Nov. 2021, doi:
10.1109/ACCESS.2021.3130667.

[8] C. Pradel, O. Haemmerlé, and N. J. Hernandez,
“Natural Language Query Interpretation into
SPARQL Using Patterns,” in Proc. 4th Int. Workshop
Consum. Linked Data (COLD 2013), Sydney,
Australia, Oct. 2013, pp. 1–12. Accessed: July 25,

2025. [Online]. Available: https://hal.science/hal-
01143219

[9] M. Dubey, S. Dasgupta, A. Sharma, K. Höffner, and
J. Lehmann, “AskNow: A Framework for Natural
Language Query Formalization in SPARQL,” in
Semantic Web. Latest Adv. New Domains, H. Sack, E.
Blomqvist, M. d’Aquin, C. Ghidini, S. P. Ponzetto,
and C. Lange, Eds., Heraklion, Greece: Springer
International Publishing, June 2016, pp. 300–316.
doi: 10.1007/978-3-319-34129-3_19.

[10] N. Steinmetz, A.-K. Arning, and K.-U. Sattler, “From
Natural Language Questions to SPARQL Queries: A
Pattern-based Approach,” in Proc.
Datenbanksysteme Business, Technol. Web (BTW
2019), T. Grust et al., Eds., in Gesellschaft für
Informatik, vol. P-289. Rostock, Germany, Mar.
2019, pp. 289–308. doi: 10.18420/btw2019-18.

[11] H. Jung and W. Kim, “Automated Conversion from
Natural Language Query to SPARQL Query,” J.
Intell. Inf. Syst., vol. 55, pp. 501–520, Dec. 2020, doi:
10.1007/s10844-019-00589-2.

[12] J. Lehmann, P. Gattogi, D. Bhandiwad, S. Ferré, and
S. Vahdati, “Language Models as Controlled Natural
Language Semantic Parsers for Knowledge Graph
Question Answering,” in Proc. 26th Eur. Conf. Artif.
Intell. (ECAI 2023), K. Gal, A. Nowé, G. J. Nalepa,
R. Fairstein, and R. Rǎdulescu, Eds., in Frontiers in
Artificial Intelligence and Applications, vol. 372.
Kraków, Poland: IOS Press, Oct. 2023, pp. 1348–
1356. doi: 10.3233/FAIA230411.

[13] S. Yang, M. Teng, X. Dong, and F. Bo, “LLM-Based
SPARQL Generation with Selected Schema from
Large Scale Knowledge Base,” in Knowl. Graph
Semantic Comput.: Knowl. Graph Empowers Artif.
General Intell. (CCKS 2023), H. Wang, X. Han, M.
Liu, C. Gong, Y. Liu, and N. Zhang, Eds., Shenyang,
Springer Singapore, Aug. 2023, pp. 304–316. doi:
10.1007/978-981-99-7224-1.

[14] M. R. A. H. Rony, U. Kumar, R. Teucher, L.
Kovriguina, and J. Lehmann, “SGPT: A Generative
Approach for SPARQL Query Generation from
Natural Language Questions,” IEEE Access, vol. 10,
pp. 70712–70723, July 2022, doi:
10.1109/ACCESS.2022.3188714.

[15] D. Bustamante and H. Takeda, “SPARQL
Generation with Entity Pre-trained GPT for KG
Question Answering,” Feb. 01, 2024,
arXiv:2402.00969. doi: 10.48550/arXiv.2402.00969.

[16] I.-V. Hernandez-Camero, E. Garcia-Lopez, A.
Garcia-Cabot, and S. Caro-Alvaro, “Context-Aware
Few-Shot Learning SPARQL Query Generation
from Natural Language on an Aviation Knowledge
Graph,” Mach. Learn. Knowl. Extr., vol. 7, no. 2, p.
52, June 2025, doi: 10.3390/make7020052.

[17] H. M. Zahera, M. Ali, M. A. Sherif, D. Moussallem,
and A.-C. Ngonga Ngomo, “Generating SPARQL
from Natural Language Using Chain-of-Thoughts

Prompting,” in Proc. 20th Int. Conf. Semantic Syst.
(SEMANTiCS 2024), A. Salatino et al., Eds., in
Studies on the Semantic Web, vol. 60. Amsterdam,
Netherlands: IOS Press, Sept. 2024, pp. 353–368. doi:
10.3233/SSW240028.

[18] A.-C. Ngonga Ngomo, L. Bühmann, C. Unger, J.
Lehmann, and D. Gerber, “Sorry, i don’t speak
SPARQL: Translating SPARQL Queries into Natural
Language,” in Proc. 22nd Int. Conf. World Wide Web
(WWW ’13), in WWW ’13. Rio de Janeiro, Brazil:
Association for Computing Machinery, May 2013,
pp. 977–988. doi: 10.1145/2488388.2488473.

[19] J. Li et al., “Can LLM Already Serve as a Database
Interface? A Big Bench for Large-scale Database
Grounded Text-to-SQLs,” in Proc. 37th Int. Conf.
Neural Inf. Process. Syst. (NeurIPS 2023), New
Orleans, LA, USA: Curran Associates Inc., Dec.
2023, pp. 42330–42357. Accessed: July 29, 2025.
[Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/202
3/file/83fc8fab1710363050bbd1d4b8cc0021-Paper-
Datasets_and_Benchmarks.pdf

[20] F. Lei et al., “Spider 2.0: Evaluating Language
Models on Real-World Enterprise Text-to-SQL
Workflows,” in Proc. Int. Conf. Learn.
Representations (ICLR), Singapore: Curran
Associates, Inc., Apr. 2025. Accessed: July 31, 2025.
[Online]. Available:
https://openreview.net/forum?id=XmProj9cPs

[21] A. Swartz, “MusicBrainz: A Semantic Web Service,”
IEEE Intell. Syst., vol. 17, no. 1, pp. 76–77, Feb. 2002,
doi: 10.1109/5254.988466.

[22] A. Wathey, M. Bent, and J. Craig-McFeely, “The Art
of Virtual Restoration: Creating the Digital Image
Archive of Medieval Music (DIAMM),” in The
Virtual Score, Volume 12: Representation, Retrieval,
Restoration, W. Hewlett B. and E. Selfridge-Field,
Eds. Cambridge, MA, USA: The MIT Press, 2001, ch.
15, pp. 227–240. Accessed: July 29, 2025. [Online].
Available:
https://doi.org/10.7551/mitpress/2058.003.0019

[23] A. L. C. Wood et al., “The Global Jukebox: A Public
Database of Performing Arts and Culture,” PLoS
ONE, vol. 17, no. 11, Nov. 2022, Art. no. e0275469.
doi: 10.1371/journal.pone.0275469.

[24] C. Stover, “Dig That Lick (DTL): Analyzing Large-
Scale Data for Melodic Patterns in Jazz
Performances,” J. Am. Musicol. Soc., vol. 74, no. 1,
pp. 195–214, Apr. 2021, doi:
10.1525/jams.2021.74.1.195.

8. APPENDIX

The full prompt used in testing is provided below. Note
that <<USER INPUT>> would be replaced with the
natural language query being tested. For brevity, the

15 https://docs.google.com/spreadsheets/d/1Bsb1fZXPUGgqAMfNQeCf
4J5l0p5rLhTQMCwRc0ZVrFs/edit?usp=sharing

ontology has been replaced with <<ONTOLOGY>>.
However, it can be freely accessed online.15

I have a graph database containing musical linked
data from various databases. As much of the
information as possible is reconciled against
Wikidata.

Please write me a SPARQL query to perform the
following query:

<<USER_INPUT>>

When an entity is reconciled against Wikidata,
wdt:P2888 is used to point to the reconciled Wikidata
entity.
When an entity has a wdt:P31 triple, it contains
information about the subclass that the entity is a
part of (e.g. for mb:Artist, the wdt:P31 can point
to human, musical group, etc).

The steps you should follow are:
1. Examine the ontology and extract the relevant
parts.
2. Using that ontology, figure out which Q-IDs you
need and perform web searches to find them.
3. Using the ontology and the Q-IDs, build the final
SPARQL query.

Please follow these instructions:
- When asked to return a list of entities, please
always return both the label (when available) and the
URI for the entities.
- When finding Q-IDs to match against, search the web
to get the best and most accurate results.
- Ensure that the Q-IDs that you've found are correct
by performing another web search.
- Please scan all entities across all databases to
find out which one(s) correspond to the query, and
only select the relevant databases and entities.
- For any entity you search for within the
LinkedMusic graph (not in Wikidata), please add a
triple that uses the rdf:type property to explicitly
verify its type.
- Do not use Wikidata to verify the type of entities,
please instead use the LinkedMusic types, using the
rdf:type property.
 - The only exception to this is when local
entities have a wdt:P31 triple (like mb:Artist), then
it is fine to check that triple using wdt:P31 in the
local LinkedMusic graph, but never in a federated
query.
- If you need data that is not located in the
LinkedMusic graph, i.e. when there is no property for
the information you need directly present in the
ontology I give you, please use a federated query
with Wikidata using the
<https://query.wikidata.org/sparql> endpoint, but
only do so if the information doesn't appear at all
in the LinkedMusic graph ontology.
- Please ensure that you've fully reviewed the
LinkedMusic ontology and extracted the relevant parts
before performing federated queries.
- Please also double-check that you're not trying to
use properties that do not appear in the ontology,
unless they are a part of a federated query.
- When performing a federated query, ensure that the
SPARQL query is efficient and will not create an
unnecessarily high amount of requests.
- When resolving a Wikidata Q-ID, you must use the
provided ontology to determine the linking path.
 - If a property's object is another defined class
in the ontology (e.g., diamm:City wdt:P17
diamm:Country), your query must first navigate to
that class and then use its wdt:P2888 property to get
the Q-ID.
 - If a property's object is described by a
literal string (e.g., ts:Session wdt:P17
"country"@en), you should assume the property links
directly to the Wikidata URI.

- Once the SPARQL query is finalized, please re-read
it and double-check that all QIDs are correct.
- For MusicBrainz, very few mb:Recording entities are
reconciled against Wikidata since Wikidata does not
carry information about specific recordings, only
about the actual songs, so it's better to match
reconciled data against mb:Work entities rather than
mb:Recording

Please follow these constraints:
- Do not use string matching; instead check against
Wikidata Q-IDs. The only exception to this is when
the query explicitly requests finding entities based
on text/string content (e.g., 'find tracks with X in
the title', 'find artists whose names contain Y',
'search for works with Z in the description'). In
such cases, use appropriate SPARQL string matching
functions like CONTAINS(), REGEX(), or similar.
- Do not use the SELECT ... FROM syntax for named
graphs. Please instead use the SELECT { GRAPH ... {
... } } syntax.
- Do not put any triples verifying the type of
entities (using wdt:P31 or rdf:type) in federated
query SERVICE blocks.
- Do not use Wikidata to retrieve labels unless
directly asked to in the query. please prioritize as
much as possible retrieving labels from the
LinkedMusic database.
- Do not put any federated query SERVICE blocks
inside a GRAPH block.
- Do not put any federated query SERVICE blocks
inside an OPTIONAL block.
- Do not use a nested SELECT clause inside a SERVICE
block.
- To avoid the Virtuoso error SP031, use a subquery
before the SERVICE call for federated queries
- To avoid the Virtuoso error SP031, ensure every
variable is assigned a value in a valid scope before
it's used in a FILTER, BIND, or OPTIONAL block.

Please remember that the SPARQL query will not work,
and you will have failed your task, if you do not
follow these constraints and instructions. Please
also be very diligent with your search for the
correct Q-IDs, as they are one of the key parts of
the SPARQL query.

Here are the 5 databases currently in LinkedMusic,
and the IRIs for their RDF graphs:
- All triples for DIAMM are stored in the
<https://linkedmusic.ca/graphs/diamm/> graph, and
their entity types use the `diamm:` prefix.
- All triples for Dig That Lick are stored in the
<https://linkedmusic.ca/graphs/dig-that-lick/>
graph, and their entity types use the `dtl:` prefix.
- All triples for The Session are stored in the
<https://linkedmusic.ca/graphs/thesession/> graph,
and their entity types use the `ts:` prefix.
- All triples for The Global Jukebox are stored in
the
<https://linkedmusic.ca/graphs/theglobaljukebox/>
graph, and their entity types use the `gj:` prefix.
- All triples for MusicBrainz are stored in the
<https://linkedmusic.ca/graphs/musicbrainz/> graph,
and their entity types use the `mb:` prefix.

The following is a graph representation of the
ontology of all the data in the database, for all 5
databases. Here is how to interpret this ontology:
- The subject are the LinkedMusic entity types
(accessed using rdf:type)
- The predicates are the properties that those
entities have
- The objects are described as below:
 - When the object is another class: If a
property's object is another defined class in the
ontology (e.g., diamm:City wdt:P17 diamm:Country),
your query must first navigate to that diamm:Country
class and then use its wdt:P2888 property to get the
Q-ID.
 - When the object is a placeholder for an entity:
If a property's object is a generic placeholder
string that stands in for an entity's name (e.g.,
"country"@en, "instance of"@en, "performer"@en,

"exact match"@en), assume the property in the actual
graph links directly to a Wikidata URI.
 - When the object is a data value: If a property's
object is a string that represents a data type (e.g.,
"publication date"@en, "coordinate location"@en,
"label"), assume the property in the actual graph
links to a literal value (a date, a string,
coordinates, etc.) and not a Wikidata URI.

<<Ontology>>

REMEMBER: Please find the correct QIDs

As an example, here is a query and the associated
SPARQL query.
User query: Find all musical works that were composed
in Mexico City.
SPARQL query:
```SPARQL 
SELECT ?work ?workLabel 
WHERE { 
  # Wikidata Q-ID for Mexico City 
  VALUES ?cityQID { wd:Q1489 } 
 
  { 
    # Search for works in the MusicBrainz graph 
    GRAPH 
<https://linkedmusic.ca/graphs/musicbrainz/> { 
      ?work rdf:type mb:Work . 
 
      { ?work wdt:P1071 ?locationObject . } # 
location of creation 
      UNION 
      { ?work wdt:P4647 ?locationObject . } # 
location 
 
      # Handle both direct links to an Area and links 
to a Place within an Area 
      { 
        # Case 1: The location is the city/area 
itself 
        ?locationObject rdf:type mb:Area . 
        BIND(?locationObject AS ?cityArea) 
      } 
      UNION 
      { 
        # Case 2: The location is a venue (Place), 
so we find its containing city (Area) 
        ?locationObject rdf:type mb:Place . 
        ?locationObject wdt:P131 ?cityArea . 
        ?cityArea rdf:type mb:Area . 
      } 
 
      # Match the final city/area to Mexico City's 
Q-ID 
      ?cityArea wdt:P2888 ?cityQID . 
 
      OPTIONAL { ?work rdfs:label ?workLabel . } 
    } 
  } 
  UNION 
  { 
    # Search for compositions in the DIAMM graph 
    GRAPH <https://linkedmusic.ca/graphs/diamm/> { 
      ?work rdf:type diamm:Composition . 
       
      ?work wdt:P361 ?source . 
      ?source rdf:type diamm:Source . 
      ?source wdt:P131 ?city . 
      ?city rdf:type diamm:City . 
       
      ?city wdt:P2888 ?cityQID . 
 
      OPTIONAL { ?work rdfs:label ?workLabel . } 
    } 
  } 
} 
``` 


