
  
 

SESEMMI FOR LINKEDMUSIC: DEMOCRATIZING ACCESS 
TO MUSICAL ARCHIVES VIA LARGE LANGUAGE MODELS 

ABSTRACT 

Currently, there are over one hundred music metadata 
databases online; comprehensively answering even simple 
questions often means querying dozens of them separately. 
This fragmentation makes large-scale, cross-cultural, or 
longitudinal research difficult and time-consuming. The 
LinkedMusic initiative aims to solve this problem by 
combining these databases in one place. The ingested data 
are stored in RDF format and can be queried using 
SPARQL, a querying language.  

However, SPARQL’s complexity makes it 
prohibitively difficult for most users to use effectively. Our 
project, the Search Engine System for Enhancing Music 
Metadata Interoperability (SESEMMI), aims to overcome 
this barrier by providing a natural language interface for 
LinkedMusic. Using Large Language Models (LLMs), it 
translates the user’s plain-language queries into SPARQL 
queries that retrieve results from all integrated databases. 

In this paper, we conduct the first systematic study of 
the ability of LLMs in translating Natural Language 
Queries (NLQ) to SPARQL in the domain of music 
metadata research. We evaluate five models on twenty 
music-domain NLQ-to-SPARQL pairs with manually 
prepared ground-truth outputs. Results indicate that 
Claude Sonnet 4 achieves the highest accuracy of 100.0% 
on single-database queries in both zero- and one-shot 
contexts and 46.7% for complex zero-shot cross-database 
queries. 

1. INTRODUCTION 

The abundance of specialized online music metadata 
repositories, ranging from folk-music archives to vast 
cross-genre music encyclopedias, has created a wealth of 
scholarly and cultural resources. However, the 
heterogeneity of their data schemas poses a fundamental 

 
1 https://openrefine.org Accessed 29 July 2025. 

barrier to cross-collection search and analysis. For 
example, to answer a question like “Find all works 
commissioned by Isabella d’Este that have a surviving 
manuscript and a recording made after 1980”, today’s 
musicologists must navigate multiple disparate platforms, 
reconcile inconsistent identifiers, and stitch together 
results by hand. Furthermore, these websites often lack the 
nuanced search functionality required to answer precise 
questions. 

The LinkedMusic project aims to address these issues 
by merging these music metadata databases into a single 
data lake, which is a vast network of raw data with 
inconsistent schemas. We begin this process by obtaining 
a dump of the databases, usually in tabular format (e.g., 
CSV), then use OpenRefine1 with its Reconciliation API 
to match and link as many values as possible to their 
corresponding Wikidata 2  Uniform Resource Identifiers 
(URIs). For instance, the string “Charlie Parker” would be 
replaced with <http://www.wikidata.org/entity/Q103767>. 
After reconciliation is complete, we convert each dataset 

2 https://www.wikidata.org Accessed 9 August 2025. 
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Figure 1. LinkedMusic overall process.  



  
 
to Resource Description Framework (RDF) format3 and 
merge them into a single knowledge graph, hosted in an 
OpenLink Virtuoso graph database,4 which is queryable 
using SPARQL Protocol and RDF Query Language 
(SPARQL), the W3C standard for RDF data. This 
repository will be searchable online via the Search Engine 
System for Enhancing Music Metadata Interoperability 
(SESEMMI). The overall process is illustrated in Figure 1.  

However, querying the LinkedMusic data lake presents 
a significant challenge since crafting SPARQL queries is 
an intricate process that is impractically complex for most 
end users. Our solution is to utilize Large Language 
Models (LLMs), which show significant promise in 
translating musical Natural Language Queries (NLQ) to 
SPARQL [1–2]. Furthermore, LLMs closely align with 
LinkedMusic’s goal for accessibility, not only by lowering 
the technical barriers to use, but also in their multilingual 
nature.  

Our primary contributions are threefold. First, while 
NLQ to Structured Query Language (SQL) and general-
domain NLQ to SPARQL have grown in interest, 
translating NLQ to SPARQL over heterogeneous music-
metadata graphs remains unexplored. Currently, and to the 
best of our knowledge, we present the first systematic 
study of NLQ to SPARQL in the music domain, 
demonstrating its feasibility and identifying specific 
hurdles such as Wikidata “Q” identifier retrieval and 
effectively communicating a complex ontology (a 
structured representation of concepts and their 
relationships). Second, we empirically evaluate and 
benchmark five LLMs across NLQ to SPARQL tasks, 
divided into four challenge types, ranging from simple 
single database queries to cross-database federated queries 
with Wikidata. Last, we provide practical insights by 
analyzing our use of prompt-engineering strategies that 
aim to maximize SPARQL accuracy and offer guidelines 
for implementing NLQ search tools over complex datasets. 

The remainder of the paper is organized as follows. 
Section 2 reviews related work in NLQ to SPARQL and 
NLQ to SQL tasks. Section 3 details our methods, 
including prompt design, dataset construction, and 
evaluation. Section 4 presents experimental results and 
discusses possibilities for methodology refinement. Lastly, 
Section 5 concludes and outlines steps for future work. 

2. BACKGROUND 

While research translating natural language into formal 
database queries dates back to the 1970s [3], interest in this 
area has grown significantly since the emergence of 
LLMs [4]. This section surveys the conversion of natural 
language to both SPARQL and SQL, with the latter being 
more established, but methodologically similar. 

2.1 Natural Language Query to SPARQL 

Historically, approaches to SPARQL query generation 
have included neural networks [5–6], Markov models [7], 
and rule- or template-based methods [8–11]. However, the 

 
3 https://www.w3.org/wiki/RDF Accessed 9 August 2025. 
4 https://virtuoso.openlinksw.com Accessed 9 August 2025. 

field has become increasingly dominated by LLMs, which 
continue to improve at an astonishing rate [12–14].  

At the same time, while LLMs show incredible 
potential, they often yield inconsistent results. LLMs 
frequently return correct templates with critical errors that 
prevent the SPARQL output from retrieving the desired 
entities, particularly in zero-shot contexts (contexts with 
no examples given) [15]. This often stems from incorrect 
entity linking, which is the ability to match natural 
language terms to entities within a graph [15–16]. LLMs 
may also incorrectly retrieve external identifiers [2] or 
misunderstand the underlying knowledge graph, which 
itself might be of poor quality [16].  

A common strategy for mitigating these issues is in-
context learning, more specifically, few-shot chain-of-
thought prompting, where the provided examples guide 
LLMs through intermediate reasoning steps [1, 17].  

The reverse problem has also been investigated, where 
SPARQL queries are explained by converting them to 
natural language [18]. 

2.2 Natural Language Query to SQL 

Although SQL and SPARQL are different database query 
languages, many of the strategies used in NLQ to SQL can 
be applied effectively to NLQ to SPARQL. While 
approaches in NLQ to SQL were initially predominantly 
rule-based methods, they were overtaken by pre-trained 
language models (PLMs), and later LLMs around 
2023 [4]. 

On the other hand, while LLM-based methods for NLQ 
to SQL show significant promise, they still have many 
limitations. Firstly, they are often trained and tested on just 
one database, meaning that they generalize poorly and 
struggle to query over multiple databases, especially if the 
schemas differ for each one. In addition, many of the best-
performing approaches, like agents, have high token costs 
that can make them prohibitively expensive to implement 
at scale. Finally, and perhaps most importantly, while 
LLM-based methods are rapidly improving, they are still 
outperformed by human experts [4]. 

On the BIRD-SQL benchmark [19], which contains 
over 12,751 unique question-SQL pairs with 95 databases 
across 37 professional domains, the best model, 
LongData-SQL,5achieves 77.53% accuracy compared to 
92.96% for humans. Meanwhile, WindAgent + Claude-4-
Sonnet6 has achieved the top score of 58.32% accuracy on 
Spider 2.0-Snow, a dataset where correct responses for the 
632 NLQ-to-SQL problems often require more than 100 
lines of code and the ability to parse sub-databases with 
over 1,000 columns [20]. 

3. METHODOLOGY 

While there are plans to add dozens more databases, the 
LinkedMusic data lake currently contains five sub-
databases totalling over 352 million RDF triples: 
MusicBrainz [21], Digital Image Archive of Medieval 
Music (DIAMM) [22], The Global Jukebox [23], Dig That 

5 https://bird-bench.github.io Accessed 29 July 2025. 
6 https://spider2-sql.github.io Accessed 29 July 2025. 



  
 

Lick 1000 [24], and The Session.7 Each sub-database was 
reconciled to Wikidata using OpenRefine with human 
verification for edge cases that could not be reconciled 
automatically. They were then converted to RDF format, 
uploaded to an OpenLink Virtuoso graph database, and 
queried via Virtuoso’s built-in SPARQL endpoint.  

To evaluate the models’ performance, a custom test 
dataset of twenty NLQ/SPARQL pairs with ground-truth 
SPARQL was manually built. These questions were 
grouped into four challenge types of increasing difficulty 
(see Table 1), with five questions per challenge (one 
question per sub-database for Challenges 1–3).  

During exploratory testing, we investigated methods 
such as prompt chaining, which breaks complex tasks into 
smaller, linked prompts. We also experimented with the 
deep-research feature (e.g., multi-step reasoning and 
chain-of-thought exploration) and even attempted 
emotional appeals, like begging or threatening the model. 
These approaches did not appear to improve results. 

Difficulties encountered during the exploratory phase 
were numerous and often unexpected, including an issue 
where the SPARQL output was syntactically correct, but 
conflicted with Virtuoso’s SPARQL query optimizer. To 
teach the LLM how to better cooperate with Virtuoso, we 
needed to add two lines to our prompt.  

After extensive exploratory testing, a general all-
purpose system prompt (see Appendix) was designed, 
which wraps around the natural language input and asks 
the LLM to return the corresponding SPARQL as output. 

In total, five LLMs were tested: Claude Sonnet 4, 8 
Gemini 2.5 Flash, 9  Gemini 2.5 Pro, 10  GPT-4o, 11  and 
OpenAI o4-mini.12 Each model was evaluated three times 
through the browser in a zero- or one-shot context (i.e., 
zero or one example provided) and was given the full 
ontology of the LinkedMusic data lake in Turtle format,13 
a compact and human-readable RDF format. For example, 
Figure 2 shows a diagram of the ontology for the Dig That 
Lick 1000 database.  

For one-shot tests, the provided sample NLQ/SPARQL 
pair (see Appendix) was a separate Challenge 4 cross-

 
7 https://thesession.org Accessed 29 July 2025.  
8 https://www-
cdn.anthropic.com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf  
Accessed 9 August 2025. 
9 https://storage.googleapis.com/deepmind-media/Model-Cards/Gemini-
2-5-Flash-Model-Card.pdf Accessed 3 October 2025. 
10 https://modelcards.withgoogle.com/assets/documents/gemini-2.5-
pro.pdf Accessed 3 October 2025. 

database query that was designed to maximize the 
likelihood that the model would be shown the most 
relevant SPARQL query-building strategies. For each test, 
a new chat window was opened with the memory feature 
disabled. Browser-based tools like ChatGPT’s web search 
feature were enabled. Evaluation was conducted on a 
pass/fail basis, with models passing if the generated 
SPARQL returned the exact same number of results as the 
handwritten ground-truth SPARQL. The full queries, 
prompts, provided ontology, and results can be freely 
accessed online.14  

4. RESULTS AND DISCUSSION 

The experimental results, shown in Figure 3, reveal several 
notable patterns. As expected, our data show a pronounced 
inverse correlation between query complexity and model 
accuracy across all evaluated systems. Challenge 1 
queries, representing straightforward single-database 
retrieval, yielded the highest aggregate accuracy of 63.3%, 
while Challenge 4 queries dropped down to 26.0% on 
average. This highlights the substantial difficulties 

11 https://cdn.openai.com/gpt-4o-system-card.pdf Accessed 9 August 
2025. 
12 https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-
e7758f3722c1/o3-and-o4-mini-system-card.pdf Accessed 9 August 
2025. 
13 https://www.w3.org/TR/turtle Accessed 29 July 2025. 
14 https://docs.google.com/spreadsheets/d/1Bsb1fZXPUGgqAMfNQeCf
4J5l0p5rLhTQMCwRc0ZVrFs/edit?usp=sharing 

Challenge Description Example Query 
Challenge 1 Retrieve information that can be found on a single 

sub-database’s website. 
Find all compositions by William Byrd in 
DIAMM. 

Challenge 2 Retrieve information that is stored in a single sub-
database but cannot be found through the website. 

Find all different time signatures for jigs in The 
Session. 

Challenge 3 Retrieve anything that can be found on a single 
sub-database plus Wikidata. 

Find the average number of record labels that 
female singers in MusicBrainz have signed with. 

Challenge 4 Retrieve any information in the entire 
LinkedMusic data lake and Wikidata. 

Find all works commissioned by Isabella d’Este 
that have a surviving manuscript and a recording 
made after 1980. 

Table 1. List of query challenge types, descriptions, and example queries. 

Figure 2. Dig That Lick 1000 ontology. Dig That Lick 
1000 entities were reconciled to Wikidata using the 
properties shown above. 



  
 

inherent in generating accurate SPARQL queries across 
large knowledge graphs. 

The implementation of one-shot prompting did not 
yield consistent performance improvements, with some 
models exhibiting marginal performance decreases in one-
shot versus zero-shot conditions, suggesting potential 
interference from the provided exemplar. 

As illustrated in Figure 4, which shows the combined 
results for zero- and one-shot tests aggregated by LLM, 
Claude Sonnet 4 achieved the highest overall accuracy, 
scoring 100.0% on Challenge 1 questions for both zero- 
and one-shot contexts and an average of 73.3% across all 
challenges in zero-shot contexts. 

Across all models and challenges, the most common 
issues involved misunderstanding the underlying graph 
content, with LLMs often failing to parse the 
representation of Wikidata-reconciled items within the 
graph database and entity links between sub-graphs. 
Wikidata “Q” identifiers were often incorrect, and in rare 
cases, no SPARQL was produced. We also observed 
moderate variance between attempts, with queries 
frequently being successful for one or two out of three 
attempts. 

5. CONCLUSION AND FUTURE WORK 

This study presents the first systematic investigation of 
NLQ to SPARQL translation using LLMs in the music 
domain and introduces SESEMMI as a solution for 
querying heterogeneous music metadata within the 
LinkedMusic data lake. Through our evaluation of five 
LLMs across twenty test cases, we demonstrate both the 
feasibility and current difficulties in this approach.  

Results indicate that performance decreases 
significantly with query complexity, ranging from simple 
single-database retrieval to cross-database federated 
queries with Wikidata. Claude Sonnet 4 achieved the 
highest average accuracy of 73.3% for zero-shot contexts, 
with 100.0% accuracy on both zero- and one-shot single 
database queries and 46.7% accuracy on zero-shot cross-
database queries. 

Our findings contribute to the growing field of semantic 
query generation, particularly highlighting domain-
specific issues such as entity linking, Wikidata “Q” 
identifier retrieval, and the complexities of communicating 
heterogeneous ontologies to LLMs. While the results show 
promise for making specialized music repositories more 
accessible to researchers and scholars, they also 
underscore the need for refinement in prompt engineering 
strategies and model architectures. 

As LinkedMusic expands with the addition of more 
music databases, we will investigate the capacity of these 
methods to scale to a larger dataset with a greater variety 
of sub-databases4. Future work should also systematically 
test different prompting approaches, including using 
chain-of-thought prompting and providing more examples. 
Furthermore, more advanced LLM implementations, such 
as an agent that performs API calls, should be tested. This 
could allow the model to break down the problem into 
smaller steps like retrieving the relevant ontology or 
performing a function call for Wikidata Q identifier 
retrieval. Moreover, the effect of changing parameters like 
temperature should also be investigated. 

As LLMs improve, these methods offer a promising 
path toward making specialized music databases more 
accessible to researchers and practitioners who lack 
technical query expertise. 

Figure 3: Average performance for various LLMs in zero- and one-shot contexts across four natural language query 
challenges of increasing difficulty. Each test was performed three times, and the results were averaged. 

Figure 4: Average performance by LLM for zero- and one-
shot contexts combined across four natural language query 
challenges of increasing difficulty. Each test was performed 
three times, and the results were averaged. 
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8. APPENDIX 

The full prompt used in testing is provided below. Note 
that <<USER INPUT>> would be replaced with the 
natural language query being tested. For brevity, the 
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ontology has been replaced with <<ONTOLOGY>>. 
However, it can be freely accessed online.15 

I have a graph database containing musical linked 
data from various databases. As much of the 
information as possible is reconciled against 
Wikidata. 
 
Please write me a SPARQL query to perform the 
following query: 
 
<<USER_INPUT>> 
 
When an entity is reconciled against Wikidata, 
wdt:P2888 is used to point to the reconciled Wikidata 
entity. 
When an entity has a wdt:P31 triple, it contains 
information about the subclass that the entity is a 
part of (e.g. for mb:Artist, the wdt:P31 can point 
to human, musical group, etc). 
 
The steps you should follow are: 
1. Examine the ontology and extract the relevant 
parts. 
2. Using that ontology, figure out which Q-IDs you 
need and perform web searches to find them. 
3. Using the ontology and the Q-IDs, build the final 
SPARQL query. 
 
Please follow these instructions: 
- When asked to return a list of entities, please 
always return both the label (when available) and the 
URI for the entities. 
- When finding Q-IDs to match against, search the web 
to get the best and most accurate results. 
- Ensure that the Q-IDs that you've found are correct 
by performing another web search. 
- Please scan all entities across all databases to 
find out which one(s) correspond to the query, and 
only select the relevant databases and entities. 
- For any entity you search for within the 
LinkedMusic graph (not in Wikidata), please add a 
triple that uses the rdf:type property to explicitly 
verify its type. 
- Do not use Wikidata to verify the type of entities, 
please instead use the LinkedMusic types, using the 
rdf:type property. 
    - The only exception to this is when local 
entities have a wdt:P31 triple (like mb:Artist), then 
it is fine to check that triple using wdt:P31 in the 
local LinkedMusic graph, but never in a federated 
query. 
- If you need data that is not located in the 
LinkedMusic graph, i.e. when there is no property for 
the information you need directly present in the 
ontology I give you, please use a federated query 
with Wikidata using the 
<https://query.wikidata.org/sparql> endpoint, but 
only do so if the information doesn't appear at all 
in the LinkedMusic graph ontology. 
- Please ensure that you've fully reviewed the 
LinkedMusic ontology and extracted the relevant parts 
before performing federated queries. 
- Please also double-check that you're not trying to 
use properties that do not appear in the ontology, 
unless they are a part of a federated query. 
- When performing a federated query, ensure that the 
SPARQL query is efficient and will not create an 
unnecessarily high amount of requests. 
- When resolving a Wikidata Q-ID, you must use the 
provided ontology to determine the linking path. 
    - If a property's object is another defined class 
in the ontology (e.g., diamm:City wdt:P17 
diamm:Country), your query must first navigate to 
that class and then use its wdt:P2888 property to get 
the Q-ID. 
    - If a property's object is described by a 
literal string (e.g., ts:Session wdt:P17 
"country"@en), you should assume the property links 
directly to the Wikidata URI. 



  
 
- Once the SPARQL query is finalized, please re-read 
it and double-check that all QIDs are correct. 
- For MusicBrainz, very few mb:Recording entities are 
reconciled against Wikidata since Wikidata does not 
carry information about specific recordings, only 
about the actual songs, so it's better to match 
reconciled data against mb:Work entities rather than 
mb:Recording 
 
Please follow these constraints: 
- Do not use string matching; instead check against 
Wikidata Q-IDs. The only exception to this is when 
the query explicitly requests finding entities based 
on text/string content (e.g., 'find tracks with X in 
the title', 'find artists whose names contain Y', 
'search for works with Z in the description'). In 
such cases, use appropriate SPARQL string matching 
functions like CONTAINS(), REGEX(), or similar. 
- Do not use the SELECT ... FROM syntax for named 
graphs. Please instead use the SELECT { GRAPH ... { 
... } } syntax. 
- Do not put any triples verifying the type of 
entities (using wdt:P31 or rdf:type) in federated 
query SERVICE blocks. 
- Do not use Wikidata to retrieve labels unless 
directly asked to in the query. please prioritize as 
much as possible retrieving labels from the 
LinkedMusic database. 
- Do not put any federated query SERVICE blocks 
inside a GRAPH block. 
- Do not put any federated query SERVICE blocks 
inside an OPTIONAL block. 
- Do not use a nested SELECT clause inside a SERVICE 
block. 
- To avoid the Virtuoso error SP031, use a subquery 
before the SERVICE call for federated queries 
- To avoid the Virtuoso error SP031, ensure every 
variable is assigned a value in a valid scope before 
it's used in a FILTER, BIND, or OPTIONAL block. 
 
Please remember that the SPARQL query will not work, 
and you will have failed your task, if you do not 
follow these constraints and instructions. Please 
also be very diligent with your search for the 
correct Q-IDs, as they are one of the key parts of 
the SPARQL query. 
 
Here are the 5 databases currently in LinkedMusic, 
and the IRIs for their RDF graphs: 
- All triples for DIAMM are stored in the 
<https://linkedmusic.ca/graphs/diamm/> graph, and 
their entity types use the `diamm:` prefix. 
- All triples for Dig That Lick are stored in the 
<https://linkedmusic.ca/graphs/dig-that-lick/> 
graph, and their entity types use the `dtl:` prefix. 
- All triples for The Session are stored in the 
<https://linkedmusic.ca/graphs/thesession/> graph, 
and their entity types use the `ts:` prefix. 
- All triples for The Global Jukebox are stored in 
the 
<https://linkedmusic.ca/graphs/theglobaljukebox/> 
graph, and their entity types use the `gj:` prefix. 
- All triples for MusicBrainz are stored in the 
<https://linkedmusic.ca/graphs/musicbrainz/> graph, 
and their entity types use the `mb:` prefix. 
 
The following is a graph representation of the 
ontology of all the data in the database, for all 5 
databases. Here is how to interpret this ontology: 
- The subject are the LinkedMusic entity types 
(accessed using rdf:type) 
- The predicates are the properties that those 
entities have 
- The objects are described as below: 
    - When the object is another class: If a 
property's object is another defined class in the 
ontology (e.g., diamm:City wdt:P17 diamm:Country), 
your query must first navigate to that diamm:Country 
class and then use its wdt:P2888 property to get the 
Q-ID. 
    - When the object is a placeholder for an entity: 
If a property's object is a generic placeholder 
string that stands in for an entity's name (e.g., 
"country"@en, "instance of"@en, "performer"@en, 

"exact match"@en), assume the property in the actual 
graph links directly to a Wikidata URI. 
    - When the object is a data value: If a property's 
object is a string that represents a data type (e.g., 
"publication date"@en, "coordinate location"@en, 
"label"), assume the property in the actual graph 
links to a literal value (a date, a string, 
coordinates, etc.) and not a Wikidata URI.  
 
<<Ontology>> 
 
REMEMBER: Please find the correct QIDs 
 
As an example, here is a query and the associated 
SPARQL query. 
User query: Find all musical works that were composed 
in Mexico City. 
SPARQL query: 
```SPARQL 
SELECT ?work ?workLabel 
WHERE { 
  # Wikidata Q-ID for Mexico City 
  VALUES ?cityQID { wd:Q1489 } 
 
  { 
    # Search for works in the MusicBrainz graph 
    GRAPH 
<https://linkedmusic.ca/graphs/musicbrainz/> { 
      ?work rdf:type mb:Work . 
 
      { ?work wdt:P1071 ?locationObject . } # 
location of creation 
      UNION 
      { ?work wdt:P4647 ?locationObject . } # 
location 
 
      # Handle both direct links to an Area and links 
to a Place within an Area 
      { 
        # Case 1: The location is the city/area 
itself 
        ?locationObject rdf:type mb:Area . 
        BIND(?locationObject AS ?cityArea) 
      } 
      UNION 
      { 
        # Case 2: The location is a venue (Place), 
so we find its containing city (Area) 
        ?locationObject rdf:type mb:Place . 
        ?locationObject wdt:P131 ?cityArea . 
        ?cityArea rdf:type mb:Area . 
      } 
 
      # Match the final city/area to Mexico City's 
Q-ID 
      ?cityArea wdt:P2888 ?cityQID . 
 
      OPTIONAL { ?work rdfs:label ?workLabel . } 
    } 
  } 
  UNION 
  { 
    # Search for compositions in the DIAMM graph 
    GRAPH <https://linkedmusic.ca/graphs/diamm/> { 
      ?work rdf:type diamm:Composition . 
       
      ?work wdt:P361 ?source . 
      ?source rdf:type diamm:Source . 
      ?source wdt:P131 ?city . 
      ?city rdf:type diamm:City . 
       
      ?city wdt:P2888 ?cityQID . 
 
      OPTIONAL { ?work rdfs:label ?workLabel . } 
    } 
  } 
} 
``` 


