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Abstract

Large language models (LLMs) exhibit remark-
able multilingual capabilities despite English-
dominated pre-training, attributed to cross-
lingual mechanisms during pre-training. Exist-
ing methods for enhancing cross-lingual trans-
fer remain constrained by parallel resources,
suffering from limited linguistic and domain
coverage. We propose Cross-lingual In-context
Pre-training (CrossIC-PT), a simple and scal-
able approach that enhances cross-lingual trans-
fer by leveraging semantically related bilin-
gual texts via simple next-word prediction. We
construct CrossIC-PT samples by interleav-
ing semantic-related bilingual Wikipedia doc-
uments into a single context window. To ac-
cess window size constraints, we implement a
systematic segmentation policy to split long
bilingual document pairs into chunks while
adjusting the sliding window mechanism to
preserve contextual coherence. We further ex-
tend data availability through a semantic re-
trieval framework to construct CrossIC-PT sam-
ples from web-crawled corpus. Experimen-
tal results demonstrate that CrossIC-PT im-
proves multilingual performance on three mod-
els (Llama-3.1-8B, Qwen2.5-7B, and Qwen?2.5-
1.5B) across six target languages, yielding per-
formance gains of 3.79%, 3.99%, and 1.95%,
respectively, with additional improvements af-
ter data augmentation.

1 Introduction

Recent state-of-the-art (SOTA) large language mod-
els (LLMs) (Achiam et al., 2023; Anthropic; Reid
et al., 2024) have demonstrated remarkable multi-
lingual capabilities. These models are typically pre-
trained on massive web-crawled corpora, where En-
glish text overwhelmingly dominates in the quan-
tity (Brown et al., 2020; Dubey et al., 2024). How-
ever, current LLMs exhibit unexpectedly strong
performance on non-English languages that cannot
be fully explained by their relative data proportions
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Figure 1: Existing works randomly mix multilingual
texts (a) in an input window. Our approach groups
semantically related texts (b) to enhance cross-lingual
transfer.

during pre-training. Researchers have attributed
this phenomenon to cross-lingual transfer in LLM
training, where linguistic patterns and knowledge
acquired from high-resource languages (particu-
larly English) appear to transfer effectively to en-
hance performance on the other languages (Artetxe
et al., 2020; Scao et al., 2022; Wang et al., 2024).
A series of works have explored methods for
interpreting and enhancing cross-lingual trans-
fer during language model pre-training. Blevins
and Zettlemoyer (2022) revealed that even in
English-dominated pre-training data, millions of
non-English tokens can be identified, which are
crucial for multilingual capabilities. Some studies
have attempted to analyze cross-lingual transfer
abilities from perspectives of shared vocabulary
and representation similarity(Patil et al., 2022; Lin
et al., 2023), though their conclusions primarily
apply to specific language groups. The predomi-
nant research paradigm has focused on explicitly
enhancing cross-lingual transfer through exploiting
supervision signals, such as parallel corpora(Zhang
et al., 2024b; Ming et al., 2024; Ji et al., 2024;



Gosal et al., 2024; Gilabert et al., 2024), code-
switching datasets(Singh et al., 2024; Yoo et al.,
2024), or fine-grained signals like cross lingual en-
tity links(Yamada and Ri, 2024). These approaches,
however, remain constrained by the limited quan-
tity, domain coverage, and morphological diversity
of available bilingual resources (e.g., dictionaries,
and parallel sentence pairs).

Our approach builds upon the fundamental prin-
ciple of LLM pre-training: contextual modeling
through next-word prediction (NWP) loss opti-
mization within fixed-length text windows. Since
LLMs could effectively learn monolingual seman-
tics through this mechanism, we hypothesize that
extending NWP optimization on semantically re-
lated cross-lingual content - using source language
context to predict target language sequences - could
enhance cross-lingual transfer capabilities. As il-
lustrated in Fig.1(b), our method constructs Cross-
lingual In-context samples by interleaving seman-
tically related bilingual text pairs. Subsequently,
we optimize LLMs through standard NWP loss
computation on these composite samples. The
proposed Cross-lingual In-Context Pre-Training
(CrossIC-PT) eliminates the reliance on parallel
corpora, and could be applied to different types of
text, providing a simple and scalable paradigm for
cross-lingual transfer learning.

To validate our method, we implement the pro-
posed CrossIC-PT method through continued pre-
training (CPT) on existing LLMs (Dubey et al.,
2024; Yang et al., 2024). This strategy converges
faster than training from scratch, providing a cost-
effective solution for multilingual experimenta-
tion (Zheng et al., 2024). Leveraging the readily
available multilingual Wikipedia data, we construct
a cross-lingual in-context corpus by concatenating
two bilingual Wikipedia articles on the same entity,
as illustrated in Fig.2. To mitigate context window
length constraints, we segment article pairs into
bilingual sub-pairs, using a dedicated [SPLIT] to-
ken as delimiters (Fig.2(b)). We further optimize
the sliding window mechanism, ensuring that the
next window starts from the token after the last
[SPLIT] of the current window, thereby maintain-
ing context coherence and enhancing cross-lingual
alignment learning. To further assess the generaliz-
ability of our method, we develop a cross-lingual
semantic retrieval framework build upon that ex-
tends beyond Wikipedia data by incorporating web-
crawled text. As shown in Fig.3, this framework re-
trieves semantically related paragraphs from the En-

glish Fineweb_edu (Lozhkov et al., 2024) dataset

using title and partial content keywords from the

target-language Wikipedia articles as query.

We conducted experiments in six languages
based on three LLMs (Llama-3.1-8B, Qwen2.5-
7B, Qwen2.5-1.5B) and tested them on seven tasks.
The CrossIC-PT model, built on Wikipedia, im-
proved average performance by 3.79%, 3.99%, and
1.95% compared to the base models, respectively.
The expansion of the data further boosted perfor-
mance by 0.73% for Llama-3.1-8B.

Our contributions can be summarized as follows:
* We propose CrossIC-PT, a novel method that

enhances LLMs’ cross-lingual transfer by lever-

aging semantically related in-context data.

* To address input window length limitations, we
design a window-split strategy with a [SPLIT] to-
ken and an optimized sliding window mechanism
to maintain cross-lingual contextual coherence.

* We also design a cross-lingual semantic retrieval
framework to augment training data, which fur-
ther enhances model performance, proving the
robustness and scalability of our approach.

2 Related Work

Many existing works focus on collecting multilin-
gual data to enhance LLMs’ cross-lingual capabil-
ities (Yang et al., 2024; Dubey et al., 2024; Ming
et al., 2024; Ji et al., 2024). Samples from differ-
ent languages are randomly packed into fixed win-
dow sizes (e.g., 4096) without cross-contamination
in self-attention. Even so, these models already
demonstrate multilingual ability. Based on this,
we hypothesize that concatenating semantically re-
lated English and target language data (Fig.1(b))
could enhance cross-lingual transfer by leveraging
implicit supervision signals.

Cross-lingual supervision signals have been
proven effective in enhancing LLMs’ cross-lingual
transfer abilities (Singh et al., 2024; Yamada and
Ri, 2024). Most methods rely on bilingual cor-
pora as explicit supervision signals (Zhang et al.,
2024b; Ming et al., 2024; Ji et al., 2024; Gosal
et al., 2024; Gilabert et al., 2024). Some works,
like (Zhang et al., 2024b) distills translation pairs
from LLMs through back-translation to create su-
pervision signals. Others, such as (Singh et al.,
2024; Yamada and Ri, 2024), apply code-switching
techniques to replace or augment words with En-
glish translations. (Yoo et al., 2024) also explores
code-switching at various levels using curriculum
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Figure 2: The implementation process of our method, CrossIC-PT, which constructs cross-lingual in-contexts based
on Wikipedia data and performs continued pre-training (CPT) on existing multilingual models. Here, IV represents
the input window length of the model. The T indicates the title of the articles, and L indicates the target language.

learning. However, parallel corpora have restricted
types, domains (most bilingual corpora are short
sentence level bitexts, and usually extracted from
news websites), and quantity. Synthetic parallel
documents built by back-translation, however, are
limited in text Quality. In contrast, our method con-
structs semantically related document pairs from
the authentic data on the Internet, which is more
scalable and less problematic.

3 Method

Multilingual LLM pre-training typically packs doc-
uments from different languages randomly into the
fixed-size context window. We hypothesize that
concatenating semantically related English and tar-
get language corpora, predicting the next words
based upon not only monolingual and cross-lingual
context could enhance cross-lingual transfer ability.
We call this concatenated sample Cross-lingual
In-context data, where English serves as the guid-
ing context for learning the target language. Based
on this, we propose CrossIC-PT, a pre-training
method leveraging cross-lingual in-context data.
As LLMs are pre-trained with a fixed tokens
window size (e.g. 4096 tokens), cross-lingual in-
context data, which are usually two times longer
than the vanilla monolingual documents, may ex-
ceed the size limit. Simplifying the packing by
length may break the cross-lingual relationship.

To address this problem, we carefully design a
bilingual-aware window-split strategy to construct
cross-lingual in-context data. Additionally, to avoid
the traditional sliding window mechanism from
splitting the concatenated context, we further op-
timize the sliding window mechanism to ensure
context coherence.

We take advantage of Wikipedia data to imple-
ment our method, as shown in Fig.2, consisting
of three key steps: (1) Data preparation, where
we extract and align bilingual article pairs from
Wikipedia (Sec. 3.1); (2) Window-split cross-
lingual in-context construction, where we split
multilingual contexts to match the length of the
input window (Sec. 3.2); and (3) training with an
optimized sliding window mechanism to enhance
cross-lingual representation learning (Sec. 3.3). In
order to test the generalization of our approach, we
propose a cross-lingual semantic retrieval frame-
work to augment the training data (Sec. 3.4).

3.1 Data Preparation

To obtain aligned article pairs in English and the
target language (denoted L), we utilize three key
tables from Wikimedia with three steps:

1. Langlinks Table for Language L: It contains
article ID mappings between language L and other
languages with matching titles, along with the cor-
responding title names 7. This table helps identify



English article IDs and title names that match those
in language L, mapping as (I D, (I1D®", T")).
2. English Pages Table: The ‘pages* table of
English provides article IDs and their correspond-
ing title. We use it to remove English articles with
blank or invalid titles from the initial mappings in
step (1), yielding the final ID pairs (I D, I D).
3. Articles Tables for English and Language
L: The ‘articles‘ tables for both languages contain
the article ID and full information on the web page,
which includes the article content. Using the bilin-
gual article ID pairs (I D, ID"), we extract the
corresponding article pairs with matching titles.
To ensure completeness, we also perform the re-
verse mapping (ID¢", ID"), and combine the re-
sults with the forward mappings to obtain a compre-
hensive set of bilingual article pairs. This process
ensures that we capture all possible title-matched
articles between English and the target language.

3.2 Window-split Cross-lingual In-Context
Construction

To fit within the context size N, we set a strat-
egy for processing long article pairs by segmenting
them into paragraphs and aligning them sequen-
tially. Specifically, for each bilingual article pair
(Aen, Ar), we extract the title 7" and split the arti-
cles into paragraphs by signal "\n\n":

Aen = [P, 05", .., 05",

We iteratively select paragraph pairs (p$™, pF) until
adding the k-th pair would exceed the length IV,
and then concat the paragraphs as follows:

en ,en..en. ..en .mL L. L. . L
(T 7p1 7p2 7"',pk—1aT )plap27'°',pk—1)7

with all English paragraphs preceding the target lan-
guage L paragraphs, and the delimiter as "\n\n".
Each concatenated sequence is terminated with a
special [SPLIT] token to mark the end of the con-
text window. If the paragraphs of one language are
exhausted before the other, we continue concatenat-
ing paragraphs from the remaining language until
the length limit V is reached or all paragraphs are
used. This process converts each bilingual article
pair into one or more window-split multilingual
in-contexts, each fitting within the length limit N.

3.3 Pre-training Method
3.3.1 Sliding Window Mechanism

In standard pre-training, the sliding window mecha-
nism concatenates all training data and sliding with
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Figure 3: The framework of cross-lingual semantic re-
trieval based on FAISS similarity search tool.

a fixed window size. However, this can randomly
break down our cross-lingual in-contexts, disrupt-
ing coherence. To address this, we optimize the
sliding window by the introduced tag "[SPLIT]".
Specifically, all the windows set the start boundary
after the last "[SPLIT]" token, as shown in Fig. 2.
The tokens remain between the end boundary and
the latest "[SPLIT]" token will be dropped. In this
way we could try best to preserve the cross-lingual
coherence within the window.

3.3.2 Training Strategy

As discussed earlier, continual pre-training (CPT)
is cost-effective for cross-lingual transfer. So we
adopt it in all our experiments. Recent studies,
such as (Whitehouse et al., 2024), show that Low-
Rank Adaptation (LoRA) is highly competitive
with full fine-tuning, especially in low-data and
cross-lingual transfer scenarios. In our experi-
ments, we also adopt LoRA during continual pre-
training and results reveal that LoRA consistently
provides better and more stable performance.

3.4 Data Augmentation via Retrieval

To validate our approach, we use the Wikipedia cor-
pus, which includes data in nearly 200 languages
linked by matched titles. While the content across
languages is not strictly parallel, it covers the same
topics, making it suitable for our needs. To enhance
the generalization of our method, we introduce a
cross-lingual semantic retrieval framework based
on the FAISS similarity search tool (Johnson et al.,
2019), as shown in Fig.3. This framework aug-
ments the training data by incorporating relevant



English articles from the Fineweb_edu (Lozhkov
et al., 2024) dataset, retrieved using title and con-
tent keywords (up to 10 per article) extracted from
the Wikipedia data.

First, keywords are extracted from the target-
language Wikipedia page and mapped to English
via the langlinks table. Fineweb_edu is then in-
dexed using FAISS for similarity calculations. We
employ a two-step retrieval process using FAISS:
(1) retrieval based on title keywords, and (2) re-
trieval based on both title and content keywords.
The final similarity score is the average of these
two steps, balancing the importance of the titles
(which may be ambiguous) and content keywords.
Based on empirical observations, we set a similarity
threshold of 0.75 and retrieved up to three relevant
samples per target-language article to construct
window-split cross-lingual in-context data. These
samples are combined with the original Wikipedia
data to form an augmented dataset.

4 [Experiments

4.1 Training Data

Our training data is primarily sourced from
Wikipedia (denoted as W), with token counts for
English and each target language listed in Ta-
ble 1. We selected six target languages L: Arabic
(ar), Spanish (es), Japanese (ja), Korean (ko), Por-
tuguese (pt), and Thai (th). To further expand the
dataset, we retrieved relevant English data from a
subset of Fineweb_edu (denoted as F), which has
a file size of 17.44GB. The token counts for the
augmented data are also provided in Table 1.

data ‘ language ‘ ar es ja ko pt th

en 1.53B 1.88B 1.32B 1.01B 1.48B 0.42B

w L 0.67B 1.57B 128B 0.37B 0.8IB 0.18B

en 0.12B 0.10B 0.06B 0.04B 0.05B 0.10B

W+F L 0.12B 0.13B 0.08B 0.03B 0.05B 0.06B
Table 1: The token counts for the data from

Wikipedia (W) and augmented data from Wikipedia
and Fineweb_edu (F).

4.2 Training Settings

We conducted experiments on three base mod-
els: Llama-3.1-8B (Dubey et al., 2024), Qwen2.5-
7B (Yang et al., 2024), and Qwen2.5-1.5B (Yang
et al., 2024). For LoRA, we set the rank to 64,
alpha to 128, and dropout to 0.05. The input win-
dow length NV was set to 4096, with a batch size
of 128. All models were trained for one epoch,

using a warmup ratio of 0.05, a cosine learning
rate scheduler, and the AdamW optimizer. We ran-
domly selected 0.1% of the data as the validation
set, with a seed number of 32. For Llama-3.1-
8B and Qwen2.5-7B, the models after one epoch
of training were used as the final models. For
Qwen2.5-1.5B, we validated the model every 100
steps and saved the checkpoint with the lowest val-
idation loss as the final model. The training was
performed on 8 A100 GPUs.

4.3 Benchmark

We evaluated our models on several tasks from
the latest multilingual and multitask benchmark,
P-MMEVAL (Zhang et al., 2024a), which in-
cludes: generation (FLORES-200 (Costa-jussa
et al., 2022)), understanding (XNLI (Conneau
et al., 2018), MHELLASWAG ), knowledge
(MMMLU?), logical reasoning (MLOGIQA), and
mathematical reasoning (MGSM (Shi et al., 2023)).
To further assess the models’ paragraph comprehen-
sion abilities, we incorporated a reading compre-
hension task (MRC). The MRC test data includes
TydiQA-GoldP (Clark et al., 2020) for Arabic (ar)
and Korean (ko), XQuAD (Artetxe et al., 2020) for
Spanish (es), Portuguese (pt), and Thai (th), and
1,200 samples from JaQuAD (So et al., 2022) for
Japanese (ja). Details of the evaluation setting can
be found in Appendix A.

4.4 Baselines

In addition to the base models (Llama-3.1-8B,
Qwen2.5-7B, and Qwen2.5-1.5B), we included the
following baselines:

e EMMA-500 (Ji et al., 2024): A model CPT on
Llama-2-7B (Touvron et al., 2023) with 136B
tokens covering over 500 languages.

¢ LEIA (Yamada and Ri, 2024): A method that
randomly adds English translations of entities to
target-language Wikipedia data for pre-training,
leveraging cross-lingual entity supervision. We
reproduced this method using the provided code
to construct the data and perform CPT on Llama-
3.1-8B, ensuring the target-language token count
matched ours. We conducted experiments with
three random seeds (32, 111, 222) and reported
the mean and variance of the results.

* Mix-PT: A method that uses our title-matched
article pairs from Fig.2(a) for pre-training.

'https://huggingface.co/datasets/alexandrainst/m_hellaswag
Zhttps://huggingface.co/datasets/openai/ MMMLU



Languages

Model | ar es ja ko pt th

Llama.2. 78 base 24.77 37.10 37.76 35.05 40.90 23.27
ama EMMA-500 30.14 3118 3277 32.49 28.06 3331
base 37.96 42.11 43.02 43.82 44.36 38.79

Liamas s | LEIA 37044049  44.034024 44864089  44.114048  44.4840.58  42.904-0.82
ama->. Mix-PT 38.09 43.46 44.81 44.75 46.45 42.38
CrossIC-PT 40.57 45.49 47.27 46.87 49.09 43.51
base 50.91 5471 56.95 55.52 56.49 53.81
Qwen2.5-7B Mix-PT 54.48 5871 57.69 57.39 60.30 56.19
CrossIC-PT 55.97 59.44 59.00 59.03 61.59 57.33
base 37.83 43.90 42.26 39.75 44.35 41.40
Qwen2.5-1.5B | Mix-PT 38.14 44.37 41.85 39.48 45.63 40.92
CrossIC-PT 40.21 45.09 43.96 41.47 48.25 42.23

Table 2: The average results of our CrossIC-PT model, based on three base LLMs (Llama-3.1-8B, Qwen2.5-7B,
and Qwen2.5-1.5B), are compared with corresponding baselines across six target languages. The cross-lingual
in-context datasets used in CrossIC-PT are sourced from Wikipedia.

4.5 Results
4.5.1 Base Results

The average results of the baselines and our method,
based on data from Wikipedia in six languages, are
shown in Table 2. Detailed results for each task
can be found in Appendix B. CrossIC-PT consis-
tently improves the performance of the base LLMs
and outperforms other baselines, demonstrating the
effectiveness of using semantically related cross-
lingual in-context corpora for pre-training.

Compared to the base LLMs, our CrossIC-PT
method improves performance by 3.79%, 3.99%,
and 1.95% on Llama-3.1-8B, Qwen2.5-7B, and
Qwen2.5-1.5B, respectively, across six languages.
Notably, in Portuguese (pt), CrossIC-PT improves
performance by 4.73% on Llama-3.1-8B, surpass-
ing the strongest baseline by 2.64%. The perfor-
mance gains for Qwen2.5 models are more pro-
nounced as model size increases, which may be
attributed to the fact that CPT performance is influ-
enced by the initial capabilities of the model.

Our method consistently improves performance
across all languages. The improvement in Thai
is less noticeable on Qwen2.5-1.5B, likely due
to the smaller dataset size. The LEIA method
shows significant gains in some languages (Span-
ish, Japanese, and Thai), but its performance is
unstable and data-dependent. For instance, the stan-
dard deviation for Japanese and Thai exceeds 0.8.
This suggests that the implicit supervision signals
from our cross-lingual in-context data are more ro-
bust and adaptable across languages compared to
the entity-alignment signals used by LEIA.

‘ ‘ Languages
Data ‘ Model ‘ ar es ja ko pt th
| Llama-3.1-8B | 37.96 42.11 4302 44.14 4436 3879
Mix-PT 38.09 4346 4481 4475 4645 4238
CrossIC-PT | 40.57 4549 4727 4687 49.09 43.51
Mix-PT 40.19 4458 4475 4448 46.62 42.05
WHF | CrossIC-PT | 4118 46.93 4810 47.32 49.97 43.72

Table 3: The results of our CrossIC-PT model and Mix-
PT baseline with Wikipedia-based data and augmented
data constructed on Wikipedia and Fineweb_edu data.

The Mix-PT model is a strong baseline, trained
on non-concatenated title-matched article pairs
from Wikipedia, and improves performance across
all six languages compared to the three base LLMs.
However, our method improves the average perfor-
mance by 2.15% over the Mix-PT model on Llama-
3.1-8B. Our method further enhances Mix-PT by
concatenating cross-lingual data and designing an
optimized sliding window mechanism.

4.5.2 Results of Data Augmentation

To explore the generalization of our method, we
propose a cross-lingual semantic retrieval frame-
work (shown in Fig. 3) to augment the training data,
with results reported in Table 3. After retrieval, the
data volume increased by 0.06B—0.23B. Although
this is a relatively small increase, it improved the
average performance of our method by 0.73%. This
demonstrates that even when English data is not
perfectly aligned with target languages, semanti-
cally related still aids cross-lingual transfer. The
simplicity of the semantic similarity retrieval pro-
cess allows easy extension to various data sources.
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Figure 5: Ablation results of CrossIC-PT without opti-
mized sliding window mechanism (Opt-SWM).

Additionally, we saved several intermediate
checkpoints to assess the impact of data volume
on performance. As shown in Fig. 4, at earlier
checkpoints, our method outperformed the baseline
LLM in all six languages and surpassed the strong
baseline Mix-PT in four languages. This suggests
that CrossIC-PT can quickly acquire useful cross-
lingual transfer capabilities from the cross-lingual
in-context data. Although performance improve-
ments became slower as data volume increased, a
consistent upward trend was still observed.

4.6 Ablation Study on Sliding Window
Mechanism

We conduct an ablation study to assess the impact
of our optimized sliding window mechanism (Opt-
SWM), which introduces the [SPLIT] token and
ensures each window starts after the last [SPLIT]
token. Specifically, we compare the performance of
CrossIC-PT with and without Opt-SWM, denoted
as CrossIC-PT w/o Opt-SWM. The results shown
in Fig.5 reveal that even without Opt-SWM, using
only window-split cross-lingual in-context data,
CrossIC-PT consistently improves performance

across all languages. The addition of the opti-
mized sliding window mechanism further enhances
performance, highlighting its role in maintaining
cross-lingual in-context coherence and improving
language transfer. This demonstrates the effective-
ness of all the steps in our design.

5 Analysis

We believe concatenating semantically related En-
glish and target language text in cross-lingual in-
context data helps the model better understand
the target language guided by the English context.
Thus, we set the order as English first, followed
by the target language. To verify if this direction
is more beneficial, we analyze the concatenation
order and test the model’s performance in English
to ensure there is no catastrophic forgetting.

5.1 Analysis of Concatenation Direction

To evaluate the impact of concatenation direction
on performance, we compare the original direc-
tion (English first, target language second) with
the reverse direction (target language first, English
second), as well as a 1:1 random mix of both di-
rections. Previously, we only reported results for
the en-xx direction in the translation task. In this
experiment, we also provide results for the xx-en
direction on FLORES-200.

The average results of six languages across tasks
are presented in Table 4. The effect of data con-
catenation order on translation tasks is most pro-
nounced and fits the intuition. The best translation
performance occurs when the concatenation direc-
tion matches the translation direction. When com-
bining both directions, CrossIC-PT consistently
outperforms the Mix-PT method in translation



FLORESE-200

Model XLOGIQA XHELLASWAG MMMLU XNLI MRC MGSM AVG.
| en-xx Xx-en |
Llama-3.1-8B 33.25 35.33 40.10 56.17 57.49 38.56 29.41 38.00 41.04
Mix-PT 3475 36.68 43.05 59.17 60.36 39.63 32.72 36.96 42.92
CrossIC-PT 36.00 39.71 43.15 62.17 63.02 41.39 30.44 39.68 44.44
CrossIC-PT 5 2 34.75 32.33 43.55 58.33 62.20 40.75 33.53 36.96 42.80
CrossIC-PTreperse 35.50 33.69 43.00 57.67 62.41 39.51 34.12 36.40 42.79

Table 4: The average task results of CrossIC-PT with mix two directions (CrossIC-PT,,,;,) and the reverse direction

(CrossIC-PT,.¢yerse) of cross-lingual in-context data.

54.27
53.90
53.21 53.0
52.54 Llama-3.1-8B: 52.90
""""""" 5312 TN N T T T TTTTTTTT
; 52.41
9 51.00
< 51.84 50.39
50.44
50.11
w W+
pt ko ja es th ar
w p>0.1 p>0.1 p>0.1 p>0.1 p>0.1 p>0.05
W+F p>0.1 p>0.1 p>0.1 p>0.1 p<0.05 p>0.05

Figure 6: The average results of each target language
model in English tasks. The p is the significant score
between the CrossIC-PT model and Llama-3.1-8B.

tasks, showing that even non-parallel bilingual data
improves translation. Overall, the English-first, tar-
get language-second concatenation gives the best
results, aligning with our intention of using English
as context to guide the target language learning.

5.2 Performance on English Tasks

To prevent catastrophic forgetting, it’s important
to ensure English performance is maintained. To
verify this, we tested the performance of six target
language models on English tasks, using the same
tasks as before. The results are shown in Fig.6.
The upper part of Fig.6 shows the average per-
formance of each target language model on En-
glish tasks, with the x-axis ordered by the perfor-
mance gap between Llama-3.1-8B’s performance
on the target language and English. The trend sug-
gests that a larger performance gap corresponds
to a greater impact on English performance after
training. For example, the English performance of
Thai (th) and Arabic (ar) is lower. However, it is
primarily due to a significant drop in one task. To
further investigate, the lower part of Fig.6 presents
the statistical significance ("p") of the performance
differences between target language models and
the base model, Llama-3.1-8B, across seven tasks.

The results show that, except for the Thai model
trained with data augmentation (which exhibits a
significant drop in English performance), there are
no significant differences for other target language
models. This suggests that CrossIC-PT improves
performance in target languages while effectively
preserving English capabilities. We believe this is
likely due to the inclusion of at least 50% of En-
glish tokens in the cross-lingual in-context corpus,
which helps mitigate severe forgetting. This result
further validates the robustness and practicality of
CrossIC-PT for cross-lingual transfer.

6 Conclusion

Our work explores a special angle by focusing on
semantically related multilingual in-context to en-
hance the cross-lingual transfer capability of LLMs.
We hypothesize that concatenating semantically re-
lated English and target language corpora as Cross-
lingual In-context data is easily accessible and pro-
vides an implicitly cross-lingual supervision signal.
Building on this hypothesis, we propose CrossIC-
PT, a pre-training method based on cross-lingual
in-context data. We implement our method using
Wikipedia data and employ continual pre-training
of existing LLMs on this data. To address the
limitations posed by input window length during
model training, we design a window-split strat-
egy coupled with an optimized window sliding
mechanism. Experimental results demonstrate that
CrossIC-PT enhances multilingual performance
across three models—ILlama-3.1-8B, Qwen2.5-7B,
and Qwen2.5-1.5B—across six target languages,
achieving performance gains of 3.79%, 3.99%, and
1.95%, respectively, compared to base models. Fur-
ther improvements are observed after data augmen-
tation using a semantic retrieval framework. Our
approach is simple to scale for multilingual LLM
pre-training and offers an efficient way to expand
data volume.



Limitations

To our knowledge, this work has the following
limitations:

* Due to resource constraints, our experiments
were limited to a context window length of
4096 tokens. Longer windows could better
preserve the completeness of articles and en-
able the concatenation of similar multilingual
data from more than two languages, poten-
tially further enhancing cross-lingual transfer.

* Our experiments focused on validating the
effectiveness of concatenated cross-lingual in-
context data, so we performed continued pre-
training on monolingual data rather than mix-
ing multilingual data. While this choice aligns
with our research goals, our approach also pro-
vides valuable insights for developers working
on multilingual LLMs.

* Our data expansion method, based on retrieval,
currently demonstrates how to retrieve addi-
tional English data from external sources us-
ing target-language Wikipedia data. However,
this approach can be easily extended to re-
trieve more diverse data. Wikipedia’s broad
domain coverage makes it an ideal hub for
retrieving both target language and English
data from other sources. By controlling the
retrieval process with appropriate similarity
thresholds, the retrieved bilingual data can be
used to construct high-quality cross-lingual
in-context data.
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A The Setting for Evaluation

The prompts of each task we used are shown in Table 5. Since our method aims to transfer English
capabilities to target languages, the prompts are primarily designed in English, and the demonstrations are
also selected from English data. For the mathematical reasoning task (MGSM), we conducted an 8-shot
test; for the reading comprehension task (MRC), we adopted a zero-shot setting to evaluate the model’s
understanding of the target language; for other tasks, we set up a 5-shot test. For multiple-choice tasks
(e.g., XNLI, MMLU, XHELLASWAG, XLOGIQA), we directly obtain answers by predicting the next
logits. For other tasks, we use greedy search to generate answers and extract the final answer through
regular expression matching.

in the format of "[The answer is ]". Do not add anything other than the integer answer after "The answer
is”.\n\n{question}

Task | Prompt

XLOGIQA Passage: {context}\nQuestion: {question}\nChoices:\nA. {option_a}\nB. {option_b}\nC. {option_c}\nD.
{option_d}\nAnswer:

XHELLASWAG {premise}\nOptions: \nA. {option_1}\nB. {option_2}\nC. {option_3}\nD. {option_4}\nQuestion: Which is the
correct ending for the sentence from A, B, C, and D? \nAnswer:

MMMLU The following is a multiple-choice question.\n\n{question}\nA. {option_a}\nB. {option_b}\nC. {option_c}\nD.
{option_d}\n\nAnswer:

XNLI Take the following as truth: {premise}\nThen the following statement: "{hypothesis}” is\nOptions:\nA. true\nB.
inconclusive\nC. false\nAnswer:

MRC Refer to the passage below and answer the following question:\nPassage: {context}\nQuestion:
{question}\nAnswer: Based on the passage, the answer to the question is "

FLORES-200 ‘ Translate from [source] to [target].\n[source]: </X>\n[target]:

MGSM ‘ Solve this math problem. Give the reasoning steps before giving the final answer on the last line by itself

Table 5: Task Prompts."[]" represents optional content. For the FLORESE task, the "[source]" indicates the source
language, and "[target]" indicates the target language of translation. For MGSM, "[The answer is ]" is the translation
of "The answer is " according to the test language.

B Results of Tasks

The average results of our method and the baseline across six languages in each task are shown in Table 6.

Model XLOGIQA XHELLASWAG MMMLU XNLI MRC FLORES-200 MGSM AVG.
base 33.96 3533 38.96 55.84 56.72 34.83 37.40 41.86
LEIA 34.93+0.64 37.74+0.16 38.48+0.07 60.00£0.69 58.02+0.25 34.35+0.06  37.36+0.11 | 42.98+0.25
Mix-PT 35.00 35.45 41.96 57.64 60.88 36.02 36.33 4332
CrossIC-PT 35.83 38.98 42.17 61.11 62.99 38.32 38.87 45.47
Llama-3.1-8B
‘ Wikipedia+Fineweb_edu en
Mix-PT 33.75 36.44 41.88 57.92 63.55 36.17 36.73 43.78
CrossIC-PT 36.25 41.49 41.83 62.36 65.49 38.13 37.87 46.20
base 44.79 60.76 48.67 62.78 65.07 35.06 66.00 54.73
Qwen2.5-7B | Mix-PT 45.42 61.74 49.83 76.11 69.38 34.79 64.93 57.46
CrossIC-PT 46.46 63.31 50.00 76.11 71.69 39.05 64.47 58.73
base 36.46 36.72 41.21 50.14 63.21 24.27 39.07 41.58
Qwen2.5-1.5B | Mix-PT 37.08 35.46 42.21 55.42 65.47 21.68 34.80 41.73
CrossIC-PT 39.17 38.01 42.46 58.33 65.89 25.48 35.40 43.53

Table 6: The average results of our method and the baseline across six languages in each task.
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