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Abstract

A common paradigm to improve the performance of large language models is opti-
mizing for a reward model. Reward models assign a numerical score to an LLM’s
output that indicates, for example, how likely it is to align with user preferences or
safety goals. However, reward models are never perfect. They inevitably function
as proxies for complex desiderata such as correctness, helpfulness, and safety. By
overoptimizing for a misspecified reward, we can subvert intended alignment goals
and reduce overall performance – a phenomenon commonly referred to as reward
hacking. In this work, we characterize reward hacking in inference-time alignment
and demonstrate when and how we can mitigate it by hedging on the proxy reward.
We study this phenomenon under Best-of-n (BoN) and Soft Best-of-n (SBoN), and
we introduce Best-of-Poisson (BoP) that provides an efficient, near-exact approxi-
mation of the optimal reward-KL divergence policy at inference time. We show
that the characteristic pattern of hacking as observed in practice (where the true
reward first increases before declining) is an inevitable property of a broad class
of inference-time mechanisms, including BoN and BoP. To counter this effect, we
introduce HedgeTune, an efficient algorithm to find the optimal inference-time
parameter. We demonstrate that hedging mitigates reward hacking and achieves
superior reward-distortion tradeoffs on math, reasoning, and human-preference
setups.

1 Introduction

Almost all current alignment methods, including BoN [1, 2], RLHF [3, 4], DPO [5], and their variants,
aim to maximize a reward function while minimizing divergence from the original model’s outputs 1.
It is important to distinguish between two types of rewards: proxy rewards which are the computable
signals we directly use during alignment (like scores from a trained reward model), and true rewards,
which represent the often latent quality of the model’s output according to a desired objective. As the
name suggests, proxy rewards are approximations of the true reward and, consequently, of intended
alignment goals such as correctness, helpfulness, and safety.

A fundamental challenge persists across reward-based alignment methods: all proxy reward mod-
els are imperfect [6]. This imperfection stems from multiple factors, including the scarcity of
high-quality human-labeled data and the difficulty in formalizing high-level alignment goals into
quantifiable metrics [7, 8]. For instance, consider AI alignment strategies that aim to promote safety.

1BoN and RLHF optimize an explicitly learned reward model, whereas DPO optimizes an implicit reward
based on the model’s log-probabilities.
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Figure 1: The mismatch between the proxy and true rewards manifests through the winner’s curse. In
an ideal world where we could optimize directly on the true reward, its value would rise monotonically.
However, since we are optimizing for a proxy, the true reward peaks and then collapses. The point at
which we find the optimal tradeoff between maximizing reward and minimizing KL divergence from
the reference distribution corresponds to the hacking threshold. HedgeTune successfully recovers
the hacking threshold for three inference-time mechanisms: BoN, SBoN, and BoP. In the case of
BoN and BoP, HedgeTune recovers the optimal number of samples n. As for SBoN, we fix n and
find the corresponding inverse-temperature λ that maximizes the true reward. If the threshold is not
achievable with any λ, HedgeTune returns the best attainable reward, as shown for low values of n.

It is difficult for a single reward model to capture nuanced human user preferences and assign accurate
scalar rewards in complex, context-dependent settings where safety specifications conflict [9].

In this work, we analyze and mitigate the impact of misspecified proxy rewards in inference-time
alignment. Inference-time alignment has emerged as an effective and computationally efficient
paradigm to improve the capabilities of large language models and align them with desired goals [10].
Among these methods, Best-of-n (BoN) sampling stands out due to its simplicity and effectiveness.
It generates n candidate responses, scores them using a reward model, and selects the one with
the highest score. Empirically, BoN demonstrates competitive performance, often matching more
resource-intensive fine-tuning approaches such as RLHF and DPO [11, 12]. Additionally, BoN
has received an extensive theoretical treatment [13, 14]. BoN can be asymptotically equivalent
to RLHF [15], enjoys non-asymptotic guarantees [16, 17], and achieves a near-optimal winrate
subject to a KL divergence constraint [18]. Methods like BoN, which generate multiple samples
and choose the highest-scoring one, are victims of the winner’s curse [19, 20, 21, 22, 23]. This
phenomenon, originally identified in auction theory, occurs when selection processes systematically
favor overestimates. In auctions, after each bidder submits an estimate of an item’s value, the highest
bid typically overestimates the true worth, causing the winner to overpay. We demonstrate the
same pattern with Best-of-n in Figure 1. As the number of candidates grows, the chance of picking
outputs where the proxy reward overestimates true quality increases. This mismatch creates a critical
tension: while initially optimizing for a proxy reward improves alignment with true goals, excessive
optimization eventually leads to reward hacking, where the model exploits the proxy’s limitations,
leading to worse true performance [6, 24, 25, 26, 27]. This phenomenon is also known as Goodhart’s
law [28] or goal misgeneralization2 . Such misalignment can severely degrade trust and utility,
particularly in high-stakes applications [31, 32, 33].

We mathematically characterize inference-time reward hacking (see Theorem 1) and provide a general
framework to mitigate it (see Section 4). While this phenomenon has been observed empirically in
prior work [11, 14], there has been limited theoretical analysis specific to inference-time methods
and ways to mitigate it; see Section 6 for a discussion. As a result, reward hacking for inference-time
alignment remains a central challenge in AI alignment. The driving question behind our work is:

When and how can we leverage useful signals from proxy rewards while mitigating hacking?

2See [29, 30] and Section 6 for a discussion of the terminology.
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We focus on answering this question for inference-time alignment methods that sample multiple
responses from an LLM and use reward signals to select outputs. We develop principled hedging
techniques against the winner’s curse during inference time that precisely determine until when and
how one may leverage proxy signals while preventing overoptimization.

Overview of main results. Our starting point is an optimization formulation at the heart of
most alignment methods: finding a distribution π∗ that maximizes a (proxy) reward rp while
remaining close (in KL-divergence) to a reference πref. This is described as the following regularized
optimization problem:

π∗ = argmax
πx∈∆X

Eπx [rp(X)]− 1

λ
DKL(πx∥πref) (1)

Consider the information-theoretic regime where all distributions are known exactly. The solution of
the above objective (1) is the exponential tilt of the reference distribution using the proxy reward [34].
Though theoretically interesting, tilted distributions cannot be sampled from directly; see Section 3
for a further discussion. Some attempts have been made to approximate this solution at inference
time, i.e., when only samples from πref and black-box access to rp are available. A notable example
is Soft Best-of-n (SBoN) [17]. In this work, we show that SBoN is an effective strategy for hedging
against reward hacking due to its temperature parameter λ, which allows us to smoothly interpolate
between exploiting the reward (as in BoN) and staying close to the reference. However, this comes at
the expense of having two tunable parameters (n, λ), which can be difficult to set in practice.

This motivates us to propose a new inference-time alignment strategy called Best-of-Poisson (BoP).
The idea behind BoP is simple: we run BoN with the number of samples n chosen according to a
Poisson distribution. This randomization strategy induces an exponential structure (see Eq. (2)) that
closely approximates the optimal reward-tilted distribution from Eq. (1). We show that BoP achieves
a nearly optimal reward-distortion tradeoff at inference. Using a single tunable parameter, BoP can
approximate the optimal proxy reward-tilted solution with a KL gap of order 10−4 when rewards
are uniformly distributed, allowing us to span the entire reward-distortion region at inference (see
Figure 2 and Theorem 5 in Appendix C). BoP can serve as a computationally efficient stand-in for
the optimal tilted distribution with negligible loss in KL-reward tradeoff.

In practice, hedging translates to selecting parameters of inference-time alignment methods to avoid
overoptimization on a proxy reward. To do so, we introduce HedgeTune: an algorithm for tuning
parameters in BoN, SBoN, and BoP in order to hedge against hacking (see Algorithm 4). We illustrate
the benefit of hedging in Figure 1, where we plot the expected value of the true reward versus the
distortion with respect to the reference distribution for various inference-time alignment methods. If
we had access to the true reward, the optimal solution would be the tilting of the reference distribution
via the true reward, leading to the reward-distortion Pareto frontier (purple curve in Figure 1).
However, as we are tilting via the proxy reward, we suffer from the winner’s curse: the true reward
(orange curve in Figure 1) increases at first and then collapses. This behavior also manifests in BoN,
as seen in the dotted points. Hedging allows us to find the hacking threshold: the parameters of
inference-time alignment methods that yield the best tradeoff between (true) reward and distortion
relative to the base model.

Our contributions are as follows:

• We mathematically formalize inference-time reward hacking (Definition 1) and derive condi-
tions when overoptimizing imperfect proxy rewards inevitably leads to performance degradation
(Theorem 1, Corollary 3).

• We introduce Best-of-Poisson (BoP), a novel inference-time alignment method (Algorithm 3). For
uniformly distributed rewards, BoP approximates the optimal tilted distribution with negligible KL
divergence gap (Theorem 5).

• We develop HedgeTune, a principled hedging framework that mitigates reward hacking by finding
the optimal inference-time parameters (Algorithm 4). We empirically demonstrate that hedging
strategies significantly outperform standard BoN sampling with minimal computational overhead
on math, reasoning, and human-preference setups (Section 5).
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Algorithm 1 Best-of-n Sampling (BoN)
1: Input: Integer n ≥ 1, base policy πref
2: Draw n samples X1, . . . , Xn i.i.d. from πref
3: Compute proxy rewards Ri = rp(Xi) for all i
4: Select j = argmaxi∈{1,...,n} rp(Xi)
5: Return: Y = Xj

2 Inference-Time Reward Hacking

In this section, we formalize inference-time reward hacking and show its inevitability under methods
like BoN.

Notation and Technical Assumptions. Let X be a finite alphabet of tokens and let π be a probability
mass function (PMF) over token sequences x ∈ X ∗. We denote the probability simplex over all finite
sequences of tokens as ∆X∗ . Let πref ∈ ∆X∗ be the frozen reference policy, typically a supervised
fine-tuned (SFT) model. Let rp : X ∗ → R be a proxy reward function that assigns a unique scalar
value to each sequence. This is the reward we use to optimize πref during inference-time alignment.
An inference-time alignment method parameterized by θ transforms the base policy πref into a
new distribution πθ. Here, θ is the parameter of the alignment method itself (e.g., the number of
candidates n in Best-of-n) and not of the reference policy. The performance of the aligned distribution
is measured using a true reward rt. We denote our measure of interest as f(θ) = EU∼πθ

[rt(U)].

For theoretical tractability, we adopt the assumption that proxy rewards can be transformed to have
a continuous uniform distribution, stated next. While the policy πref itself can be complex and
non-uniform, we show that we only need to consider the one-dimensional uniform distribution of the
proxy reward when analyzing BoN and its variants. We later relax this assumption in the appendix
and show that our results extend to the discrete case (see B.2).
Assumption 1 (Uniform Reward Mapping). The proxy rewards rp(x) obtained by sampling se-
quences from the reference policy, x ∼ πref, are uniformly distributed over [0, 1].

Assuming uniformly distributed proxy rewards incurs little loss of generality. The proxy reward
scores do not need to be uniform themselves. We first map the proxy reward scores to a standardized
discrete space by transforming them into their quantiles using their own empirical CDF Fp [13, 35].
This process, defined by the relation u = Fp(rp), ensures that the new reward u is uniform on [0, 1]
by construction. This transformation preserves the rank-ordering of the scores: an output with a
higher proxy reward will also have a higher transformed score. However, the resulting random
variable will not be a continuous uniform random variable (which we assume), and instead will be a
discrete uniform random variable. [18] has shown for a sufficiently dense set of examples, that the
error incurred by this continuous model is negligible in the context of LLMs.

Inference-time alignment. The core challenge we address is the mismatch between the proxy reward
rp and the true reward rt. We focus on the family of inference-time methods that first sample a pool
of candidate outputs and then use their proxy reward scores to define the selection mechanism. Two
examples from this family are:

1. Best-of-n (see Algorithm 1). BoN places all probability mass on the sample with the highest
proxy reward.

2. Soft Best-of-n (see Algorithm 2). SBoN is a generalization of BoN recently proposed by
[17]. It applies a temperature-scaled softmax over candidate scores. As λ → 0, SBoN
sampling approaches uniform selection among the n candidates. As λ → ∞, SBoN
converges to standard BoN sampling.

We first formalize inference-time reward hacking through the following definition.

Definition 1 (Inference-Time Reward Hacking). Let πθ be a distribution induced by an inference-time
alignment method with parameter θ, where we assume increasing θ increases both the expected proxy
reward EX∼πθ

[rp(X)] and the KL-divergenceDKL(πθ∥πref). We say that inference-time reward hack-
ing occurs when there exists a threshold θ† such that for θ > θ†, EX∼π

θ†
[rt(X)] > EX∼πθ

[rt(X)]
(i.e., the true reward decreases), despite the proxy reward and KL-divergence continuing to increase.
The largest value of θ† for which this holds is called the hacking threshold.
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Algorithm 2 Soft Best-of-n Sampling (SBoN)
1: Input: Integer n ≥ 1, inverse temperature λ > 0, base policy πref
2: Draw n samples X1, . . . , Xn i.i.d. from πref
3: Compute proxy rewards Ri = rp(Xi) for all i
4: Sample index Z ∈ {1, . . . , n} with probability

Pr(Z = i) =
eλ rp(Xi)∑n
j=1 e

λ rp(Xj)

5: Return: Y = XZ

Definition 1 offers a concrete basis for operationalizing and measuring the winner’s curse for
inference time methods. The hacking threshold θ† is the ideal operating parameter for an inference-
time alignment method. The following theorem establishes that, under common conditions, the shape
of f(θ) is well-behaved: it either varies monotonically or reaches exactly one extremum.
Theorem 1 (Inevitability of Reward Hacking). Let {πθ}θ∈Θ⊂R be a family of distributions with
density pθ(x) on a common support X such that (i) pθ(x) is strictly totally positive of order 2 (TP2)
in (θ, x), and (ii) its score function ψ(x, θ) := ∂θ log pθ(x) is continuous in x and strictly increasing
in x for each fixed θ. For any bounded, non-negative true reward rt : X → [0,∞) define

f(θ) := EX∼πθ
[rt(X)]

Then f is either monotone in θ or possesses a single unique interior extremum θ†.
Corollary 1 (Inevitability of Reward Hacking for Strictly MLR densities). Let pθ(x) be a strictly
monotone–likelihood–ratio in x. If the score function ψ(x, θ) = ∂θ log pθ(x) is strictly increasing in
x, then Theorem 1 applies. In particular, this applies to Best-of-n, Best-of-Poisson (to be introduced
in Section 3,) and to any canonical distribution from the exponential family with strictly monotone
statistic and strictly monotone natural parameter.

Four scenarios may occur: (i) monotonic improvement: true reward continuously increases with
optimization strength; (ii) reward hacking: true reward initially improves but deteriorates beyond a
critical threshold; (iii) reward grokking: true reward initially declines but then improves beyond a
critical threshold; (iv) immediate decline: any optimization immediately harms true performance. We
describe exactly when each regime occurs for MLR densities in Corollary 3.

The conditions in Theorem 1 guarantee that the inference-time policies behave in a “well-ordered"
manner: increasing the tuning parameter θ consistently makes the policy “greedier" and more likely
to select outputs with high proxy rewards. The clearest example is the n in Best-of-n: the larger the
n, the more aggressively we optimize for the proxy. The unimodality of the true reward function then
renders the problem of locating the optimal operating point θ† algorithmically tractable. To implement
this insight, we develop hedging strategies that balance the exploitation of the proxy reward against
the fidelity to the reference distribution. Each inference-time method offers a parameter controlling
this proxy reward-KL tradeoff: n in BoN, λ in SBoN (for a fixed n), and µ in BoP (introduced
in Section 3). Before introducing methods for tuning inference-time alignment methods, we first
introduce Best-of-Poisson sampling: an alternative to BoN that approximates the optimal tilted
distribution.

3 Best-of-Poisson: Approximating the Optimal Reward

While Soft Best-of-n offers a principled approach to mitigate reward hacking, it requires tuning
both the number of samples n and the temperature parameter λ. In this section, we introduce Best-
of-Poisson (BoP) (Algorithm 3), that is provably close to the solution of (1) with a single tunable
parameter (Figure 2). BoP is of independent interest as it provides a mathematically elegant and
computationally efficient way to near-optimally span the entire reward-KL distortion region with a
single parameter. The key insight behind BoP is to replace the fixed sample size n in BoN with a
random sample size drawn from a Poisson distribution.

The parameter µ in BoP controls the expected number of samples, analogous to how n functions in
BoN. We first sample n′ from a Poisson distribution parameterized by µ and set n = n′ + 1 to ensure
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Algorithm 3 Best-of-Poisson Sampling (BoP)
1: Input: Poisson parameter µ > 0, base policy πref
2: Sample n′ ∼ Poisson(µ) and set n = n′ + 1
3: Draw n samples X1, . . . , Xn i.i.d. from πref
4: Compute proxy rewards Ri = rp(Xi) for all i
5: Select j = argmaxi∈{1,...,n} rp(Xi)
6: Return: Y = Xj

at least one sample is generated. Under Assumption 1, the BoP distribution with parameter µ has a
probability density function given by (see Appendix C)

qµ(x) = (µx+ 1)eµ(x−1) for x ∈ [0, 1]. (2)

The following theorem characterizes the KL divergence and expected value of BoP:
Theorem 2 (KL Divergence and Expected Value of BoP). Let XBoP be the random variable repre-
senting the response selected by BoP with parameter µ. Then:

KL(πBoP∥πref) =
e−µ−1(Ei(µ+ 1)− Ei(1))

µ
+ log(µ+ 1)− 1. (3)

E[XBoP] = 1− 1

µ
+

1− e−µ

µ2
. (4)

where Ei(z) = −
∫∞
−z

e−t

t dt is the exponential integral function.
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Figure 2: The difference in KL divergence when
BoP and optimal tilted distributions are matched
to produce the same expected reward. The ex-
tremely small gap (of order 10−4) demonstrates
that BoP approximates the optimal distribution
with negligible performance loss

What makes BoP particularly valuable is its ability
to closely approximate the solution of (1), i.e., the
optimal KL-constrained tilted distribution with pa-

rameter λ > 0, defined as π∗
λ(x) =

πref(x)e
λrp(x)

Z(λ) ,
where Z(λ) is the normalization constant. While
this distribution is theoretically optimal for bal-
ancing reward and divergence, computing it is
intractable. To draw a next token from the tilted
π∗
λ for an autoregressive LLM, one would have to

compute

π∗
λ(xt+1 | x≤t) =

πref(x≤t+1) e
λrp(x≤t+1)∑

x′

πref(x≤tx
′) eλrp(x≤tx

′)
,

where the denominator sums over every possible
continuation of the prefix x≤t. Because the space
of continuations grows exponentially with the re-
maining sequence length, evaluating this denom-
inator (and hence sampling a single token) is com-
putationally prohibitive for LLMs.

Our analysis (Appendix C) shows that BoP provably achieves nearly identical performance to this
optimal distribution with minimal KL divergence gap. In Appendix C.3, we also introduce a natural
extension of Soft Best-of-n and Best-of-Poisson, which we call Soft Best-of-Poisson (SBoP). As
illustrated in Figure 2, the KL divergence gap between these distributions is remarkably small.
Numerical evaluation confirms that for all µ, if λ > 0 is chosen so that EX∼πBoP [rp(X)] =
EX∼π∗

λ
[rp(X)], then the KL-gap is bounded between 0 and 8× 10−4.

This near-equivalence means that BoP can serve as a practical stand-in for the theoretically optimal
tilted distribution. This result has two consequences. First, hedging in the optimal tilted distribution
is almost equivalent to hedging with BoP. Second, Equation (1) represents the solution to the standard
RLHF optimization problem, which implies that BoP is an inference-time approximation to RLHF
and allows us to use BoP to easily traverse between policies rather than having to finetune a new
model for each λ of interest. In the next section, we turn to the question of how to choose the right
parameter value to avoid reward hacking.
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Algorithm 4 HedgeTune: Parameter Optimization for Hedging

1: Inputs: Proxy and true rewards {st,k, rt,k} per prompt t; parameter domain Θ
2: Output: Optimal hedge parameter θ⋆

3: STEP 1. For each prompt t, sort responses by their proxy scores and map their ranks to empirical
quantiles ut,k ∈ (0, 1).

4: STEP 2. Specify the score function ψ(u, θ) and density pθ(u) according to the inference-time
method (e.g., BoN, SBoN, BoP; see Appendix D).

5: STEP 3. For a given t and θ ∈ Θ, define the residual Rt(θ) = Eu∼pθ
[rt(u)ψ(u, θ)]. This can

be estimated from the empirical pairs {(ut,k, rt(ut,k))}.

6: STEP 4. Find θ⋆ ∈ Θ such that the average residual R̄(θ⋆) = 1
|T |
∑

t R̂t(θ) = 0 via one-
dimensional root-finding.

4 Hedging to mitigate reward hacking

In this section, we develop a unified framework for choosing the inference-time parameter θ in order
to maximize the expected true reward and avoid hacking. The main limitation is that we require
black-box access to the true reward to perform a one-time calibration of the parameter θ. This is
practical in several common scenarios. One example is domains with verifiable ground truth, such as
mathematical reasoning, program synthesis, or factual question answering. One may also opt to use
an LLM-as-a-judge or a more powerful but computationally expensive reward model [36, 37].

Assume that we are given the proxy and true reward scores for a set of query-response pairs. By first
constructing an empirical CDF over the generated proxy reward scores, we transform these proxy
scores to have a uniform distribution. We denote the transformed proxy reward as U . Each sampling
method (BoN, SBoN, and BoP) induces a distribution πθ over proxy-percentiles u ∈ [0, 1], where
θ is the corresponding parameter (sample size n, inverse-temperature λ, or Poisson rate µ). Since
we know by Theorem 1 that the expected true reward has at most one peak, our key insight is to
create the precise hedge against hacking by finding the parameter value where the marginal benefit
of increasing the proxy reward equals zero. We present the following conditions that the hacking
threshold must satisfy for each of the three inference-time methods.
Theorem 3 (Hacking Threshold Characterization). Let rt be a true reward oracle and θ† be the
hacking threshold from Definition 1. For each inference-time method, θ† is characterized by the
following conditions:

For BoN, n† satisfies:

∇αEu∼Beta(α,1)[rt(u)] =

∫ 1

0

rt(u)

(
1

n†
+ lnu

)
un

†−1 du = 0. (5)

For SBoN, λ† satisfies:

∇λEu∼fλ [rt(u)] = Covu∼f
λ† (rt(u), u) = 0, (6)

For BoP, µ† satisfies:

∇µEu∼fµ [rt(u)] = Eu∼f
µ†

[
rt(u)

(
u− 1 +

u

µ†u+ 1

)]
= 0. (7)

The proof can be found in Appendix D. Consequently, we provide HedgeTune (Algorithm 4), an
algorithm that numerically solves the corresponding root-finding problem to determine the optimal
inference-time parameter for BoN, SBoN, or BoP. Note that we do not need access to the LLM
distribution itself. We use the explicit expressions of the score function ψ and estimate the residual
function R(θ) = E[rt(u)ψ(u, θ)] which captures the alignment between the true reward and the
proxy-weighted score. The optimal parameter θ† is found efficiently as the root of this function
using standard methods such as bisection or Newton’s method [38] and can later be used directly at
inference.
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Figure 3: Hedging mitigates hacking in verifiable reward setups. We plot the expected accuracy
on various benchmarks versus the number of samples n. HedgeTune successfully recovers the best
operating point for BoN and BoP and provides a superior reward-distrotion curve with SBoN.

5 Experiments: Hedging in Practice

In this section, we validate that hedging is an effective tool against reward hacking and can provide
superior reward-distortion tradeoffs in two experimental setups: one with verifiable rewards and one
with human-preference data.

5.1 Hacking in verifiable setups.

We first demonstrate that hedging mitigates reward hacking on standard verifiable benchmarks such
as MMLU Pro and GPQA. Specifically, we use the open-source Preference Proxy Evaluations (PPE)
dataset [39], which contains multiple responses per benchmark question from frontier models such as
GPT-4o-mini and Claude Haiku 3. Each response is then scored by a suite of reward models. We
focus on the benchmark dataset–reward model pairs identified in PPE as exhibiting reward hacking
under Best-of-n sampling. We then apply HedgeTune to find the optimal operating point for BoN,
BoP, and SBoN.

Reward Models. We consider three reward models of varying sizes: InternLM-2 1.8B [40], Llama-
3-Offset-Bias 8B [41], and Skywork-Llama-3.1 8B [42].

Datasets. We consider three datasets: MMLU Pro (complex reasoning) [43], MATH (mathematical
problem solving) [44], and GPQA (questions in natural sciences) [45]. A correct response gets a true
reward of 1, while an incorrect response gets a true reward of 0.

Findings. The observed reward hacking curve in Figure 3 matches our theoretical prediction in
Theorem 1. For example, BoN demonstrates hacking on the GPQA dataset, even with the very
capable Skywork-Llama 3.1 8B as a proxy reward (currently ranked the 12th best non-generative
reward model on RewardBench [37]). HedgeTune recovers the best operating points in all the cases.

5.2 Hacking in the wild with human preferences.

Our experimental design follows the methodology of Coste et al. [46] and Gao et al. [11], wherein
proxy reward models are trained using preferences of a fixed gold reward model. In many real-
world cases, we do not have access to the gold reward and instead have access to preference data.
However, as we demonstrate below, a favorable operating point can still be found using traditional
hyperparameter search.

Models. As a reference model, we use a 1.4B Pythia model [47] fine-tuned on AlpacaFarm dataset,
but without any subsequent alignment (e.g., RLHF or DPO). This reference model is used to generate
responses. We use AlpacaRM [48] as our gold reward model. AlpacaRM is an established reward
model trained on human preference data and has been adopted in prior work on reward model
evaluation [46, 49, 50]. This model serves as the ground truth for generating preference labels for
training proxy reward models. As for proxy rewards, we use the setup of Coste et al. [46] where we
train Pythia 44m models.

Datasets. We use the tlc4418/gold_labelled_gens dataset from Coste et al. [46]. This dataset
comprises of 12,600 responses generated by the Pythia 1.4B base policy for each of 1,000 prompts.
The prompts are sourced from the validation split of the AlpacaFarm dataset [48]. Each generated
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Figure 4: Hedging mitigates hacking in human-preference setups. We use three inference-time
methods (BoN, SBoN, and BoP) on trained proxy rewards. Hacking is effectively mitigated by
hedging via λ in SBoN or n in BoN and BoP.

response in this dataset is scored by AlpacaRM. To train proxy reward models, we construct
preference datasets using the AlpacaRM reward scores. For each training instance, we sample a pair
of responses to a given prompt and label them based on their given true reward scores.

Training. The proxy RMs are trained using a standard binary cross-entropy loss on preference pairs.
We train proxy RMs on preference pair datasets of varying sizes: 10k, 20k, 46k, and 80k. In line with
[46, 51, 52], we simulate disagreements in human annotators by considering two cases: (a) no label
noise in the preferences, and (b) 25% label noise. All proxy RM training runs are repeated across 4
random seeds each. We present some of the runs with 25% label noise in Figure 4 and we present the
remaining results in Appendix E, along with other hyperparameters and training details. Post training,
we use each proxy model to score a set of 800 prompts, with 12,600 responses each.

Findings. We apply BoN, SBoN, and BoP on each run and find the expected value of the true reward
as a function of n. When reward hacking manifests, we find a hacking threshold for BoN and BoP
that maximizes their reward. For SBoN, with a selected λ†, we attain the peak value without suffering
from reward hacking. Meanwhile, if the proxy is always at odds with the true reward, the optimal
solution is the reference distribution itself, corresponding to λ = 0.

6 Related Work

Reward Hacking. Reward hacking has been widely studied in RL literature [8, 7, 53], also under the
name misspecification [30], goal misgeneralization [54], or specification gaming [55].

In the context of LLMs, overoptimization has been referred to as reward hacking or Goodhart’s Law
[28, 11, 26, 27]. Hacking behavior has been found to manifest in unwanted or surprising behavior
[56, 57] across a variety of tasks [58, 11, 14]. Prior works have proposed various formulations of
reward hacking based on true performance behavior [24], correlation between proxy and true reward
[6], or distribution shift [25]. [14] prove that BoN alignment provably suffers from reward hacking
when the number of samples n is large.

To address inference time hacking, a variety of methods have been explored to varying success,
such as ensembling [46, 59, 60, 61], regularization [62] or rejection sampling [14]. [63] simulate n
particles resampled using a softmax reward to improve performance of reasoning models, similar
to SBoN over reasoning steps. However, all methods suffer from some combination of additional
generation cost beyond generating n samples and estimation of additional side-quantities such as KL-
divergence or χ2-divergence. Additionally, a variety of approaches have been proposed to mitigate
reward hacking during RLHF finetuning such as regularization [64, 52, 65, 66], χ2-divergence [67, 6],
uncertainty estimation [68], and reward pessimism [69, 70] although [26] demonstrated that RLHF
can still result in reward hacking under heavy-tailed reward mismatch. Finally, prior works have also
focused on improving reward models to prevent mismatch and reduce hacking [71, 72, 73, 74, 51, 75].
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Best-of-n. Best-of-n sampling is a simple inference-time approach for alignment [1, 2, 76]. Prior
results have characterized the expected reward gap and KL divergence between BoN sampling and
the reference model and have demonstrated that BoN is asymptotically equivalent to KL-constrained
reinforcement learning [13, 15, 16]. There have been various methodological improvements on BoN
sampling. One such improvement is to reduce the cost of sampling n sequences via tree-based or
speculative search [77, 78] . Additionally, [18, 79, 80, 81, 82] distill the BoN sampling distribution
into a model via fine-tuning. Finally, [35, 83] propose inference-aware methods to improve BoN.
Other works focus on improving the reward model through self-training [84]. In this work, we focus
on a variant of BoN, Soft Best-of-n [17], which allows for finer control between sampling from the
base model and the reward-maximizing generation.

7 Conclusion

Our work tackles the fundamental challenge that all proxy rewards are imperfect, yet they remain
essential for guiding and improving AI systems. We establish a theoretical framework proving
the inevitability of reward hacking in inference-time alignment and introduce practical hedging
strategies to mitigate its harmful effects. By developing Best-of-Poisson sampling which achieves
near-optimal reward-distortion tradeoffs with a single parameter and the HedgeTune algorithm for
precisely calibrating inference methods, we enable practitioners to extract valuable signals from
proxy rewards without falling prey to Goodhart’s law.

We also emphasize that AI safety concerns are, at their heart, socio-technical [30]. The impact of
model failures due to hacking (and beyond) will depend on the application and stakeholders at hand.
One clear example is an AI agent that generates controversial and toxic content on social media
to optimize its engagement metric at the direct expense of content quality and safety [85]. Other
dangerous failure patterns include models that learn to be sycophantic instead of truthful [86] or
actively exploit loopholes to circumvent oversight [32]. By studying the phenomenon of hacking
from a rigorous mathematical perspective, our work helps with the design of hacking mitigation (and
hence AI safety methods) with provable performance guarantees. Technical approaches such as ours
are important for AI safety in practice, although we recognize that they must exist within a larger
safety ecosystem where rigorous technical foundations inform responsible deployment practices and
policy decisions, and vice-versa. Ultimately, this work demonstrates that principled hedging is a
promising direction for building safer, more reliable AI systems.
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Supplementary material for

Inference-Time Reward Hacking in
Large Language Models

A Overview

In this supplementary material, we provide the following:

• Appendix B provides additional proofs and results on the inevitability of reward hacking.

• Appendix C provides additional proofs for Best-of-Poisson, as well as Soft Best-of-Poisson.

• Appendix D discusses HedgeTune in more detail.

• Appendix E provides additional details on our experimental setup.

B Inference-Time Reward Hacking

Increasing optimization pressure on a proxy objective can initially improve true performance, but
beyond a certain point— which we call the hacking threshold—further optimization can lead to
misalignment and degrade performance. Theorem 1 in Section 2 formalizes this phenomenon: under
very general conditions on a one-parameter family of proxy distributions πθ, the map

θ 7→ EX∼πθ
[rt(X)] := f(θ) (8)

can have at most one interior extremum. Thus, there is either a monotonic benefit (or disadvantage)
to strengthening the proxy or exactly one “sweet spot” before reward hacking sets in. The rest
of this section proceeds as follows. We prove the single-crossing property for the derivative of
the true reward by invoking variation-diminishing kernels, and then we instantiate our results with
Monotone-Likelihood-Ratio densities in Corollaries 2 and 3. We specialize the discussion to two
concrete examples with Best-of-n and Best-of-Poisson. Next, we extend our result to the more
general discrete case in B.2.

B.1 Uniform Case

The following results hold under our Assumption 1. Let ψ(x, θ) denote the score function of
distribution πθ(x) with density pθ(x). Standard calculations under mild regularity conditions gives
us the derivative of the true reward under πθ:

f ′(θ) =

∫
rt(x)∇θpθ(x)dx =

∫
rt(x)pθ(x)∇θ log pθ(x)dx = EX∼πθ

[rt(X)ψ(X, θ)] (9)

The main idea to establish Theorem 1 is that when we use parameter θ to control inference-time
methods, we create a family of densities {pθ(x)} that act as positive kernels. These kernels satisfy
the strict total positivity conditions required for variation-diminishing theorems to apply. Our only
assumption on the true reward is that it is bounded. We then translate the reward function so that it is
non-negative. The boundedness assumption is a natural one in the alignment setting because real-
world rewards originate from human judgments given on finite scales (e.g. star ratings, Likert scores,
or normalized preference probabilities). Moreover, clipping or normalizing the reward prevents
unbounded returns, improving the stability of policy updates and inference-time mechanisms. .

Proof. Fix θ and set hθ(x) := rt(x)ψ(x, θ). Because ψ(·, θ) is strictly increasing, it has at most
one zero. Since rt ≥ 0, hθ has the same single sign change in x. Strict TP2 of pθ and Karlin’s
variation–diminishing theorem imply that θ 7→ F (θ) :=

∫
hθ(x)pθ(x) dx = f ′(θ) inherits at most

the same number of sign changes, namely one.

Having established the inevitability result, we next explore how it specializes in classical families via
a simple corollary.
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Corollary 2 (Strict MLR densities). Let pθ(x) be strictly monotone–likelihood–ratio in x (i.e.
pθ2(x)/pθ1(x) strictly increases in x whenever θ2 > θ1). If ψ(x, θ) = ∂θ log pθ(x) is strictly increas-
ing in x, then all conclusions of Theorem 1 apply. In particular, this applies for any regular canonical
exponential family with strictly monotone statistic T and strictly monotone natural parameter.

The conditions are satisfied by two inference-time methods we study:

Best-of-n: The distribution corresponds to the maximum of n i.i.d. samples from the reference
distribution. When proxy rewards are uniformly distributed, this yields pn(u) = nun−1 for u ∈ [0, 1].
The likelihood ratio pn2

(u)

pn1 (u)
= n2

n1
un2−n1 is strictly increasing in u when n2 > n1, establishing strict

MLR (which implies strict TP2). The score function ψ(u, n) = 1
n + log u is strictly increasing in u.

Best-of-Poisson: The distribution pµ(u) = (µu+ 1)eµ(u−1) for u ∈ [0, 1] can be verified to satisfy
strict MLR by direct computation of likelihood ratios. The score function ψ(u, µ) = u− 1 + u

µu+1

is strictly increasing in u.

Under the conditions presented in Theorem 1, we know that at most one interior extrema exists. The
following corollary gives precise conditions on when such an interior extrema exists.
Lemma 1. Under the assumptions of Theorem 1 and with rt ∈ C1 on a neighborhood of its
boundaries (0 and 1) and let Θ = [θl, θr],

lim
θ↓θℓ

f ′(θ) = r′t(0+)Eθℓ [X ψ(X, θℓ)], lim
θ↑θr

f ′(θ) = − r′t(1−)Eθr [(1−X)ψ(X, θr)].

Then, a stationary point exists iff

lim
θ↓θℓ

f ′(θ) and lim
θ↑θr

f ′(θ)

are of opposite sign (or one limit is 0 while the other is non-zero).

Proof. We prove the left boundary results (the right one is identical with x 7→ 1 − x.) Write the
first-order expansion rt(x) = rt(0+) + r′t(0+)x + R(x) with R(x) = o(x) as x → 0. Because
Eθ[ψ] = 0,

f ′(θ) = r′t(0+)Eθ[Xψ] + Eθ[R(X)ψ].

Strict increase of ψ implies |Xψ|≤ C(1 +X) on [0, 1] × [θℓ, θℓ + ρ], so Eθ[Xψ] → Eθℓ [Xψ] by
dominated convergence. Next, fix δ ∈ (0, 1) and split the expectation:

Eθ[rt(X)ψ] = Eθ[rt(X)ψ1{X≤δ}] + Eθ[rt(X)ψ1{X>δ}].

Near 0, we have |R(x)|≤ cδx, hence the term is bounded by cδEθ[X|ψ|]; choose δ so small that
cδEθℓ [X|ψ|] < ε and continuity keeps it < 2ε for θ close enough to θℓ. Away from 0, we use
boundedness of rt and local boundedness of ψ to obtain a factor Pθ{X > δ} → 0.

Combining the two parts gives Eθ[R(X)ψ] → 0, yielding the claimed limit. By continuity, the
Intermediate-Value Theorem then forces one root of f ′ and single–crossing rules out a second.

Corollary 3 (Reward behavior for Strict MLR densities). Assume Lemma 1 holds and that the family
{pθ}θ∈Θ is strictly monotone–likelihood–ratio in x ∈ (0, 1). Then for every θ ∈ Θ

Lθ := Eθ[X ψ(X, θ)] > 0, Rθ := Eθ[(1−X)ψ(X, θ)] < 0,

so
signf ′(θ+ℓ ) = sign r′t(0+), signf ′(θ−r ) = sign r′t(1−)

Single-crossing of f ′ implies that f(θ) can assume exactly one of the four shapes:

regime r′t(0+) r′t(1−)

monotonic improvement ≥ 0 ≥ 0

reward hacking > 0 < 0

reward grokking < 0 > 0

immediate decline ≤ 0 ≤ 0
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Proof. Let pθ be differentiable in θ with score ψ(x, θ) = ∂θlog pθ(x). For any integrable g we have
shown that:

d

dθ
Eθ[g(X)] = Eθ[g(X)ψ(X, θ)]

We first use that the MLR property implies first-order stochastic dominance. For every increasing
function g, we have that θ 7→ Eθ[g(X)] is non-decreasing and its derivative is non-negative. Choosing
g(x) = x gives

Lθ = Eθ[X ψ(X, θ)] =
d

dθ
Eθ[X] > 0

On the other hand, g(x) = 1− x (strictly decreasing) yields:

Rθ = Eθ[(1−X)ψ(X, θ)] =
d

dθ
Eθ[1−X] < 0

Thus Lθ > 0 and Rθ < 0 for every θ ∈ Θ. For example. for BoN, ψ(x, n) = 1/n + log x with
En[X ψ]=1/(n + 1)2, En[(1 −X)ψ] = −1/(n + 1)2. Hence a stationary point exists iff r′t(0+)
and r′t(1−) have opposite signs, and its location n⋆ solves En[rt(X)ψ(X,n)] = 0.

We have shown the conditions under which the expected value of true reward has a critical point
with respect to θ. We now show the conditions under which our results extend identically if we are
studying the expected value of true reward as a function of the KL divergence with respect to the
reference distribution πθ0 .
Lemma 2. Let {πθ}θ∈Θ be a regular parametric family with density pθ(x) such that

• pθ and ∂θpθ are jointly measurable and ∂θpθ(x) is locally integrable in θ;

• the score ψ(x, θ) := ∂θ log pθ(x) is square–integrable: Eθ[ψ
2] <∞.

For a fixed reference point θ0 ∈ Θ define the Kullback–Leibler divergence

D(θ∥θ0) :=

∫
pθ(x) log

pθ(x)

pθ0(x)
dµ(x).

Then D(θ∥θ0) is differentiable and

d

dθ
D(θ∥θ0) = Eθ

[
(log pθ(x)− log pθ0(x))ψ(X, θ)

]
.

In particular, for canonical exponential families with strictly increasing natural parameter, this
simplifies to

d

dθ
D(θ∥θ0) = (η(θ)− η(θ0))A

′′(θ),

which is strictly positive when θ > θ0 (and negative for θ < θ0).

Proof. Write gθ(x) := log pθ(x) − log pθ0(x). Then D(θ∥θ0) = Eθ[gθ(X)]. For a
parameter-dependent integrand the classical Fisher–Leibniz rule gives

d

dθ
Eθ[gθ(X)] = Eθ[∂θgθ(X)] + Eθ[gθ(X)ψ(X, θ)],

whenever ∂θgθ exists and an L1 dominated–convergence bound holds (true here by the
square–integrable score assumption). Since ∂θgθ(x) = ψ(x, θ) and Eθ[ψ] = 0, the first term
vanishes, leaving exactly

d

dθ
D(θ∥θ0) = Eθ[gθ(X)ψ(X, θ)]
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B.2 Discrete Case

In this subsection, we show that Theorem 1 holds for the general discrete case and then verify that it
holds for specific policy families like Best-of-n and Best-of-Poisson.

Let Y = {y1, y2, . . . , ym} be a finite, ordered set of possible responses, where the ordering is
determined by a proxy reward function rp. We represent this space by the ordered index set
X = {1, 2, . . . ,m}. Let {πθ}θ∈Θ be a one-parameter family of policies on X , where θ ∈ Θ ⊂ R is
a continuous tuning parameter. The probability of selecting response i is given by the Probability
Mass Function (PMF) πθ(i). Let rt : X → R≥0 be a bounded, non-negative true reward function.
Our objective is to analyze the shape of the expected true reward function:

f(θ) = EX∼πθ
[rt(X)] =

m∑
i=1

πθ(i) · rt(i).

We will prove that under general conditions on the policy family πθ, the function f(θ) is either
monotonic or has a unique interior extremum.
Theorem 4 (Inevitability of Reward Hacking for Discrete Policies). Let {πθ}θ∈Θ be a family of
PMFs on X = {1, . . . ,m}. Assume that:

1. The PMF πθ(i) is strictly TP2 in the pair (θ, i). That is, for any θ1 < θ2 and i1 < i2,

πθ1(i1)πθ2(i2)− πθ1(i2)πθ2(i1) > 0.

2. The score function ψ(i, θ) := ∂
∂θ log πθ(i) exists and is strictly increasing in i for each fixed

θ.

Then, for any bounded, non-negative true reward function rt(i), the derivative f ′(θ) changes sign at
most once. Hence, f(θ) is either monotonic or has a unique interior extremum.

Proof. We differentiate:

f ′(θ) =
d

dθ

m∑
i=1

πθ(i)rt(i) =

m∑
i=1

πθ(i)ψ(i, θ)rt(i) = Eπθ
[rt(i)ψ(i, θ)].

Define hθ(i) = rt(i)ψ(i, θ). Since rt(i) ≥ 0 and ψ(i, θ) is strictly increasing in i, the product
hθ(i) has at most one sign change. Since f ′(θ) =

∑m
i=1 πθ(i)hθ(i), and πθ is strictly TP2, Karlin’s

variation-diminishing theorem implies that f ′(θ) changes sign at most once, and f(θ) has at most
one extremum.

We now verify that Best-of-n and Best of Poisson satisfy the assumptions. Let the base PMF be pi,
with CDF Fk :=

∑k
i=1 pi.

Best-of-n: It is shown in [13] that the BoN policy has the following PMF:

πn(i) = Fn
i − Fn

i−1.

We first verify the TP2 condition. We consider:

L(i) :=
πn2

(i)

πn1(i)
=
Fn2
i − Fn2

i−1

Fn1
i − Fn1

i−1

.

By Cauchy’s Mean Value Theorem (CMVT), for g(t) = tn2 , f(t) = tn1 , and a = Fi, b = Fi−1, we
get:

g(Fi)− g(Fi−1)

f(Fi)− f(Fi−1)
=
g′(ci)

f ′(ci)
=
n2c

n2−1
i

n1c
n1−1
i

=
n2
n1
cn2−n1
i

for some ci ∈ (Fi−1, Fi). Since Fi is strictly increasing, ci < ci+1, and cn2−n1
i is strictly increasing.

Hence L(i+ 1) > L(i). Next, we note that the score function is:

ψ(i, n) = ∇n log(F
n
i − Fn

i−1).
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Let g(t) = tn log t, f(t) = tn. Then

φ(t) =
g′(t)

f ′(t)
=
ntn−1 log t+ tn−1

ntn−1
= log t+

1

n
.

Applying CMVT gives:

ψ(i, n) =
g(Fi)− g(Fi−1)

f(Fi)− f(Fi−1)
= φ(ci) = log ci +

1

n
.

Then:
ψ(i+ 1, n) = log ci+1 +

1

n
> log ci +

1

n
= ψ(i, n).

Best-of-Poisson: Define g(t, µ) = teµ(t−1). Then, we show in Theorem 6 that BoP has the
following PMF:

πµ(i) = g(Fi, µ)− g(Fi−1, µ).

We first verify the TP2 condition. Define:

L(i) =
g(Fi, µ2)− g(Fi−1, µ2)

g(Fi, µ1)− g(Fi−1, µ1)
.

By CMVT:

L(i) =
∇tg(ci, µ2)

∇tg(ci, µ1)
=

(µ2ci + 1)eµ2(ci−1)

(µ1ci + 1)eµ1(ci−1)
=
µ2ci + 1

µ1ci + 1
e(µ2−µ1)(ci−1).

This increases in ci ∈ (Fi−1, Fi), hence L(i+ 1) > L(i). Now, we check the score function. Let the
continuous score be ψ(x, µ) = x− 1 + x

µx+1 . Since this is strictly increasing in x, so is the discrete
score ψ(i, µ).

C Best-of-Poisson

In this section, we prove Theorem 2 and establish, as a consequence, that Best-of-Poisson is numer-
ically near-optimal as compared to tilted distribution π∗

λ in terms of KL divergence. We start by
establishing the BoP distribution in the uniform case, and then consider the general discrete case. We
also mention a natural extension called Soft Best-of-Poisson.

C.1 Uniform Case

The following results hold under our Assumption 1. Let µ > 0 be the parameter of the Best-of-
Poisson sampling method and let Xµ be the random variable representing the response selected by
BoP. The probability density function qµ(x) of Xµ is given by:

qµ(x) = (1 + µx)eµ(x−1), (10)

for x ∈ [0, 1], where n = n′ + 1 with n′ ∼ Poisson(µ).

Proof. Write Xµ = max{U0, U1, . . . , Un′} where n′ ∼ Poisson(µ) and Ui
iid∼ Unif[0, 1]. Consider

U0 ∼ Unif[0, 1] to be the mandatory draw to achieve a sample size of at least one.

For x ∈ [0, 1],

Fµ(x) := Pr(Xµ ≤ x) = Pr(U0 ≤ x) Pr(Ui ≤ x for 1 ≤ i ≤ n′) = xE[xn
′
] = x e−µ(1−x),

because E[xn′
] = exp{−µ(1−x)} is the moment-generating function of a Poisson variable evaluated

at log x. Now, differentiating Fµ on (0, 1) gives

qµ(x) = e−µ(1−x) + µx e−µ(1−x) = (1 + µx) eµ(x−1),

which extends continuously to the endpoints. A direct computation verifies
∫ 1

0
qµ(x) dx = 1, so qµ

is a valid density.
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Now, we prove Theorem 2 with the BoP density denoted as qµ and a uniform reference distribution.

Proof.

E[Xµ] =

∫ 1

0

x(1 + µx)eµ(x−1)dx =

∫ 1

0

(x+ µx2)eµ(x−1)dx

With the substitution u = µ(x− 1), we get that∫ 1

0

xeµ(x−1)dx =
1

µ2

∫ 0

−µ

(u+ µ)eudu =
µ− 1 + e−µ

µ2

∫ 1

0

x2eµ(x−1)dx =
1

µ3

∫ 0

−µ

(u+ µ)2eudu =
µ2 − 2µ+ 2− 2e−µ

µ3

Hence

E[Xµ] =
µ− 1 + e−µ

µ2
+ µ

µ2 − 2µ+ 2− 2e−µ

µ3
= 1− 1

µ
+

1− e−µ

µ2

Now, we consider the KL divergence. Because log qµ(x) = log(1 + µx) + µ(x− 1),

DKL(qµ∥U) =

∫ 1

0

qµ(x) log(1 + µx) dx+ µ[E[Xµ]− 1]

To compute the integral, set t = 1 + µx:∫ 1

0

qµ(x) log(1 + µx) dx =
e−µ−1

µ

∫ µ+1

1

t et log t dt

Integration by parts (f = log t, dg = tetdt) yields∫
tet log t dt =

1

2
t2et

(
log t− 1

2

)
− 1

2
Ei(t) + C

hence ∫ 1

0

qµ(x) log(1 + µx) dx = log(µ+ 1)− 1− e−µ

µ
+
e−µ−1

µ
[Ei(µ+ 1)− Ei(1)]

The resulting term becomes:

DKL(qµ∥Unif) =
e−µ−1

µ
[Ei(µ+ 1)− Ei(1)] + log(µ+ 1)− 1

We now establish that BoP provides a practical approximation to the optimal tilted distribution with
negligible performance loss.
Theorem 5 (Near-Optimality of BoP). Let qµ be the distribution induced by Best-of-Poisson with
parameter µ > 0, and let gλ be the optimal KL-constrained tilted distribution with parameter λ > 0,
defined as:

gλ(x) =
πref(x)e

λrp(x)

Z(λ)
, (11)

where Z(λ) is the normalization constant. For any given expected reward level, there exists a µ
for BoP and a λ for the tilted distribution such that EX∼qµ [rp(X)] = EX∼gλ [rp(X)]. Numerical
evaluation shows that for all µ, if λ > 0 is chosen so that EX∼qµ [rp(X)] = EX∼gλ [rp(X)], then the
KL-gap satisfies

0 ≤ DKL(qµ∥πref)−DKL(gλ∥πref) ≤ 8× 10−4.

That is, Best-of-Poisson achieves nearly the optimal trade-off between expected reward and KL
divergence from the reference distribution.
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Proof. Let the following two functions

qµ(x) = (1 + µx) eµ(x−1), gλ(x) =
λ eλx

eλ − 1
, 0 ≤ x ≤ 1,

denote, respectively, the BoP density with the Poisson rate µ and the exponential-tilt density with
parameter λ. For any µ > 0, the value λ∗ = λ∗(µ) is chosen so that the two laws have the same first
moment (i.e., same expected reward). We first note the expected reward of the BoP policy lies in the
interval (0.5, 1). Additionally, the tilted expected reward is a strictly increasing function of λ over
the same range since its derivative is the (positive) variance of the reward under the tilted distribution.
By the Intermediate Value Theorem, there exists a unique λ∗ = µ+ δ(µ), where δ(µ) = λ∗(µ)− µ,
such that the two rewards are equal.

Because gλ(µ) is the information projection of qµ onto the exponential family {gλ}λ>0 un-
der the linear reward-matching constraint, the Csiszár–Pythagoras identity [34] gives

DKL(qµ∥πref)−DKL(gλ(µ)∥πref) = DKL(qµ∥gλ(µ)) (12)

To bound this KL divergence, we use a general inequality which we derive below from the properties
of the likelihood ratio function. Let L(x) = p(x)

q(x) denote the likelihood ratio between two distributions
p and q. We first define the KL divergence in terms of the convex function φ(t) = t log t− t+ 1 and
then note that the expectation of any function is upper bounded by its essential supremum. We can
retrieve the following upper bound:

DKL(p ∥ q) = Eq[φ(L(x))] ≤ sup
x
φ(L(x)) = sup

t∈Im(L)

φ(t) (13)

In our problem, the likelihood ratio is given by

Lµ(x) :=
qµ(x)

gλ∗(x)
=

(µx+ 1)(eλ
∗ − 1)

λ∗eµ
· e−δ(µ)x (14)

To obtain a uniform bound on Lµ(x), define α := supµ>0, x∈[0,1] |logLµ(x)|. This is a well-posed,
nested optimization problem requiring numerical solution. The procedure is as follows:

1. For a given µ, numerically solve for the unique λ∗ satisfying the reward-matching equation.

2. For the resulting pair (µ, λ∗), compute maxx∈[0,1]|logLµ(x)| by evaluating the boundary
values and any interior critical points.

3. Maximize the result of step (2) over all µ > 0.

This procedure is deterministic, and its solution yields a uniform bound:

e−α ≤ Lµ(x) ≤ eα, for all µ > 0 and x ∈ [0, 1] with α ≈ 0.03968

Since the function φ(t) is convex, we verify that its supremum over [e−α, eα] is attained at an
endpoint:

DKL(qµ∥gλ(µ)) ≤ φ(eα) = αeα − eα + 1 ≈ 0.03968 · e0.03968 − e0.03968 + 1 ≈ 8× 10−4

This bound is independent of µ, and therefore holds uniformly as seen in Figure 2. This validates
that Best-of-Poisson indeed provides a practically equivalent approximation to the optimal tilted
distribution with negligible computational overhead.

C.2 Discrete Case

We now relax our Assumption 1 to derive an exact, assumption-free formulation for the Best-of-
Poisson (BoP) policy, as well as a convenient upper bound for its KL divergence.
Theorem 6 (General BoP Distribution). Let µ > 0 be the parameter of the Best-of-Poisson sampling
method. The probability mass function of Best-of-Poisson is:

π
(µ)
BoP(yi | x) = gµ(Fi)− gµ(Fi−1) where gµ(z) := zeµ(z−1) (15)

KL(πBoP ∥πref) ≲ E[logN ]− 1 + E
[
1

N

]
where N ∼ Poisson(µ) + 1 (16)
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Proof. BoP is a mixture over BoN with a Poisson-distributed number of samples N ∼ Pois(µ) + 1,
with PMF:

Pr(N = k) =
e−µµk−1

(k − 1)!
, k ≥ 1

The BoP policy is:

πBoP(yi | x) =
∞∑
k=1

Pr(N = k) · π(k)
BoN(yi | x) =

∞∑
k=1

e−µµk−1

(k − 1)!
(F k

i − F k
i−1)

Letting j = k − 1, this becomes:

πBoP(yi | x) = e−µ

 ∞∑
j=0

(µFi)
j

j!
−

∞∑
j=0

(µFi−1)
j

j!

 = Fie
µ(Fi−1) − Fi−1e

µ(Fi−1−1)

Thus, the exact BoP PMF is:

πBoP(yi | x) = gµ(Fi)− gµ(Fi−1) where gµ(z) := zeµ(z−1)

We show that this is consistent with our continuous case. Assuming the reference distribution is
Unif(0, 1), then Fref(r) = r and:

GBoP(r) = gµ(r) = reµ(r−1) =⇒ qµ(r) =
d

dr
GBoP(r) = (1 + µr)eµ(r−1) (17)

This matches the continuous BoP PDF.

Using the exact PMF, we can get the exact KL divergence between the Best of Poisson distribution
and the reference distribution, as well as a convenient upper bound.

KL(πBoP∥πref) =
m∑
i=1

πBoP(yi | x) log
(
πBoP(yi | x)

pi

)
=

m∑
i=1

(gµ(Fi)−gµ(Fi−1)) log

(
gµ(Fi)− gµ(Fi−1)

Fi − Fi−1

)
(18)

We show that this is consistent with our continuous case. As m→ ∞, the discrete sum becomes:

KL(πBoP∥πref) →
∫ 1

0

qµ(r) log qµ(r) dr

where qµ(r) = (1 + µr)eµ(r−1). This integral is:∫ 1

0

qµ(r) log qµ(r) dr =
e−µ−1

µ
(Ei(µ+ 1)− Ei(1)) + log(µ+ 1)− 1

where Ei(z) is the exponential integral. The KL divergence is convex in its first argument. That is,
for any set of distributions {Pk} and weights {wk},

KL

(∑
k

wkPk

∥∥∥Q) ≤
∑
k

wk ·KL(Pk ∥Q)

Applying this to BoP:

KL(πBoP ∥πref) ≤
∞∑
k=1

wk ·KL(π
(k)
BoN ∥πref) = EN∼Pois(µ)+1

[
KL(π

(N)
BoN ∥πref)

]
Using the proven upper bound for BoN in [13], we get that

KL(πBoP ∥πref) ≲ EN

[
logN − 1 +

1

N

]
= E[logN ]−1+E

[
1

N

]
where N ∼ Poisson(µ)+1
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Algorithm 5 Soft Best-of-Poisson Sampling (SBoP)
1: Input: Poisson parameter µ > 0, inverse temperature λ > 0, base policy πref
2: Sample n′ ∼ Poisson(µ), set n = n′ + 1
3: Draw X1, . . . , Xn ∼ πref i.i.d.
4: Compute rewards Ri = rp(Xi)
5: Sample index Z ∈ {1, . . . , n} with probability

Pr(Z = i) =
eλRi∑n
j=1 e

λRj

6: Return: Y = XZ

C.3 Soft Best-of-Poisson

We discuss here a natural extension of Soft Best-of-n and Best-of-Poisson, which we name Soft
Best-of-Poisson (SBoP) (see Algorithm 5). The key insight is that we can leverage the two distinct
control mechanisms that inference-time alignment offers us: control over the number of generation
(be it deterministic or randomized) and control over the selection through the temperature. Extensions
such as SBoP show that these methods can be combined, offering richer control over the alignment
process.
Theorem 7. Let the parameters of SBoN be θ = (n, λ). Let R1, . . . , Rn be the proxy rewards of n
i.i.d. samples from πref. By Assumption 1, Ri ∼ Unif(0, 1) for all i. The selected sample has proxy
reward RY with probability density function:

pn,λ(r) = n · ER2,...,Rn∼Unif(0,1)

[
eλr

eλr +
∑n

j=2 e
λRj

]
(19)

Let the log-partition function be defined as:

L(n, λ) := ER1,...,Rn∼Unif(0,1)

[
log

(
n∑

i=1

eλRi

)]
Then, the expected reward and the KL diveregence with respect to the reference can be written as:

E[RSBoN] =
∂L(n, λ)

∂λ
(20)

KL(πSBoN∥πref) = log n+ λE[RSBoN]− L(n, λ) (21)

Proof. Expected Reward:

E[RSBoN] = E

[
n∑

i=1

Ri ·
eλRi∑n
j=1 e

λRj

]
= E

[∑n
i=1Rie

λRi∑n
j=1 e

λRj

]
=
∂L(n, λ)

∂λ

since we observe:
∂

∂λ
log

 n∑
j=1

eλRj

 =

∑n
i=1Rie

λRi∑n
j=1 e

λRj

KL Divergence: Since pref(r) = 1 for r ∈ [0, 1], we get:

KL(πSBoN∥πref) =

∫ 1

0

pn,λ(r) log pn,λ(r) dr

Alternatively, the conditional KL (per draw) is:

KLcond =

n∑
i=1

pi log(npi) = log n+

n∑
i=1

pi log pi = log n+ λ

n∑
i=1

piRi − log

 n∑
j=1

eλRj


where pi = eλRi∑n

j=1 eλRj
. Taking expectation over rewards gives our result.
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D Analysis of HedgeTune

In Section 4, we presented an efficient way to find the optimal hacking threshold. Here, we prove this
result and discuss how hedging compares to other hacking mitigation methods.

Proof. We consider each mechanism separately:

Hedging in Best-of-n. In BoN, we approximate the integer n via a continuous parameter α by
placing a Beta(α, 1) prior on u. Its density is fα(u) = αuα−1, so ψ(u, α) = ∂α[lnα+(α−1) lnu] =
1

α
+ lnu. Thus, the optimality condition becomes

Eu∼Beta(α,1)

[
rt(u)

(
1

α
+ lnu

)]
= 0 ⇐⇒

∫ 1

0

rt(u) (1 + n log u)un−1 du = 0, (22)

which one solves for α to pick an effective sample size.

In practice, this equation must be solved numerically. One way to do this by discretizing [0, 1] into
M points and forming the Riemann-sum residual

R(α) =

M∑
i=1

rt(ui)

(
1

α
+ lnui

)
uα−1
i ∆u,

The root R(α) = 0 is equivalent to the hedging condition. Then, one applies any root-finding method,
see, e.g., [38], to locate the unique solution α†. Alternatively, for each question/prompt, we first sort
the candidates by their model scores to form the empirical CDF of the scores. We perform a discrete
ternary search to identify the optimal n† using the question-averaged true reward. This procedure
bypasses explicit root-finding and directly identifies the most effective discrete hedge size.

Hedging in Soft Best-of-n. Unlike BoN, SBoN does not admit a simple closed-form density due to
its sampling mechanism. In SBoN, we first sample n uniform rewards Un = U1, . . . , Un, then select
Ui with probability pi = eλUi∑n

j=1 eλUj
. The resulting distribution is:

πn,λ(u) = EU1,...,Un−1∼Unif[0,1]

[
n, eλu

eλu +
∑n−1

i=1 e
λUi

]
, u ∈ [0, 1]. (23)

We can now derive the hedging condition ∂
∂λEu∼fλ [rt(u)] = 0. To start, we compute ∂pi

∂λ :

∂pi
∂λ

=
∂

∂λ

[
eλUi

S

]
=
Uie

λUi · S − eλUi · ∂S
∂λ

S2
= pi

Ui −
n∑

j=1

Ujpj

 (24)

since ∂S
∂λ =

∑n
j=1 Uje

λUj . Now, we compute the derivative of the expected reward:

∂

∂λ
Eu∼fλ [rt(u)] = EUn

[
∂

∂λ

n∑
i=1

rt(Ui)pi

]
(25)

= EUn

[
n∑

i=1

rt(Ui)
∂pi
∂λ

]
(26)

= EUn

 n∑
i=1

rt(Ui)pi

Ui −
n∑

j=1

Ujpj

 (27)

= EUn

 n∑
i=1

rt(Ui)piUi −

(
n∑

i=1

rt(Ui)pi

) n∑
j=1

Ujpj

 (28)

= EUn [Cov(rt(V ), V |U)] (29)
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where we note that the expression inside the expectation is exactly the conditional covariance:

Cov(rt(V ), V |Un) = E[rt(V ) · V |Un]− E[rt(V )|Un] · E[V |Un] (30)

with

E[rt(V )|Un] =

n∑
i=1

rt(Ui)pi, E[V |Un] =

n∑
i=1

Uipi, E[rt(V ) · V |Un] =

n∑
i=1

rt(Ui)Uipi (31)

This condition must be evaluated numerically using the following procedure:

1. For a given λ, and for each question, draw M independent samples (U (m)
1 , . . . , U

(m)
n ) from

the empirical CDF of model scores (equivalently, from the empirical quantiles u ∈ [0, 1]),
for m = 1, . . . ,M .

2. For each realization, compute:

p
(m)
i =

eλU
(m)
i∑n

j=1 e
λU

(m)
j

. (32)

C(m) =

n∑
i=1

rt(U
(m)
i )U

(m)
i p

(m)
i −

(
n∑

i=1

rt(U
(m)
i ) p

(m)
i

) n∑
j=1

U
(m)
j p

(m)
j

 (33)

3. Estimate the residual as

R(λ) =
1

M

M∑
m=1

C(m). (34)

4. Locate λ† such that R(λ†) = 0 using a numerical root-finding method (e.g., bisection or
Newton’s method).

Hedging in Best-of-Poisson. Here, one draws a Poisson(µ) number of samples (plus one) and
selects the proxy-maximal u. For uniform u, the density is pµ(u) = (µu + 1)e−µ(1−u), giving
ψ(u, µ) = ∂µ ln pλ(u) = u− 1 +

u

µu+ 1
. The hedging equation

∇µEπµ
[ry(X)] = Eu∼fµ

[
rt(u)

(
u− 1 +

u

µu+ 1

)]
= 0 (35)

In an analogous way to the previous hedging equations, we solve the residual

R(µ) =

M∑
i=1

rt(ui)ψ(ui, µ)pµ(ui)∆u (36)

to locate µ† such that R(µ†) = 0. This µ† is the Poisson optimal hedge. As in BoN, we approximate
this expectation using the empirical CDF of scores per question, mapping each candidate’s rank to its
quantile ui. We compute the averaged residual across questions, and the root R̄(µ†) = 0 is found by
bracketing, i.e, finding an interval [a, b] such that R̄(a)R̄(b) < 0, and bisection search within this
interval.

D.1 How does hedging compare to other hacking mitigation methods?

In this subsection, we supplement the discussion in the related works (Section 6). We discuss different
techniques mitigate reward hacking and compare with hedging.

Training-Time Regularization. This is the most common approach, typified by adding a diver-
gence penalty to the reward maximization objective as in RLHF. The goal is to prevent the policy
from deviating too far from a trusted reference model. While a vital first line of defense, this approach
requires expensive full model retraining and risks under-optimization if the penalty is too strong.
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Improving the Proxy Reward Model. A second category aims to build a more robust reward signal
that is inherently harder to hack. Ensembling involves averaging scores from multiple, independently
trained reward models. However, this method multiplies inference costs and cannot fix systemic
biases shared by all models in the ensemble. Meanwhile, robust training methods [74, 51] modify the
reward model’s training process itself to disentangle response quality from spurious cues, introducing
significant complexity to the training pipeline.

Inference-Time Methods. The closest analogues to our work include regularized Best-of-n
(RBoN), which is a powerful heuristic that balances the proxy reward against a penalty term [87], and
inference-time pessimism [14] which uses principled rejection sampling step, requiring the estimation
of a normalization constant.

Our Framework: Hedging introduces a distinct approach that operates purely at inference time. It
answers the question: given a fixed reward model and fixed language model, what is the best we can
do to improve performance just at inference? Hedging offers two key advantages:

1. Zero Retraining Cost and Maximum Flexibility: Hedging is applied to an existing,
trained policy using existing proxy reward models. A practitioner can take a single policy
and calibrate it against different proxy rewards or for different tasks without incurring any
retraining.

2. Principled and Efficient. We prove that this expected true reward function follows a
predictable “rise-and-fall” path with a single optimal peak. HedgeTune therefore replaces
heuristic balancing or more involved sampling schemes with a principled search for this
unique optimum—a problem we prove is tractable.

However, the gains from hedging might be minimal compared to more involved methods, especially
with a weak proxy reward. One limitation of our work is that hedging requires a tuning “ground truth”
dataset. Ultimately, we see hedging not as a replacement for some of the previous methods. Instead,
HedgeTune offers a computationally lightweight, theoretically-grounded, and highly flexible method
to mitigate hacking at deployment.

E Experimental Details

In this section, we provide additional details on our experimental setup. We provide our code here.
The experiments with the toy example and the verifiable rewards were done on a CPU (Apple M3
Chip). The experiments with the human-preferences were done on 1 A100 GPU with 48 GPU hours
(including preliminary experiments and testing).

E.1 Toy Example

In Figure 1, we present a toy example with one-dimensional rewards defined on [0, 1]. We set the
proxy reward to be rp(x) = x and the gold reward

rt(x) =
xp (1− x)

C
, C =

( p

p+ 1

)p 1

p+ 1

where C is a normalization constant so that the gold reward is bounded between 0 and 1 for
convenience. We choose this gold reward, as the reward under the Best-of-n distribution has a simple
closed-form solution. We set p = 12 and we find the expected value of true reward and the KL
divergence with respect to the reference distribution under four mechanisms:

1. Tilted Distribution: Exponential tilting of the gold reward, Qλ(x) ∝ exp(λ rt(x)) and of
the proxy reward, Qλ(x) ∝ exp(λ rp(x)).

2. Best-of-n (BoN): Selection of the maximum of n i.i.d. uniform draws.
3. Soft Best-of-n (SBoN): Softmax–based sampling of n i.i.d. uniform draws with inverse

temperature λ.
4. Best-of-Poisson (BoP): Selection of the maximum of n i.i.d uniform draws where n is

drawn from a Poisson distribution with rate µ.
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Figure 5: Accuracy vs. temperature for different sample sizes n with GPQA and Skywork Llama-3.1
8B. HedgeTune identifies the optimal temperature (dashed line) for each n.

We apply HedgeTune as presented in Alg. 4 for BoN and BoP. In both cases, we obtain an operating
point that corresponds exactly to the true hacking threshold, as shown in Figure 1. The success of this
algorithm hinges on Theorem 1 which guarantees the existence of (at least) one hacking threshold.
However, this guarantee does not hold for Soft BoN. Therefore, the optimization problem becomes
more challenging, and using vanilla estimators for the density causes numerical instabilities when
applied for Soft BoN.

E.2 Reward hacking in verifiable settings.

We include additional experiments from running HedgeTune with SBoN on the PPE dataset.
HedgeTune finds the best operating temperature for a given n. We plot the expected value of
the accuracy and show the retrieved maximizing temperature. In particular, with larger n, we need a
larger temperature to mitigate hacking. This corresponds to a stronger KL regularization.
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Figure 6: Accuracy vs. temperature for different sample sizes n with MATH and InternLM2 1.8B.
HedgeTune identifies the optimal temperature (dashed line) for each n.
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Figure 7: Accuracy vs. temperature for different sample sizes n with MMLU and InternLM2 1.8B.
HedgeTune identifies the optimal temperature (dashed line) for each n.
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Figure 8: Accuracy vs. temperature for different sample sizes n with MMLU and Llama3 OffsetBias
8B. HedgeTune identifies the optimal temperature (dashed line) for each n.
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E.3 Reward hacking in the wild

To observe reward hacking in the wild, we follow the setup of Coste et al. [46]. We first use
an annotated dataset provided by [46] which contains 1,000 prompts from the validation split of
AlpacaFarm dataset, along with 12,600 response generations per prompt from a 1.4b fine-tuned
Pythia model. Each prompt-response pair is labeled with the AlpacaFarm reward-model-human to
give ‘gold’ scores. Next, we would like to train proxy reward models on the preferences of this true
reward. We randomly sample a prompt with two responses from the annotated dataset and curate a
dataset of the form (prompt, chosen, rejected) where the chosen response is the response with the
higher gold reward score. We follow this procedure to curate four datasets with varying sizes (10k,
20k, 46k, 80k). For each dataset, we consider two variants: one with no label noise and one with
random 25% label noise. Next, we use the code kindly provided by the authors of [46] in their Github
repository to train proxy reward models with the different datasets over four random seeds (1, 2, 3
and 4) using their default hyperparameters (e.g., 10−5 learning rate and five epochs). Lastly, we score
the annotated dataset using the trained proxy reward models. The end result is a set of 800 prompts,
12 600 responses per prompt, along with gold and proxy scores for each prompt-response pair.

While reward hacking can appear without label noise (see left panels of Figures 9 and 10), reward
hacking is more pronounced with label noise as expected. Moreover, reward hacking is more apparent
when the proxy reward is trained on less data. One potential explanation is that, with fewer training
examples, the proxy is less well-calibrated and its estimation errors vary more sharply across inputs.
In that case, a small n might produce a deceiving reward gain. In contrast, errors may surface early
on with a large training dataset, so true reward declines immediately as sampling increases. In cases
of reward hacking, we see that SBoN with an appropriately chosen λ can (1) achieve the maximum
reward achieved by BoN/BoP and (2) mitigate reward hacking, as shown with the reward almost
flatlining after it reaches its peak value. We also witness cases where the proxy reward always
misaligns with the gold reward, causing a collapse of true reward from the onset of BoN. In that case,
the optimal hedging behavior is a uniform selection over responses, which is recovered with n = 1
for BoN or λ = 0 for SBoN.

Interestingly, we observe instances of what we call reward grokking as shown in the right panels
of Figures 10 and 12, where the true reward decreases or flat-lines across low- to mid-range sample
counts, only to undergo a sudden uptick at higher sample regimes, revealing a delayed but apparent
realignment of proxy and true objectives. We leave detailed investigation of reward grokking and its
implications for hedging strategies to future work.
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Figure 9: Expected true-reward vs. average number of samples with proxy trained on 10 000 examples:
(a) without label noise; (b) with 25% label noise.
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Figure 10: Expected true-reward vs. average number of samples with proxy trained on 20 000
examples: (a) without label noise; (b) with 25% label noise.
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Figure 11: Expected true-reward vs. average number of samples with proxy trained on 46 000
examples: (a) without label noise; (b) with 25% label noise.
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Figure 12: Expected true-reward vs. average number of samples with proxy trained on 80 000
examples: (a) without label noise; (b) with 25% label noise.
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hacking and multiple inference time methods (Best-of-n, Best of Poisson and Soft Best-
of-n). Specifically, the paper includes a theoretical study of hacking, a description and
characterization of the novel method Best of Poisson, and experiments validating the efficacy
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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conclusion (see Section 7).
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• The answer NA means that the paper has no limitation while the answer No means that
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
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3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We include proofs of all our theorems in the appendix, and include assumptions,
when appropriate, before or in each theoretical statement.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include details of our experimental setup in Section 5 and the appendix.
We use existing datasets and models for our setup and describe how we replicate existing
work on reward hacking to test our sampling methods.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include all code necessary to replicate the figures present in the paper on
Github.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training details, such as hyperparameters and data splits, as well as the
optimizer used to train the proxy models, will be included in the appendix.
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
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Answer: [No]
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include a description of the hardware used for these experiments in the
appendix of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics and verified that our research conforms
with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include a paragraph discussing broader impact in the conclusion.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any new data, models, or training algorithms that could
result in misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the datasets and models .
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We anonymously include our code in the Appendix of the paper. We document
in here and in the Github how to use the code to replicate our results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method developed in this research did not involve LLMs for any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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