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ABSTRACT

Using neural operators, we propose a novel framework for stochastic process
learning across arbitrary domains. In particular, we develop operator flow matching
for learning stochastic process priors on function spaces. Operator flow matching
provides the probability density of any finite collection of points, and enables
mathematically tractable functional regression at new points with mean and density
estimation. Our method outperforms state of the art models at stochastic process
learning, functional regression, and prior learning.

1 INTRODUCTION

Stochastic processes are foundational to many domains, from functional regression and physics
reanalysis, to financial markets, geophysics, and black box optimization. These processes inherently
involve stochasticity, can serve as prior distributions over functions, and provide the density of any
finite collection of points. Conventionally, priors over processes are hand-designed from predefined
Gaussian processes (GP) and their variants tuned against data, only allowing for GP regression. This
is despite the fact that phenomena modeled in the natural world often do not follow Gaussianity
Fig 1. Consequently, this hinders the flexibility and generalizability of these stochastic processes in
real-world applications, leaving behind significant challenges for more general stochastic process
learning (SPL).

In SPL, the prior over the stochastic process is learned from data, i.e., historical point evaluation of past
experiments. Learning the prior over the process is crucial for universal functional regression(UFR)
which is a recently proposed Bayesian method for functional regression and takes GP-regression as
its special case when the prior is Gaussian (Shi et al., 2024a). UFR is important to scientific and
engineering domains, including reanalysis, data completion, and uncertainty quantification, as well
as black box optimization, to name a few.

In this paper, we introduce a new operator learning framework for learning stochastic process priors
and performing efficient UFR, based on a generalization of marginal optimal-transport flow matching
(Tong et al., 2024), subsequently referred to as operator flow matching (OFM). To achieve this, we
extend neural operators (Azizzadenesheli et al., 2024)–designed initially to map functions between
infinite-dimensional spaces–to maps between collections of points by leveraging their functional
convergence properties. These serve as the main architecture blocks in OFM. We propose to generalize
marginal optimal transport flow matching to arbitrary collections of points, allowing us to learn
probability priors over the stochastic process, ergo, sampling the value of any collection points with
their associated density.

After learning the prior and having access to densities, OFM can be used for UFR, where given any
collection of points of the underlying function, we estimate the mean value of any new collection of
points and efficiently sample from their posterior values using stochastic gradient Langevin dynamics
(SGLD) (Welling & Teh, 2011). We show that OFM outperforms previous state of the art methods,
including deep GPs, neural processes, and the state-of-the-art operator flow (OPFLOW) (Salimbeni &
Deisenroth, 2017; Jankowiak et al., 2020; Garnelo et al., 2018; Kim et al., 2019; Shi et al., 2024a).

In the preliminary section3, we explain the SPL problem setup, define UFR, and generalize the flow
matching formulation to stochastic processes. In the method section 4, we propose marginal optimal
transport flow matching, generalized to stochastic processes, and we show how this model can be
used for SPL, distributional informed UFR, and also as a functional generative model.
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Figure 1: Operator Flow Matching (OFM) regression on Navier-Stokes functional data with resolution
64× 64. (a) 32 random observations. (b) Ground truth sample (c) Predicted mean from OFM. (d)
One posterior sample from OFM. (e) One posterior sample from best fitted GP.

To summarize, OFM is the first simulation-free ODE framework that transports a Gaussian process to
a target stochastic process for functional regression purpose, enabling likelihood estimation for any
collection of points. Compared to existing baselines in functional regression, OFM enjoys greater
expressiveness without the model constraints seen in deep GPs or OpFlow, and avoids the theoretical
limitations associated with neural processes (see Appendix A.8). We empirically show that regression
with OFM outperforms existing baselines, matches classical GP Regression on GP examples, and
delivers exceptional performance on highly non-Gaussian functional datasets, such as those from
Navier-Stokes equations and black hole simulations.

2 RELATED WORK

Neural operators. Neural operators constitute a new paradigm in machine learning for learning maps
between function spaces, a generalization of conventional neural networks that map between finite
dimensional spaces (Li et al., 2021; Kovachki et al., 2023). Among neural operator architectures,
Fourier neural operators (FNO) (Li et al., 2021) enable convolution in the spectral domain and have
been shown effective in operator learning (Pathak et al., 2022; Wen et al., 2023; Yang et al., 2021;
2023; Sun et al., 2023; Li et al., 2023). In this work, we use this as our choice of neural operators
architecture.

Direct function samples. There is a body of work on generative models dedicated to learning
distributions over functions, such that direct sampling on the function space is possible. For example,
generative adversarial neural operators (GANO) generalize generative adversarial nets on finite
dimensional spaces to function spaces (Rahman et al., 2022; Shi et al., 2024b), yielding a neural
operator generative model that maps Gaussian random fields (GRF) to data functions (Azizzadenesheli
et al., 2024). Other works in this area have followed the success of diffusion models (Song et al.,
2021; Ho et al., 2020) in finite dimensional spaces, e.g., denoising diffusion operators generalize
diffusion models to function spaces by using GRF as a mean of noisification and use neural operators
to learn the score operator on function valued data (Lim et al., 2023; Pidstrigach et al., 2023; Kerrigan
et al., 2023a). Moreover, the same principle has been deployed to generalize flow matching (Lipman
et al., 2023) to functional spaces (Kerrigan et al., 2023b), an approach closely related to our work.
However, these works on learning generative models on function spaces do not support UFR the way
GP-regression does because they (i) focus solely on generating function samples, (ii) do not clarify
how to model a stochastic process on point value sequential generation, and (iii) do not provide point
evaluation of probability density.

Stochastic processes. Earlier works on SPL have focused on hand-tuned methods in the style of
GP-regression. In these cases, an expert tunes the GP parameters given a set of experimental samples.
More advanced methods rely on deep GPs, in which a network of GPs is stacked on top of each other.
The parameters of deep GPs are commonly optimized by minimizing the variational free energy,
which serves as a bound on the negative log marginal likelihood. (Damianou & Lawrence, 2013; Liu
et al., 2020). Deep GPs have limitations in terms of learnability, expressivity, and computational
complexity. Warped GPs (Kou et al., 2013) and transforming GP (Maroñas et al., 2021) methods
use historical data to learn a pointwise transformation of GP values and achieve on par performance
compared to deep GP type methods. The pointwise nature of such approaches limits their generality.

Another attempt to address limitations in SPL is neural processes (Garnelo et al., 2018), inspired by
variational inference method and designed for sampling from function spaces. This method trains a
model to map any collection of points and their values to a vector, used as an input to a decoder that
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maps any collection of points to their values. The architectures used in these modes are not consistent
as the number of points grows, and same with the decoder, making the approach limited to finite
dimensions. The diffusion based variants (Dutordoir et al., 2023) also use uncorrelated Gaussian
noise, and the results do not exist in function spaces (Rahman et al., 2022; Lim et al., 2023). In the
end, methods based on neural processes still are unable to provide density estimation for collections
of points, as needed for UFR.

Finally, OPFLOW introduced invertible neural operators that are trained to map any collection of
points sampled from a GP to a new collection of points in the data space (Shi et al., 2024a), using the
maximum likelihood principle. This method is consistent as the resolution grows, captures likelihood
of any collection of points, and allows for UFR using SGLD. However, similar to normalizing
flow (Papamakarios et al., 2021) methods in finite dimensional domains, the use of invertible deep
learning models makes their training a challenge, particularly with regards to expressiveness.

3 PRELIMINARY

3.1 STOCHASTIC PROCESS LEARNING

Let (Ω,F , P ) denote a probability space and let (Rd,B(Rd)) denote a measurable space where B(R)
is the Borel space. Following the standard definition of stochastic processes, a stochastic process P
on a domain D is a collection of Rd-valued random variables indexed by members of D, i.e.,

{a(x) : x ∈ D}
jointly following the probability law P . In the special case of Gaussian processes, e.g., Wiener
process, following the Gaussian law for P , for any collection points {x1, x2, . . . , xn}, the random
variables {a(x1), a(x2), . . . , a(xn)} are jointly Gaussian, resulting in a function a to be drawn from
a Gaussian random field (GRF). Once again, we need to emphasize, {a(x1), a(x2), . . . , a(xn)} is not
a dataset but a discretized observation of one function a. In practice, the joint probability distribution
of the collection of the random variables is unknown a priori, and needs to be learned.

In SPL, we aim to learn an operator G that maps a base stochastic process P to another stochastic
process Q that represents the data. That is, for any collection of points {x1, x2, . . . , xn}, and for any
n, the operator G maps the law on {a(x1), a(x2), . . . , a(xn)} to {u(x1), u(x2), . . . , u(xn)}, where
u(x) is a pointwise evaluation of function data sample, i.e.,

{u(x1), u(x2), . . . , u(xn)} = G ({a(x1), a(x2), . . . , a(xn)}) .

It is convenient to use a GP as the base stochastic process P for mathematical tractability, i.e.,

{a(x1), a(x2), . . . , a(xn)} ∼ N (0,K ({x1, x2, . . . , xn}))
where K ({x1, x2, . . . , xn}) is a n× n covariance matrix with entries described by kernel function
k(xi, xj). Then, the probability of {u(x1), u(x2), . . . , u(xn)}, at evaluation points {x1, x2, . . . , xn},
for any n and collection of points on D is given by,

P ({u(x1), u(x2), . . . , u(xn)}) = JG
∣∣∣
{a(x1),a(x2),...,a(xn)}

P ({a(x1), a(x2), . . . , a(xn)}) .

where with abuse of notation P(u(x)) denotes the density of u(x) at point x, same for
P(a(x)), and similarly JG

∣∣∣
{a(x1),a(x2),...,a(xn)}

is the Jacobian of the map from the collection

of random variables {a(x1), a(x2), . . . , a(xn)} at points {x1, x2, . . . , xn} to random variables
{u(x1), u(x2), . . . , u(xn)}. It’s trivial to verify that Q is indeed a valid stochastic process via
Kolmogorov Extension Theorem (KET) (Kolmogorov & Bharucha-Reid, 2018) with a proof provided
in Appendix. A.2 . In SPL, we aim to learn a neural operator Gθ such that the resulting Q matches
the data process under the true G.

3.2 UNIVERSAL FUNCTIONAL REGRESSION

UFR is concerned with Bayesian regression on function spaces (Shi et al., 2024a), where it can
be used to infer the posterior of an unknown function on a domain D from a collection of point-
wise observations. The observations are often corrupted with noise of variance σ2, denoted as
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{û(x1), û(x2), . . . , û(xn)} or {û(xi)}ni=1. More specifically, for m ≥ n points at which the function
is to be inferred,

P
(
{u(x1), u(x2), . . . , u(xm)}

∣∣∣{û(x1), û(x2), . . . , û(xn)}
)

Note that when the prior over the function space is Gaussian, UFR reduces to the celebrated GP
regression. Following Bayes rule, and maps between stochastic processes, we obtain the log posterior
as follows,

logP
(
{u(xi)}mi=1

∣∣∣{û(xi)}ni=1

)
=− 1

2

n∑
i

(û(xi)− u(xi))
2

σ2
− n log(σ)− n

2
log(2π)

+ logP ({u(xi)}mi=1)− logP ({û(xi)}ni=1)

This equality holds for any collection of points. It is worth noting that the posterior is exact up to
constants, i.e., the second, third, and last terms are constant. Therefore, they do not contribute in
MAP estimation, mean estimation, and functional regression in general, and there is no need to
compute them.

3.3 GENERALIZING FLOW MATCHING TO STOCHASTIC PROCESSES

For any n, and points {x1, x2, . . . , xn}, consider an ODE system in which a vector of random
variables u0 ∈ Rn is gradually transformed into u1, for which, the ith entry is equal to u(xi), via a
smooth, time-varying vector field, denoted by Gt,

ut := ϕt(u0) = u0 +

∫ t

0

Gs(us)ds. (1)

Given the density of p0 := P ({a(x1), a(x2), . . . , a(xn)}) where u0 ∼ p0, the time-varying density
pt induced by the diffeomorphism ϕt or Gt can be computed using the well-known transport equation
(Lipman et al., 2023; Fjelde et al., 2024),

∂pt(ut)

∂t
= −(∇ · (Gtpt))(ut) (2)

Eq. 2 shows that constructing pt is equivalent to constructing Gt for finite dimensional spaces for
which the analysis carries to finite collection of random variables. In the following, we refer to pt as
the marginal probability path induced by Gt for the given collection of points. From Eq. 2, the log
density can be computed through integration,

log pt(ut) = log p0(u0)−
∫ t

0

(∇ · Gs)(us)ds. (3)

In this formulation, we are seeking a specific vector field that transports density q0 to target density q1
for any n and any collection of points {x1, x2, . . . , xn} with boundary conditions p0 = q0, p1 = q1.
We propose to extend flow matching (Lipman et al., 2023) to stochastic processes and parameterize a
potential vector field Gt with a neural operator Gθ, which can be optimized through the flow matching
objective for SPL,

LFM(θ) := sup
n

sup
{x1,x2,...,xn}

Et∼U(0,1),ut∼pt
∥Gθ(t, ut)− Gt(ut)∥2 (4)

Note that pt and ut depend on the collocation points. In the above equation, the suprema are
intractable and we replace them with expectation as a soft approximation. Moreover, the true Gt is
usually unknown and to address it, one can derive a probability path conditioned on latent variable z
of the same alphabet size as the collection. Consequently, the marginal probability path pt(ut) is a
mixture of conditional probability paths pt(ut|z),

pt(ut) =

∫
pt(ut|z)q(z)dz (5)

Gt(ut) = Eq(z)[
Gt(ut|z)pt(ut|z)

pt(ut)
]. (6)
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Given Eq. 6, the conditional flow matching (CFM) objective is defined as
LCFM(θ) := EnEx1,x2,...,xn

Et,q(z),pt(ut|z)∥Gθ(t, ut)− Gt(ut|z)∥2 (7)
Equations 4, when suprema are replaced with expectations, and 7 have identical gradient for θ,
which indicates ∇θLFM(θ) = ∇θLCFM(θ). In Flow Matching, the variable z is chosen as a single
data point u1 ∼ q1. Considering the class of Gaussian conditional probability paths pt(ut|u1) =
N (ut|µt(u1), σt(u1)

2K ({x1, x2, . . . , xn})), with conditional flow ϕt(ut|u1) = σtu0 + µt. Spe-
cially, we choose µt = tu1 and σt = 1 − (1 − σ)t, where σ > 0 is a small constant. Then
we can derive a closed-form expression for both the conditional probability and corresponding
vectorfield (Tong et al., 2024). Detailed derivation provided in Appendix A.1

pt(ut|u1) = N (ut|tu1, (tσ − t+ 1)2K ({x1, x2, . . . , xn})) (8)

Gt(ut|u1) =
u1 − (1− σ)ut

1− (1− σ)t
(9)

While the conditional vector field Gt(ut|u1) induces an optimal transport path from p0(ut|u1) to
p1(ut|u1), the induced marginal path pt(ut) is curved and not an optimal-transport path from prior
distribution q0(ut) to the data distribution q1(ut) in general. To address this, Tong et al. (2024)
introduced marginal optimal-transport flow matching in finite-dimensional spaces, which takes the
conditional variable z from a joint distribution π(u0, u1) combined with minibatch optimal transport
to approximate true marginal (or dynamic) optimal transport. This marginal optimal transport path
is a simpler trajectory, resulting in faster training and inference, as well as higher-quality samples
compared to the path defined in flow matching approach. In this work, establishing the above
formulation, we extend the above-developed flow matching formulation on the stochastic process to
their marginal optimal transport one as well as to SPL.

4 METHODS

In this section, we first introduce the framework of OFM, which extends marginal optimal transport
flow matching (Tong et al., 2024) to infinite-dimensional function spaces. Then, we show how to
model a stochastic process and efficiently evaluate exact and tractable likelihoods for any point
evaluation of functions with OFM. Lastly, we demonstrate how to use OFM for the UFR setting.

4.1 FRAMEWORK OF OPERATOR FLOW MATCHING

For a real separable Hilbert space (H, ⟨·, ·⟩, ∥·∥), equipped with the Borel σ− algebra of measurable
sets denoted by B(H), we introduce two measures on B(H) : ν0 as the reference measure and ν1 as
the data measure. Consider a function h0 sampled from ν0, such that h0 ∼ ν0. A smooth time-varying
functional vector field Gt : H → H then defines an ordinary differential equation

∂ϕt(h)

∂t
= Gt(ϕt(h)), (10)

with initial condition ϕ0(h0) = h0, where ϕt(h) the solution of Eq. 10, and t ∈ [0, 1]. Thus, ϕt(h)
represents a function h transported along a vector field from time 0 to time t. The diffeomorphism
ϕt induces a pushforward measure µt := [ϕt]♯(µ0), with µ0 = ν0, and we refer to µt as the path
of probability measure. The goal is to construct a path of probability measure such that at t = 1,
µ1 ≈ ν1. The dynamic relationship between the time varying measure µt and vector field Gt can be
characterized by the continuity equation:

∂µt

∂t
= −∇ · (µtGt) (11)

In practice, we use Eq. 11 in its weak form (Ambrosio et al., 2008; Kerrigan et al., 2023b) to check
whether a given vector field Gt generates the target µt:∫ 1

0

∫
H

∂φ(g, t)

∂t
+ ⟨Gt(g),∇gφ(g, t)⟩)dµt(g)dt = 0, ∀φ ∈ C∞

c (H× [0, 1]) (12)

Suppose that the time-varying vector field Gt and induced νt, which satisfy Eq.12, are known. We can
parameterize Gt with neural operator Gθ : [0, 1]×H → H. We can regress Gθ to target Gt through
flow matching objective.

L†
FM = Et∼U [0,1],g∼µt

∥Gθ(t, g)− Gt(g)∥2 (13)
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However, similar to its finite-dimensional counterpart, Gt is typically unknown. Moreover, there are
infinitely many paths of probability measures that satisfy the Eq. 12 and ensure µ1 ≈ ν1. Therefore,
it is necessary to specify a path of probability measures to effectively guide the learning of Gθ.

4.2 CONDITIONAL PROBABILITY MEASURES AND GAUSSIAN MEASURES

Consider a joint probability measure π(ν0, ν1) on H×H, where the reference measure ν0, is chosen
as a Gaussian measure, whose absolute continuity is well-studied (Bogachev, 1998). We characterize
ν0 by a Gaussian process with trace-class covariance operator. e.g. ν0 = N (m0, C0), where m0 is
the mean, C0 is the covariance operator. With the joint measure π(ν0, ν1), we sample a function pair
z := (h0, h1).

Assuming ν1 has full support on the Cameron-Martin space associated with ν0, we construct a
conditional probability measure µt(·|z) as a Gaussian measure with trace-class covariance operator
and small operator norm to approximate Dirac measures in the sense of weak convergence. Such
that, at t = 0 and t = 1, µt(·|z) is a centered around h0, h1, approximating δh0

, δh1
respectively;

Subsequently, we can construct a new marginal probability measure by mixing these approximated
Dirac measures:

µt(A) =

∫
µt(A|z)dπ(z), ∀A ∈ B(H) (14)

Due to dπ(z) being always positive, the conditional probability measure (Dirac measure approximated
by Gaussian measure) is absolutely continuous with respect to µt. Eq. 14 indicates that µ0 =∫
δh0

dπ(z) ≈ ν0, and µ1 =
∫
δh1

dπ(z) ≈ ν1. This formulation suggests that µ0, µ1 represent
convolutions of ν0, ν1 with Gaussian measures. For a more detailed discussion on convolution with
Gaussian measures, we refer the readers to Appendix B.1 of (Lim et al., 2023).

Suppose
∫ 1

0

∫
H
∫
H×H∥Gt(g|z)∥dµt(g|z)dπ(z) is finite to guarantee the vector field is sufficiently

regular. Under this condition, the vector field that generates µt as specified in Eq. 14 and Eq. 12 can
be expanded as follows :

Gt(g) =

∫
H×H

Gt(g|z)
dµt(·|z)
dµt

(g)dπ(z) (15)

Eq. 15 is a straightforward extension of the Theorem 1 as detailed in Kerrigan et al. (2023b), we
direct readers to Appendix A.1 of Kerrigan et al. (2023b) for more details. We note that µt(·|z) is
a Gaussian measure and can be expressed as µt(·|z) = N (mt, Ct), with mean mt and trace-class
covariance operator Ct. Inspired by Tong et al. (2024), we choose mt and Ct to have the following
forms:

mt = t · h1 + (1− t) · h0 (16)

Ct = σ2
minC0 (17)

where C0 is the same Gaussian covariance operator defined for µ0 and σmin is a small constant.
Further, similar to finite-dimensional flow matching, we only consider the simplest vector field
that applies a canonical transformation for Gaussian measures, such that the flow has the form:
ϕt(h|z) = mt + σminh0 ≈ t · h1 + (1 − t) · h0. From Eq. 10, we can get Gt(h|z) = h1 − h0,
indicating Gt(h|z) is independent of the time t and the path from h0 to h1 is a direct, straight line.
Equipped with well-constructed conditional vector field and probability measures, we can train a
neural operator vθ with the conditional flow matching loss

L†
CFM = Et∼U [0,1],g∼µt,z∼π(ν0,ν1)∥Gθ(t, g)− Gt(g|z)∥2. (18)

Next, we explore how to approximate the true optimal transport plan from optimal coupling of the
joint measure π(ν0, ν1). A common way for measuring the distance between two probability measure
is 2-Wasserstein distance, which a special case of static Kantorovich formulation (Kantorovich &
Rubinshtein, 1958). The static 2-Wasserstein distance is defined as follows

Wsta(ν0, ν1)
2
2 = inf

π∈Π

∫
H×H

∥h0 − h1∥2dπ(h0, h1) (19)

In the ODE framework, we also care about the dynamic form of the 2-Wasserstein distance to
estimate the cost along the transport trajectory, which also is a special case of dynamic Kantorovich

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

formulation (Chizat et al., 2018).

Wdyn(ν0, ν1)
2
2 = inf

µt,Gt

∫
H

∫ 1

0

∥Gt(g)∥2dµt(g)dt (20)

As stated in Step 3 of Proof of Theorem 4.3 of Chizat et al. (2018), for general measures ν0, ν1,
we have Wsta ≤ Wdyn. However, within the OFM framework, the marginal probability measure is
a sum of Dirac measures as described in Eq. 14, and we selected ν0 as a Gaussian measure and
assumed ν1 has full support on the Cameron-Martin space associated with ν0. Furthermore, the cost
function of 2-Wasserstein distance is squared L2 norm, which is continuous by nature. According to
Lemma 4.4 of (Chizat et al., 2018), Wsta = Wdyn for our specifically constructed µt and Gt in the
sense of weak convergence. Therefore, to get the dynamic optimal transport plan, we only need to
find a joint measure π(ν0, ν1) that achieves the infimum in Eq. 19. In practice, we use a minibatch
approximation of optimal coupling between ν0 and ν1. The above approach extends the dynamic
(marginal) optimal transport framework of (Tong et al., 2024) to infinite-dimensional function space.

4.3 LIKELIHOOD ESTIMATION AND BAYESIAN UNIVERSAL FUNCTIONAL REGRESSION

We parameterize Gθ with FNO (Li et al., 2021) to ensure our model is resolution agnostic, and assume
Gθ learns the map from ν0 to ν1, which serves as the prior. In practice, we deal with discretized
evaluations of functions that may have different sampling rate and resolution. For instance, consider
a function u sampled from µ1, observed on a collection of points f1 := {u(x1), u(x2), ..., u(xm)};
thus we have a density function P(f1) defined on collection of points {x1, x2, ..., xm}, where P(f1)
is derived from measure µ1. This is similar to how a multivariate Gaussian distribution can be derived
from a Gaussian measure characterized by a Gaussian process. Therefore, we can rewrite Eq. 3 as:

logP(f1) = logP(f0)−
∫ 1

0

(∇ · Gθ)(ft)dt, (21)

where f0 and ft are drawn from the reference Gaussian measure ν0 and νt, respectively, which
are also defined on the collection of point {x1, x2, ..., xm}. Thus P(f0) is a multivariate Gaussian
with a tractable density function. Furthermore, with the probability density function P(f1), we can
evaluate the precise likelihood of any f1 from P(f1) via Eq. 21. However, following a similar
argument to Grathwohl et al. (2018), the computation of ∇·Gθ(f) incurs a cost of O(D2) where D is
cardinality of set {x1, x2, ..., xm}. This quadratic time complexity renders the likelihood calculation
prohibitively expensive. To address this issue, we adopt the strategy proposed in Grathwohl et al.
(2018), utilizing the unbiased Skilling-Hutchinson trace estimator (Hutchinson, 1989; Skilling, 1989)
to approximate the divergence term. This technique reduces the computation cost to O(D), which
is the same as the cost of inference, thereby streamlining the evaluation process. The estimator is
implemented as follows:

∇ · Gθ(f) = Ep(ε)[ε
T ∂Gθ(f, t)

∂f
ε] (22)

In the unbiased trace estimator, the random variable ε is characterized by E(ε) = 0 and Cov(ε) =
I . The gradient computation in Eq. 22 can be efficiently handled with reverse-mode automatic
differentiation, allowing for precise estimation with arbitrary error by averaging over a sufficient
number of runs, which can benefit from parallel computing of GPUs.

With the efficient tool established for estimating the likelihood of any discretized function samples,
we now turn our attention to Bayesian functional regression. Consider a collection of pointwise
observations of the underlying unknown function drawn from µ1, that is corrupted with Gaussian
noise, denoted as {û(x1), û(x2), . . . , û(xn)} or {û(xi)}ni=1. We specifically focus on Gaussian
white noise characterized by ϵ ∼ N (0, σ2), such that û(xi) = u(xi) + ϵi for i ∈ {1, · · · , n}. In
UFR setting, we are interested in the posterior distribution on new m ≥ n points that include the n
observation points. With Bayes rule, we have the posterior:

P
(
{u(xi)}mi=1

∣∣∣{û(xi)}ni=1

)
=

P
(
{û(xi)}ni=1

∣∣∣{u(xi)}mi=1

)
· P ({u(xi)}mi=1)

P ({û(xi)}ni=1)
(23)
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Taking the logarithm of Eq. 23, we have:

logP
(
{u(xi)}mi=1

∣∣∣{û(xi)}ni=1

)
= logP

(
{û(xi)}ni=1

∣∣∣{u(xi)}mi=1

)
+ logP ({u(xi)}mi=1)

− logP ({û(xi)}ni=1) (24)

Given ϵi ∼ N (0, σ2) and {ϵi}ni=1 is a multivariate Gaussian, then {û(xi)}ni=1

∣∣∣{u(xi)}ni=1 is a shifted
multivariate Gaussian with mean {u(xi)}ni=1 translated from the original multivariate Gaussian
{ϵi}ni=1. Due to the translation invariance property of Gaussian distribution, We have :

logP
(
{û(xi)}ni=1

∣∣∣{u(xi)}ni=1

)
= logP ({ϵi}ni=1) = −

∑n
i=1∥û(xi)− u(xi)∥2

2σ2
− n

2
log(2πσ2)

(25)
We notice m > n and {û(xi)}ni=i only depends on {u(xi)}ni=1, and doesn’t depend on {u(xi)}mi=n+1.

Thus logP
(
{û(xi)}ni=1

∣∣∣{u(xi)}mi=1

)
= logP

(
{û(xi)}ni=1

∣∣∣{u(xi)}ni=1

)
.

For evaluating logP ({u(xi)}mi=1), which is the second part on the right-hand side of Eq. 24, we can
efficiently calculate it with the likelihood estimation tool described above. The third part on the right
hand side of Eq. 24 (logP ({û(xi)}ni=1)) represents the evidence and is constant. Thus the posterior
distribution of Eq 24 can be simplified as:

logP
(
{u(xi)}mi=1

∣∣∣{û(xi)}ni=1

)
= −

∑n
i=1∥û(xi)− u(xi)∥2

2σ2
+ logP ({u(xi)}mi=1) + C (26)

Where the constant C = −n
2 log(2πσ2) − logP ({û(xi)}ni=1). Given the closed-form posterior

distribution, we adopt SGLD (Welling & Teh, 2011) to efficiently sample from the posterior, and
then derive statistical features of interest, e.g. mean and variance, from the posterior samples. More
specifically, we implement the posterior sampling strategy developed by Shi et al. (2024a), which
suggests that given an invertible framework, sampling within the Gaussian process space (where the
Gaussian measure ν0 is defined) and then mapping to the data function space (where data measure
ν1 defined) yields better performance compared to direct sampling in the data function space. In all
experiments, we use the dopri5 ODE solver provided by torchdiffeq Chen et al. (2019) with
atol=1e-5 and rtol=1e-5. Detailed posterior sampling algorithm is provided in Appendix A.5

5 EXPERIMENTS

In this section, we demonstrate the superior regression performance compared to several baselines
across a variety of function datasets, including both Gaussian and highly non-Gaussian Process. As
baselines, we employ standard Gaussian Process Regression (Williams & Rasmussen, 2006), Deep
GPs (Salimbeni & Deisenroth, 2017; Jankowiak et al., 2020), Neural Processes (Kim et al., 2019;
Garnelo et al., 2018), and Operator Flow (Shi et al., 2024a).

For our function dataset, we analyze: (1) Gaussian and non-Gaussian with known posterior, including
1D Gaussian Processes, 2D Gaussian Random Fields (GRF), and 1D Truncated Gaussian Processes
(TGP). (2) Highly non-Gaussian process datasets with unknown posterior, such as those derived from
Navier-Stokes equations, black hole dataset from expensive Monte Carlo simulation, and 2D Signed
Distance Functions extracted from MNIST digits (MNIST-SDF) (Sitzmann et al., 2020). During
regression, we assume that the prior Gθ is always successfully trained and remains frozen. Details
about the learning process for priors are provided in the Appendix A.6.

Gaussian Processes. This experiment replicates the results of classical GPR, wherein the posterior
distributions are precisely known in a closed form. The process involves generating a single new
realization from the data measure ν1. We then select observations at 6 randomly chosen positions,
incorporating a predefined noise level. The posterior is inferred across 128 positions, which includes
estimating noise-free values at the observation points. We evaluate our results with two commonly
used quantities in the GP literature (1) Standardized Mean Squared Error (SMSE) that normalizes
the mean squared error by the variance of the ground truth; and (2) Mean Standardized Log Loss
(MSLL), originally introduced by Williams & Rasmussen (2006), defined as:

− log p(y∗|{û(xi)}ni=1, x∗) =
1

2
log(2πσ2

∗) +
(y∗ − ȳ)2

2σ2
∗

(27)
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Figure 2: OFM regression on GP data. (a) Ground truth GP regression with observed data and
predicted samples. (b) OFM regression with observed data and predicted samples. (c) Standard
deviation comparison between true GP and OFM predictions.
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Figure 3: OFM regression on TGP data. (a) Ground truth TGP regression with observed data and
predicted samples. (b) OFM regression with observed data and predicted samples. (c) Standard
deviation comparison between true TGP and OFM predictions. (d) prior GP regression with observed
data and predicted samples. (e) Standard deviation comparison between true TGP and GP prior
predictions.

where {û(xi)}ni=1 represents observations, x∗, y∗ indicate the new positions queried, and the test
data (true posterior samples). Meanwhile, ȳ, σ2

∗ are predicted mean and variances from the model.
We average out SMSE and MSLL over a test dataset contains 1000 true GP posterior samples for all
models. The performance of each model is detailed in Table 1. From Fig. 2, the regression with OFM
matches the analytical solution very well and provides realistic posterior samples.

Truncated Gaussian Processes. In this experiment, we analyze the regression performance of OFM
for tractable non-Gaussian processes. Specifically, we work on truncated Gaussian Process (Swiler
et al., 2020; Shi et al., 2024a), which constrains the function amplitude within a specified range.
This is achieved by applying a sampling-rejection strategy on samples from the GP prior. We set
the bounds of our TGP to [−1.2, 1.2] and perform regression using observations only at three points,
while estimating the posterior across 128 points. Subsequently, we sample 1000 true TGP posteriors
from the GP prior to calculate the mean and standard deviation. Traditional metrics like MSLL
and SMSE, which assume a Gaussian posterior, are not suitable for TGP. Therefore, we evaluate
performance using the mean squared error for both the predicted mean and standard deviation. The
results are reported in Table. 1, and illustrated in Fig. 3. OFM accurately learns the specified bounds
and provides accurate estimations of mean and standard deviation, along with realistic posterior
samples. In contrast, directly applying GP regression exceeds the bounds and yields unrealistic
posterior samples.

Gaussian Random Fields. Similar to the 1D GP example, we extend our regression analysis to 2D
GRF. As shown in Fig. 5 and detailed in Table 1, OFM provide accurate posterior estimation. The
relative error shown in Fig. 5 is the absolute error normalized by the maximum absolute value of the
mean prediction derived from the ground truth GP regression.
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Navier-Stokes, Black hole and MNIST-SDF datasets. We collected a 2D Navier-Stokes dataset
and applied OFM for the regression. Unlike Gaussian Process, where MSLL and SMSE score serve
as standard benchmarks, evaluating the performance of models on general non-Gaussian processes
presents a significant challenge due to the difficulty or impossibility of determining the true posterior
and lack of benchmarks. Therefore, we present the predicted mean, and a posterior sample in Fig 1
for visual comparison with the ground truth. The predicted mean, along with the posterior sample,
are closely aligned with the ground truth. In contrast, traditional GP regression failed to accurately
capture the dynamics of the Navier-Stokes data. In Fig. 4, we conduct a similar analysis using a
simulated black hole dataset. Here, OFM provides a more realistic mean and posterior sample that
capture the density and swirling patterns of the black hole. Once again, GPR fails to capture these
key statistics. Next, we observe similar outcomes when applying OFM to the MNIST-SDF example
(Fig 7), where OFM correctly recognizes the number "7" while GPR does not.

Partial observations
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(e)

Figure 4: OFM regression on black hole data with resolution 64× 64. (a) 32 random observations.
(b) Ground truth sample. (c) Predicted mean from OFM. (d) One posterior sample from OFM. (e)
One posterior sample from best fitted GP.

Dataset → 1D GP 2D GRF 1D TGP

Algorithm ↓ Metric → SMSE SMLL SMSE SMLL µ σ

GP prior - - - - 6.4 · 10−2 1.6 · 10−2

OpFlow 5.0 · 10−1 2.0 · 10−1 1.4 · 10−1 1.1 · 10−1 1.3 · 10−2 3.9 · 10−3

NP 6.1 · 10−1 4.5 · 10 0 1.7 · 10−1 2.1 · 10 0 1.0 · 10−1 1.9 · 10−2

ANP 5.1 · 10−1 9.8 · 10−1 1.6 · 10−1 1.1 · 10 0 1.4 · 10−1 1.7 · 10−2

DGP 4.1 · 10−1 6.8 · 10−2 1.8 · 10 0 4.2 · 10 0 4.9 · 10−1 1.4 · 10−2

DSPP 4.7 · 10−1 6.5 · 10 0 1.9 · 10−1 6.6 · 10 0 1.1 · 10−2 1.3 · 10−2

OFM 4.1 · 10−1 5.5 · 10−2 1.3 · 10−1 1.6 · 10−1 5.2 · 10−3 9.5 · 10−4

Table 1: Comparison of OFM with baseline models: GPR; OpFlow (Shi et al., 2024a); Neural
Processes ( Garnelo et al. (2018), NP); Attentive NP ( Kim et al. (2019), ANP); Deep variational
GP ( Salimbeni & Deisenroth (2017), DGP); Deep Sigma Point Process ( Jankowiak et al. (2020),
DSSP); Datasets contain 1D GP, 2D GRF, and 1D TGP examples. Metrics SMSE and SMLL used for
1D GP and 2D GRF example. Mean squared error for the predicted mean (µ) and predicted standard
deviation (σ) are used for TGP example. Performance of GP regression for 1D GP and 2D GRF are
removed (marked with ’−’), which are taken as the ground truth. Best performance in bold.

6 CONCLUSION

In this paper, we proposed Operator Flow Matching (OFM) for stochastic process learning, which
generalizes finite-dimensional marginal optimal transport flow matching model to infinite-dimensional
function space. OFM efficiently computes the probability density for any finite collection of points
and supports mathematically tractable functional regression. We extensively tested OFM across a
diverse range of datasets, including those with closed-form GP and non-GP data, as well as highly
non-GP such as Navier-Stokes and black hole data. In comparative evaluations, OFM consistently
outperformed all baseline models, establishing new standards in stochastic process learning and
regression.
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A APPENDIX

A.1 DERIVATION OF EQ. 9 IN SECTION 3.3

In this part, we show the detailed derivation of Eq. 9. In Flow Matching, the variable z is chosen as a
single data point u1 ∼ q1, and u0 ∼ N (0,K ({x1, x2, . . . , xn})). Considering the class of Gaussian
conditional probability paths

pt(ut|u1) = N (ut|µt(u1), σt(u1)
2K ({x1, x2, . . . , xn})) (28)

With conditional flow ϕt(ut|u1) = σtu0+µt. Specially, we choose µt = tu1 and σt = 1− (1−σ)t,
where σ > 0 is a small constant. From Eq. 10 (or Theorem 3 of Lipman et al. (2023)), a vector that
defines the conditional flow is :

Gt(ut|u1) =
σ′
t

σt
(ut − µt) + µ′

t(u1) (29)

Then we can derive a closed-form expression for both the conditional probability and corresponding
vector field (Tong et al., 2024) by plug in µt and σt into Eq. 28 and Eq. 29

pt(ut|u1) = N (ut|tu1, (tσ − t+ 1)2K ({x1, x2, . . . , xn})) (30)

Gt(ut|u1) =
−(1− σ)

1− (1− σ)t
(ut − tu1) + (u1) =

u1 − (1− σ)ut

1− (1− σ)t
(31)

Now, let’s check the boundary conditions. At t = 0,

p0(ut|u1) = N (ut|0,K ({x1, x2, . . . , xn}) = q0 (32)

At t = 1,
p1(ut|u1) = N (ut|u1, σ

2K ({x1, x2, . . . , xn})
σ→0−−−→ δu1

(ut) (33)

Eq. 32 and Eq. 33 describe how we interpolate between q0 and δu1(ut), consistent with those
defined in (Lipman et al., 2023). From Eq. 5, we have p1(u1) =

∫
p1(ut|u1)q1(u1)du1 = q1 and

p0(u0) =
∫
q0(u0)q1(u1)du1 = q0, which show boundary conditions are satisfied.

A.2 MODEL STOCHASTIC PROCESS WITH INFINITE-DIMENSIONAL FLOW MATCHING VIA
KOLMOGOROV EXTENSION THEOREM

Consider a Gaussian Process P : X → Y , for a finite sequence or set {x1, x2, . . . xn} with xi ∈ X ,
we have {a(x1), a(x2), . . . a(xn)} = P({x1, x2, . . . xn}) as a multivariate Gaussian distribution.
Follow the definition in Section 3.1, we define an operator G and for any finite set, we have

{u(x1), u(x2), . . . , u(xn)} = G ({a(x1), a(x2), . . . , a(xn)})

With the with abuse of notation P(u(x)) denotes the density of u(x) at point x, same for P(a(x)),
then

P ({u(x1), u(x2), . . . , u(xn)}) = JG
∣∣∣
{a(x1),a(x2),...,a(xn)}

P ({a(x1), a(x2), . . . , a(xn)}) . (34)

where JG
∣∣∣
{a(x1),a(x2),...,a(xn)}

is the Jacobian of the map from the collection of ran-

dom variables {a(x1), a(x2), . . . , a(xn)} at points {x1, x2, . . . , xn} to random variables
{u(x1), u(x2), . . . , u(xn)}. According to the Kolmogorov Extension Theorem (Kolmogorov
& Bharucha-Reid, 2018), to establish that a valid stochastic process Q, which has
P ({u(x1), u(x2), . . . , u(xn)}) as its finite dimensional distributions, it is essential to demonstrate
that such a joint distribution satisfies the following two consistency properties:

Permutation invariance. For any permutation π of {1, · · · , n}, the joint distribution should remain
invariant when elements of {x1, · · · , xn} are permuted, such that

P ({u(x1), u(x2), . . . , u(xn)}) = P
(
{u(xπ(1)), u(xπ(2)), . . . , u(xπ(n))}

)
(35)
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Marginal Consistency. This principle specifies that that if a portion of the set is marginalized, the
marginal distribution will still align with the distribution defined on the original set, such that for
m ≥ n

P ({u(x1), u(x2), . . . , u(xn)}) =
∫

P ({u(x1), u(x2), . . . , u(xm)}) du(xn+1) · · · du(xm) (36)

The permutation invariance property is naturally upheld when utilizing operator, as there is no
inherent order among the elements in the set {x1, x2, . . . , xn}. Furthermore, the marginal consistency
property is also maintained due to the definition of operator G (see Eq. 34), which ensures that
P ({u(x1), u(x2), . . . , u(xn)}) is closed under marginalization. While verifying that Q constitutes a
valid induced stochastic process is straightforward given the G, approximating the G with a neural
operator with induced Jacobian JG

∣∣∣
{a(x1),a(x2),...,a(xn)}

for any set {x1, x2, · · ·xn} is non-trivial and

depends highly on the model used. In this study, we develop optimal-transport infinite-dimensional
flow matching, which acts as a diffeomorphism that applies a transformation to a Gaussian measure
characterized by a Gaussian process. The Jacobian matrix for any collection of points is determined
by the integrating the divergence of learnt vector field as stated in Eq. 21

A.3 EXAMPLE OF POSTERIOR SAMPLES

In this section, we initially present the regression result of OFM in another additional N-S scenario,
as illustrated in Fig 6. Subsequently, we display more posterior samples used in the 2D regression
examples. As depicted in Fig 8, 9, 10, OFM successfully generates realistic posterior samples that are
consistent with the ground truth and demonstrate appropriate variability. In contrast, GP Regression
fails to produce explainable posterior samples.
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Figure 5: OFM regression on GRF data with resolution 32×32. (a) 32 random observations. (b)
Predicted mean from OFM. (c) Ground truth mean from GP regression. (d) Misfit of the predicted
mean. (e) Misfit of predicted standard deviation. (f) Predicted samples from OFM. (g) Predicted
samples from GPR.
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Figure 6: OFM regression on Navier-Stokes functional data with resolution 64× 64. (a) 32 random
observations. (b) Ground truth sample (c) Predicted mean from OFM. (d) One posterior sample from
OFM. (e) One posterior sample from best fitted GP.
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Figure 7: OFM regression on MNIST-SDF with resolution 64× 64. (a) 64 random observations. (b)
Ground truth sample. (c) Predicted mean from OFM. (d) One posterior sample from OFM. (e) One
posterior sample from best fitted GP.
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Figure 8: OFM regression on NS data. (a) Posterior samples from OFM. (b) Posterior samples from
GPR.
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Figure 9: OFM regression on black hole data. (a) Posterior samples from OFM. (b) Posterior samples
from GPR.
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Figure 10: OFM regression on MNIST-SDF data. (a) Posterior samples from OFM. (b) Posterior
samples from GPR.
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A.4 CO-DOMAIN FUNCTIONAL REGRESSION WITH OFM

In this section, we expand our regression framework to accommodate co-domain settings, as many
function datasets feature a co-domain dimension greater than one. For example, earthquake waveform
data commonly include three directional components, leading to a three-dimensional co-domain.
Similarly, the velocity field in fluid dynamics usually features three directional components, also
resulting in a dimension of co-domain of three.

We illustrate this extension through a 2D GRF example with a co-domain of 3 (channel dimension of
3). In learning the prior, we define the reference measure (µ0) as a joint measure (Wiener measure)
of three identical but independent Gaussian measures while the target measure (µ1) is another Wiener
measure. We keep all other parameters unchanged as those described in the 2D GRF regression
tasks, with the only modification being an increase in the channel dimension from one to three. After
training the prior (training detail provided in Appendix A.6), and provided 32 random observations
across the three channels at co-locations, we then perform regression with OFM across these channels
jointly. As demonstrated in Fig 11, OFM accurately estimate the mean and uncertainty across three
channels.
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Figure 11: OFM regression on co-domain GRF data with resolution 32x32. (a) 32 random observa-
tions at co-locations. (b) Predicted mean from OFM. (c) Ground truth mean from GP regression. (d)
Misfit of the predicted mean. (e) Misfit of predicted standard deviation.

A.5 POSTERIOR SAMPLING WITH STOCHASTIC GRADIENT LANGEVIN DYNAMICS

In this section, we describe how to sample from posterior distribution with SGLD. We denote
logarithmic posterior distribution (Eq. 26) as logPθ and denote a set of posterior samples as {ut

θ}Nt=1,
where each ut

θ is defined on a collection of point {xi}mi=1.

By following the standard SGLD pipeline as described by Welling & Teh (2011), we can obtain a set
of N posterior samples {ut

θ}Nt=1. However, SGLD is known to be sensitive to the choice of regression
parameters and can become trapped in local minima, leading to convergence issues, especially in
regions of high curvature (Li et al., 2015). To mitigate these challenges, Shi et al. (2024a) proposed
that within an invertible framework, drawing a posterior sample ut

θ is equivalent to drawing a sample
atθ in Gaussian space, since ut

θ uniquely defines atθ and vice versa. This approach can stabilize
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the posterior sampling process and is less sensitive to the regression parameters due to the inherent
smoothness of the Gaussian process. Additionally, Shi et al. (2024a) suggests starting from maximum
a posteriori (MAP) estimate of atθ, denoted as aθ, which can reduces the number of burn-in terations
needed in SGLD. We adopt the same sampling strategy and refer readers to the detailed discussion in
Shi et al. (2024a). The algorithm is reported in Algorithm 1

When the size of observations or context points ({û(xi)}ni=1) is 0, sampling from the posterior
degrades to sampling from the prior, the results of which are presented in the subsequent section.

Algorithm 1 Posterior sampling with SGLD

1: Input and Parameters: Logarithmic posterior distribution logPθ, temperature T , learning rate
ηt, MAP aθ, burn-in iteration b, sampling iteration tN , total iteration N .

2: Initialization: a0θ = aθ
3: for t = 0, 1, 2, . . . , N do
4: Compute gradient of the posterior: ∇aθ

logPθ

5: Update at+1
θ : at+1

θ = atθ +
ηt

2 ∇ logPθ +
√
ηtTN (0, I)

6: if t ≥ b then
7: Every tN iterations: obtain new sample at+1

θ , and corresponding ut+1
θ

8: end if
9: end for

A.6 PRIOR LEARNING WITH OFM

In this part, we elaborate the prior learning process and the evaluation of performance. We employ
Matern kernel to construct the reference GP and to prepare training datasets for 1D GP, 2D GRF, and
1D TGP. We have set the kernel length l = 0.01 with a smoothness factor ζ = 0.5 for all reference
GPs. OFM maps the GP samples from reference GPs to data samples and is resolution-invariant,
which means OFM can be trained with functions at any resolution and evaluated at any resolution.

1D GP dataset. We choose l = 0.3 and ζ = 1.5 and generate 20, 000 training samples on domain
[0, 1] with a fixed resolution of 256. We use autocovariance and histogram of point-wise value as
metrics for evaluation. We evaluate OFM at several different resolutions shown Fig 12, 13, 14, which
demonstrate OFM’s excellent capability to learn the function prior.
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Figure 12: OFM for 1D GP prior learning, evaluated at resolution=128. (a) Random samples from
ground truth and generated by OFM. (b) Autocovariance and histogram comparison
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Figure 13: OFM for 1D GP prior learning, evaluated at resolution=256. (a) Random samples from
ground truth and generated by OFM. (b) Autocovariance and histogram comparison

1D TGP dataset. We choose l = 0.3 and ζ = 1.5 and generating 20, 000 training samples on
domain [0, 1] with a fixed resolution of 256. We set [−1.2, 1.2] for the bounds. Results provided in
Fig 15, 16, 17.
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Figure 14: OFM for 1D GP prior learning, evaluated at resolution=512. (a) Random samples from
ground truth and generated by OFM. (b) Autocovariance and histogram comparison
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Figure 15: OFM for 1D TGP prior learning, evaluated at resolution=128. (a) Random samples from
ground truth and generated by OFM. (b) Autocovariance and histogram comparison
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Figure 16: OFM for 1D TGP prior learning, evaluated at resolution=256. (a) Random samples from
ground truth and generated by OFM. (b) Autocovariance and histogram comparison

0 100 200 300 400 500
1.0

0.5

0.0

0.5

1.0

Ground Truth (resolution=512)

0 100 200 300 400 500

1.0

0.5

0.0

0.5

1.0

Operator Flow Matching (OFM)

(a)

0 50 100 150 200
Number of lags

0.05

0.00

0.05

0.10

0.15

0.20
Autocovariance

Ground Truth
OFM

4 2 0 2 4
Value

0.0

0.2

0.4

0.6

Histogram

(b)

Figure 17: OFM for 1D TGP prior learning, evaluated at resolution=512. (a) Random samples from
ground truth and generated by OFM. (b) Autocovariance and histogram comparison
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2D Naiver-Stokes, Black hole, MNIST-SDF datasets. All the following 2D datasets are defined
on domain [0, 1]× [0, 1] and have a resolution of 64× 64. We collected a 2D Navier-Stokes dataset
consisting of 20000 samples, with viscosity = 1e − 4 . The results, including zero-shot super-
resolution, are provided in Fig 18, 19. The learning of Black hole dataset, generated using expensive
Monte Carlo method, is detailed in Fig 20, 21. Additionally, we trained OFM on 20, 000 MNIST-SDF
samples, the outcomes are illustrated in Fig 22, 23.
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Figure 18: OFM for 2D N-S prior learning, evaluated at resolution=64× 64. (a) Random samples
from ground truth. (b) Random samples generated by OFM. (c) Autocovariance comparison
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Figure 19: OFM for 2D N-S prior learning, evaluated at 128 × 128 resolution (zero-shot super-
resolution)
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Figure 20: OFM for 2D black hole prior learning, evaluated at resolution=64. (a) Random samples
from ground truth. (b) Random samples generated by OFM. (c) Autocovariance comparison
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Figure 21: OFM for 2D black hole prior learning, evaluated at 128 × 128 resolution (zero-shot
super-resolution)
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Figure 22: OFM for 2D MNIST-SDF prior learning, evaluated at 64× 64 resolution. (a) Random
samples from ground truth. (b) Random samples generated by OFM.
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Figure 23: OFM for 2D MNIST-SDF prior learning, evaluated at 128× 128 resolution. (a) Random
samples from ground truth. (b) Random samples generated by OFM.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.7 DETAILS OF EXPERIMENTAL SETUP

In this section, we outline the details of experiments setup used in this paper. Since regression with
OFM requires learning the prior first, we list the parameters used for learning the prior and regression
separately. We employ FNO as the backbone, implemented using neuraloperator library (Li
et al., 2021). All time reported in the subsequent tables are based on one computations performed
using a single NVIDIA RTX A6000 (48 GB) graphics card.

Table 2 details the parameters used for training the prior. For instance, in the 1D GP prior learning
experiment, the dataset consists of 20,000 samples, each with a co-domain dimension (or channel) of
one. The batch size is set at 1024, and the model is trained over 500 epochs. The total training time is
about 0.76 hours, and the size of the trained model is 37.1 megabytes.

Tables 3, 4, and 5 detail the parameters for SGLD sampling as described in Algorithm 1. For example,
in the 1D GP regression as an example, the regression takes 40,000 iterations with a burn-in phase of
3,000 iterations. Posterior samples are collected every 10 iterations. The temperature for the injected
noise during the gradient update is set at 1, and the learning rate decays exponentially from 0.005 to
0.004 (defined in Algorithm 1). We average 32 runs with the Hutchinson trace estimator to evaluate
the likelihood, utilizing GPU parallel computing. The noise level, as specified in Equation 26, is 0.01
in this regression task. Then given 6 random observations, we ask for the posterior samples across
128 points. The GPU memory usage for the regression task is 4 gigabytes, with the total runtime to
4.91 hours.

Datasets Size of Dataset Channels Batch Size Epochs Training Time Model Size
1D GP 2 · 104 1 1024 5 · 102 0.76 h 37.1 MB

1D TGP 2 · 104 1 1024 5 · 102 1.24 h 37.1 MB
2D GRF 2 · 104 1 256 5 · 102 1.14 h 76 MB

2D co-domain GRF 2 · 104 3 256 5 · 102 1.01 h 76 MB
2D N-S 2 · 104 1 256 5 · 102 3.79 h 286 MB

2D Black hole 1.2 · 104 1 256 5 · 102 2.28 h 286 MB
2D MNIST-SDF 2 · 104 1 256 5 · 102 8.31 h 286 MB

Table 2: Parameters used in experiments of prior learning

Datasets Total Iteration Burn-in Iteration Sampling Iterations Temperature of Noise
1D GP 4 · 104 3 · 103 10 1

1D TGP 4 · 104 3 · 103 10 1
2D GRF 2 · 104 3 · 103 10 1

2D co-domain GRF 2 · 104 3 · 103 10 1
2D N-S 2 · 104 3 · 103 10 1

2D Black hole 2 · 104 3 · 103 10 1
2D MNIST-SDF 2 · 104 3 · 103 10 1

Table 3: Parameters used in regression experiments - Part A

Datasets Initial Learning Rate End Learning Rate Hutchinson Samples Noise Level
1D GP 5 · 10−3 4 · 10−3 32 1 · 10−2

1D TGP 5 · 10−3 4 · 10−3 32 1 · 10−3

2D GRF 1 · 10−3 8 · 10−4 32 1 · 10−2

2D co-domain GRF 1 · 10−3 8 · 10−4 16 1 · 10−2

2D N-S 3 · 10−3 2 · 10−3 8 1 · 10−3

2D Black hole 5 · 10−3 4 · 10−3 8 1 · 10−3

2D MNIST-SDF 5 · 10−3 4 · 10−3 8 1 · 10−3

Table 4: Parameters used in regression experiments - Part B
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Datasets Number of Observations Inquired Grids GPU Memory Running Time
1D GP 6 128 4 GB 4.91 h

1D TGP 3 128 4 GB 5.42 h
2D GRF 32 32× 32 22 GB 9.70 h

2D co-domain GRF 32 32× 32 31 GB 5.05 h
2D N-S 32 64× 64 44 GB 13.65 h

2D Black hole 32 64× 64 44 GB 13.37 h
2D MNIST-SDF 64 64× 64 44 GB 9.41 h

Table 5: Parameters used in regression experiment - Part C

A.8 DETAILED ANALYSIS OF OFM AND COMPARISON WITH EXISTING METHODS

In this section, we elaborate the connection and difference with pervious work, highlight contributions
and potential limitations of our work. The regression with OFM involves a two-steps process:
(i) learning a prior on function space, and (ii) sampling from the posterior given observations.
Consequently, the OFM framework has connections with both generative models on function space
and the models developed for functional regression. In the following, we provide a comprehensive
comparative analysis with related models and baselines, including operator flow (OpFlow) (Shi
et al., 2024a), conditional optimal transport flow matching (COT-FM) (Kerrigan et al., 2024), neural
processes (NPs) (Garnelo et al., 2018; Dutordoir et al., 2023)

Comparison with OPFLOW. OPFLOW introduces invertible neural operators, which generalizes
RealNVP (Dinh et al., 2017) to function space and maps any collection of points sampled from a
GP to a new collection of points in the data space, using the maximum likelihood principle (Shi
et al., 2024a). This method captures the likelihood of any collection of point consistently as the
resolution increases and allows for UFR using SGLD. Despite these advantages, the requirement for
an invertible neural operator brings training and expressiveness challenges. On the contrary, OFM
adopts a simulation-free ODE framework for prior learning, which offers enhanced expressiveness
and ensures training stability through a simple regression objective while avoiding using the invertible
neural operator. In addition, OFM proposes a non-trivial extension of UFR to the simulation-free ODE
framework. These improvements render OFM a more practical solution for challenging functional
regression tasks.

Comparison with COT-FM. COT-FM (Kerrigan et al., 2024) proposes a conditional generalization of
Benamou-Brenier Theorem (Benamou & Brenier, 2000), formulating a conditional optimal transport
plan that applicable for both Euclidean and Hilbert space. In contrast, OFM employs an unconditional
optimal transport plan in Hilbert space based on dynamic Kantorovich formulation (Chizat et al.,
2018). The advantage of COT-FM lies in its ability to flexibly incorporate specific conditions tailored
for conditional generative tasks. However, COT-FM is not suitable for functional regression tasks due
to: (i) COT-FM is contingent upon both the reference and target being influenced by conditions, and
the vector field learnt is triangular, designed to transport jointly the coupling of a reference measure
and a condition measure. In UFR setting, the learnt prior is required to be unconditioned, (ii) the
coupling with condition measure typically prevents inducing valid stochastic process, even when the
reference measure is a Gaussian measure, (iii) cannot provide point evaluation of probability density.
Last, We should notice, the development of OFM is different and independent of COT-FM, the former
with a focus on stochastic process learning and Bayesian functional regression.

Comparison with NPs. NPs were developed to address the computational and restrictive prior
challenges of Gaussian Processes, utilizing neural networks for efficiency (Garnelo et al., 2018).
However, several recent studies have discussed the drawbacks in the formulation of NPs, raising
concerns that NPs might not learn the underlying function distribution (Rahman et al., 2022; Dupont
et al., 2022; Shi et al., 2024a).

Notably, NPs treats the point cloud data as a set of values, ignoring the metric space of the data (Dupont
et al., 2022). This can lead to misinterpretations of a function sampled at different resolutions as
distinct functions (Appendix A.1 of (Rahman et al., 2022)). Furthermore, NPs rely on encoding input
data into finite-dimensional, Gaussian-distributed latent variables before projecting these into an
infinite-dimensional space. This process tends to lose consistency at higher resolutions. Moreover,
the Bayesian framework underpinning NPs focuses on point sets rather than the functions themselves,
leading to a dilution of prior information with increasing data points.
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In recent study, diffusion-based variants of NPs (NDP) (Dutordoir et al., 2023), was proposed to
leverage the expressiveness of diffusion models (Ho et al., 2020; Song et al., 2021). Nonetheless, the
formulation of NDP does not address the aforementioned issues of NPs and introduces two significant
problems: (i) NDP fails to induce a valid stochastic process as it does not satisfy the marginal
consistency criterion required by Kolmogorov Extension Theorem (Kolmogorov & Bharucha-Reid,
2018), and (ii) it relies on uncorrelated Gaussian noise for denoising, which is not applicable in
function spaces (Lim et al., 2023). Oppositely, OFM establishes a more theoretically sound framework
by rigorously defining learning within function spaces. Additionally, Bayesian functional regression
within the OFM framework adheres to valid stochastic processes, offering a robust and theoretically
grounded solution.

Contribution and Limitations. In conclusion, OFM represents the first simulation-free ODE
framework designed for functional regression purpose, demonstrating superior performance over
existing baselines. The theory development for generalizing flow matching to stochastic process
as well as development of optimal-transport infinite-dimensional flow matching are considered as
additional contributions.

Despite these advances, the current regression framework with OFM is primarily limited to low-
dimensional data (1D and 2D in this study). This limitation stems from the challenges associated
with learning operators for functions defined on high-dimensional domains—an area that remains
underdeveloped both computationally and in terms of dataset availability (Kovachki et al., 2023).
Additionally, while the time complexity for regression with OFM is O(D2), the incorporation of
additional components significantly increases its computational resource requirements compared to
classical GP regression.
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