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Abstract

The existence of adversarial examples has been a mystery for years and attracted
much interest. A well-known theory by Ilyas et al. [19] explains adversarial vulner-
ability from a data perspective by showing that one can extract non-robust features
from adversarial examples and these features alone are useful for classification.
However, the explanation remains quite counter-intuitive since non-robust features
are mostly noise features to humans. In this paper, we re-examine the theory from a
larger context by incorporating multiple learning paradigms. Notably, we find that
contrary to their good usefulness under supervised learning, non-robust features
attain poor usefulness when transferred to other self-supervised learning paradigms,
such as contrastive learning, masked image modeling, and diffusion models. It
reveals that non-robust features are not really as useful as robust or natural features
that enjoy good transferability between these paradigms. Meanwhile, for robust-
ness, we also show that naturally trained encoders from robust features are largely
non-robust under AutoAttack. Our cross-paradigm examination suggests that the
non-robust features are not really useful but more like paradigm-wise shortcuts,
and robust features alone might be insufficient to attain reliable model robustness.
Code is available at https://github.com/PKU-ML/AdvNotRealFeatures.

1 Introduction

Alongside the human-level or even superior performance of Deep Neural Networks (DNNs) in various
tasks [22, 14, 10], concerns on the existence of adversarial examples constantly rise, regarding them
as main threats that fool DNN classifiers with invisible perturbations [34, 12, 24, 26]. Among
many explanations of adversarial examples [11, 36, 31, 30, 44, 45, 48, 28, 2, 3], the robust and
non-robust feature perspective developed by Ilyas et al. [19] has received wide attention. Compared
to previous explanations that regard adversarial examples as “bugs” of neural networks (i.e., the
model), they claim that adversarial examples stem from non-robust “features” in the inputs (i.e., the
data). Specifically, they argue that each example is composed of human-perceptible robust features
(invariant to attack) and human-imperceptible non-robust features (sensitive to attack) that are both
useful for classification. Under adversarial attacks, non-robust features from other classes are injected
into the adversarial examples and lead to misclassification. To verify this point, they show that
datasets containing only non-robust features can attain good classification performance; and similarly,
datasets containing robust features can attain good robustness even with natural training. Supported
by these observations, the perspective has been widely accepted ever since and many subsequential
works are built upon their framework [5, 20, 37].
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Figure 1: Tiny-ImageNet instances containing natural, robust, and non-robust features, respectively.
The robust and non-robust instances are generated following the iterative optimization procedure in
Ilyas et al. [19] from random noise. The robust features are semantically aligned to natural images,
while the non-robust features are always noise-like.

Although both robust and non-robust features are shown to be useful for classification, the two still
have large discrepancies, particularly in perceptibility. As shown by Ilyas et al. [19], robust features
usually have rich semantic information such as distinguishable edges and meaningful combinations
of colors; on the contrary, non-robust features are always noise-like and meaningless to humans, as
shown in Figure 1. Therefore, it is natural for robust features to be useful, while the usefulness of
noise-like non-robust features still seems suspicious and counter-intuitive. One may raise a natural
question: are non-robust features real (useful) features?

In this paper, we aim to re-examine robust and non-robust features in a wider context in order to
understand the true distinction between them. Particularly, we notice that a major limitation of Ilyas
et al. [19] is the scoop of learning paradigms considered, as the usefulness of non-robust features is
only evaluated on the supervised image classification. However, from the backdoor literature, we
know that even a meaningless backdoor pattern can lead to the desired classification. A feature being
useful for classification does not necessarily imply that it is truly useful. Therefore, it is reasonable to
assume that truly useful features, e.g., those utilized by humans, should work well for a wide range of
learning paradigms instead of a single paradigm like the backdoor pattern.

Driven by the analysis, we take the first step by defining the cross-paradigm usefulness of robust
and non-robust features, as a viable measure of true usefulness that generalizes previous definitions
of Ilyas et al. [19]. A feature is defined to be truly useful only if it yields good representations
across different learning paradigms. Aside from supervised learning, we further consider three
modern self-supervised learning paradigms as the representatives: 1) contrastive learning that aligns
augmented samples in the latent space, e.g., SimCLR [27, 6, 15]; 2) masked image modeling that
predicts the masked patches from the unmasked context, e.g., MAE [9, 4, 16]; and 3) diffusion models
that learn to restore images corrupted by Gaussian noise, e.g., DDPM [17, 33]. Among the four
paradigms, supervised learning and contrastive learning are discriminative tasks, while masked image
modeling and diffusion models are generative tasks. Previous studies show that all these different
paradigms yield representations with good downstream performance when pretraining on natural
images [6, 16, 50]. Therefore, we would intuitively expect that if non-robust features are as useful
as natural image features, we can also learn good representations from non-robust features alone.
Similarly, we can define cross-paradigm robustness that evaluates whether a feature can yield robust
representations (with robust prediction on downstream tasks) across different learning paradigms.

To validate their true usefulness, we follow the same procedure of Ilyas et al. [19] and construct robust
(non-robust) datasets that only have robust (non-robust) features extracted from supervised models.
To evaluate their cross-paradigm usefulness and robustness, we learn features with the four different
learning paradigms on the constructed datasets and evaluate the learned features with a linear probing
head for classification (a common evaluation protocol in self-supervised learning). Surprisingly, we
find that there exist notable discrepancies in the cross-paradigm usefulness: on the three (transferred)
self-supervised paradigms, robust features yield excellent performance that nearly matches natural
features, while non-robust features yield much worse prediction that is hardly usable, in sharp contrast
to its own good performance on supervised learning. It clearly conveys that non-robust features
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are not as (cross-paradigm) useful as robust/natural features. Therefore, unlike robust or natural
images, non-robust features do not contain much meaningful information that is truly useful across
different paradigms. Intuitively speaking, non-robust features are more like a certain backdoor
pattern of natural images subject to the chosen learning paradigm (e.g., supervised classification).
As paradigm-wise shortcuts, these features are essentially uninformative when examined with other
learning paradigms. We further verify this point by showing that adversarial examples crafted under
different paradigms can hardly transfer among each other. To this end, we conclude that robust
features are truly useful features while non-robust features are not (in the cross-paradigm sense).
Unlike the counter-intuitive explanation of Ilyas et al. [19], our result justifies the human intuition
that the noise-like non-robust features do not really capture the essence of the images.

Furthermore, we also re-evaluate the robustness of robust and non-robust features in this way.
Interestingly, contrary to the findings in Ilyas et al. [19] that natural training on the robust dataset
produces a robust classifier, we find these so-called robust features hardly show robustness when
learned with other learning paradigms. We also observe that the supervised learned classifier is
non-robust under more reliable attacks like AutoAttack [7]. Thus, we arrive at the conclusion that
on real-world datasets, both robust and non-robust features extracted by Ilyas et al. [19] are
actually non-robust, in both in-paradigm and cross-paradigm senses. Although robust features
are shown to exist in toy models when explicitly designed [39], there is by far no evidence that robust
features exist in real-world datasets, at least not extractable.

To summarize, the main contributions of this work are three folds:

• In order to evaluate robust and non-robust features in a broader context, we generalize
the notions on the usefulness and robustness of robust and non-robust features to a cross-
paradigm sense. This perspective enables us to get rid of potential paradigm-wise shortcut
effects and evaluate true feature informativeness.

• For usefulness, we find that robust features are both in-paradigm and cross-paradigm useful
like natural features. Instead, non-robust features are only useful in-paradigm, and their
usefulness dramatically degrades when transferred to other paradigms, suggesting that they
are more like paradigm-wise shortcuts instead of real features. We further verify this point by
showing that adversarial examples also have poor transferability across different paradigms.

• For robustness, we find that robustness obtained from the constructed robust dataset is
actually a false sense of robustness when evaluated cross-paradigmly on more reliable
attacks. The loss of this key evidence would raise the question of whether robust features
really exist in real-world datasets.

Last but not least, although the main messages of this paper seem rather negative, this view also points
out potential avenues to better adversarial robustness. In particular, the paradigm-wise behaviors
of non-robust features suggest that it may be inadequate to perform adversarial training on a single
learning paradigm, and a mixture of adversarial training on multiple paradigms may come to the
aid. In the meantime, the non-robustness of robust dataset indicates a more comprehensive view of
adversarial vulnerability: input data (or features) are not the only source of adversarial vulnerability,
and only combating the vulnerabilities in both data and models can lead to true robustness.

2 A Cross-Paradigm View of Robust and Non-robust Features

2.1 Background

Robust and Non-Robust Features. As in Ilyas et al. [19], features are defined as a function mapping
from input space to real numbers, namely f : X → R. The robust and non-robust features are then
described with the following definitions for a binary classification task:

• ρ-useful features: For a dataset D, a feature f is ρ-useful if the feature is correlated with
the label:

E(x,y)∼D[y · f(x)] ≥ ρ. (1)

• γ-robustly useful features: For a ρ-useful feature, it is regarded as γ-robustly useful if it
remains useful under certain range of perturbation:

E(x,y)∼D
[
inf
δ∈∆

y · f(x+ δ)
]
≥ γ. (2)
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• Useful, non-robust features: These feature are the ones that are ρ-useful features, but are
not γ-robust features for any γ ≥ 0.

Construction of Robust and Non-Robust Datasets. Given a classifier C and a dataset D, Ilyas et al.
[19] propose to construct a dataset D̂ which satisfies:

E(x,y)∼D̂[f(x) · y] =
{

E(x,y)∼D[f(x) · y] if f ∈ FC

0 otherwise, (3)

where FC represents the set of features utilized by C. Denoting g as the mapping from input x to the
representation layer in C, the new instance xr is obtained from x through following optimization:

min
xr

||g(x)− g(xr)||2. (4)

If the classifier C (e.g., ResNet-50) is adversarially trained, the constructed dataset D̂ is regarded
as a robust dataset. As for a standardly trained classifier, the dataset D̂ is regarded as a non-robust
datatset.

Basic Conclusions of Ilyas et al. [19]. Utilizing the constructed datasets, Ilyas et al. [19] empirically
show that models trained on the non-robust dataset are useful, i.e., they can attain good classification
performance on natural test data, comparable to models trained on the natural dataset. This supports
their claim that non-robust features are sufficiently useful to obtain good generalization. This
perspective well explains the existence of adversarial examples as well as their transferability, since
adversarial examples contain non-robust features from the misclassifed classes that are useful for
different models. Therefore, as they put it, adversarial examples are features, not bugs. Also, they
also show that natural training on the robust dataset (containing robust features alone) can yield robust
models. In this way, they view adversarial vulnerability purely from a data (or feature) perspective,
regarding them as a result of different priors on extracted features.

Self-Supervised Learning. Aside from the supervised learning paradigm studied in Ilyas et al. [19],
self-supervised learning (SSL) also received wide attention in recent years. Without manual labels,
SSL methods utilize self-supervision to learn meaningful features from unlabeled data and have
achieved impressive progress in recent years [6, 16, 17]. Generally speaking, an SSL algorithm pre-
trains a feature encoder f : X → Z , mapping from the input space to the latent space Z . Afterward,
the learned features are typically evaluated on the so-called linear probing task. Specifically, given
a labeled dataset (x, y) ∼ D (usually a subset of the pretraining data), we train a linear classifier
p : Z → Y on top of learned features and use its classification accuracy (with the composed classifier
p · f ) on the test data as a measure of the usefulness of learned features (representations).

2.2 Cross-Paradigm Notions of Robust and Non-Robust Features

In this part, we generalize the definitions of robust and non-robust features to a wider context beyond
the supervised classification. For a rigorous discussion, we introduce some general definitions of the
paradigm-wise feature usefulness and robustness and then define true usefulness and robustness in
the cross-paradigm sense.

Paradigm-Wise Definitions. To facilitate features to generalize across different paradigms, we
differ from Ilyas et al. [19] and adopt a more classic definition of features, filters in the input space,
i.e., g : X → X . Note that common image features like textures, edges, and colors naturally fall into
this category. We define a learning paradigm T as a specific learning algorithm that learns a feature
encoder f with a loss function LT over a given dataset D:

fT = argmin
f

Ex,y∈D
[
LT (f(x), y)

]
. (5)

Incorporating a feature g, the minimization problem can be further specified as

f
(g)
T = argmin

f
Ex,y∈D

[
LT (f(g(x)), y)

]
. (6)

With each learning paradigm T , we can train an encoder f (g)
T for feature g. Then we evaluate the

learned representations with a linear probing head p on top of f (g)
T on D. The usefulness of a feature

g relevant to the paradigm T is defined as follows:

U(g,D, T ) = max
p∈P

Ex,y∈D1[p(f
(g)
T (x)) = y]. (7)
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That is, a feature g is useful on paradigm T if the linear probing head shows good classification
performance with representations learned from the feature g under the learning objective defined by
the paradigm T .

Accordingly, the paradigm-wise feature robustness is defined as the remaining feature usefulness
under local adversarial perturbations,

R(g,D, T ) = max
p∈P

Ex,y∈D max
∥δ∥≤ε

1[p(f
(g)
T (x+ δx)) = y]. (8)

In other words, a feature is robust on paradigm T if a standardly trained linear probing head shows
good robustness with representations learned from the feature g under T .

From this perspective, the conventional definitions of feature usefulness and robustness of Ilyas et al.
[19] correspond to a special case of our definitions – when choosing the supervised learning task as
the learning paradigm. In this way, the two processes, feature learning and feature evaluation, actually
share the same learning objective, which may introduce spurious paradigm-wise shortcut effects. To
get rid of this potential risk, we propose to re-define these concepts in a cross-paradigm sense.

Cross-Paradigm Definitions. Given a diverse set of learning paradigms T = {T1, T2, · · · , T3}, we
define a feature to be truly useful if it can generalize across multiple learning paradigms. Specifically,
we define cross-paradigm usefulness as the worst paradigm-wise usefulness among these paradigms,

(Cross-Paradigm Usefulness) CUT (g,D) = min
T∈T

U(g,D, T ). (9)

Similarly, we can define cross-paradigm robustness as the worst robustness

(Cross-Paradigm Usefulness) CRT (g,D) = min
T∈T

R(g,D, T ). (10)

Nevertheless, since different paradigms usually attain performance on different levels, a direct
comparison of their absolute performance may be unfair. In the worst case, if a certain paradigm has
poor performance even when pretrained on the raw images, it would dominate other paradigms when
computing cross-paradigm metrics, which, however, does not reflect the true feature usefulness. To
mitigate this potential issue, we propose the paradigm-wise relative metrics as the ratio between the
performance of the chosen feature and the performance of using all features (raw inputs),

(Relative Usefulness) RU(g,D, T ) =
U(g,D, T )

U(D, T )
, (11)

(Relative Robustness) RR(g,D, T ) =
R(g,D, T )

R(D, T )
, (12)

where given an encoder fT learned from the raw images under the paradigm T , we define

U(D, T ) := max
p∈P

Ex,y∈D1[p(fT (x)) = y], R(D, T ) = max
p∈P

Ex,y∈D max
∥δ∥≤ε

1[p(fT (x+ δx)) = y].

Accordingly, we can define the cross-paradigm relative usefulness and robustness as follows:

(Cross-Paradigm Relative Usefulness) CRUT (g,D) = min
T∈T

RU(g,D, T ), (13)

(Cross-Paradigm Relative Robustness) CRRT (g,D) = min
T∈T

RR(g,D, T ). (14)

3 Cross-Paradigm Usefulness of Robust and Non-robust Features

Built upon the evaluation framework established in Section 2.2, we first investigate the cross-
paradigm usefulness of robust and non-robust features on real-world datasets in this section. With
this generalized notion of feature usefulness, we are trying to answer the key question: are robust
and non-robust features truly useful?

3.1 Setup

Data Construction. We include two commonly adopted datasets in our study, CIFAR10 [21] and
Tiny-ImageNet-200 [49]. Aside from the raw images, following the same construction process in
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Table 1: Evaluation of relative usefulness of robust features and non-robust features on four learning
paradigms: MIM, CL, DM, and SL. The cross-paradigm relative usefulness is computed as the worst
relative usefulness over the four paradigms. We also include the usefulness scores (evaluated only on
the supervised task) reported in Ilyas et al. [19] for a comparison.

Data Feature MIM CL DM SL Cross. Rel. Useful. Ilyas et al. [19]

CIFAR-10 Robust 0.896 0.791 0.831 0.880 0.791 0.854
Non-Robust 0.307 0.433 0.512 0.914 0.307 0.823

Tiny-ImageNet Robust 0.691 0.775 0.861 0.880 0.672 0.407
Non-Robust 0.134 0.074 0.141 0.645 0.134 0.396

Ilyas et al. [19] (details in Appendix A), we further construct a robust version and a non-robust
version for each dataset, which only contain robust and non-robust features, respectively.

Learning Paradigms. Besides supervised learning with the cross-entropy loss, we also include three
self-supervised learning paradigms for a cross-paradigm evaluation: SimCLR [6] for Contrastive
Learning (CL), MAE [16] for Masked Image Modeling (MIM), and DDPM [17] for Diffusion Models
(DM). We then train linear probing heads for the encoders on the same dataset that it was trained on.
The probing heads are directly applied to the output of the encoder for SimCLR and MAE models,
while for DDPM model, since the U-Net encoder has complex high-dimensional hidden features,
we use the global average pooled feature in the fourth upsampling layer in U-Net following Xiang
et al. [50], which is shown to deliver excellent linear classification performance on par with other
self-supervised learning paradigms. Also, we train a ResNet-50 on the datasets with Supervised
Learning (SL) as our baseline. To summarize, the four learning paradigms considered in this work
are T = {MIM,CL,DM,SL}. After pretraining, we evaluate the classifiers’ performance on the
test sets of the two datasets. More details on training and evaluation are in Appendix A.

3.2 Non-robust Features are Not Cross-paradigmly Useful

We first examine the paradigm-wise usefulness of robust and non-robust features extracted from
the supervised models. As shown in Table 1, models pretrained from robust datasets (containing
only robust features) show comparable performance to those pretrained from the natural datasets
(containing all features). In comparison, models pretrained from the non-robust datasets (containing
only non-robust features) differ a lot across different paradigms: they work well for learning from
the supervised task (ResNet-50), but much worse on all the other SSL paradigms (SimCLR, MAE,
DDPM). It shows that in contrary to the perceptually aligned robust features that are useful for
different paradigms, the noise-like non-robust features do not really contain meaningful information
that is also useful for other SSL paradigms. Instead, these non-robust features extracted from
supervised models only show usefulness on the supervised task. This sharp distinction suggests that
non-robust features are more like paradigm-wise shortcut features rather than being truly useful.

For a comprehensive evaluation, we further compute the cross-paradigm relative usefulness following
the definitions in Section 2.2. As shown in Table 1, the relative usefulness of non-robust features
is significantly lower than that of robust features under various self-supervised learning paradigms.
The overall cross-paradigm ends up being 0.307, which is much smaller than robust features (0.791).
In comparison, these two kinds of features show similar performance (0.854 and 0.823) in Ilyas
et al. [19] when only considering the supervised task. It shows that from a paradigm-wise view,
the usefulness of features dramatically differs from the case where only supervised learning is
considered. Again, it verifies that non-robust features are not as useful as natural and robust features
when transferred to many other learning paradigms. For completeness, in Appendix C.1, we further
examine the cross-paradigm transferability of the non-robust features extracted from the three SSL
paradigms. Similarly, we find that these SSL non-robust features are non-transferable as well.

4 Cross-Paradigm Robustness of Robust Features

The results above challenge the claim from Ilyas et al. [19] that non-robust features are useful features
by showing that non-robust features are not really useful in the cross-paradigm sense. Aside from the
usefulness of non-robust features, another notable finding in Ilyas et al. [19] is that robust features

6



alone are enough for attaining model robustness. Specifically, they extract a robust version of a given
dataset (e.g., CIFAR-10) by distilling from a robust classifier such that the transformed samples only
contain robust samples, and they show that a naturally trained classifier on the constructed “robust
dataset” has good robustness. In this section, we further examine the robustness of the extracted
robust features on different learning paradigms.

4.1 Setup

We construct the robust versions of CIFAR10 with a supervised ℓ∞-robust ResNet-18 encoder
[46] and a self-supervised ℓ∞-robust ResNet-18 encoder [23], largely following the convention
of Ilyas et al. [19]. We then train encoders on the robust datasets with the learning paradigms
set T = {MIM,CL,DM,SL} and use the learned representations to naturally train a linear head.
Finally, we evaluate the robustness of the composed classifiers (encoders + linear heads) with a
modern reliable attack method, AutoAttack [7], under the perturbation budget of 4/255, instead of
the PGD attack [25] that may lead to over-estimated robustness [7]. More experimental details can be
found in Appendix A.

4.2 Robust Features are Not Robust both In-Paradigm and Cross-Paradigm

We summarize the results in Table 2. Viewing from the in-paradigm results in Table 2a, we can
observe that in supervised learning, PGD attacks can over-estimate the robustness of models trained
from robust datasets, e.g., 15.71 (PGD) v.s. 3.65 (AutoAttack). When evaluated under AutoAttack,
robust datasets generated from either ℓ2-robust or ℓ∞-robust models show poor robustness, being
hard to match the robustness of adversarially trained source models. In other words, in practice,
we believe it difficult to attain good robustness with only robust features (extracted following Ilyas
et al. [19]). Their original conclusion on the good robustness of robust datasets could be due to the
unreliability of PGD-based robust evaluation (also shown in the AutoAttack paper [7]). The severe
over-estimation on robust datasets is potentially due to gradient obfuscation or masking [1] since
these robust datasets are essentially generated with the PGD attack.

Extending the finding, we also evaluate the robustness of robust features on other self-supervised
learning paradigms in Table 2b. Likewise, robust features also perform poorly and do not attain
non-trivial robustness. Interestingly, when training on generative models like MIM and DM, robust
features obtain slightly better robustness compared to the discriminative ones (CL and SL), even on
natural data. Overall, the cross-paradigm robustness (defined in Section 2.2) is still bottlenecked by
the SL itself. Based on these results, we conclude that robust features still cannot achieve model
robustness alone (in either in-paradigm or cross-paradigm sense), without model-level interventions
like adversarial training. It suggests that adversarial vulnerability may not come from the data alone,
and a joint training strategy against both data-level and model-level vulnerabilities may be needed
to attain real robustness. It worths noting that Tsilivis et al. [38] also found the non-robustness of
the robust dataset of Ilyas et al. [19] in the supervised domain, while our results here give a full
examination of robust features from both in-paradigm and cross-paradigm aspects.

5 Cross-Paradigm Transferability of Adversarial Attacks

The transferability across different models, even with different architectures [47, 40], is a fascinating
fact of adversarial examples. The perspective of Ilyas et al. [19] provides a natural explanation for
the phenomenon since non-robust features in adversarial examples are inherently useful such that
they can affect the prediction of different models. Nevertheless, our studies in Section 3 reveal
that non-robust features are only paradigm-wise but not cross-paradigm useful. It implies that
adversarial transferability is also paradigm-wise. In other words, adversarial examples can hardly
transfer between different paradigms. To verify the hypothesis above, we further investigate the
cross-paradigm transferability of adversarial attacks in this section.

5.1 Cross-Paradigm Transferability of Attack Objectives

Since different paradigms mainly differ by their learning objectives, adversarial attacks w.r.t. different
learning objectives (e.g., SL, CL, MIM, DM) can generate adversarial examples of different paradigms.
To study the transferability between different attack objectives, we consider two ResNet-18 backbone
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networks (learned with SL and CL, respectively), attack them with an objective, and observe the
change of both learning objectives.

Setup. We consider two objectives: InfoNCE loss [27] in CL and Cross Entropy (CE) loss in SL.
Adversarial examples are generated with linf AutoAttack[7] bounded by ε = 4/255, using the default
attack settings on CIFAR-10 (details in Appendix A). To be consistent, we compute the InfoNCE loss
for a supervised encoder by appending a re-trained projection head on top of the fixed encoder. When
computing the gradient during attacks, we also retain the standard data augmentations in SimCLR [6]
and differentiate through these operators with the Kornia package [32]. For further ablation study on
the influence of these components on transferability, see Appendix B.
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Figure 2: The change of loss value v.s. the attack iteration steps when using different attack objectives,
CE loss (blue lines) or InfoNCE loss (orange lines), and backbones, trained by SL (Figure 2a &
Figure 2b) or CL (Figure 2c & Figure 2d) from different paradigms.

Results. We plot the change of loss values during the attacking process in Figure 2, from which
we can identify a general trend: there is a significant difference between the changes of different
objectives, and maximizing one attack objective has a limited effect on the other objective. This
distinction clearly implies that adversarial examples generated with attack objectives from different
paradigms have poor transferability among each other.

5.2 Cross-Paradigm Transferability of Backbone Encoders

Aside from the attack objective discussed in Section 5.1, different paradigms also learn different
paradigm-wise feature encoders that also have a large influence on the generation of adversarial
examples. To further analyze the paradigm-wise influence of feature encoder on adversarial trans-
ferability, we generate adversarial examples with backbone encoders obtained by the four different
paradigms, while keeping the attack objective to be the same CE loss (using the linear head learned
for each paradigm). Besides the default ResNet-50(SL-RN) model, we further include three different

Table 2: Absolute robustness of robust features on four paradigms: MIM, CL, DM, and SL, on CIFAR-
10. The robust features are extracted by pretrained models from two different source paradigms:
supervised learning and contrastive learning. Different from Ilyas et al. [19] that use 1000-step PGD
[25] for robust evaluation, we adopt a more reliable attack algorithm, AutoAttack [7].

(a) Robustness evaluation (with PGD and AutoAttack) for classifiers naturally trained with robust datasets (SL).

Source Model ℓ2, ε = 0.5 ℓ∞, ε = 4/255
PGD-1000 AutoAttack PGD-1000 AutoAttack

ℓ2-robust classifier 15.71 ± 0.21 3.65 ± 0.58 6.36 ± 1.66 0.54 ± 0.16
ℓ∞-robust classifier 13.96 ± 0.12 5.03 ± 0.16 17.63 ± 0.16 3.52 ± 0.31

(b) Cross-paradigm robustness (AutoAttack by default) of encoders naturally trained from natural or robust
datasets. The robust datasets are generated from ℓ∞-robust encoders trained with the SL or CL paradigm.

Training Dataset CL MIM DM SL Cross. Rob.

Natural 0.22 ± 0.03 2.33 ± 0.12 3.41 ± 0.32 0.00 ± 0.01 0.00
Robust w/ SL model 0.23 ± 0.01 2.73 ± 0.33 2.54 ± 0.20 3.52 ± 0.31 0.23
Robust w/ CL model 1.28 ± 0.01 1.16 ± 0.23 1.19 ± 0.14 2.21 ± 0.29 1.16
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Figure 3: The cross-paradigm robustness of adversarial examples generated with encoders from
different learning paradigms. The (A,B)-th cell represents the accuracy of adversarial examples
generated with an A-paradigm model (encoder with linear head) when evaluated on a B-paradigm
model (encoder with linear head). Darker colors (i.e., higher accuracy) indicate worse transferability
of adversarial examples.

supervised models, DenseNet-121 (SL-DN) [18], and Inception-V3 (SL-InC) [35] as baselines. We
plot the transferred adversarial robustness in the confusion matrix in Figure 3.

The results in Figure 3 demonstrate two important messages: 1) adversarial examples transfer well
across different architectures (SL-RN, SL-DN, SL-InC) under the same paradigm (SL), and 2)
adversarial examples transfer poorly between different paradigms, even under the same architecture
(for example, both CL and SL adopt ResNet-50 as backbones). It suggests that for adversarial
transferability, paradigms have much more influence than model architectures. This phenomenon can
be well explained by the paradigm-wise shortcut-like behaviors of non-robust features (Section 3),
and it indicates that adversarial transferability is also largely a paradigm-wise phenomenon.

5.3 Relationship to Natural Transferability between Paradigms

In the discussions above, we demonstrate that adversarial examples do not have (good) transferability
between different learning paradigms. We note that this discovery in adversarial transferability
is not in contradiction to the good natural transferability between different paradigms. Indeed,
many existing works [6, 15, 41, 16, 50, 52] show that representations learned from SSL have good
downstream performance, particularly when evaluated with linear probing. Moreover, theoretical
guarantees on the downstream classification performance have also been established for contrastive
learning [13, 42, 43, 8], non-contrastive learning [53], and masked image modeling [51]. Since
adversarial examples are essentially out-of-distribution examples (not drawn from the natural data
distribution), the generalization guarantees on natural data do not apply. The fact that these paradigms
have good natural transferability and poor adversarial transferability serves as another piece of
evidence for our understanding that the misclassification of adversarial examples is caused by
paradigm-wise shortcuts instead of real useful features.

6 Conclusion

In this paper, we have investigated the real usefulness and robustness of robust and non-robust from
a wider context. By studying their behaviors across four different learning paradigms, we have
found that robust features are as useful as natural features, while non-robust features generated by
attacking supervised models become largely useless when transferred to other self-supervised learning
paradigms, indicating that non-robust features are not real features but more like paradigm-wise
shortcuts. Meanwhile, we have also shown that robust datasets containing only robust features are
insufficient to attain model robustness under AutoAttack, indicating that feature non-robustness is
not the only source of adversarial vulnerability. Posed as a challenge to common beliefs of robust
and non-robust features, this work advocates the idea that their real usefulness and robustness should
be examined under a cross-paradigm perspective as well as more reliable attacks.
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A Experimental Details

Here we elaborate the experimental and technical details. First, we specify how the robust/non-robust
datasets are constructed in our experiments. Then we detail the pre-training and linear probing
hyper-parameters. Finally, we illustrate the settings of our robustness evaluation framework.

A.1 Dataset Construction

We largely follow Ilyas et al. [19] in the process of dataset construction. Unless specified, we use
the robust and non-robust datasets generated from images for experiments (Section 3, Section 5). In
Section 4, we generate the robust CIFAR10 with both supervisedly trained and contrastively trained
ResNet-18. All constructed datasets are obtained via ℓ2 PGD optimization. The detailed settings are
listed below

Table 3: Experimental configurations in dataset construction. We generate robust and non-robust
CIFAR10 starting from images (initialized with randomly drawn different images in the dataset) or
from noise (random Gaussian noise).

Dataset Iteration Step Size ε-Cons.

Robust CIFAR10 (From Image) 1000 1.0 ∞
Robust CIFAR10 (From Noise) 10000 1.0 ∞

Non-Robust CIFAR10 (From Image) 1000 0.1 0.5
Non-Robust CIFAR10 (From Noise) 10000 0.1 0.5

Robust Tiny-ImageNet-200 (From Image) 2000 1.0 ∞
Non-Robust Tiny-ImageNet-200 (From Image) 2000 0.1 0.5

A.2 Pre-Training

For evaluating the usefulness and robustness of features (Section 3, Section 4), we use ResNet-18 [14]
for SL, MAE [16] backboned by ViT-t [10] for MIM, ResNet-18 for CL, and DDPM [17] backbone
by UNet [29] for DM in all of the three versions of CIFAR10 [21] and Tiny-ImageNet-200 [49].
We additionally use supervisedly trained ResNet-50, DenseNet-50 [18], and InceptionV3 [35] for
discussion in the paradigm-wise transferability of adversarial examples (Section 5). We list the hyper-
parameter configurations below. We pick the default settings commonly adopted by the community
when training the models and feel it unnecessary to intentionally optimize the hyper-parameters since
our main research goal is focused on rethinking the essence of non-robust features.

Table 4: The hyper-parameter settings of pre-training on the three versions of CIFAR10.

Paradigm Model Epoch B-Size LR LR Sche. W-Decay Data Aug.

SL

ResNet-18 50 128 1e-1 CosineAnnealingLR 5e-4 ✓
ResNet-50 50 128 1e-1 CosineAnnealingLR 5e-4 ✓

DenseNet-50 50 128 1e-1 CosineAnnealingLR 5e-4 ✓
InceptionV3 50 128 1e-1 CosineAnnealingLR 5e-4 ✓

CL ResNet-18 2000 512 1e-4 CosineAnnealingLR 1e-5 ✓

MIM MAE(ViT-t) 2000 512 2e-4 LambdaLR 5e-2 ✓

DM DDPM(UNet) 1000 128 2e-4 LambdaLR 0 ✓

A.3 Linear Probing

We use linear probing to evaluate the representation learned by our encoders and we attach the trained
linear heads to the encoders to transform them into classifiers. (Section 3, Section 4, Section 5).
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Table 5: The hyper-parameter settings of pre-training on the three versions of Tiny-ImageNet-200.

Paradigm Model Epoch B-Size LR LR Sche. W-Decay Data Aug.

SL ResNet-18 100 128 1e-2 CosineAnnealingLR 1e-5 ✓

CL ResNet-18 1000 512 2e-3 CosineAnnealingLR 1e-5 ✓

MIM MAE(ViT-b) 1000 512 2e-4 LambdaLR 5e-2 ✓

DM DDPM(UNet) 1500 128 2e-5 LambdaLR 0 ✓

Table 6: Hyper-parameter configuration of linear probing.

Dataset Epoch B-Size LR LR Sche W-Decay Data Aug.

CIFAR10 30 256 0.1 CosineAnnealingLR 5e-4 ✓
Tiny-ImageNet-200 50 256 0.01 CosineAnnealingLR 1e-5 ✓

A.4 Robustness Evaluation

To replicate the results reported in Ilyas et al. [19], we use ℓ∞ PGD-1000 [25] bounded by ε = 4/255
and ℓ2 PGD-1000 bounded by ε = 0.5 as baseline evaluation. Besides, we use ℓ∞ AutoAttack
bounded by ε = 4/255 for more reliable evaluation. Due to the randomness induced in the encoding
process of MAE and DDPM, we use the randomized version of AutoAttack when evaluating their
robustness, otherwise, we use the standard version of AutoAttack.

B Ablation Study on Cross-Paradigm Transferability

In Section 5.1, we have shown that adversarial examples generated by attacking contrastive learning
(CL) have poor transferability on attacking supervised learning (SL). To further investigate how this
happens, we conduct an experiment that gradually ablates each part of the InfoNCE loss.

Specifically, we notice three major differences when computing the CL and SL objectives: 1) CL
usually adopts heavy data augmentations while SL does not; 2) CL adopts a projector head after the
embedding while SL does not; and 3) CL and SL adopt different objectives: InfoNCE loss and CE
loss. As shown in Table 7, ablating the augmentation and/or projector indeed brings a better attack
success rate (lower robustness), since it bridges the differences between two paradigms. Following
the same vein, we further consider ablating the InfoNCE loss with a simple alignment loss between
the natural example x and adversarial example x′, i.e.,

xadv = argmax
x′

∥f(x)− f(x′)∥2. (15)

We can see from Table 7 that this alignment-only attacking objective obtains significantly lower
robustness, though the difference to attacking CE is still large. This ablation experiment shows
that the distinction between paradigms is not absolute, and we can improve their transferability by
gradually eliminating their gap. We leave a more comprehensive study on this aspect to future work.

Table 7: Ablation study of model components when transferring adversarial examples generated
w.r.t. the CL objective to the classification task on CIFAR-10.

Paradigm Attack Configuration Robustness (%)

CL

No Attack 78.51
InfoNCE loss + Projector + Augmentation (default) 70.31
InfoNCE loss + Projector 70.21
InfoNCE loss + Augmentation 71.09
InfoNCE loss 59.76
Alignment-only loss 33.20

SL CE 0.78
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C Cross-Paradigm Transferability of Non-robust features from SSL
Paradigms

In the main paper, we have mainly examined non-robust features extracted from an SL (supervised
learning) model and show their non-transferability in a cross-paradigm sense. For completeness,
we further examine non-robust features generated from the other three SSL paradigms considered
in our work: CL, MIM, and DM. We follow the same hyperparameter setting as Ilyas et al. [19]
for constructing non-robust dataset (Section 2.1) and for each paradigm, we generate adversarial
examples by optimizing the perturbation to maximize the SSL pretraining objective per se (mode
details below in Appendix C.1).

Table 8: Cross-paradigm transferability of non-robust features generated from SSL paradigms. Here
the non-robust datasets are generated with noise initialization following the setting of Ilyas et al. [19].

Accuracy SL CL MIM DM

CL-non-robust 18.71 60.02 10.09 13.66
MIM-non-robust 12.02 21.65 22.19 15.47
DM-non-robust 14.07 14.11 18.07 31.08

Table 9: Here the non-robust datasets are generated with noise initialization following the setting
of Ilyas et al. [19]. Here the non-robust datasets are generated with random image initialization
following the setting of Ilyas et al. [19].

Accuracy SL CL MIM DM

CL-non-robust 22.18 41.80 14.33 11.91
MIM-non-robust 14.11 9.29 32.80 21.78
DM-non-robust 12.47 9.86 18.25 39.41

Results are shown in Table 8 (with random noise initialization) and Table 9 (with random image
initialization). We still observe the same trend as observed in the SL-induced non-robust dataset
(Section 3), where non-robust features show much better usefulness in-paradigm compared to that of
other paradigms. Thus, we can conclude that the cross-paradigm non-transferability still holds for
non-robust features pretrained from SSL paradigms.

C.1 Implementation Details

Constrastive Learning: We leverage the non-robust features hidden in CL models by aligning the
adversarial examples with the clean images. Specifically, the adversarial examples are obtained via
the following optimization

CL: δ∗i = argmin
δi

log
exp(f(δi)/τ) exp(f(xi)/τ)
n∑

j=1,j ̸=i

exp(f(δj)/τ) exp f(xj)/τ
(16)

where δni=1 denote the n adversarial examples, xn
i=1 denote the n clean image, i.e., the attack target

within a batch and f is the encoder being attacked. The non-robust features generated this way look
like random noise but are semantically close to the clean images for the model, which qualifies them
for the definition of adversarial examples.

Masked Image Modeling & Diffusion Model: The non-robust features for MIM and DM are
obtained by maximizing the possibility of recovering the target (the clean image) from the adversarial
examples. Denoting the procedure of random masking in MIM and adding Gaussian noise in DM as
Γ, we can express the adversarial optimization of the two paradigms as follows

MIM: δ∗ = argmin
δ

||f(Γ(δ))− x||22 (17)

DM: δ∗ = argmin
δ

||f(Γ(δ))− (x− δ)||22 (18)
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with f denoting the model and x denoting the clean image. Conceptually, we assume the non-robust
features of MIM to be invisible perturbations that contain information for the model to reconstruct
the clean image from it. With the diffusion models predicting noise added to the input, the non-robust
features of DM are similarly defined as small perturbations fooling the model to predict the difference
between the clean images and the adversarial examples. Note that we fix the timestep used in
generating the adversarial examples to be the same as the one used in turning the DM into classifiers.
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