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ABSTRACT

Combinatorial optimization problems with parameters to be predicted from side
information are commonly seen in a variety of problems during the paradigm
shifts from reactive decision making to proactive decision making. Due to the
misalignment between the continuous prediction results and the discrete decisions
in optimization problems, it is hard to achieve a satisfactory prediction result with
the ordinary l2 loss in the prediction phase. To properly connect the prediction
loss with the optimization goal, in this paper we propose a total group preorder
(TGP) loss and its differential version called approximate total group preorder
(ATGP) loss for predict-then-optimize (PTO) problems with strong ranking prop-
erty. These new losses are provably more robust than the usual l2 loss in a linear
regression setting and have great potential to extend to other settings. We also
propose an automatic searching algorithm that adapts the ATGP loss to PTO prob-
lems with different combinatorial structures. Extensive experiments on the rank-
ing problem, the knapsack problem, and the shortest path problem have demon-
strated that our proposed method can achieve a significantly better performance
compared to the other methods designed for PTO problems.

1 INTRODUCTION

Many decision making processes under uncertainty in real world are solving combinatorial prob-
lems with parameters unknown to the decision maker. A traditional method to address the uncer-
tainty issue is to add assumptions on the distributions of parameters (Hentenryck & Bent, 2006).
Alternatively, a recent approach is to predict the unknown parameters from the correlated features
using machine learning methods and solve the combinatorial problems based on the predictions.
This paradigm, which is called predict-then-optimize (PTO), has been widely employed in practice
systematically (Elmachtoub & Grigas, 2021). For example, Google Maps estimates the travel times
of roads in the traffic to compute a shortest path (Lau, 2020); Computer clusters predict the process-
ing times and resource demands of computation tasks to make good job scheduling on servers (Mao
et al., 2016); Hedge funds forecast the return rates of different stocks to optimize their portfolio in
the next trading day (Thomson, 2021).

However, the commonly used l2 loss function (i.e., l2 distance between predictions and true values)
usually cannot achieve ideal decision results in predict-then-optimize problems (Demirović et al.,
2019). This misalignment between the l2 loss in prediction and quality of the decision comes from
the misalignment between the continuity on the prediction problem and the discontinuity on the
structure of the combinatorial optimization problem.

A straightforward remedy of the above misalignment problem is to adjust the loss to reflect the dif-
ference in objective values of the optimization solutions generated using the predicted and observed
∗Equal contribution. Work done during internship in Microsoft Research Asia.
†Corresponding authors.
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Figure 1: Mechanism of our APOC algorithm.

parameters, called Smart “Predict, then Optimize” (SPO) loss (Elmachtoub & Grigas, 2021). How-
ever, due to the combinatorial nature of the optimization problems, the SPO loss is usually piecewise
flat and has multiple discontinued points. As a result, the derivatives of SPO loss is either zero or
nonexistent, which prohibits the training of gradient-based deep learning algorithms. Besides, most
solvers for combinatorial optimization problems are not differentiable, which cannot be directly
incorporated with the widely adopted gradient-based learning approaches nowadays.

Current approaches to minimizing the SPO loss can be categorized into two classes. The first one
is to differentiate the discrete optimization solver by approximating the objective with a certain
family of functions, and this series of methods works when the combinatorial optimization problem
is linear (Wilder et al., 2019a;b; Pogančić et al., 2019). The other class of research tries to propose
new surrogate loss functions for SPO loss, e.g., SPO+ loss for linear programming (Elmachtoub &
Grigas, 2021) and piecewise linear loss for dynamic programming (Stuckey et al., 2020). However,
these surrogate loss functions are problem-specific (i.e., depending on the type of the combinatorial
optimization problem) and require much domain knowledge from experts to design.

Instead of designing the surrogate loss metric for each optimization problem manually, an alternative
approach is to find a good loss metric from a predefined search space in an automatic manner, which
is inspired by the recent progress in automated machine learning (AutoML) (Zoph & Le, 2017; Pham
et al., 2018; Liu et al., 2018). These AutoML approaches usually define an appropriate search space
and then conduct some search algorithms, e.g., reinforcement learning and genetic algorithm, to find
a good metric. Li et al. (2019) and Li et al. (2021) studied the automatic loss function search problem
for computer vision tasks. They defined the search space by replacing the mainstream metrics for
semantic segmentation with their differentiable approximations. However for predict-then-optimize
problems, there is no such evaluation metrics available except for SPO loss. Moreover, these metrics,
which are designed for segmentation tasks in computer vision domain, are not suitable to evaluate
the prediction results for the combinatorial optimization problems.

In this paper, we propose a framework of automatic loss function search called APOC (Automatic
Prediction and Optimization Connector) to tackle a wide range of predict-then-optimize problems
whose optimal solution is determined by the total group preorder of the parameters of the combi-
natorial problem, called strong ranking property (see for Definition 2 for details.). These problems
have the same optimal solution for different sets of parameters, as long as those sets of parameters
preserve the same total group preorders. The key idea is to build the proper search space in which
different loss functions capture the partial comparisons between different groups of the parameters
of the optimization problem.

Our contributions are summarized as follows: 1) We theoretically prove that l2 loss is not an ideal
choice in a linear regression setting of PTO problems; 2) We propose the total group preorder loss
for PTO problems and relax it to a differentiable approximated version, which is fitted using a
family of Derivative-of-Guassian wavelet functions to capture the group comparison relationship
among the items with variable sizes and weights; 3) We propose an effective method to automatically
search for a differentiable surrogate loss based on approximated group total preorders of items for
PTO problems called APOC; 4) The proposed APOC method has been validated on three classic
combinatorial problems with strong ranking property.

2 RELATED WORK

Predict-then-optimize (PTO) problems capture a common pipeline of machine-learning-assisted
optimization solvers: predicting the unknown parameters of the optimization problem from the con-
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textual information and then optimizing based on the predicted parameters (Elmachtoub & Grigas,
2021). In practice, PTO problems have a broad range of real-world applications Lau (2020); Mao
et al. (2016); Thomson (2021); Luo et al. (2020; 2021). However, many combinatorial optimization
problems have piecewise flat value function landscapes which prohibit an end-to-end learning with
gradient-based prediction models.

One line of work is to differentiate the optimization solvers for specific problems and embed them
as layers into the network architecture through which the gradients can be propagated, which orig-
inates from the differentiable optimization (Amos, 2019). Grover et al. (2018) proposes a sorting
network for ranking problems by relaxing the permutation matrix output by sorting algorithms to
the unimodal row-stochastic matrix. For the node clustering problem, Wilder et al. (2019b) dif-
ferentiates the K-means algorithm by assigning nodes to clusters according to a soft-min function.
Pogančić et al. (2019) interpolates the value of function of linear programming using piecewise
linear functions and embeds as layers the solvers of linear programming.

The other line of work focuses on searching for a surrogate loss function to approximate the value
function of the optimization problem, so-called regret in decision theory (Bell, 1982). Elmachtoub
& Grigas (2021) derives a convex upper bound on the regret of linear programming, called SPO+
loss. Wilder et al. (2019a) proposes the QTPL loss by adding a quadratic penalty term to the con-
tinuous relaxation of the regret such that results from differentiating over quadratic programs can be
used. Mandi & Guns (2020) overcomes the non-differentiablity of the regret by adding a logarith-
mic barrier term, called IntOpt. Stuckey et al. (2020) approximates the value function of dynamic
programming problems as piecewise linear functions with learn-able parameters. Yoon et al. (2013)
proposes mean objective cost of uncertainty (MOCU), the difference between the value functions
of a robust solution and the optimal solution, to evaluate the uncertainty of parameters in decision
making, e.g., experiment design (Boluki et al., 2018) and active learning (Zhao et al., 2021).

Loss function guides the machine learning algorithms to produce good predictions for different
tasks, which is usually designed with domain knowledge from experts (Masnadi-Shirazi & Vas-
concelos, 2008; Bruch et al., 2019). Automatic search of suitable loss function without domain
knowledge has recently received much attention from the computer vision community. Li et al.
(2019) uses reinforcement learning algorithms to learn better loss functions with good generaliza-
tion and transfer-ability on different vision tasks. Wang et al. (2020) adopts both random search
and reinforcement learning algorithms to search for loss functions on face recognition problems.
Li et al. (2021) explores the possibility of searching loss function automatically from scratch for
generic tasks, e.g., semantic segmentation, object detection, and pose estimation. However, the
search spaces in these methods are specially designed for vision tasks and cannot be directly applied
to PTO problems. Most work on automatic loss search follows the searching algorithms used in
AutoML. We refer to He et al. (2021) for comprehensive survey on searching methods in AutoML.
Natural questions are: 1) whether we can design a suitable search space for loss functions in PTO
problems; and 2) whether there is a strategy to search adequate loss functions systematically for
different optimization problems using techniques from AutoML.

3 ATGP LOSS FOR PREDICT-THEN-OPTIMIZE PROBLEMS

3.1 MISALIGNMENT IN PREDICT-THEN-OPTIMIZE PROBLEM

The problems we consider are the type of predict-then-optimize (PTO) problems in the following
formulation. For an optimization problem in the following form

maximize
z

Uc(z) subject to z ∈ Z (1)

where z is the decision variable, c ∈ Rd is the parameter of the objective function U , and Z is the
feasible set which does not depend on c. A decision maker needs to solve (1) without knowing the
exact value of c. Instead, the decision maker will observe a feature vector x ∈ Rk. The goal of
the decision maker is to predict the value of c and then optimize (1) based on the prediction ĉ. To
distinguish with the parameters of the prediction models (e.g., weights of neural networks), we call
c the PTO parameter.

Instead of focusing on the prediction error between c and ĉ (e.g., l2 distance), the decision maker
cares more about a high-quality decision result generated from the prediction. Elmachtoub & Grigas
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Figure 2: Comparing the SPO loss with different surrogate losses. The true item values to be ranked
are (4.9, 5.1) (dark star). Two predictions are (3, 7) (magenta triangle) and (6, 5) (orange triangle).

(2021) characterizes this quantity by the Smart “Predict, then Optimize” (SPO) loss, which equals
to the loss incurred by solving the optimization problem (1) using ĉ instead of the true parameter c.

`SPO(ĉ, c) = E [U∗c − Uc(z∗(ĉ))]
where z∗(c) = arg maxz∈Z Uc(z) and U∗c = Uc(z

∗(c)).

Figure 2a shows the misalignment between the l2 distance (green) and the SPO loss (blue) in a
ranking PTO problem. In this ranking PTO problem, there are two items to be ranked. The true
values of the items are c1 = 4.9 and c2 = 5.1, which are also the values to predict. The prediction
denoted by the magenta triangle has a lower SPO loss than the orange one, and therefore yields a
better solution. However, prediction model that minimizes the l2 distance will prefer the orange one
(whose l2 distance is lower) and produce a worse solution with regard to the ranking task.

However, the SPO loss of most PTO problems is a piecewise linear function due to the combinatorial
structure in the objective function Uc(z) and the solution map z∗(c). As a result, its derivatives in
the predicted PTO parameter ĉ is either zero or nonexistent, which prohibits the usage of prediction
models whose training is based on gradient descent algorithms.

In this paper, we consider a collection of combinatorial optimization problems with strong ranking
property. For this collection of optimization problems, we propose the total group preorder (TGP)
loss and its differentiable variant approximated total group preorder (ATGP) loss as the training
targets in the prediction stage. The ATGP loss will approximate the SPO loss with smooth shape,
which is friendly and effective for the gradient-based training manner, as is shown in Figure 2c.

3.2 STRONG RANKING PROPERTY AND (A)TGP LOSS

The strong ranking property is a stronger version of the ranking property proposed by Demirović
et al. (2019). The ranking property from Demirović et al. (2019) requires that two instances of a
combinatorial optimization problem have the same solution if the pairwise orders of the parameters
of two instances are the same, which captures the importance of total preorder to the optimality
of the ranking problems. However, the total preorder is not sufficient to find an optimal solution
for many combinatorial problems with group-wise comparisons in nature, e.g., knapsack problem
with fixed item weights1 and shortest path problem. To extend this ranking property to these prob-
lems, we propose a stronger version of ranking property which takes the group-wise preorder into
consideration.
Definition 1 (Total group preorder). For a combinatorial optimization problem with parameter c =

(c1, . . . , cd), the total group preorder TGP(c) =
{

(A,B) : non-empty subsets A,B ⊂ {1, . . . , d}

and A ∩B = ∅ such that
∑
i∈A ci ≥

∑
j∈B cj

}
.

For a ranking problems of 3 items with true weights c1 = 1, c2 = 2, c3 = 3, then the total group
preorder is TGP(c) = {({3}, {1}), ({3}, {2}), ({2}, {1}), ({3}, {1, 2})}. For many combinatorial

1The weights of items are fixed constants, as well as the capacity. The values of items are PTO parameters
to be estimated. Throughout this paper, we focus on this subset of knapsack problems.
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optimization problems, it suffices to know the total group preorder of the parameters to yield the
optimal solution.

Definition 2 (Strong ranking property). A combinatorial optimization problem satisfies strong rank-
ing property if for any two instances P and P ′ with parameters c and c′ respectively, TGP (c) =
TGP (c′) =⇒ P and P ′ have the same solution.

The strong ranking property indicates that the prediction algorithm only needs to learn the preorders
between different sets of groups in PTO parameters. Inspired by the strong ranking property, we
propose the TGP loss function which captures the difference between the TGP under predicted PTO
parameter ĉ and that under the true parameter c.

Definition 3 (TGP loss).

`TGP(ĉ, c | L) = ‖sign(Lĉ)− sign(Lc)‖22 (2)

where sign(x) is a point-wise sign function and L is a matrix whose elements can be any real
numbers, called TGP matrix.

To capture the complete TGP, we need L to be
(
2d

2

)
×d which needs exponentially growing memory

as the number of PTO parameter d increases. However, this can be avoided by noticing that the
optimal solutions of different optimization problems are determined by different subset of its TGP,
e.g., {({3}, {1}), ({3}, {2}), ({2}, {1})} for the ranking problem mentioned above. Instead, we fix
the number of rows in L and let each row of L act as a linear filter that extracts out a group-wise
comparison within c so that each L represents a subset of TGP; as a result, different optimization
problems will have different TGP matrices.

Note that TGP loss is not differentiable because the sign function on ĉ is not differentiable, we derive
a differentiable version of it by replacing the sign function with hyperbolic tangent function, called
approximated total group preorder (ATGP) loss.

Definition 4 (ATGP loss).

`ATGP(ĉ, c | L, γ) = ‖tanh(γLĉ)− sign(Lc)‖22 (3)

where γ is a temperature hyperparameter that controls the degree that the TGP loss is approximated
to and tanh is a point-wise hyperbolic tangent function.

Lemma 1. For any ĉ, c ∈ Rd and TGP matrix L, we have

lim
γ→+∞

`ATGP(ĉ, c | L, γ) = `TGP(ĉ, c | L)

Here the hyperbolic tangent function is used to approximate the sign function with a differentiable
functional form. Figure 2c visualizes the ATGP loss for the ranking PTO problem with TGP matrix
L = [1,−1] and γ = 0.9.

3.3 ROBUSTNESS OF ATGP LOSS

Despite of the difficulty on theoretically proving the non-optimum of the commonly used l2 loss
in the prediction stage, we can prove in a simple setting with linear regression as the prediction
algorithm that the ATGP loss is generally better than the traditional l2 loss for the ranking problem.
Specifically, ATGP loss is more robust to noise added to the observation of the PTO parameters in
the training data set.

Learning to rank with linear regression Suppose there is a set of training examples{(
x(i), c(i)

)
: i ∈ S

}
in the training set S identically and independently sampled from some dis-

tribution D. Each example has a feature vector x(i) ∈ Rk and a vector c(i) ∈ Rd of response
variables. Here the response variables are the values of d items that the decision maker aims to
rank. The decision maker predicts the value of items using a linear regression model, i.e., compute
a matrix H ∈ Rd×k such that for a new pair (x, c) ∼ D, the linear estimator Hx predicts a score
for each response variable in c given x. The decision maker will rank the items according to the
predicted values Hx. An example is routing recommendation in which the feature vector x encodes
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the context information like weather, time, temperature and c ∈ Rd is the congestion levels of the d
routes within a map. The goal is to find the n routes with the least congestion levels.

Let the ground truth linear transformation from the feature points to response variables be H∗,
and the ground truth response variables be c̄(i) = H∗x(i). The noisy response variables that we
actually observe are c(i) = c̄(i) + ε(i) where ε(i) is the noise i.i.d. over each sample i. For a loss
function `, we denote its empirical risk minimizing estimator Ĥ` = arg minH

∑
i∈S `(Hx

(i), c(i)),
so the predicted values given feature x(i) would be ĉ(i)` = Ĥ`x. We define the robustness of a loss
function as the minimum level of noise such that there exists at least one sample where the predicted
values have different total group preorder as the ground truth values, which intuitively stands for the
minimum efforts to “corrupt” the system.

Definition 5 (Robustness). The robustnessR(`) of a loss function ` is defined to be

R(`) = inf
ε
{‖ε‖22 : ∃i ∈ S s.t. TGP(ĉ

(i)
` ) 6= TGP(c̄(i))} (4)

We show that as long as the sample that’s most easily corrupted does not share the same low-
dimensional subspace of other samples, the robustness of ATGP loss function is no lower than the
l2 loss.

Theorem 1. Let i∗ be the index of the ground truth optimization parameter which is most sensitive
to noise perturbation, i.e., infε{‖ε‖22 : TGP(c̄(i

∗) + ε) 6= TGP(c̄(i
∗))} ≤ infε{‖ε‖22 : TGP(c̄(j) +

ε) 6= TGP(c̄(j))},∀j ∈ S. If the linear space expanded by all feature vectors except i∗ has low
rank structure (i.e., rank

(
{x(i) : i ∈ S/{i∗}}

)
< k) and x(i

∗) doesn’t belong to this space, then
there exists a TGP matrix L such that

R (`ATGP) ≥ R (`l2)

The choice of TGP matrix L depends on the specific type of the optimization problem U . A TGP
matrix suitable for top-n ranking problem may perform badly on the knapsack problem and shortest
path problem. To solve this, we propose a searching algorithm to automatically find the suitable
TGP matrices for different optimization problems with strong ranking property.

4 ADAPTIVE ATGP LOSS FUNCTION SEARCH WITH APOC

To search for the proper ATGP loss functions for different optimization problems, we propose a
search algorithm called APOC (Automatic Prediction and Optimization Connector), following the
spirit of AutoML (Zoph & Le, 2017; Pham et al., 2018; Li et al., 2021). To make the size of
the searching space for the TGP matrix stable and preserve the flexibility of comparing items, we
parameterize the rows of TGP matrix with a set of discretized Derivative-of-Gaussian (DoG) filters,
which are wavelet filters widely used for edge detection in computer vision (Kennedy & Basu, 1999;
Zhang et al., 2020). The wavelet filters can well capture the weighted group-wise comparison among
the items with variable group size and are updated based on the prediction quality induced by them.

4.1 SEARCH SPACE AND WAVELET FILTER

Recall that for the PTO parameter c, we want tanh(γLc) ≈ sign(Lc) to approximately capture
different group-wise comparisons between the entries of c. To this end, we parameterize the TGP
matrix L by a set of sliding discretized Derivatives-of-Gaussian (DoG) filters. Each filter has a
reception field which will select a subset of entries of c, and assigns weights to the selected entries
in the reception field, as is shown in Figure 3. The inner product between the selected entries in
the reception field and the weights form an entry in Lc. The reception field will slide along c with
a stride of 1. We denote by G(x, a) the probability density function of Gaussian distribution with
mean zero and standard deviation a, then the weight of filter i with parameter (ni, ai) assigned to
the j-th item in the reception field is

Fi,j = ν(j;ni, ai)/

√∑d

r=1
ν2(r;ni, ai) where ν(j;ni, ai) =

∂ni

∂xni
G(x, ai) |x=j (5)
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Figure 3: Three DoG filters with the reception field of 40 items.

Thus, these filters can detect group-wise comparison patterns and encode them into tanh(γLc).

For representing the TGP matrix L, we use θ to denote the parameters (n1, a1, . . . , nD, aD) of all
D DoG filters used. With our wavelet filter representation approach, the search of an adequate TGP
matrix over the entire matrix space degenerates to finding the optimal θ, which saves the computation
cost greatly and makes it not necessarily dependent on the size of c.

4.2 PARAMETER OPTIMIZATION

Algorithm 1 shows the details of our approach. Specifically, at each round t, we explore the loss
function space by creating M trajectories, each trajectory with a set of DoG filter parameter µm
sampled independently from a truncated normal distribution Ntruncated(θt−1, σ

2I). The truncated
normal distribution has support on [0,+∞). We denote the probability density function of µ ∼
Ntruncated(θ, σ2I) as π(µ | θ). For each loss function `m, the prediction model is then trained to
minimizes `m using stochastic gradient descent (SGD) and the learned model fŵ makes predictions
on the validation set {ĉ(i) : i ∈ V }. We evaluate the current policy by calculating the negative total
SPO loss of fŵ on the validation set Rmt = −

∑
i∈V `SPO(ĉ(i), c(i)).

The sampling policy can be updated with commonly used reinforcement learning algorithms. Two
classic algorithms are listed here in our work, and other policy updating algorithms are also appli-
cable. The first one we have used is REINFORCE algorithm (Williams, 1992)

θt ← θt−1 +
η

M

M∑
m=1

[Rmt ∇θ log π(µm | θt−1)] (6)

Besides, the PPO2 algorithm (Schulman et al., 2017) has also been applied:

θt ← arg max
θ

1

M

M∑
m=1

min

(
π(µm | θ)

π(µm | θt−1)
Rmt ,CLIP

(
π(µm | θ)

π(µm | θt−1)
, 1− ε, 1 + ε

)
Rmt

)
(7)

Algorithm 1: Automatic Prediction and Optimization Connector (APOC)
Input: gradient-based prediction model fw, initial loss parameters θ0, number of search iterations T ,
number of samples per iteration M , exploration ratio σ;
Output: final loss parameters θ∗, final prediction model parameters w∗;

1 for each t ∈ [1, T ] do
2 for each m ∈ [1,M ] do
3 Sample DoG filter parameters µm from the truncated normal distributionNtruncated(θt−1, σ

2I);
4 Compute the ATGP loss function `m which is parameterized by µm Train the prediction model

ŵ = argminw

∑
i∈S `

m(fw(x
(i)), c(i));

5 Evaluate the model on the validation set ĉ(i) = fŵ(x
(i)) for all i ∈ V ;

6 Compute the reward Rm
t = −

∑
i∈V `SPO(ĉ

(i), c(i));

7 Update θt according to REINFORCE (6) or PPO2(7);

8 θ∗ = θT , w∗ = argminw

∑
i∈S `

∗(fw(x
(i)), c(i)) where `∗ is the ATGP loss parameterized by θ∗.

Following the common practice in policy gradient algorithms, we subtract a baseline value fromRmt
to reduce the variance of the gradient estimator (Schulman et al., 2015). Here we use the averaged
reward from all M trajectories as the baseline value.
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5 EXPERIMENTS

The proposed APOC method is applied to three predict-then-optimize problems with real-world
datasets to validate its performance. Those three PTO problems contain optimization problems with
different representative combinatorial structures, i.e., ranking, knapsack, and shortest path problem.
Empirically, our experimental results demonstrate that significant performance gains can be achieved
against some previously proposed algorithms by finding a better loss for the prediction phase.

5.1 DATASET DESCRIPTION

Energy Cost-Aware Scheduling This dataset contains two years of historical energy price data
from the day-head market of the Irish Single Electricity Market Operator (SEM-O). The energy
prices for each half-hour of a day need to be predicted with some given feature data (Simonis et al.)
including estimates of the temperature, wind speed, CO2 intensity, etc. We need to select a subset of
48 half-hours in one day based on the predicted prices to schedule the machines to minimize the total
expenditure of the day. Here we formulate the optimization problem as a top-k ranking problem,
where the order of the top-k half-hours in a day determines the minimal total expenditure of the day.
We evaluate algorithms with k ∈ {5, 10, 15}. The data set contains 37,872 instances.

Knapsack Formulation of Portfolio Optimization We use the historical daily price and volume
data from 2004 to 2017 from partition SP500 of the Quandl WIKI dataset (QUANDL, 2020). The
task is to predict the future returns for a set of 505 candidate stocks, and generate daily portfolios
based on the predictions. The optimization problem is formulated as a knapsack problem in which
the decision maker needs to choose stocks based on estimated returns to maximize the total expected
reward under the fixed budget. The data set provides 150 instances.

Shortest Path We use the processed data from Mandi & Guns (2020) where the goal is to find the
shortest path of the given source-destination pairs on a Twitter ego network (McAuley & Leskovec,
2012). The network consists of 231 nodes and 2861 edges where the edge weights need to be
predicted using node and edge features, with 115 instances in total.

5.2 EXPERIMENTAL SETTINGS

Baseline methods We compare with the follow PTO methods. l2 distance: two-stage method
with conventional l2 regression. QPTL/IntOpt: exerts quadratic/log-barrier regularization on the
solution parameters to obtain non-zero gradient for differentiable training. SPO+: uses continuous
convex surrogate of the SPO loss function for sub-gradient based training. NeuralSort: differentiably
relaxing the permutation matrix in sorting problems. DiffOpt: a recent method which approximates
the gradient by the solution difference with perturbed prediction parameters. The outlines of these
methods are discussed in Section 2.

Experiment settings For each experiment, we use the same prediction model architecture and
train/validation/test splits across different methods for fair comparisons. We use Adam optimizer for
parameter training across all experiments, where hyperparameters (learning rate, ATGP temperature
γ) are obtained by grid search using the validation performance. For Energy Cost-Aware Scheduling,
the prediction model is instantiated to be a 4-layer neural network (hidden layer sizes of 500-300
with ReLU as activation function) with learning rate 5 × 10−5 and γ = 5.0. For Shortest Path,
the prediction model is a 4-layer network (hidden layer sizes of 100-100 with ReLU as activation
function) with learning rate 5 × 10−4 and γ = 3.0. For Portfolio Optimization, we use a 5-layer
neural network (hidden layer sizes of 100-100-100 with ReLU as activation function) with learning
rate 5× 10−5, γ = 3.0. We use Gurobi optimizer to solve all combinatorial optimization problems
and use CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2018) and QPTH (Amos & Kolter, 2017)
for differentiable optimization.

5.3 RESULTS

This subsection shows the evaluated performance of our algorithm on the three PTO problems de-
scribed above. The goal is three-fold: 1) to demonstrate that our algorithm outperforms the previous
proposed algorithms by a significant margin; 2) to analyze the sensitivity of our algorithm to the
hyperparameters; 3) to validate the effectiveness of our proposed DoG filters by an ablation study.
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Figure 4: Left and mid panel show the performance of Algorithm 1 on Energy Cost-Aware Schedul-
ing problem with different γ (fixing σ = 0.2) and different σ (fixing γ = 1.0), respectively. The
right panel shows the ablation study on the DoG wavelet filter parameterization (γ = 1.0, σ = 0.2),
with black segments showing the (5%, 95%) percentile interval.

Performance Comparison The results in Table 1 show that our proposed APOC algorithm yields
significantly lower SPO losses than other algorithms on all three PTO problems. For Energy Cost-
Aware Scheduling and shortest path problem, the ATGP loss function searched by REINFORCE
algorithm induces better predictions while PPO2 algorithm is better on knapsack problem.

Table 1: Comparison of SPO losses with baseline algorithms on the three PTO problems. “–” means
either the algorithm is inapplicable or cannot achieve a result in satisfying range with our best efforts.

Algorithm Energy Cost-Aware Scheduling Knapsack Shortest Pathtop-5 top-15 top-25

l2 distance 53.84 80.75 51.17 26.57 223
QPTL 68.86 110.34 74.31 27.14 197
IntOpt – – – 27.06 92
SPO+ 47.27 65.26 44.93 26.03 138

NeuralSort 52.69 73.23 45.43 – –
DiffOpt 50.28 71.86 57.06 27.21 –

APOC-REINFORCE 42.59 53.97 40.81 25.70 63.87
APOC-PPO2 49.50 66.80 55.56 24.93 78.03

Hyperparameter sensitivity In our algorithm, there are two key hyperparameters: the tempera-
ture parameter γ ∈ (0,+∞) and the exploration ratio σ ∈ (0,+∞). Each hyperparameter stands
for a trade-off in the searching process. Lower temperature γ gives a smoother ATGP loss which is
beneficial to the training of the prediction model but as Lemma 1 states, the ATGP loss with higher
γ approximates the true TGP loss closer. The exploration ratio σ balances a classic exploration-
exploitation trade-off in the searching algorithm. Sampling policy with a smaller σ exploits the
feedback more from the last step while the policy with larger σ explores a larger area of the param-
eter space. We present the influences of γ and σ on our searching algorithm in Figure 4. The results
show that the proposed method is generally robust and insensitive to these hyperparameters.

Ablation Study To understand the contribution of the DoG wavelet filter, we conduct an ablation
study that compares the performance of our APOC algorithm with the searching algorithm in which
the TGP matrix is parameterized by a fully connected dense layer. As is shown in right panel of
Figure 4, the wavelet filter yields a significant decrease in the SPO loss on the test set.

6 CONCLUSION

To tackle the disalignment between prediction loss and optimization goal in PTO problems, we pro-
pose to use the differentiable ATGP loss which captures the total group preorder. A corresponding
APOC method is further proposed to automatically search for a good surrogate loss with wavelet
filters to capture the group-wise comparison of different sizes and weights. The method is well val-
idated on three different PTO problems and shows great potential for more PTO problems. Starting
from the limitations of this work, the following directions are expected for future work: 1) extend
the scope of APOC framework to PTO problems beyond the ones with strong ranking property, 2)
explore how to reduce the searching time of the iterations within APOC framework.
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REPRODUCIBILITY STATEMENT

Source code We have made the source code for the proposed APOC available in the following
repository: https://github.com/Microsoft/AutoPredOptConnector .

Proof of Lemma 1 and Theorem 1 We have attached the complete proof of Lemma 1 and Theorem
1 in the Appendix.

REFERENCES

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for
convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

Brandon Amos. Differentiable optimization-based modeling for machine learning. PhD thesis, PhD
thesis. Carnegie Mellon University, 2019.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

David E Bell. Regret in decision making under uncertainty. Operations research, 30(5):961–981,
1982.

Shahin Boluki, Xiaoning Qian, and Edward R Dougherty. Experimental design via generalized
mean objective cost of uncertainty. IEEE Access, 7:2223–2230, 2018.

Sebastian Bruch, Xuanhui Wang, Michael Bendersky, and Marc Najork. An analysis of the softmax
cross entropy loss for learning-to-rank with binary relevance. In Proceedings of the 2019 ACM
SIGIR International Conference on Theory of Information Retrieval, pp. 75–78, 2019.
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APPENDIX

1 PROOF OF LEMMA 1

Proof. Notice that the sign function is the derivative of a “V”-shape function:
sign(x) = 1x>0 − 1x<0

=

[
1
0

]>
arg max(x, 0)−

[
1
0

]>
arg max(−x, 0)

where arg max(x, 0) = [1, 0]> if x ≥ 0 and [0, 1]> otherwise. We can use softmax function to
approximate the argmax, i.e.,

arg max(x, 0) = lim
γ→+∞

[
e2γx

e2γx+1
1

e2γx+1

]
and [

1
0

]>([ e2γx

e2γx+1
1

e2γx+1

]
−

[
e−2γx

e−2γx+1
1

e−2γx+1

])
=
e2γx − 1

e2γx + 1

= tanh(γx)

Combined all equalities together, we have sign(x) = limγ→+∞ tanh(γx).

2 PROOF OF THEOREM 1

Notations. For a matrix A, Ai refers to its i-th row and A:,i refers to its i-th column. L(A) denotes
the column space of A and PA is the orthogonal projection matrix onto L(A). A+ denotes the
pseudo-inverse of A; ||A||F =

√∑
i ||Ai||22 is the Frobenius norm of A.

For convenience of introducing our proof, we describe our data model and assumption in matrix
notations. Let N = |S| be the number of samples, we can row-stack the feature vectors to be matrix
X ∈ RN×k. Also let the ground truth linear regression parameter matrix be H∗ ∈ Rk×d (H∗ is
transposed here compared to the main text since we’re viewing the feature/response variables as
row vectors instead of column vectors), so the row-stack matrix of ground truth response values is
C∗ = XH∗. We observe C = C∗ +E where E is the noise matrix and the noise level is defined to
be ||E||2F .

For a certain loss metric l, the minimizer is denoted by

Ĥ l = arg min
H

l(XH,C)

and the prediction is denoted by
Ĉl = XĤ l

Any specific optimization problem with strong ranking property corresponds to a subset of its total
group pre-orders. We formalize this with the following definition.
Definition 6. A function f is called a sub-order function if it maps a vector to a subset of its total
group pre-orders. We will also call f(a) the sub-orders of a induced by f .

Now a sub-order function f would specify the optimization problem at hand. Each sub-order func-
tion f would also correspond to a TGP matrix whose rows compares the sub-groups induced by f ;
we denote this matrix by Lf . Take Ranking problems for example, f(a) = fRanking(a) would map
a to the subset of TGP(a) where the elements (u1, u2) satisfy |u1| = |u2| = 1, and Lf would be a
matrix that maps a vector to another vector of its pairwise differences.

Now for sample matrix A and label matrix B, the two loss metrics whose robustness to noise we
aim to compare are:

`l2(A,B) = ||A−B||2F , `ATGP(A,B) = || tanh(γ · LfA)− sign(LfB)||2F

Given a sub-order function f and a vector a, we define ∆f (a) to be the minimum perturbation on
a to change a’s sub-orders induced by f ; similarly for a matrix A which consists of a row-stack of
samples.
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Definition 7. For a vector a or a matrix A,

∆f (a) = min
e
||e||22 s.t. f(a) 6= f(a+ e)

∆f (A) = min
j

∆f (Aj)
(8)

Let us reformulate the assumption for Theorem 1 with the above notations.

Assumption 1 (Reformulated). The feature matrixX has a low rank structure (meaning the samples
belong to a linear subspace of less than k-dimension) except for the sample indexed by g which can
induce different sub-orders with minimum perturbation, i.e., ∆f (C∗g ) = ∆f (C∗).

Validity and Intuition of Assumption 1: it is easy to construct data models which satisfies this
assumption; details at the end of the document. This assumption says that the sample which is most
likely a outlier in the dataset does not share the low-rank structure of other samples. Considering
the low-rank structure of most real world datasets and the nature of outliers, this assumption is very
likely to hold intuitively. We also believe our conclusion can be extended to non-linear settings
where the low-rank linear subspace in this assumption is replaced by low-dimensional manifolds.

Proof for Theorem 1. We’re now ready to present the proof of Theorem 1, which is an immediate
consequence of Lemma 2 and Lemma 3 below.

Lemma 2. Under Assumption 1, we have

R(`l2) ≤ ∆f (C∗)

Proof. For l2 loss the solution is given by

Ĥ l2 = X+(C∗ + E) = X+C∗ +X+E = H∗ +X+E (9)

and thus
XĤ l2 = C∗ +XX+E = C∗ + PXE (10)

Let U ∈ RN×k be a orthogonal basis for L(X), then PX = UUT . Let a orthogonal basis of the
complement of L(X) be U⊥. [U ;U⊥] = Ufull then forms an orthonormal basis of RN .

Let a normal vector of the subspace in Assumption 1 be ᾱ ∈ Rk and let the index for the special
sample be g. Then ∆f (C∗) = ∆f (C∗g ) and also ᾱTxi = 0 for i 6= g, ᾱTxg 6= 0. Now, we can scale
ᾱ to α s.t. αTxg = 1. Therefore we now have

Xα = eg

where eg is the g-th standard basis (one-hot) vector. Now eg ∈ L(X) = L(U) and thus basis vectors
in U⊥ are all perpendicular to eg . This means the g-th entry of any basis vector in U⊥ is 0. Since
any row of Ufull has unit norm, the g-th row of U must have unit norm, which also indicates that
the g-th row of PX = UUT has unit norm. Let the g-th row of PX be p ∈ Rn.

Now, we can find a matrix E s.t. PXE changes the sub-orders exactly in the g-th row of C∗. The
noise level of such a matrix E would then be an upper bound onR(`l2). Denote c∗ = C∗g . Let (i, j)

be the pair in f(c∗) with smallest |c∗i − c∗j |. We simply need to find E:,i, E:,j ∈ RN with minimum
||E:,i||22 + ||E:,j ||22 s.t. c∗i + pTE:,i = c∗j + pTE:,j . It can be easily seen that the optimal solution is
given by

E∗:,i =
c∗i − c∗j

2
· p;E∗:,j =

c∗j − c∗i
2

· p

and thus the minimum noise level is

||E∗:,i||22 + ||E∗:,j ||22 =
(c∗i − c∗j )2

2
= ∆f (C∗g ) = ∆f (C∗) ≥ R(`l2)

by which our proof is done.

Lemma 3. ∆f (C∗) ≤ R(`ATGP).
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Proof. The proof of this lemma is rather simple; recall that the ATGP loss seeks to find H which
minimizes `ATGP(XH,C∗ + E) = || tanh(γ · LfXH) − sign(Lf (C∗ + E))||2F . Now as long as
E doesn’t change the sub-orders in C∗’s rows, sign(Lf (C∗ +E)) = sign(LfC

∗) so `ATGP remains
intact under the noise E, and thus it would still give the optimal solution. Therefore the minimum
noise level which changes the sub-order in at least one of C∗’s rows would always be a lower bound
forR(`ATGP).

This bound should have a large gap with the best bound since the decision boundary usually
shouldn’t change a lot even when we corrupt a portion of the samples. Here we only corrupt one
sample.

Example of constructing data that satisfies Assumption 1. Generating X which satisfies the
requirement is straightforward. Now letH1, H2 ∈ Rd be nearly orthogonal vectors of xg . Randomly
generate H3, ...,Hn and flip their signs s.t. k − 1 out of them have HT

j xg < 0 the rest have
HT
j xg > 0. This ensures that HT

1 xg, H
T
2 xg are the k-th and k + 1-th biggest items in C∗g,:. By

genericity, they are the closest pair in all pairs of entries of C∗ and therefore ∆k(C∗) = ∆k(C∗g ).
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