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Abstract

Recovering the 3D shape of transparent objects using a
small number of unconstrained natural images is an ill-posed
problem. Complex light paths induced by refraction and re-
flection have prevented both traditional and deep multiview
stereo from solving this challenge. We propose a physically-
based network to recover 3D shape of transparent objects
using a few images acquired with a mobile phone camera,
under a known but arbitrary environment map. Our novel
contributions include a normal representation that enables
the network to model complex light transport through local
computation, a rendering layer that models refractions and
reflections, a cost volume specifically designed for normal re-
finement of transparent shapes and a feature mapping based
on predicted normals for 3D point cloud reconstruction. We
render a synthetic dataset to encourage the model to learn
refractive light transport across different views. Our experi-
ments show successful recovery of high-quality 3D geometry
for complex transparent shapes using as few as 5-12 natural
images. Code and data are publicly released.

1. Introduction
Transparent objects abound in real-world environments,

thus, their reconstruction from images has several applica-
tions such as 3D modeling and augmented reality. However,
their visual appearance is far more complex than that of
opaque objects, due to complex light paths with both refrac-
tions and reflections. This makes image-based reconstruc-
tion of transparent objects extremely ill-posed, since only
highly convoluted intensities of an environment map are
observed. In this paper, we propose that data-driven priors
learned by a deep network that models the physical basis of
image formation can solve the problem of transparent shape
reconstruction using a few natural images acquired with a
commodity mobile phone camera.

While physically-based networks have been proposed to
solve inverse problems for opaque objects [27], the com-
plexity of light paths is higher for transparent shapes and
small changes in shape can manifest as severely non-local
changes in appearance. However, the physical basis of image
formation for transparent objects is well-known – refraction

∗These two authors contributed equally

(a) (b)

(c) (d)

Figure 1. We present a novel physically-based deep network for
image-based reconstruction of transparent objects with a small
number of views. (a) An input photograph of a real transparent
object captured under unconstrained conditions (1 of 10 images).
(b) and (c): The reconstructed shape rendered under the same view
with transparent and white diffuse material. (d) The reconstructed
shape rendered under a novel view and environment map.

at the interface is governed by Snell’s law, the relative frac-
tion of reflection is determined by Fresnel’s equations and
total internal reflection occurs when the angle of incidence
at the interface to a medium with lower refractive index is
below critical angle. These properties have been used to
delineate theoretical conditions on reconstruction of trans-
parent shapes [25], as well as acquire high-quality shapes
under controlled settings [48, 54]. In contrast, we propose to
leverage this knowledge of image formation within a deep
network to reconstruct transparent shapes using relatively
unconstrained images under arbitrary environment maps.

Specifically, we use a small number of views of a glass
object with known refractive index, observed under a known
but arbitrary environment map, using a mobile phone cam-
era. Note that this is a significantly less restricted setting
compared to most prior works that require dark room envi-
ronments, projector-camera setups or controlled acquisition
of a large number of images. Starting with a visual hull
construction, we propose a novel in-network differentiable
rendering layer that models refractive light paths up to two
bounces to refine surface normals corresponding to a back-
projected ray at both the front and back of the object, along
with a mask to identify regions where total internal reflection
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https://github.com/lzqsd/TransparentShapeReconstruction.git


Input View 1 View 2 View 3
Figure 2. Reconstruction using 10 images of synthetic kitten model. The left image is rendered with the reconstructed shape while the right
image is rendered with the ground-truth shape.

occurs. Next, we propose a novel cost volume to further
leverage correspondence between the input image and envi-
ronment map, but with special considerations since the two
sets of normal maps span a four-dimensional space, which
makes conventional cost volumes from multiview stereo
intractable. Using our differentiable rendering layer, we
perform a novel optimization in latent space to regularize
our reconstructed normals to be consistent with the manifold
of natural shapes. To reconstruct the full 3D shape, we use
PointNet++ [34] with novel mechanisms to map normal fea-
tures to a consistent 3D space, new loss functions for training
and architectural changes that exploit surface normals for
better recovery of 3D shape.

Since acquisition of transparent shapes is a laborious
process, it is extremely difficult to obtain large-scale training
data with ground truth [42]. Thus, we render a synthetic
dataset, using a custom GPU-accelerated ray tracer. To avoid
category-specific priors, we render images of random shapes
under a wide variety of natural environment maps. On both
synthetic and real data, the benefits of our physically-based
network design are clearly observed. Indeed, we posit that
such physical modeling eases the learning for a challenging
problem and improves generalization to real images. Figures
1 and 2 show example outputs on real and synthetic data. All
code and data will be publicly released.

To summarize, we propose the following contributions
that solve the problem of transparent shape reconstruction
with a limited number of unconstrained views:
• A physically-based network for surface normal recon-

struction with a novel differentiable rendering layer and
cost volume that imbibe insights from image formation.

• A physically-based 3D point cloud reconstruction that
leverages the above surface normals and rendering layer.

• Strong experimental demonstration using a photorealisti-
cally rendered large-scale dataset for training and a small
number of mobile phone photographs for evaluation.

2. Related Work
Multiview stereo Traditional approaches [39] and deep
networks [51] for multiview stereo have achieved impressive
results. A full review is out of our scope, but we note that
they assume photoconsistency for opaque objects and cannot
handle complex light paths of transparent shapes.
Theoretical studies In seminal work, Kutulakos and Ste-
ger [25] characterize the extent to which shape may be recov-

ered given the number of bounces in refractive (and specular)
light paths. Chari and Sturm [6] further constrain the sys-
tem of equations using radiometric cues. Other works study
motion cues [3, 31] or parametric priors [45]. We derive in-
spiration from such works to incorporate physical properties
of image formation, by accounting for refractions, reflections
and total internal reflections in our network design.

Controlled acquisition Special setups have been used in
prior work, such as light field probes [46], polarimetry
[11, 17, 30], transmission imaging [22], scatter-trace pho-
tography [32], time-of-flight imaging [43] or tomography
[44]. An external liquid medium [16] or moving spotlights
in video [52] have been used too. Wu et al. [48] also start
from a visual hull like us, to estimate normals and depths
from multiple views acquired using a turntable-based setup
with two cameras that image projected stripe patterns in a
controlled environment. A projector-camera setup is also
used by [37]. In contrast to all of the above works, we only
require unconstrained natural images, even obtainable with
a mobile phone camera, to reconstruct transparent shapes.

Environment matting Environment matting uses a
projector-camera setup to capture a composable map [58, 10].
Subsequent works have extended to mutliple cameras [29],
natural images [47], frequency [57] or wavelet domains [33],
with user-assistance [54], compressive sensing to reduce the
number of images [12, 35] or deep network to predict the
refractive flow from a single image [8]. In contrast, we use
a small number of unconstrained images acquired with a
mobile phone in arbitrary scenes, to produce full 3D shape.

Reconstruction from natural images Stets et al. [41]
propose a black-box network to reconstruct depth and nor-
mals from a single image. Shan et al. [40] recover height
fields in controlled settings, while Yeung et al. [53] have
user inputs to recover normals. In contrast, we recover high-
quality full 3D shapes and normals using only a few images
of transparent objects, by modeling the physical basis of
image formation in a deep network.

Refractive materials besides glass Polarization [9], dif-
ferentiable rendering [7] and neural volumes [28] have been
used for translucent objects, while specular objects have
been considered under similar frameworks as transparent
ones [18, 59]. Gas flows [2, 20], flames [19, 49] and flu-
ids [15, 36, 56] have been recovered, often in controlled
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Figure 3. Our framework for transparent shape reconstruction.

setups. Our experiments are focused on glass, but similar
ideas might be applicable for other refractive media too.

3. Method
Setup and assumptions Our inputs are V images
{Iv}Vv=1 of a transparent object with known refractive in-
dex (IoR), along with segmentation masks {Mv}Vv=1. We
assume a known and distant, but otherwise arbitrary, envi-
ronment map E. The output is a point cloud reconstruction
P of the transparent shape. Note that our model is different
from (3-2-2) triangulation [24] that requires two reference
points on each ray for reconstruction, leading to a significant
relaxation over prior works [48, 54] that need active lighting,
carefully calibrated devices and controlled environments.
We tackle this severely ill-posed problem through a novel
physically-based network that models the image formation in
transparent objects over three sub-tasks: shape initialization,
cost volume for normal estimation and shape reconstruction.

To simplify the problem and due to GPU memory limits,
we consider light paths with only up to two bounces, that is,
either the light ray gets reflected by the object once before
hitting the environment map or it gets refracted by it twice
before hitting the environment map. This is not a severe lim-
itation – more complex regions stemming from total internal
reflection or light paths with more than two bounces are
masked out in one view, but potentially estimated in other
views. The overall framework is summarized in Figure 3.

Shape initialization We initialize the transparent shape
with a visual hull [23]. While a visual hull method cannot
reconstruct some concave or self-occluded regions, it suffices
as initialization for our network. We build a 3D volume of
size 1283 and project segmentation masks from V views to
it. Then we use marching cubes to reconstruct the hull and
loop L3 subdivision to obtain smooth surfaces.

3.1. Normal Reconstruction

A visual hull reconstruction from limited views might be
inaccurate, besides missed concavities. We propose to recon-
struct high quality normals by estimating correspondences
between the input image and the environment map. This is a
very difficult problem, since different configurations of trans-
parent shapes may lead to the same appearance. Moreover,
small perturbations of normal directions can cause pixel

intensities to be completely different. Thus, strong shape
priors are necessary for a high quality reconstruction, which
we propose to learn with a physically-inspired deep network.

Basic network Our basic network architecture for normal
estimation is shown in Figure 4. The basic network structure
consists of one encoder and one decoder. The outputs of our
network are two normal maps N1 and N2, which are the
normals at the first and second hit points P 1 and P 2 for a ray
backprojected from camera passing through the transparent
shape, as illustrated in Figure 5(a). The benefit of modeling
the estimation through N1 and N2 is that we can easily
use a network to represent complex light transport effects
without resorting to ray-tracing, which is time-consuming
and difficult to treat differentiably. In other words, given N1

and N2, we can directly compute outgoing ray directions
after passage through the transparent object. The inputs to
our network are the image I , the image with background
masked out I �M and the Ñ1 and Ñ2 of the visual hull
(computed off-line by ray tracing). We also compute N̂1 and
N̂2 of the ground-truth shape for supervision. The definition
of Ñ1, Ñ2 and N̂1, N̂2 are visualized in Figure 5(b). The
basic network estimates:

N1, N2 = NNet(I, I �M, Ñ1, Ñ2) (1)

The loss function is simply the L2 loss for N1 and N2.

LN = ||N1 − N̂1||22 + ||N2 − N̂2||22 (2)

Rendering layer Given the environment map E, we can
easily compute the incoming radiance through direction l
using bilinear sampling. This allows us to build a differen-
tiable rendering layer to model the image formation process
of refraction and reflection through simple local computa-
tion. As illustrated in Figure 5(a), for every pixel in the
image, the incident ray direction li through that pixel can be
obtained by camera calibration. The reflected and refracted
rays lr and lt can be computed using N1 and N2, following
Snell’s law. Our rendering layer implements the full physics
of an intersection, including the intensity changes caused
by the Fresnel term F of the refractive material. More for-
mally, with some abuse of notation, let Li, Lr and Lt be the
radiance of incoming, reflected and refracted rays. We have

F =
1

2

(
li ·N − ηlt ·N
li ·N + ηlt ·N

)2

+
1

2

(
ηli ·N − lt ·N
ηli ·N + lt ·N

)2

.

Lr = F · Li, Lt = (1−F) · Li

Due to total internal reflection, some rays entering the
object may not be able to hit the environment map after one
more bounce, for which our rendering layer returns a binary
mask, M tr. With Ir and It representing radiance along the
directions lr and lt, the rendering layer models the image
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Figure 6. We build an efficient cost volume by sampling directions
around visual hull normals according to their error distributions.

formation process for transparent shapes through reflection,
refraction and total internal reflection:

Ir, It,M tr = RenderLayer(E,N1, N2). (3)

Our in-network rendering layer is differentiable and end-to-
end trainable. But instead of just using the rendering loss
as an extra supervision, we compute an error map based on
rendering with the visual hull normals:

Ĩr, Ĩt, M̃ tr = RenderLayer(E, Ñ1, Ñ2), (4)

Ĩer = |I − (Ĩr + Ĩt)| �M. (5)

This error map is used as an additional input to our normal
reconstruction network, to help it better learn regions where
the visual hull normals Ñ1 and Ñ2 may not be accurate:

N1, N2 = NNet(I, I �M, Ñ1, Ñ2, Ĩer, M̃ tr) (6)

Cost volume We now propose a cost volume to leverage
the correspondence between the environment map and the
input image. While cost volumes in deep networks have
led to great success for multiview depth reconstruction of

opaque objects, extension to normal reconstruction for trans-
parent objects is non-trivial. The brute-force approach would
be to uniformly sample the 4-dimensional hemisphere of
N1 × N2, then compute the error map for each sampled
normal. However, this will lead to much higher GPU mem-
ory consumption compared to depth reconstruction due to
higher dimensionality of the sampled space. To limit mem-
ory consumption, we sample N1 and N2 in smaller regions
around the initial visual hull normals Ñ1 and Ñ2, as shown
in Figure 6. Formally, let U be the up vector in bottom-to-top
direction of the image plane. We first build a local coordinate
system with respect to Ñ1 and Ñ2:

Z = Ñ i, Y = U − (UT · Ñ i)Ñ i, X = cross(Y,Z), (7)

where Y is normalized and i = 1, 2. Let {θk}Kk=1, {φk}Kk=1

be the sampled angles. Then, the sampled normals are:

Ñ i
k = X cosφk sin θk + Y sinφk sin θk + Z cos θk. (8)

We sample the angles {θk}Kk=1, {φk}Kk=1 according to the
error distribution of visual hull normals. The angles and
distributions are shown in the supplementary material. Since
we reconstruct N1 and N2 simultaneously, the total number
of configurations of sampled normals is K ×K. Directly
using the K2 sampled normals to build a cost volume is too
expensive, so we use a learnable pooling layer to aggregate
the features from each sampled normal configuration in an
early stage. For each pair of Ñ1

k and Ñ2
k′ , we compute their

total reflection mask M̃ tr
k,k′ and error map Ĩerk,k′ using (4) and

(5), then perform a feature extraction:

F (k, k′) = FNet(Ñ1
k , Ñ

2
k′ , Ĩ

er
k,k′ , M̃

tr
k,k′). (9)

We then compute the weighted sum of feature vectors
F (k, k′) and concatenate them with the feature extracted
from the encoder of NNet for normal reconstruction:

F =

K∑
k

K∑
k′

ω(k, k′)F (k, k′), (10)

where ω(k, k′) are positive coefficients with sum equal to 1,
that are also learned during the training process. The detailed
network structure is shown in Figure 4.
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and sampling radius X5. IY1-L(Y2, Y3) represents
a unit PointNet with Y1 input channels and 2 fully
connected layers with Y2, Y3 feature channels.

Post processing The network above already yields reason-
able normal reconstruction. It can be further improved by
optimizing the latent vector from the encoder to minimize
the rendering error using the predicted normal N1 and N2:

LOpt
N = ||(I − (Ir + It))�M tr||22, (11)

where It, It,M tr are obtained from the rendering layer (3).
For this optimization, we keep the network parameters un-
changed and only update the latent vector. Note that directly
optimizing the predicted normal N1 and N2 without the
deep network does not yield comparable improvements. This
is due to our decoder acting as a regularization that prevents
the reconstructed normal from deviating from the manifold
of natural shapes during the optimization. Similar ideas have
been used for BRDF reconstruction [13].

3.2. Point Cloud Reconstruction

We now reconstruct the transparent shape based on the
predictions of NNet, that is, the normals, total reflection
mask and rendering error. Our idea is to map the predic-
tions from different views to the visual hull geometry. These
predictions are used as input features for a point cloud re-
construction to obtain a full 3D shape. Our point cloud
reconstruction pipeline is illustrated in Figure 7.
Feature mapping We propose three options to map pre-
dictions from different views to the visual hull geometry.
Let {p̃} be the point cloud uniformly sampled from visual
hull surfaces and Sv(p̃, h) be a function that projects the 3D
point p̃ to the 2D image plane of view v and then fetches
the value of a function h defined on image coordinates using
bilinear sampling. Let Vv(p̃) be a binary function that veri-
fies if point p̃ can be observed from view v and Tv(p̃) be a
transformation that maps a 3D point or normal direction in
view v to world coordinates. Let Cv(p̃) be the cosine of the
angle between the ray passing through p̃ and camera center.

The first option is a feature f that averages observations
from different views. For every view v that can see the point
p̃, we project its features to the point and compute a mean:

p̃N1 =
∑

v Tv(Sv(p̃,N
1
v ))Vv(p̃)∑

v Vv(p̃)
, p̃Ier =

∑
v Sv(p̃,I

er
v )Vv(p̃)∑

v Vv(p̃)
,

p̃Mtr =
∑

v Sv(p̃,M
tr
v )Vv(p̃)∑

v Vv(p̃)
, p̃c =

∑
v Cv(p̃)Vv(p̃)∑

v Vv(p̃)
.

We concatenate to get: f = [p̃N1 , p̃Ier , p̃Mtr , p̃c].
Another option is to select a view v∗ with potentially the

most accurate predictions and compute f using the features

from only that view. We consider two view-selection strate-
gies. The first is nearest view selection, in which we simply
select v∗ with the largest Cv(p̃). The other is to choose the
view with the lowest rendering error and no total reflection,
with the algorithm detailed in supplementary material. Note
that although we do not directly map N2 to the visual hull
geometry, it is necessary for computing the rendering error
and thus, needed for our shape reconstruction.

Point cloud refinement We build a network following
PointNet++ [34] to reconstruct the point cloud of the trans-
parent object. The input to the network is the visual hull
point cloud {p̃} and the feature vectors {f}. The outputs are
the normals {N} and the offset of visual hull points {δp̃},
with the final vertex position is computed as p = p̃+ δp̃:

{δp̃}, {N} = PNet({p̃}, {f}). (12)

We tried three loss functions to train our PointNet++. The
first loss function is the nearest L2 loss Lnearest

P . Let p̂ be the
nearest point to p̃ on the surface of ground-truth geometry
and N̂ be its normal. We compute the weighted sum of L2

distance between our predictions p, N and ground truth:

Lnearest
P =

∑
{p},{N}

λ1||p− p̂||22 + λ2||N − N̂ ||22. (13)

The second loss function is a view-dependent L2 loss Lview
P .

Instead of choosing the nearest point from ground-truth ge-
ometry for supervision, we choose the point from the best
view v∗ by projecting its geometry into world coordinates:

p̂v∗ , N̂v∗ =

{
Tv∗ (Sv∗ (p̃,P̂

1
v∗ )),Tv∗ (Sv∗ (p̃,N̂

1
v∗ )), v∗ 6= 0

p̂, N̂ , v∗ = 0.

Then we have

Lview
P =

∑
{p},{N}

λ1||p− p̂v∗ ||22 + λ2||N − N̂v∗ ||22. (14)

The intuition is that since both the feature and ground-truth
geometry are selected from the same view, the network can
potentially learn their correlation more easily. The last loss
function, LCD

P , is based on the Chamfer distance. Let {q} be
the set of points uniformly sampled from the ground-truth
geometry, with normals Nq. Let G(p, {q}) be a function
which finds the nearest point of p in the point set {q} and
function Gn(p, {q}) return the normal of the nearest point.
The Chamfer distance loss is defined as
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Figure 8. A visualization of the loss functions for point cloud
reconstruction. From left to the right are nearest L2 loss Lnearest

P ,
view-dependent L2 loss Lview

P and chamfer distance loss LCD
P .

LCD
P =

∑
{p},{N}

λ1

2
||p−G(p, {q})||+ λ2

2
||N−Gn(p, {q})||+

∑
{q},{Nq}

λ1

2
||q−G(q, {p})||+ λ2

2
||Nq−Gn(q, {p})||. (15)

Figure 8 is a demonstration of the three loss functions. In all
our experiments, we set λ1 = 200 and λ2 = 5.

Our network, shown in Figure 7, makes several improve-
ments over standard PointNet++. First, we replace max-
pooling with average-pooling to favor smooth results. Sec-
ond, we concatenate normals {N} to all skip connections
to learn details. Third, we augment the input feature of set
abstraction layer with the difference of normal directions
between the current and center points. Section 4 and supple-
mentary material show the impact of our design choices.

4. Experiments
Dataset We procedurally generate random scenes follow-
ing [27, 50] rather than use shape repositories [5], to let the
model be category-independent. To remove inner structures
caused by shape intersections and prevent false refractions,
we render 75 depth maps and use PSR [21] to fuse them into
a mesh, with L3 loop subdivision to smooth the surface. We
implement a physically-based GPU renderer using NVIDIA
OptiX [1]. With 1499 HDR environment maps of [14] for
training and 424 for testing, we render 3000 random scenes
for training and 600 for testing. The IoR of all shapes is set
to 1.4723, to match our real objects. Our experiments also
include sensitivity analysis to characterize the behavior of
the network when the test-time IoR differs from this value.

Implementation Details When building the cost volume
for normal reconstruction, we set the number of sampled
angles K to be 4. Increasing the number of sampled angles
will drastically increase the memory consumption and does
not improve the normal accuracy. We sample φ uniformly
from 0 to 2π and sample θ according to the visual hull normal
error. The details are included in the supplementary material.
We use Adam optimizer to train all our networks. The initial
learning rate is set to be 10−4 and we halve the learning rate
every 2 epochs. All networks are trained over 10 epochs.

vh10 basic wr wr+cv
wr+cv wr+cv

+op var. IoR

N1 median (◦) 5.5 3.5 3.5 3.4 3.4 3.6
N1 mean (◦) 7.5 4.9 5.0 4.8 4.7 5.0
N2 median (◦) 9.2 6.9 6.8 6.6 6.2 7.3
N2 mean (◦) 11.6 8.8 8.7 8.4 8.1 9.1
Render Err.(10−2) 6.0 4.7 4.6 4.4 2.9 5.5

Table 1. Quantitative comparisons of normal estimation from 10
views. vh10 represents the initial normals reconstructed from 10
views visual hull. wr and basic are our basic encoder-decoder
network with and without rendering error map (Ier) and total re-
flection mask (M tr) as inputs. wr+cv represents our network with
cost volume. wr+cv+op represents the predictions after optimizing
the latent vector to minimize the rendering error. wr+cv var. IoR
represents sensitivity analysis for IoR, explained in text.

4.1. Ablation Studies on Synthetic Data
Normal reconstruction The quantitative comparisons of
10 views normal reconstruction are summarized in Table 1.
We report 5 metrics: the median and mean angles of the first
and the second normals (N1, N2), and the mean rendering
error (Ier). We first compare the normal reconstruction of
the basic encoder-decoder structure with (wr) and without
rendering error and total reflection mask as input (basic).
While both networks greatly improve the normal accuracy
compared to visual hull normals (vh10), adding rendering
error and total reflection mask as inputs can help achieve
overall slightly better performances. Next we test the effec-
tiveness of the cost volume (wr+cv). Quantitative numbers
show that adding cost volume achieves better results, which
coincides with our intuition that finding the correspondences
between input image and the environment map can help our
normal prediction. Finally we optimize the latent vector from
the encoder by minimizing the rendering error (wr+cv+op).
It significantly reduces the rendering error and also improves
the normal accuracy. Such improvements cannot be achieved
by directly optimizing the normal predictions N1 and N2

in the pixel space. Figure 9 presents normal reconstruction
results from our synthetic dataset. Our normal reconstruction
pipeline obtains results of much higher quality compared
with visual hull method. Ablation studies of 5 views and 20
views normal reconstruction and the optimization of latent
vector are included in the supplementary material.

Point cloud reconstruction Quantitative comparisons of
the 10-view point cloud reconstruction network are summa-
rized in Table 2. After obtaining the point and normal predic-
tions {p} and {N}, we reconstruct 3D meshes as described
above. We compute the Chamfer distance (CD), Chamfer
normal median angle (CDN-med), Chamfer normal mean
angle (CDN-mean) and Metro distance by uniformly sam-
pling 20000 points on the ground-truth and reconstructed
meshes. We first compare the effectiveness of different loss
functions. We observe that while all the three loss functions



Input VH rendered Rec rendered VH normal1 Rec normal1 GT normal1 VH normal2 Rec normal2 GT normal2

Figure 9. An example of 10 views normal reconstruction from our synthetic dataset. The region of total reflection has been masked out in the
rendered images.

5 views VH. 5 views Rec. 10 views VH. 10 views Rec. 20 views VH. 20 views Rec. Groundtruth

Figure 10. Our transparent shape reconstruction results from 5 views, 10 views and 20 views from our synthetic dataset. The images rendered
with our reconstructed shapes are much closer to the ground-truth compared with images rendered with the visual hull shapes. The inset
normals are rendered from the reconstructed shapes.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
vh10 5.14 7.19 4.90 15.2
RE-Lnearest

P 2.17 6.23 4.50 7.07
RE-Lview

P 2.15 6.51 4.76 6.79
RE-LCD

P 2.00 6.02 4.38 5.98

NE-LCD
P 2.04 6.10 4.46 6.02

AV-LCD
P 2.03 6.08 4.46 6.09

RE-LCD
P , var. IoR 2.13 6.24 4.56 6.11

PSR 5.13 6.94 4.75 14.7

Table 2. Quantitative comparisons of point cloud reconstruction
from 10 views. RE, NE and AV represent feature mapping methods:
rendering error based view selection, nearest view selection and
average fusion, respectively. Lnearest

P , Lview
P and LCD

P are the loss
functions defined in Sec. 3. RE-LCD

P , var. IoR represents sensitivity
analysis for IoR, as described in text. PSR represents optimization
[21] to refine the point cloud based on predicted normals.

can greatly improve the reconstruction accuracy compared
with the initial 10-view visual hull, the Chamfer distance loss
(RE-LCD

P ) performs significantly better than view-dependent
loss (RE-Lview

P ) and nearest L2 loss (RE-Lnearest
P ). Next, we

test different feature mapping strategies, where the rendering
error based view selection method (RE-LCD

P ) performs con-
sistently better than the other two methods. This is because
our rendering error can be used as a meaningful metric to
predict normal reconstruction accuracy, which leads to better
point cloud reconstruction. Ablation studies for the modified
PointNet++ are included in supplementary material.

The last row of Table 2 shows that an optimization-based
method like PSR [21] to refine shape from predicted normals
does not lead to much improvement, possibly since visual
hull shapes are still significantly far from ground truth. In
contrast, our network allows large improvements.

Different number of views We also test the entire recon-
struction pipeline for 5 and 20 views, with results summa-
rized in Table 3. We use the setting that leads to the best

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
vh5 31.7 13.1 10.3 66.6
Rec5 6.30 11.0 8.7 15.2

vh20 2.23 4.59 2.71 6.83
Rec20 1.20 4.04 2.73 4.18

Table 3. Quantitative comparisons of point cloud reconstruction
from 5 views and 20 views. In both cases, our pipeline significantly
improves the transparent shape reconstruction accuracy compared
with classical visual hull method.

performance for 10 views, that is, wr + cv + op for nor-
mal reconstruction and RE-LCD

P for point cloud reconstruc-
tion, achieving significantly lower errors than the visual hull
method. Figure 10 shows an example from the synthetic test
set for reconstructions with different number of views. Fur-
ther results and comparisons are in supplementary material.

Sensitivity analysis for IoR We also evaluate the model
on another test set with the same geometries, but unknown
IoRs sampled uniformly from the range [1.3, 1.7]. As shown
in Tables 1 and 2, errors increase slightly but stay reasonable,
showing that our model can tolerate inaccurate IoRs to some
extent. Detailed analysis is in the supplementary material.

4.2. Results on Real Transparent Objects
We acquire RGB images using a mobile phone. To cap-

ture the environment map, we take several images of a mirror
sphere at the same location as the transparent shape. We use
COLMAP [38] to obtain the camera poses and manually
create the segmentation masks.

Normal reconstruction We first demonstrate the normal
reconstruction results on real transparent objects in Figure 11.
Our model significantly improves visual hull normal quality.
The images rendered from our predicted normals are much
more similar to the input RGB images compared to those
rendered from visual hull normals.

3D shape reconstruction In Figure 12, we demonstrate
our 3D shape reconstruction results on real world transparent



Input (Real) VH rendered Rec rendered VH normal1 VH normal2Rec normal1 Rec normal2
Figure 11. Normal reconstruction of real transparent objects and the rendered images. The initial visual hull normals are built from 10 views.
The region of total reflection has been masked out in the rendered images.

!"#$%& !"#$%' ()*#+%!"#$%
Figure 12. 3D shape reconstruction on real data. Columns 1-6 show reconstruction results from 2 known view directions. For each view, we
show the input image and the reconstructed shape rendered from the same view under different lighting and materials. Columns 7-8 render
the reconstructed shape from a novel view direction that has not been used to build the visual hull. The first shape is reconstructed using only
5 views (top row) while the second uses 10 views (bottom row). Also see comparisons to ground truth scans in supplementary material.

Input (Real) 12 views visual hull Our reconstruction

Input (Real) 10 views visual hull Our reconstruction

Figure 13. Comparison between visual hull initialization and our
shape reconstruction on real objects. Our method recovers more
details, especially for concave regions.

objects under natural environment map. The dog shape in
the first row only takes 5 views and the mouse shape in
the second row takes 10 views. We first demonstrate the
reconstructed shape from the same view as the input images
by rendering them under different lighting and materials.
Even with very limited inputs, our reconstructed shapes

are still of high quality. To test the generalizability of our
predicted shapes, we render them from novel views that have
not been used as inputs and the results are still reasonable.
Figure 13 compares our reconstruction results with the visual
hull initialization. We observe that our method performs
much better, especially for concave regions. Comparisons
with scanned ground truth are in supplementary material.

Runtime Our method requires around 46s to reconstruct a
transparent shape from 10 views on a 2080 Ti, compared to
5-6 hours for previous optimization-based methods [48].

5. Discussion
We present the first physically-based deep network to

reconstruct transparent shapes from a small number of views
captured under arbitrary environment maps. Our network
models the properties of refractions and reflections through
a physically-based rendering layer and cost volume, to esti-
mate surface normals at both the front and back of the object,
which are used to guide a point cloud reconstruction. Exten-
sive experiments on real and synthetic data demonstrate that
our method can recover high quality 3D shapes.



Limitations and future work Our limitations suggest in-
teresting future avenues of research. A learnable multiview
fusion might replace the visual hull initialization. We be-
lieve more complex light paths of length greater than 3 may
be handled by differentiable path tracing along the lines of
differentiable rendering [26, 55]. While we assume a known
refractive index, it may be jointly regressed. Finally, since
we reconstruct N2, future works may also estimate the back
surface to achieve single-view 3D reconstruction.
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A. Real Data Evaluation with Ground Truth
We first present quantitative comparisons and then more

qualitative ones on real data. We use four objects (mouse,
dog, pig and monkey). All objects are reconstructed from
10 views under natural environment maps, except monkey,
which needs 12 views since the shape is much more complex.
To obtain the ground truth geometry, we paint each object
with diffuse white paint and scan using a high-quality 3D
scanner. All code and data will be publicly released.

Quantitative results We manually align ground-truth
shapes with the predicted shapes using ICP method [4] and
then uniformly sample 20000 points on the both shapes to
compute the four error metrics (CD, CDN-mean, CDN-med,
Metro). The quantitative numbers are summarized in Table 4.
For all the 4 objects, our method consistently outperforms
the visual hull baseline, which again demonstrates the effec-
tiveness of our transparent shape reconstruction framework.

Views CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
vh Rec vh Rec vh Rec vh Rec

monkey 12 3.99 3.94 21.2 16.4 14.8 11.9 20.7 13.9
mouse 10 8.04 5.35 19.0 16.3 11.4 12.0 16.6 13.0
pig 10 5.58 4.87 19.0 18.3 14.0 14.6 13.0 7.4
dog 10 2.25 1.86 14.5 12.4 11.4 10.3 4.1 4.0
mean 10.5 4.97 4.00 18.4 15.9 12.9 12.2 13.6 9.6

Table 4. Quantitative comparisons of transparent shape reconstruc-
tion on real data. We observe that our reconstruction achieves lower
average errors than the visual hull method on all the metrics.

Qualitative results and videos Figure 14 shows both the
ground-truth transparent shapes and our reconstructed shapes
rendered under different lighting and materials. Even though
the shapes are complex and we use very limited inputs, our re-
constructions still closely match the ground truth appearance.
This demonstrates the efficacy of our physically-motivated
network that models complex light paths induced by refrac-
tions and reflections. To better visualize the quality of our

3D reconstruction outputs, we create a video by rotating both
the ground-truth shapes and the reconstructed shapes under
different natural environment maps. The video is included
in the supplementary material. A higher resolution video is
available at this link.

B. Sensitivity Analysis for Index of Refraction
As mentioned in Sec. 4.1 of the main paper, we perform

a sensitivity analysis on the influence of a different test-time
IoR on the shape reconstruction accuracy. We re-render our
synthetic transparent testing set with the same shapes and
environment maps. However, instead of rendering with a
fixed IoR value of 1.4723, we randomly sample 5 different
IoRs ranging from 1.3 to 1.7 for each shape. Figure 15 shows
an example of the same shape rendered under different IoRs.
We then test our network trained with a fixed IoR value
of 1.4723 on the new test set with variable IoR. During
testing, the IoR used by the rendering layer is kept fixed at
1.4723. The quantitative comparisons have been summarized
in Tables 1 and 2 of the main paper.

Figure 16 and 17 show trends in the normal and shape
reconstruction errors across varying IoRs in the test set. As
expected, the errors are relatively smaller for IoRs close to
the training set value of 1.4723. In particular, this trend is
more explicitly visible in normal estimation, since the model
leverages the features from the rendering layer and cost
volume which require known IoRs. However, the overall
variation in error is small across this range of IoRs.

The above plots further support the analysis in Tables 1
and 2 of the main paper. Even though the predicted nor-
mals and the final reconstructed mesh are expectedly more
accurate in the known IoR case, the quantitative errors in-
crease gracefully and not too much across a range even with
unknown IoR. This suggests that our network is relatively
robust to the IoR value. As stated in the main paper, our
future work will consider simultaneously reconstructing the
transparent shape and predicting its IoR.

C. Further Ablation Studies
Different number of views Table 5 summarizes the nor-
mal predictions from 5 and 20 views. Similar to the 10-view
case, our entire method wr+cv+op outperforms all other
baselines on all the five metrics. In particular, we find the
cost volume (cv) and the optimization of the latent vector
(op) bring the largest improvements on normal reconstruc-
tion accuracy. This justifies our intuition that utilizing the
correspondence between the input image and the captured
environment map by modeling the image formation process
within the network can lead to better normal reconstruction
results. Figure 18 shows two normal reconstruction results
on our synthetic dataset. For both examples, our physically-
based network performs significantly better than the classical
visual hull method for 5, 10 and 20 views.

https://drive.google.com/file/d/1bkcRYg55WkaQuVXI3PDAmQIwmk4Y0Tf1/view?usp=sharing
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Figure 14. Results on 3D reconstruction for four real transparent objects. All shapes are reconstructed from 10 views, except the monkey in
the last row that uses 12 views. We first present reconstruction results from two input views (columns 1-6). From left to right, the odd rows
show the input image and the reconstructed shapes under different lighting and materials. The corresponding outputs using the ground-truth
shapes rendered from the same view are shown in the even rows. We also render the reconstructed shapes and ground-truth shapes from a
novel view direction that has not been used to build the visual hull (columns 7-8). In each instance, we observe that the reconstructions are
close to the ground truth despite the challenging shapes, complex light paths and small number of views used for 3D reconstruction.
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Figure 15. Appearance changes for same shape geometry under various index of refraction (IoRs). IoRs range from 1.3 to 1.7.
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Figure 16. The mean normal estimation errors across varying IoRs
in the test set, using the fixed training set IoR value for prediction.
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Figure 17. The mean shape reconstruction errors across varying
IoRs in the test set, using the fixed training set IoR value for predic-
tion.

Modification of standard PointNet++ [34] We examine
our modifications of the standard PointNet++ architecture
for point cloud reconstruction to better incorporate normal
information. The quantiative numbers are summarized in
Table 6. We first remove single modifications from standard
PointNet++ to our novel version (– maxPooling, – normal

5 views normal
vh5 basic wr wr+cv

wr+cv
reconstruction +op
N1 median (◦) 12.7 6.1 6.0 6.0 5.9
N1 mean (◦) 15.3 7.8 7.9 7.8 7.7
N2 median (◦) 18.3 10.7 10.7 10.5 10.0
N2 mean (◦) 20.9 12.5 12.5 12.3 11.9
Render Err.(10−2) 9.7 5.9 5.8 5.9 4.1

20 views normal
vh20 basic wr wr+cv

wr+cv
reconstruction +op
N1 median (◦) 2.5 2.2 2.2 2.2 2.2
N1 mean (◦) 4.6 3.4 3.4 3.3 3.3
N2 median (◦) 5.2 4.7 4.6 4.6 4.3
N2 mean (◦) 7.6 6.5 6.4 6.3 6.1
Render Err.(10−2) 4.0 3.7 3.8 3.8 2.7

Table 5. Quantitative comparisons of normal estimation from 5
and 20 views. Following the notation in the main paper, vh5
and vh20 represent the initial normals reconstructed from visual
hulls corresponding to 5 and 20 views, respectively. Here, wr and
basic are our basic encoder-decoder network with and without
rendering error map (Ier) and total reflection mask (M tr) as inputs.
Further, wr+cv represents our network with cost volume and wr+cv
+ opt represents the predictions after optimizing the latent vector to
minimize the rendering error. Similar to the 10-view case, wr+cv +
opt performs better than all other baselines for transparent shape
reconstruction using both 5 and 20 views.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
RE-LCD

P 2.00 6.02 4.38 5.98

– maxPooling 2.09 6.26 4.59 6.09
– normal Diff. 2.09 6.31 4.62 6.48
– normal Skip. 2.07 6.14 4.51 6.20
standard 2.12 6.34 4.72 6.49

Table 6. Comparisons of point cloud reconstruction with different
PointNet++ architectures on our synthetic dataset. Following the
notation in the main paper, RE represents rendering error based
view selection. LCD

P represents the Chamfer distance loss.

Diff. and – normal Skip.) and then remove all the modifi-
cations to use standard PointNet++ to reconstruct the point
cloud of our transparent shapes (standard). Experiments
show that each of our modifications brings consistent im-
provements in reconstruction accuracy and removing all of
them leads to a much poorer performance. This shows our
modifications ease the difficulty for the network to reason
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Figure 18. Normal predictions on our synthetic dataset with different number of input views. Regions with total reflection have been masked
out in the rendered images. Our predicted normals are much closer to the ground truth compared to the visual hull normals.

5 views VH. 5 views Rec. 10 views VH. 10 views Rec. 20 views VH. 20 views Rec. Groundtruth
Figure 19. Transparent shape reconstruction in our synthetic dataset using 5, 10 and 20 views. Images rendered with our reconstructed
shapes are much closer to the those rendered with ground truth shape, as compared to images rendered with the visual hull shapes. The inset
normals are rendered from the reconstructed shapes and demonstrate the same conclusion.

about point cloud distribution based on normal predictions.
Figure 20 demonstrates a real example reconstructed by our
modified PointNet++ trained using different loss functions.
It is clearly observed that our modified PointNet++ trained
with Chamfer distance loss leads to a more complete and

less noisy 3D reconstruction, especially for thin structures
and concave regions.

Optimization of latent vector We adopt an alternating
minimization strategy to optimize the latent vector. We first
keep N1 unchanged and only change N2 by adding a large



Figure 20. Comparisons of point cloud reconstruction with different
loss functions on a real example. Our modified PointNet++ trained
with Chamfer distance loss achieves better quality compared with
the other two losses.

10 views normal
vh10

wr+cv wr+cv
reconstruction +op +opPixel
N1 median (◦) 5.5 3.4 3.8
N1 mean (◦) 7.5 4.8 4.9
N2 median (◦) 9.2 6.6 7.4
N2 mean (◦) 11.6 8.4 8.5
Render Err.(10−2) 6.0 2.9 2.6

Table 7. Quantitative comparisons of different optimization strate-
gies for normal estimation from 10 views. op represents optimiza-
tion the latent vector, which is the results reported in the main paper.
opPixel represents optimization direction in the pixel space.

{θk}4k=1 {φk}4k=1

5 views 0◦,25◦,25◦,25◦ 0◦,0◦,120◦,240◦

10 views 0◦,15◦,15◦,15◦ 0◦,0◦,120◦,240◦

20 views 0◦,10◦,10◦,10◦ 0◦,0◦,120◦,240◦

Table 8. The sampled angles for building cost volume. We set
the sampled angles according to the normal error of visual hull
reconstructed by different number of views.

identity loss on N1. After 500 iterations, we remove the con-
straint and optimize bothN1 andN2 simultaneously. This is
because the our N1 prediction is usually more accurate and
optimizing N2 first can lead to better results. In Table 7, we
compare the normal reconstruction results of optimizing the
latent vector and directly optimizing the per-pixel normals.
The quantitative comparison shows that while optimizing
per-pixel normal can also decrease the rendering error, only
by optimizing the latent vector can we observe improvements
in normal reconstruction accuracy. The inherent ill-posed
nature of normal prediction of transparent shapes makes it
necessary to have a strong regularization to obtain meaning-
ful outputs. In this case, the regularization is provided by the
trained decoder which constrains the predicted normals to
be on the natural shape manifold.

D. Building the Cost Volume

To build the cost volume (cv) for normal prediction, we
sample φ uniformly from 0 to 2π and sample θ according to
the visual hull normal error. In particular, we first randomly
sample 100 scenes from our synthetic dataset and compute

(°) (°) (°)

5 views VH 10 views VH 20 views VH

Figure 21. The error distribution of visual hull normals Ñ1 from
different number of views.

Algorithm 1 Mapping normals to visual hull geometry
for point p̃ uniformly sampled from visual hull do
p̃N1 ← the original visual hull normal
p̃Mtr ← 1, p̃Ier ← 2, p̃v ← 0, p̃c = 0

for view v from 1 to V do
for point p̃ uniformly sampled from visual hull do

isUpdate← False

if V(p̃) = 1 then
if Sv(p̃,Mtr

v ) = 1 then
if p̃trM = 1 and Cv(p̃) > p̃c then

isUpdate← True

else
if p̃M = 1 then

isUpdate = True

else if Sv(p̃, Ierv ) < p̃Ier then
isUpdate = True

if isUpdate = True then
p̃N1 ← Tv(Sv(p̃, N1

v )), p̃Mtr ←Sv(p̃,Mtr
v )

p̃Ier ←Sv(p̃, Ierv ), p̃c = Cv(p̃), p̃v ← v
{f} ← Concatenate {p̃N1}, {p̃Mtr}, {p̃Ier}, {p̃c}
return {f}, {p̃v}

the angles between visual hull normals and ground truth
normals. We set one θ value to be 0 and the other to larger
than 85% of angles between the visual hull normal Ñ1 and
ground truth normal N̂1. The distribution of visual hull
normal Ñ1 error for 5, 10 and 20 views are presented in
Figure 21. Table 8 summarizes the configurations of {θ}
and {φ} angles for different number of views.

E. Details for Feature Mapping
Our feature mapping method using the rendering error

based view selection is summarized in Algorithm 1. We
first try to select the view with no total reflection as the
best view v∗. If there is more than one view with no total
reflection, we choose the view with the lowest rendering
error. If for every view, the current point is in the region of
total reflection, we choose the view whose optical center is
closest to the point. Experiments in the main paper show
that our rendering error based view selection (RE) performs
slightly better than average fusion (AV) and nearest view
selection (NE) on 3D reconstruction accuracy.
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