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Abstract

The global attention mechanism is one of the keys to the success of trans-
former architecture, but it incurs quadratic computational costs in relation
to the number of tokens. On the other hand, equivariant models, which
leverage the underlying geometric structures of problem instance, often
achieve superior accuracy in physical, biochemical, computer vision, and
robotic tasks, at the cost of additional compute requirements. As a result,
existing equivariant transformers only support low-order equivariant features
and local context windows, limiting their expressiveness and performance.
This work proposes Clebsch-Gordan Transformer, achieving e�cient global
attention by a novel Clebsch-Gordon Convolution on SO(3) irreducible
representations. Our method enables equivariant modeling of features at
all orders while achieving O(N logN) input token complexity. Additionally,
the proposed method scales well with high-order irreducible features, by
exploiting the sparsity of the Clebsch-Gordon matrix. Lastly, we also in-
corporate optional token permutation equivariance through either weight
sharing or data augmentation. We benchmark our method on a diverse set of
benchmarks including n-body simulation, QM9, ModelNet point cloud clas-
sification and a robotic grasping dataset, showing clear gains over existing
equivariant transformers in GPU memory size, speed, and accuracy.

1 Introduction

Transformer-based models have demonstrated e↵ectiveness beyond language processing,
showing strong performance in geometry-aware tasks such as robotics, structural biochemistry,
and materials science (Wu et al., 2024; Goyal et al., 2023; Pan et al., 2021; Zeni et al., 2024;
Rhodes et al., 2025). For instance, 3D robotic perception tasks ranging from segmentation
to object matching process point clouds and LiDAR data using attention mechanisms. These
tasks heavily rely on token-based representations, and their performance is often constrained
by the number of tokens the model can e↵ectively handle. AlphaFold (Jumper et al.,
2021), for example, employs equivariant transformers to predict protein structures with
unprecedented accuracy by explicitly leveraging SE (3) symmetries such as rotations and
translations. However, implementing an equivariant neural network structure typically incurs
significant computational overhead and increased inference time. As a result, most current
approaches are limited to small symmetry groups or low-order representations (Thomas
et al., 2018; Fuchs et al., 2020; Moskalev et al., 2024; Liao and Smidt; Satorras et al., 2022).
Enabling fast, low-memory overhead equivariant operations over large context windows is
essential to scaling robust and sample-e�cient learning in geometry-aware domains.

Unfortunately, maintaining equivariance while modeling a global geometric context is
challenging due to the computational demands of processing high dimensional data at scale.
There are essentially two components that contribute to the computational complexity of
E(3)-equivariant transformers: the time and memory scaling of the transformer with the
number of tokens, N , and the time and memory complexity on the maximum harmonic
degree, `. Naively, a global equivariant attention mechanism will have O(N2) token
complexity and O(`6) harmonic complexity (Passaro and Zitnick, 2023b). By assuming only
local attention, the token complexity can be reduced to O(dN), where d is the local context
window, at the cost of discarding information about long range correlations. In addition,
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various approximation techniques have been used to reduce the harmonic complexity to O(`3)
(Luo et al., 2024). Recently, SE(3)-Hyena achieved O(N logN) computational complexity
using long convolution (Romero et al., 2021; Poli et al., 2023) in the Fourier domain. However,
it only supports up to first-order irreducible representations of SO(3) (i.e., scalar and
vectors), making it di�cult to capture higher-degree angular dependencies and limiting its
ability to represent more complex, structured geometric patterns. Moreover, SE(3)-Hyena is
not permutation invariant, making it most suitable for point clouds with a natural ordering.

This raises the question: can we design a method with global equivariant attention and
O(N logN) token complexity, support for arbitrary orders of spherical harmonics with O(`3)
complexity, and permutation invariance? This work addresses this challenge by introducing
Clebsch-Gordon Convolution on SO(3) irreducible representations of arbitrary degree. We
also enforce or encourage permutation invariance through either weight sharing or data
augmentation. Our contributions can be summarized as follows:

• We generalize the SE(3)-Hyena method of (Moskalev et al., 2024) to include equivariant
features of all types. By exploiting the sparsity of the Clebsch-Gordon matrix,our method
achieves O(L3) harmonic scaling.

• By applying our proposed attention in the graph spectral domain, we achieve
permutation-equivariant global attention in O(N logN) time.

• We benchmark our method on a diverse array of tasks, including robotics, computer
vision, and molecular biochemistry. Our method outperforms current state of the art
methods on all tasks, with considerable reduction in memory usage.

2 Related Work

SE(3)-Equivariance: SE(3)-equivariant neural networks have three main classes: (1)
those based on group convolution (Cohen and Welling, 2016), which discretizes SE(3),
transforms a convolutional filter according to each group element in the discretization, and
lastly performs cross-correlation using the transformed convolutional filter (Cesa et al.,
2022b; Chen et al., 2021; Zhu et al., 2023); (2) those based on irreducible (spherical Fourier)
representations, which provide a compact representation of SO(3) signals at each point in
the point cloud (Thomas et al., 2018; Brandstetter et al., 2022; Liao and Smidt; Fuchs
et al., 2020; Passaro and Zitnick, 2023a; Liao et al., 2024), and (3) those based on scalar,
vector, and multivector representations (Deng et al., 2021; Moskalev et al., 2024; Brehmer
et al., 2023). Compared with group convolution (class (1)), the irreducible spherical Fourier
representation (class (2)) is more compact and avoids discretization errors—among these
works, Tensor Field Network (TFN) Thomas et al. (2018) leverages the tensor product to
propagate information between points, SE(3)-Transformer Fuchs et al. (2020) extends TFN
by using attention in the Fourier domain for local information passing, and ESCN Passaro
and Zitnick (2023a) proposes approximating the tensor product in SO(3) by that in SO(2),
significantly reducing computational complexity. Vector representation (class (3)) has limited
expressiveness, while the irreducible representation improves expressiveness as its order
increases Liao and Smidt. This work achieves e�cient SE(3)-equivariance with high-order
irreducible representations by introducing a linear-time attention mechanism based upon the
vector long convolution introduced by Moskalev et al. (2024).

Subquadratic Attention: Several linear-time attention mechanisms have been proposed
to overcome the quadratic time and memory complexity of standard Transformer architectures.
Reformer Kitaev et al. (2020) utilizes locality-sensitive hashing (LSH) to approximate
self-attention. Choromanski et al. (2021) replaces the standard softmax attention with
a kernel-based approximation called FAVOR+ (Fast Attention Via positive Orthogonal
Random features), achieving linear time and space complexity. Nyströmformer Xiong et al.
(2021), leverages the Nyström method to approximate the self-attention matrix using a
set of landmark points. Linformer Guo et al. (2024) addresses the quadratic memory and
computation bottleneck of standard Transformers by approximating self-attention with
low-rank projections. These methods enable LLM transformers to process much longer
sequences than previously feasible.
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Clebsch–Gordan 
Gating

Input Projection

Clebsch–Gordan
Convolution

Tensor Product

Figure 1: Schematic of Clebsch-Gordon Convolution. Left: Inputs f `
i are projected into queries q`i ,

keys k`
i , and values v`i using an SE(3)-equivariant projection layer. Queries and keys are passed into

a Clebsch-Gordon Convolution which outputs u`
i with which a tensor product of values is computed.

Outputs are added with a residual connection. Right: Queries q`i and keys k`
i are processed using

Clebsch-Gordon Convolution. Queries and keys are first fast Fourier transformed, then a tensor
product is applied. The output is fast Fourier transformed back.

3 Background

Attention. Attention is a data-dependent linear map (Vaswani et al., 2023) describing
the pairwise interaction between tokens in a transformer’s input context. Let qi, ki and vi

be linear projections of input. Attention is defined Attn(q, k, v) = softmax[↵(q, k)]v where
↵(q, k)ij = q

T
i kj is the attention matrix. The computation of ↵ scales quadratically in the

input size, which is the main bottleneck in the transformer architecture in large models.
Numerous methods attempt to compute ↵(q, k) faster using some numerical approximation.

Equivariant Attention and Message Passing. Numerous equivariant methods attempt
to generalize attention to process equivarient features. The two most common forms are
equivariant attention, or equivariant message passing (Brandstetter et al., 2022). In the
standard setup, the i-th graph node is located at position xi 2 R3 has features f

`
i where

the index ` specifies feature type. Attention and message passing then attempt to process
information via update rules

Attention: f `
out,i = W

``
V f

`
in,i +

LX

k=0

X

j2Ni

↵ijW
`k
V (xi � xj)f

k
in,j (1)

Message Passing: f `
out,i = �(f `

in,i,

X

j2Ni

mij), mij =  (f `
in,i, f

`0

in,j , ||xi � xj ||) (2)

where Ni is some neighborhood of points around point j.

Memory constraints force methods like (Fuchs et al., 2020; Passaro and Zitnick, 2023b;
Satorras et al., 2022; Brandstetter et al., 2022; Thomas et al., 2018) to restrict to small
neighborhoods Ni of size less than 50. We show in Sec. 5 that decreasing the size of the local
context window can lead to significant changes in performance. A recent method (Moskalev
et al., 2024) showed that for invariant and vector convolutions adding global context can
improve model performance. We extend this work to equivariant features of all types.

4 Method

Let Fn = {f
`
i }

n
i=1 be a set of n input features to an SO(3)-equivariant transformer, where

SO(3) acts upon each feature f
`
i 2 R(2`+1)⇥m` via its `th irreducible representation. We

denote the multiplicity (i.e., channel dimension) of the input of type ` as m`. From the
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Table 1: Key properties of equivariant attention mechanisms. N : number of tokens, d: average
graph degree, L: maximum harmonic degree.

Model Global Perm. Token Harmonic
Attn. Equiv. Complex. Complex.

SEGNN (Brandstetter et al., 2022) 7 3 O(dN) O(L6)
SE(3)-Transformer (Fuchs et al., 2020) 7 3 O(dN) O(L6)
Equiformer-v2 (Passaro and Zitnick, 2023b) 7 3 O(dN) O(L3)
SE(3)-Hyena (Moskalev et al., 2024) 3 7 O(N logN) Type 0 & Type 1 only

Ours 3 3/learned O(N logN) O(L3)
Theoretical Ideal 3 3 O(N logN) O(L2 logL)

features in F
n, we encode queries, QFn , keys, KFn , and values, VFn , as:

q
`
i = W

`
Q(f

`0

i ), k
`
i =

X

`0

W
`
K(f `0

i ), v
`
i = W

`
V (f

`0

i )

where W
`
Q, W

`
K , and W

`
V are learnable equivariant mappings converting type `0 features of

multiplicity m
0
` into type ` features of multiplicity m`.

Our proposed method is agnostic to the particular equivariant encoders used; see appendix E.2
for more details. We seek to compute self-attention over QFn , KFn , and VFn in linear time,
scaling to global context, and—unlike earlier work (Moskalev et al., 2024)— remaining
compatible with F

n comprising equivariant features of any type. Our proposed method
extends the core idea of Poli et al. (2023), building upon the vector long convolution
introduced by Moskalev et al. (2024).

4.1 Clebsch-Gordon Convolution

We structure our attention mechanism as follows: first, inspired by Moskalev et al. (2024),
we define the following operation, where C

J
``0 is the Clebsch-Gordan matrix projecting from

features of type `⌦ `
0 onto features of type J :

(q` ? k`
0
)Ji = C

J
``0

NX

j=1

q
`
j ⌦ k

`0

i�j (3)

which takes as input features of types ` and `0 and outputs features of type J . If q`i 2 R(2`+1)m`

and k
`
i 2 R(2`+1)m` the resultant tensor product has dimension (q` ? k`

0
)Ji 2 R(2J+1)m`m`0 .

In practice, we found that using multiple heads (which do not interact during the tensor
product) led to better performance; see appendix E for further discussion. Operations of
the form C

J
``q

`
⌦ k

`0 are ubiquitous in machine learning, making their fast computation a
subject of great research interest. For the special case when the keys are spherical harmonic
outputs, i.e., k` = Y

`(n̂), Passaro and Zitnick (2023b) used a group theoretic decomposition
to reduce SO(3) operations into SO(2) operations. Luo et al. (2024) generalized this idea
and used the Gaunt tensor product coe�cients to reduce the tensor product computation to
a highly tractable two dimensional Fourier transformation for general input features. We
compute the tensor product in eq. (3) using a slight modification of the methods proposed
in (Luo et al., 2024); see appendix A for details. The operation in eq. (3), picks the type
J output out of the tensor product. By definition of the Clebsch-Gordon matrix C

J
``0 , the

tensor product of type ` and type `0 features decomposes as

(q`i ⌦ k
`0

i�j) =
M

J

C
J
``0(q

`
i ⌦ k

`0

i�j)
J (4)

where
L

is the direct sum of vector spaces. To allow all query and key types to interact,
we want to compute, for each J , ûJ

i =
P

``0(q
`
i ? k

`0
i )

J . Following the notation of Luo et al.
(2024), let q̃i = [q0i , q

1
i , ..., q

L
i ] be the stack of all query vectors containing irreducibles of up

4
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to degree L and let k̃i = [k0i , k
1
i , ..., k

L
i ] be the stack of all keys containing irreducibles of up

to degree L. The full tensor product of these features for output type J is given by

u
J
i = (q̃i ? k̃i)

J =
LX

`=1

LX

`0=1

(q`i ? k
`0

i )
J

Naively retaining all output-irreducible types of the Clebsch-Gordan tensor product up
to type L requires O(L3) 3D matrix multiplications, for a total complexity of O(L6). We
then define the full convolution as ũ

J
i = (q̃i ? k̃i). This convolution computation can be

simplified in two ways. The Fourier transform û
`
q of u`

i over the spatial index can be written

as ûJ
i = C

J
``0 q̂

`
i ⌦ k̂

`0
i which is a matrix multiplication in Fourier space. Using the Fast Fourier

Transform, the computation of q̂` and k̂
` can be done in time O(N logN). We further

consider both intra-channel and inter-channel tensor products; see appendix E for additional
ablation studies.

4.1.1 Invariant Gating

A key aspect of the transform proposed in (Moskalev et al., 2024) is its non-linear data
dependent gating. Accordingly, after obtaining û

J
q , we compute a set of invariant features

I
` = �

`(û0
, û

1
, û

2
, ...) with one I

` for each irreducible type `. We evaluated a variety of
encoder types for �`; see appendix E.4 for ablation studies. The gating I

J is of dimension
N ⇥ mJ . We then apply softmax gating u

J
i ! �(I`)uJ

i and combine the resultant gated
features uJ

i with the values via another tensor product and Clebsch-Gordon matrix projection

f
J
i,out =

X

``

C
J
``0u

`
i ⌦ v

`0

i (5)

Note that the second multiplication, eq. (5) is done in real space rather than Fourier space.
The idea of switching between real and Fourier space when computing attention is a key
idea developed by Poli et al. (2023); Stachenfeld et al. (2020), allowing the model to fuse
both global and local information. Lastly, we apply an equivariant MLP to reduce the
multiplicity dimension back down to that of the input f̂

`
i ! MLP(f̂ `

i ). We then add the
attention features to the input features as a residual via

f
`
i,out = f

`
i,in +MLP(f `

i,in)

By subtracting o↵ and re-adding the mean of inputs f
`
i , the outputs f̂

`
i,out are be fully

SE(3)-equivariant.

Algorithm 1: Clebsch-Gordon Convolution

Input : Input signal f `
i,in

Output :Output Attention fJ
i,out

1 Encode:

q`i = W `
Q(f

`0
i ), k`

i = W `
K(f `0

i ), v`i = W `
V (f `0

i )

2 FFT: q`i , k
`
i ! q̂`i , k̂

`
i

3 Tensor Product: uJ
i = CJ

``0 q̂
`
i ⌦ k̂`0

i

4 Inverse FFT: û`
i ! u`

i

5 Tensor Product: fJ
i,out = CJ

``0u
`
i ⌦ v`

0
i

6 return fJ
i,out

In practice, we found that using a head
dimension of 4 or 8 with a maximum har-
monic of L = 5 of L = 6 and a channel
dimension of 8 or 16 was optimal. See ap-
pendix E.3 for ablations on model param-
eters. In general, we found that using
a fixed local context window allowed for
much greater performance. Specifically,
out full output features are

f
`
i,out = F

CG(f `
i,in) + F

SGNN (f `
i,in)

where F
CG(f `

i,in) is the output of
the Clebsch-Gordon convolution and

F
SGNN (f `

i,in) is a standard equiformer layer (Passaro and Zitnick, 2023b), with a fixed local
context window. We conjecture using both global and local attention that this allows the
model to better process both local and global information. This idea is inspired by Han
et al. (2024), where it is conjectured that state space models combined with some small local
attention can capture both global and local features.

4.2 Architecture

Figure 1 shows the full flow of our proposed attention block. Specific choices for architecture
for experiments is discussed more in E.
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4.3 Sparsity of the Clebsch-Gordon Matrix

We now turn to improving the performance of our proposed attention mechanism by exploiting
sparsity properties of the Clebsch-Gordon matrix. Consider the operation defined byuJ =P

``0 C
J
``0q

`
⌦ k

`0 . The naive cost of this operation is O((2J + 1)(2` + 1)(2`0 + 1)). Thus,
the total computation of u` for each ` is naively O(J``0) = JL

4 where L is the maximum
harmonic used. Fortunately, this neglects the sparsity of the matrix C

J
``0 . Specifically, C

J
``0

is a tensor of size (2J + 1)⇥ (2`+ 1)⇥ (2`0 + 1) with most elements equal to zero. To see
this, let |`mi be the basis for the ` representation. Then, the Clebsch-Gordon coe�cients
C

JM
`m`0m0 satisfy

|JMi =
X

mm0

C
JM
`m`0m0 |jmi ⌦ |j

0
m

0
i

because J
2 and Jz can be simultaneously diagonalized, it is always possible to find a basis

(e.g., the z-basis is standard convention in physics) where Jz|jmi = m|jmi applying this
relation to the definition of the Clebsch-Gordon coe�cients, we have that

Jz|JMi = M |JMi =) M |JMi =
X

mm0

C
JM
`m`0m0(m+m

0)|`mi ⌦ |`
0
m

0
i

Ergo, the matrix elements C
JM
`m`0m0 are non-zero only when M = m + m

0. In physicists
language, the sparsity of CJM

`m`0m0 is a selection rule that follows from conservation of the
z-component of angular momentum. Thus, the total number of non-zero elements in C

J
``0 is

(2`+ 1)(2`0 + 1)—much smaller than the naive estimate of (2J + 1)⇥ (2`+ 1)⇥ (2`0 + 1).
Exploiting this fact, we can compute the tensor product in time dependent only on the input
sizes. Parity symmetry further requires that any C

JM
`m,`0m0 where `+`0+J is odd is identically

zero; it also constrains some elements to be redundant. We compare the sparse method with
the Gaunt tensor product method of Luo et al. (2024) and the e3nn implementation (Geiger
and Smidt, 2022) in appendix E.

4.4 Special Case: Vector Long Convolution

We show that our method recovers the vector long convolution method proposed in (Moskalev
et al., 2024) as a special case. This vector long convolution is a fast O(N logN) attention
mechanism for queries, keys and values of type 1. Let qi and ki be type 1 queries and keys.
The vector convolution from (Moskalev et al., 2024) is defined as

(q ? k)i =
X

j

qj ⇥ ki�j (6)

where ⇥ denotes the standard vector cross product. Elementwise, the vector convolution
has (q ? k)ia = ✏abc

P
j qjbk(i�j)c. The vector convolution q ? k transforms in the vector

representation of SO(3). Equation (6) is equal to the expression (q ?k)i = C
1
11

P
j qj ⌦k(i�j).

To see, this note that the tensor C1
11, which is of dimension (3⇥ 3⇥ 3) can be written out as

a (3⇥ 9) matrix with elements given by

C
1
11 =

2

4
0 0 0 0 0 1p

2
0 1p

2
0

0 0 1p
2

0 �
1p
2

0 1p
2

0 0

0 1p
2

0 1p
2

0 0 0 0 0

3

5

Note the for two 3-vectors q and k, this can be written as C1
11(q ⌦ k) = 1p

2
(q ⇥ k). Thus,

for any three vectors C1
11(q ⌦ k) = 1p

2
(q ⇥ k) is proportional to the standard cross product.

Thus, we have that

(q ? k)ia = ✏abc

X

j

qjbk(i�j)c =
p
2C1

11

X

j

qj ⌦ k(i�j)

which reduces to our method for input types (1, 1) and output type 1. Thus, the method
proposed in (Moskalev et al., 2024) can be seen as a special case of our method when tensor
product input features are restricted to be pairs of invariant or vector features.
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Table 2: N-body simulation results (N = 5 particles). Mean squared error for position (x) and
velocity (v) prediction. Literature values in parentheses. NR = not reported.

Model Linear Ours Ours w/o local SE(3)-Hyena Set Trans. SE(3)-Trans. SEGNN EGNN TFN

MSE x 6.91e-2 4.1e-3±3e-4 5.0e-3±3e-4 7.1e-3 (1.8e-3) 1.39e-2 7.6e-3 (7.6e-3) 4.8e-3 (5.6e-3) 7.0e-3 1.50e-2
�EQ — 9.6e-6 1.0e-5 1.1e-4 1.67e-1 3.2e-7 NR NR NR

MSE v 2.61e-1 6.5e-3±2e-4 7.5e-3±3e-4 7.1e-3±7e-4 1.01e-1 7.5e-2 (7.5e-2) NR NR NR
�EQ — 4.8e-7 5.2e-7 1.2e-6 3.70e-1 6.3e-7 NR NR NR

5 Experiments

5.1 Baselines

Figure 2: Memory usage versus the num-
ber of irreducible representations J for
our tensor product attention mechanism.
We compare with dense matrix multi-
plication and e3nn (Geiger and Smidt,
2022).

We compare our method with state of the art baselines
for point cloud processing. The SE(3)-transformer
(Fuchs et al., 2020) is an equivariant attention mecha-
nism based on Tensor Field Networks (Thomas et al.,
2018). Equiformer v2 (Liao et al., 2024) uses a con-
volutional trick from Passaro and Zitnick (2023b) to
reduce the harmonic complexity to O(L3) from O(L6).
Fused SE(3)-transformer implements the method of
Fuchs et al. (2020) using fused kernels for decreased
computational overhead. SE(3)-Hyena (Moskalev
et al., 2024) uses a modification of the Hyena archi-
tecture to do global linear time attention on invariant
(type 0) and vector (type 1) features. The use of
only invariant and vector features significantly limits
model expressivity.

We benchmark our method on the ModelNet40 (Wu
et al., 2015) classification task, Nbody trajectory sim-
ulation (Fuchs et al., 2020), QM9 (Ramakrishnan
et al., 2014), and a custom robotic grasping dataset.

See appendix A for all experiments.

5.2 Nbody Simulation

Figure 3: Performance of SE(3)-transformer on
the Nbody dataset for di↵erent number of pointsN
and nearest neighbors k. We use the exact model
parameters at that of Fuchs et al. (2020). Note
that on the N = 20 curves decreasing k = 20 (fully
connected graph) to k = 5 leads to over a twenty
percent drop in performance. Left shows MSE
of position, right shows MSE of velocity. Local
context window based methods fail to capture
accuracy as tasks get more di�cult; global context
is needed.

We first test on method on the Nbody simu-
lation task, described in Fuchs et al. (2020).
In the simulation in Fuchs et al. (2020), five
particles each carry either a positive or a
negative charge and exert repulsive or at-
tractive forces on each other. The network
input is the position of a particle in a specific
time step, its velocity, and its charge. The
algorithm must predict the relative location
and velocity 500 time steps into the future.

For this test, our model consists of a equivari-
ant graph convolution (Brandstetter et al.,
2022), followed by 4 equivariant Clebsch-
Gordan attention layers. We use irriducibles
types up to six, each with channel dimen-
sion of 8 and head dimension of four. Models
were trained for 500 epochs, using cosine an-
nealing scheduler with an initial learning
rate of 1e�3 and gradient clipping. Each
run was run on a single NVIDA V100 GPU.
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Table 3: Performance comparison for varying numbers of particles N and nearest neighbors k (fc =
fully connected graph). Our method uses fixed k = 3 local attention. Averaged over 2 seeds.

Method
N = 5 N = 10 N = 20 N = 40

k=3 fc k=3 k=5 fc k=3 k=5 k=10 fc k=3 k=5 k=10 k=20 fc

SE(3)-Transformer 0.013 0.013 0.031 0.028 0.025 0.057 0.052 0.050 0.044 0.061 0.056 0.052 0.049 OOM
SEGNN 0.040 0.048 0.023 0.018 0.013 0.042 0.039 0.033 0.029 0.052 0.480 0.450 0.038 OOM

Ours w/o local — 0.003 — — 0.012 — — — 0.026 — — — — 0.031
Ours — 0.003 — — 0.010 — — — 0.023 — — — — 0.030

Table 4: Mean absolute error (MAE) on QM9 dataset. Lower values indicate better performance.

Model Mean Absolute Error

↵ �✏ ✏HOMO ✏LUMO µ Cv

(Bohr3) (meV) (meV) (meV) (D) (cal/mol·K)

SE(3)-Transformer 0.142 53.0 35.0 33.0 0.510 5.4e-2
EGNN 7.1e-2 48.0 29.0 25.0 0.290 3.1e-2
SEGNN 6.0e-2 42.0 24.0 21.0 2.3e-2 0.310

Ours w/o local 0.100 49.0 31.0 26.0 0.310 0.350
Ours 0.100 39.0 26.0 19.0 0.210 3.0e-2

As motivation, we show that the model performance can vary with the size of the message
passing window. Specifically, in the nbody simulations of Fuchs et al. (2020); Brandstetter
et al. (2022); Satorras et al. (2022) an all to all connection is used. This will scale quadratically
in the number of particles, which quickly becomes computationally untractable. We 3 perform
an ablation study on Fuchs et al. (2020) and Brandstetter et al. (2022) where we use a
k-nearest neighbors, as opposed to fully connected graphs.

As is shown in table 3, our method achieves state of the art performance on this task.
Furthermore, our model is highly scalable to larger N . Although this is a toy task, we believe
these results illustrates both the scalability of our method and the danger of using methods
with only local context. Additional experiments and ablations are in appendix A.

5.3 QM9

For molecular chemistry, we benchmark on the QM9 dataset (Ramakrishnan et al., 2014), a
widely-used collection of 134k small organic molecules with up to 9 heavy atoms (C, O, N, F).
Each molecule is annotated with 19 regression targets, including atomization energies, dipole
moments, and HOMO-LUMO gaps, calculated using DFT. Following standard practice, we
predict one target at a time using the provided 110k/10k/10k training/validation/test split,
and report mean absolute error (MAE) in units consistent with prior work.

In its current form, our model does not use edge features. For that reason, we first apply
an SEGNN layer (Brandstetter et al., 2022) with skip connection, followed by four of our
attention blocks. Output invariant features are then fed into an MLP for classification. For
this test, our model consists of an equivariant graph convolution (Brandstetter et al., 2022),
followed by 8 equivariant Clebsch-Gordan attention layers. We use irreducibles up to ` = 6,
each with 8 channels and 4 heads. Models were trained for 500 epochs, using cosine annealing
scheduler with an initial learning rate of 1e�4 and gradient clipping. Each run was run on
eight NVIDA V100 GPUs. Additional experiments and ablations are shown in appendix A.

5.4 ModelNet40 Classification

The ModelNet40 classification task is a widely used benchmark for evaluating 3D shape
recognition methods. Introduced by Wu et al. (2015), the ModelNet40 dataset consists of
12, 311 3D CAD models from 40 object categories. The dataset is split into 9, 843 training
examples and 2, 468 test examples. The task is to classify 3D objects based on geometric
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Table 5: Classification accuracy on ModelNet10
and ModelNet40. All models trained with scale,
rotation, and permutation augmentation.

Model Year MN10 MN40
Acc.(%) Acc.(%)

DGCNN 2019 95.1 92.9
PointNet++ 2020 97.4 91.3
SEGNN 2021 94.2 90.5
SE(3)-Trans. 2020 93.2 88.1

Ours w/o local 2025 95.5 89.3
Ours 2025 90.1 85.9

Figure 4: Robotic object dataset example show-
ing an object with surface normals and optimal
grasp locations.

structure. We compare our model with DGCNN (Wang et al., 2019) and PointNet++ (Qi
et al., 2017) which are state of the art non-equivariant methods.

5.5 Object Grasping Dataset

We also consider a bespoke robotic grasping dataset. Robotic grasping fundamentally depends
on object geometry, and high precision robotic grasping is di�cult because it requires both
fine angular resolution and large context window. Our dataset consists of 400 samples,
each of which consists of a point cloud, a set of surface normal vectors, an optimal grasp
orientation (represented as a 3⇥ 3 matrix), a optimal grasp depth (which is a single positive
real number) and an optimal grasp location. Each point cloud has resolutions of 512, 1024,
2048, or 4096 points. We consider three tasks for the object grasping dataset; namely, surface
normal prediction and grasp prediction. We detail these tasks in B.

Table 6: Performance comparison on robotic grasping dataset across di↵erent point cloud resolutions.
OOM = Out of Memory. All models trained with rotation, permutation, and scaling augmentation.

Model Year
Rotation Error Distance Error Depth Error Normal Error

512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096

DGCNN 2018 0.015 0.019 0.031 0.120 3.01 5.34 8.34 10.30 0.08 0.08 0.09 0.08 0.013 0.017 0.023 0.051
PointNet++ 2017 0.015 0.021 0.028 0.080 2.51 4.88 5.57 9.54 0.08 0.08 0.07 0.09 0.013 0.018 0.021 0.048
SEGNN 2021 0.018 0.024 0.031 0.100 4.02 5.26 8.37 10.54 0.08 0.09 0.08 0.09 0.015 0.023 0.025 0.052
SE(3)-Trans. 2020 0.025 0.028 OOM OOM 5.03 7.91 OOM OOM 0.08 0.09 OOM OOM 0.025 0.035 OOM OOM

Ours w/o local 2025 0.019 0.025 0.030 0.090 4.02 5.10 8.30 9.85 0.08 0.08 0.08 0.08 0.013 0.017 0.020 0.041
Ours 2025 0.013 0.017 0.025 0.080 2.44 3.51 5.31 9.39 0.08 0.08 0.07 0.08 0.011 0.015 0.019 0.039

We benchmarked each of the baselines methods using the same model parameters as model
net classification. Harmonics and nearest neighbors were chosen to be the max amount that
fit on memory. Each training run was done on 8 NVIDIA v100 GPUs for 500 epochs.

6 Conclusion

Conclusions. This work tackles two key challenges in equivariant transformers: achiev-
ing scalability to global geometric context and e�ciently computing high-order irreducible
representations for greater expressiveness. By extending vector long convolution to Cleb-
sch–Gordon convolution, we propose the first architecture that achieves global token attention
in O(N logN) time and supports arbitrary orders of irreducible representations. In addition,
our method allows for permutation equivariance, which is essential for point cloud and atomic
systems. We also provide comprehensive theoretical analyses to prove both equivariance and
time complexity. Finally, we benchmark our method on various dataset, demonstrating clear
gains in memory, speed, and accuracy across robotics, physics, and chemistry, outperforming
existing state-of-the-art equivariant transformers.

Limitations. The O(L3) complexity of our method is still suboptimal and may be prohibitive
for cases requiring very high angular resolution.

Future work. Equivariant transformers can draw significant inspiration from computational
astrophysics methods designed to e�ciently handle N -body interactions.
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