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ABSTRACT

Differential Privacy (DP) is becoming central to large-scale training as privacy
regulations tighten. We revisit how DP noise interacts with adaptivity in optimiza-
tion through the lens of stochastic differential equations, providing the first SDE-
based analysis of private optimizers. Focusing on DP—SGD and DP-SignSGD
under per-example clipping, we show a sharp contrast under fixed hyperparame-
ters: DP—SGD converges at a privacy-utility trade-off O(1/¢%) with speed inde-
pendent of &, while DP—SignSGD converges at a speed linear in € with a O(1/¢)
trade-off, dominating in high-privacy or high-noise regimes. Under optimal learn-
ing rates, both methods reach comparable theoretical asymptotic performance;
however, the optimal learning rate of DP—SGD scales linearly with ¢, while that
of DP-SignSGD is essentially e-independent. This makes adaptive methods far
more practical, as their hyperparameters transfer across privacy levels with little or
no re-tuning. Empirical results confirm our theory across training and test metrics,
and extend from DP-SignSGD to DP—-Adamn.

1 INTRODUCTION

The rapid deployment of large-scale machine learning systems has intensified the demand for rig-
orous privacy guarantees. In sensitive domains such as healthcare or conversational agents, even
the disclosure of a single training example can have serious consequences. Legislation and policy
initiatives show that Al regulation is tightening rapidly. In the United States, the Executive Order
of October 30, 2023 mandates developers of advanced Al systems to share safety test results and
promotes privacy-preserving techniques such as differential privacy (House, 2023)). Complementing
this, the National Institute of Standards and Technology (NIST), a U.S. federal agency, released draft
guidance (SP 800-226) on privacy guarantees in AI (NITS}[2023a) and included “privacy-enhanced”
as a key dimension in its AI Risk Management Framework (RMF 1.0) (NITS|2023b). In Europe, the
EU Al Act sets binding obligations for high-risk systems (EU| [2023), while ENISA recommends in-
tegrating data protection into Al development (EU| [2024)). In this context, Differential Privacy (DP)
(Dwork et al., 20006) is therefore emerging as the de facto standard for ensuring user-level confiden-
tiality in stochastic optimization. By injecting carefully calibrated noise into the training process, DP
optimizers protect individual data points while inevitably trading off some population-level utility.

A central open question is how differential privacy noise influences optimization dynamics, and
in particular, how it interacts with adaptivity and batch noise. In this work, we revisit this prob-
lem through the lens of stochastic differential equations (SDEs), which, over the last decade, have
proven to be a powerful tool for analyzing optimization algorithms (Li et al., [2017; [Mandt et al.|
2017; |Compagnoni et al} [2023). While SDEs have not yet been applied to DP methods, here we
use them to uncover a key and previously overlooked phenomenon: DP noise affects adaptive and
non-adaptive methods in structurally different ways. We focus on two fundamental DP optimiz-
ers: DP—-SGD (Abadi et al., [2016) and DP-SignSGD. The former serves as the baseline for DP
optimization; Although the latter is not widely used in practice, it is substantially simpler to ana-
lyze than the popular DP optimizer DP-Adam (Gylberth et al.l 2017} |[Zhou et al.| [2020b; [L1 et al.}
2021a; McKenna et al.|[2025)). Relying on SignSGD as a proxy for Adam is standard in prior work
(Compagnoni et al.| [2025¢; |Balles & Hennigl 2018} [Zou et al.l 2021 |Peng et al.| [2025} |L1 et al.|
2023)), and this motivates our focus on DP-SignSGD for the theoretical development. Importantly,
setting 51 = 2 = 0 reduces DP—Adam to DP-SignSGD. We leave the study of more advanced
DP optimizers to future work, as each would require a separate technical treatment. Under standard
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assumptions and with per-example clipping, our analysis isolates how the privacy budget €, which
governs the overall privacy level, influences the dynamics.

In practice, private training is usually performed across a range of privacy budgets ¢, and for each
value one searches for the best-performing hyperparameters. A change in € can therefore arise either
from this exploratory sweep or from stricter regulatory requirements. To capture these situations,
we study two complementary protocols. Protocol A (fixed hyperparameters): To examine the
situation when re-tuning is not feasible, e.g., low budget, we we first fix a privacy budget £ and
find the optimal configuration (7, C, B, ...) via grid search. Then, we analyze how performance
changes if training were repeated under different €, without adjusting hyperparameters, therefore
isolating the impact of € on the performance. Protocol B (best-tuned per £): When re-tuning is
allowed, we search the optimal hyperparameters (i.e., (n,C, B, ...)) for each &, thereby isolating
the intrinsic scaling of the optimal learning rates with respect to €.

Contributions. Our work makes the following contributions:

1. We provide the first SDE-based analysis of differentially private optimizers, using this framework
to expose how DP noise interacts with adaptivity and batch noise;

2. Protocol A: We show that DP—SGD converges at a speed independent of ¢, with a privacy-utility
trade-off that scales as O (1/£2) (consistent with prior work);

3. Protocol A: We prove a novel result for DP-SignSGD: its convergence speed scales linearly in
&, while its privacy-utility trade-off scales as O (1/);

4. Protocol A: When batch noise is sufficiently large, DP-SignSGD always dominates. When
batch noise is small, the outcome depends on the privacy budget: for strict privacy (¢ < €*),
DP-S1gnSGD is preferable, while for looser privacy (¢ > £*), DP—SGD has better performance;

5. Protocol B: We theoretically derive that the optimal learning rate of DP—SGD scales as n* o ¢,
while the optimal learning rate of DP-SignSGD is e-independent. This tuning allows the two
methods to reach theoretically comparable asymptotic performance, including at very small ¢;

6. We empirically validate all our theoretical insights on real-world tasks, and show that the quali-
tative insights extend from training to test loss and from DP-SignSGD to DP-Adam.

In summary, our results refine the privacy—utility landscape, which, to our knowledge, has not yet
provided a definitive answer as to which of DP-SGD or DP-Adam/DP-SignSGD performs best,
and under which conditions. Under Protocol A, adaptivity is preferable in stricter privacy regimes:
DP-SignSGD converges more slowly but achieves better utility when ¢ is small or batch noise
is large, whereas DP—-SGD converges faster but suffers sharper degradation. Under Protocol B,
both methods achieve comparable asymptotic performance; however, adaptive methods are far more
practical, as their optimal learning rate is essentially c-independent, allowing it to transfer across
privacy levels with little or no re-tuning. This matters not only for computational cost but also for
privacy, since each hyperparameter search consumes additional budget (Papernot & Steinkel 2021}).
In contrast, DP—-SGD requires an e-dependent learning rate tuned ad hoc, making it brittle if the
sweep grid misses the “right” value. Intuitively, adaptive methods inherently adjust to the scale of
DP noise, whereas non-adaptive methods require explicit tuning of the learning rate to counter the
effect of privacy noise.

2 RELATED WORK

SDE approximations. SDEs have long been used to analyze discrete-time optimization algo-
rithms (Helmke & Moorel [1994; Kushner & Yin, 2003). Beyond their foundational role, these
approximations have been applied to practical tasks such as learning-rate tuning (Li et al., 2017;
2019) and batch-size selection (Zhao et al, [2022)). Other works have focused on deriving conver-
gence bounds (Compagnoni et al., [2023} 2024} 2025c¢), uncovering scaling laws that govern opti-
mization dynamics (Jastrzebski et al.,[2018; (Compagnoni et al.l 2025cfa), and revealing implicit ef-
fects such as regularization (Smith et al.,|2021;|Compagnoni et al.,[2023)) and preconditioning (Xiao
et al., [2025; Marshall et al., |2025). In particular, SDE-based techniques have been used to study
a broad class of modern adaptive optimizers, including RMSProp, Adam, AdamW, and SignSGD,
as well as minimax and distributed variants (Compagnoni et al., [2024; [2025cfa} [Xiao et al.| [2025).
Most analyses rely on weak approximations, as rigorously formalized by |L1 et al.| (2017), although
some works have also considered heavy-tailed batch noise via Lévy-driven SDEs to capture non-
Gaussianity (Simsekli et al., 2019 [Zhou et al) 2020a)). Despite this progress, prior work has ex-
clusively focused on non-private optimization. To our knowledge, ours is the first to extend the
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SDE lens to differentially private optimizers, including explicit convergence rates and stationary
distributions as functions of the privacy budget.

Differential privacy in optimization. Differentially private training is most commonly imple-
mented via DP-SGD (Abadi et al.,[2016), which clips per-example gradients to a fixed norm bound
to control sensitivity and injects calibrated Gaussian noise into the averaged update. Advanced
accounting methods such as the moments accountant (Abadi et al., 2016) and Rényi differential
privacy (Mironov, 2017, [Wang et al.l 2019), combined with privacy amplification by subsam-
pling (Balle et al., 2018} 2020), allow practitioners to track the camulative privacy cost tightly over
many updates and have made large-scale private training feasible. A central challenge is that clip-
ping, while essential for privacy, also alters the optimization dynamics: overly aggressive thresholds
bias gradients and can stall convergence (Chen et al.l [2020), prompting extensive work on how
to set or adapt the clipping norm. Approaches include rule-based or data-driven thresholds, such
as AdaC1iP (Pichapati et al.l 2019) and quantile-based adaptive clipping (Andrew et al., |2021),
as well as recent analyses that characterize precisely how the clipping constant influences conver-
gence (Koloskova et al.| [2023)). Together, these contributions have positioned DP—SGD and its vari-
ants as the standard backbone for differentially private optimization.

Adaptive DP optimizers. Adaptive methods such as AdaGrad (Duchi et al.,[2011; McMahan &
Streeter, |2010), RMSProp (Tieleman & Hinton, 2012)), and Adam (Kingma & Ba, 2015)) generally
outperform non-adaptive SGD in non-private training. However, this performance gap under DP
constraints; 7) narrows considerably (Zhou et al., 2020b; |[Li et al., [2022); i) essentially vanishes
when both optimizers are carefully tuned, as observed for large-scale LLM fine-tuning in [Li et al.
(2021a, App. S). Consistently with non-DP training, non-adaptive methods are sometimes still pre-
ferred in vision tasks (De et al., [2022). Therefore, which of DP-SGD and DP-Adam is preferable
remains an open question. Under assumptions that include bounded/convex domain, bounded gradi-
ent norm, bounded gradient noise, convexity of the loss, and possibly without performing clipping of
the per-sample gradients, several strategies have been theoretically and empirically explored to mit-
igate the drop in performance of adaptive methods in DP. These include bias-corrected DP—Adam
variants (Tang & Lécuyer, 2023} Tang et al., 2023), the use of non-sensitive auxiliary data (Asi
et al., [2021), and scale-then-privatize techniques that exploit adaptivity before noise injection (Li
et al.} 2023} |Ganesh et al.; |2025)). A most recent related work by (Jin & Dail 2025)) studies Noisy
SignSGD: Conceptually, they investigate how the sign compressor amplifies privacy, and argue that
the sign operator itself provides privacy amplification beyond the Gaussian mechanism. Their anal-
ysis establishes convergence guarantees in the distributed learning setting while relying on bounded
gradient norms and bounded variance assumptions, thereby avoiding the need for clipping and ex-
plicitly leaving its study to future work.

We view these contributions as providing valuable theoretical and empirical advances in the design
of adaptive private optimizers, clarifying many important aspects of their behavior as well as try-
ing to restore the aforementioned performance gap. Yet, the fundamental question of which privacy
regimes are most favorable to adaptivity remains largely unanswered, and addressing it could explain
at least one aspect of the nature of this gap. Our work addresses this open question by analyzing why
and when adaptivity matters under DP noise, identifying the regimes where adaptive methods dom-
inate and where they match non-adaptive ones. Crucially, we incorporate per-example clipping, a
central element of DP-SGD, and a heavy-tailed batch noise model that captures unbounded variance.

3 PRELIMINARIES

General Setup and Noise Assumptions. We model the loss function with a differentiable func-
tion f : RY — R with global minimum f* = 0: This is not restrictive, as one can always consider
the suboptimality f(x)— f* and rename it as f. Regarding noise assumptions, recent literature com-
monly assumes that the stochastic gradient of the loss function on a minibatch ~ can be decomposed
as V f,(x) = V f(x)+ Z, where batch noise Z is modeled with a Gaussian (Ahn et al.,[2012;|Chen
et al., 2014; [Mandt et al., [2016} |Stephan et al., 2017} [Zhu et al., [2019; Jastrzebski et al., [2018}; 'Wu
et al., [2020; Xie et al.|, 2021)), often with constant covariance matrix (Li et al., 2017} Mertikopou-
los & Staudigl, 2018} Raginsky & Bouvrie, 2012} Zhu et al., 2019; Mandt et al., 20165 |Ahn et al.,
20125 Jastrzebski et al., [2018)). In this work, we refine the standard noise assumption to distinguish
the two regimes induced by per-example clipping in DP training. Since clipping is applied at the
datapoint level, each mini-batch contains a mix of clipped and unclipped gradients. For unclipped
datapoints, we follow the usual literature and model the batch-averaged noise as Gaussian. For
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clipped datapoints, which do not benefit from batch averaging, we model the per-example noise as
multivariate Student-t, Z, ~ 041, (0, I;), capturing potentially heavy-tailed behaviour and recover-

ing the Gaussian case as v — co. See Assumption [B.2]and Rem for more details. Finally,
:

we use the following approximation, formally derived in Lemma [”§§ ”Egu] ~ VS \(}) The
5 oy

approximation is valid under two assumptions: i) The parameter dimension d is sufficiently large
(d = Q(10%)), consistent with modern deep learning models that often reach billions of trainable pa-

rameters; i4) The signal-to-noise ratio satisfies M < d: This condition has been thoroughly
empirically studied by Malladi et al| (2022) (Appendlx G), who observed that across multiple tasks
and architectures the ratio ”vf (z)”2 never exceeds O(10%), well below typical values of d. There-

fore, this signal-to-noise ratio need not be small: We simply require it to be smaller than d — See
Remark [A-T]for more details, including experimental validations. We highlight that our experiments
confirm that the insights derived from our theoretical results carry over to real-world tasks. Impor-
tantly, while our theory is developed for DP-SignSGD, we further validate that the same insights
hold empirically for DP—Adam, showing that our insights extend directly to this widely used private
optimizer, as well as also transfer from training to test loss. This highlights both the mildness of the
assumptions and the robustness of the analysis.

SDE approximation. The following definition formalizes in which sense a continuous-time
model, such as a solution to an SDE, can accurately describe the dynamics of a discrete-time pro-
cess, such as an optimizer. Drawn from the field of numerical analysis of SDEs (see
(1986)), it quantifies the disparity between the discrete and the continuous processes. Simply put,
the approximation is meant in a weak sense, meaning in distribution rather than path-wise: We re-
quire their expectations to be close over a class of test functions with polynomial growth, meaning
that all the moments of the processes become closer at a rate of n® and thus their distributions.

Definition 3.1 Let 0 < n < 1 be the learning rate, T > 0 and T = L%J We say that a continuous

time process Xy over [0, 7], is an order-a weak approximation of a discrete process xy, if for any
polynomial growth function g, 3M > 0, independent of the learning rate n, such that for all k =
0,1,...,T, [Eg(Xpy) — Eg(as)| < Mn®.

Remark 3.1 (Validity of the SDE approximation) 7o guarantee that the SDE model is a first-
order weak approximation of the optimizer dynamics in the sense of Definition 3.1} one shows that
the first two moments of the one-step increments of the optimizer and of the SDE match up to O(n?),

while all higher-order terms in the Taylor expansion are collected in an O(n?) remainder (see Ap-
pendlx@) This implies that the discrepancy between the two processes scales as O(n) for any test
function of polynomial growth and any finite time horizon. The neglected O(n?) terms could, in
principle, be retained by deriving higher-order SDEs. However; to the best of our knowledge, such
second-order models have been derived [2017), but have not yet led to additional practical
insight in the analysis of optimisation algorithms. Finally, Figure[C_Ilempirically compares the dis-
crete algorithms with their SDE counterparts on quadratic and quartic objectives, confirming that
for the step sizes used in our experiments, the first-order SDEs closely track the discrete dynamics.

While we refer the reader to Appendix [B] for technical details, we illustrate with a ba51c example.
The SGD iterates follow xx11 = ) — 1V fy, (x%), and, as shown in [Li et al| (2017), it can be
approximated in continuous time by the first-order SDE

dX; = —Vf(Xy)dt + /1 E(X0)dW, (1)

where $(z) = 23" ((Vf(z) — Vf;(2))(Vf(z) — Vf;(x))T is the gradient noise covariance.
Intuitively, the iterates drift along the gradient while the stochasticity scales with this covariance.

Differential Privacy. Here, we outline the relevant background of foundational prior work in DP
optimization. We adopt the standard (e, §)-DP framework (Dwork et al.| [2000).

Definition 3.2 A random mechanism M : D — R is said to be (e, 9)-differentially private if for

any two adjacent datasets d,d’ € D (i.e., they differ in 1 sample) and for any subset of outputs
S C R it holds that P [M(d) € S] < efP[M(d) € S] + 6.

In this work, we consider example-level differential privacy applied by a central trusted aggregator.
We implement this using the sub-sampled Gaussian mechanism (Dwork & Roth 2014} [Mironov
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Figure 1: Empirical validation of the privacy-utility trade-off predicted by Thm. and Thm. 4.3|
comparing DP-SGD, DP-SignSGD, and DP-Adam: Our focus is on verifying the functional
dependence of the asymptotic loss levels in terms of €. Left: On a quadratic convex function
flx) 12T Hz, the observed empirical loss values perfectly match the theoretical predictions
(Eq.[7} Eq.[10). Center and Right: Logistic regressions on the IMDB dataset (center) and the
StackOverflow dataset (right), confirm the same pattern: the utility of DP—SGD scales as 2, while
the utility of DP-S1ignSGD scales linearly as g. Across all settings, we observe that the insights
obtained for DP-SignSGD extend to DP—Adam as well as to the test loss (see Figure [C.4). For
experimental details see Appendix[C.2}

et al 2019) to perturb the SGD updates: At each iteration, a random mini-batch is drawn, per-
example gradients are clipped to a fixed bound to limit sensitivity, and Gaussian noise is added to
the averaged clipped gradients. The following definition formalizes these mechanisms and provides
the update rules for DP-SGD and DP-SignSGD.

Definition 3.3 For k > 0, learning rate n, variance c3p, and batches +y, of size B modeled as i.i.d.

uniform random variables taking values in {1, ... ,n}. Let gy, be the private gradient, defined as
1 1 .
g i= 7 O C(Vfilww) + SN (0, Coabpla) @
€YK

and C[-] be the clipping function

C@:{CQQ¥WM20. .
x if|lzlle < C
The iterates of DP—-SGD are defined as
Tky1 = Tk — NGk, “)
while those of DP-S1gnSGD are defined as
Tpy1 =z — 1sign [gx] ®)

where sign|-] is applied component-wise. Finally, those of DP-Adam are defined in Eq.

We say that an optimizer is in Phase 1 if the argument of C is larger than C' and Phase 2 otherwise.

The following theorem from (Abadi et al., [2016) gives the conditions under which DP-SGD, and
thus also DP-SignSGD, is a differentially-private algorithm.
Theorem 3.1 For q = 5 where B is the batch size, n is the number of training points, and number

g4/ T log(1/3)

of iterations T, 3¢y, ca s.t. Ve < c1¢2T, if the noise multiplier opp satisfies opp > co 2,
DP-SGD is (e, d)-differentially private for any 6 > 0. In the following, we will often use cpp =

@, where ® := q+/log(1/0) to indicate the DP noise multiplier.

4 THEORETICAL RESULTS

In this section, we investigate how the privacy budget € influences convergence speed and shapes the
privacy-utility trade-offs in both the loss and the gradient norm. To do so, we leverage SDE models
for DP-SGD and DP-SignSGD, which can be found in Theorem [B.3] and Theorem [B.10] respec-
tively, and are experimentally validated in Figure [C.I} In addition, we provide the first stationary
distributions for these optimizers, presented in Theorem and Theorem in the Appendix.
This section is organized as follows:
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Figure 2: Empirical validation of the convergence speeds predicted by Thm. and Thm. We
compare DP-SGD, DP-SignSGD, and DP-Adam as we train a logistic regression on the IMDB
dataset (Top Row) and on the StackOverflow dataset (Bottom Row). In both tasks, we verify that
when DP-SGD converges, its speed is unaffected by . As expected, it diverges when ¢ is too small.
Regarding DP-SignSGD and DP-Adam, they are faster when ¢ is large and never diverge even
when this is small. Crucially, Figure shows that these insights are also verified on the test loss.
For experimental details see Appendi%

1. Protocol A (Section d.I). Section analyzes DP-SGD, yielding bounds for the loss
(Thm. A1) and the gradient norm (Thm. in the p-PL and L-smooth cases, respectively: We
observe that the convergence speed is independent of €, while the privacy-utility trade-off scales
as O(1/?). Section [4.1.2] analyzes DP-SignSGD, and Thm. #.3|and Thm. show a qual-
itatively different behavior: Convergence speed scales linearly with €, while the privacy-utility
terms scale as O(1/¢), making adaptivity preferable if the privacy budget is small enough. Finally,
Theorem[4.5]in Section shows that when batch noise is large enough, DP—-S1ignSGD always
dominates. When batch noise is small, the outcome depends on the privacy budget: There exists
€* such that for strict privacy (¢ < €*), DP-SignSGD is preferable, while for looser privacy
(e > %), DP-SGD is better.

2. Protocol B (Section[d.2). In this section, we derive the optimal learning rates of DP—SGD and
DP-SignSGD: That of DP-SGD scales linearly in ¢, while that of DP-SignSGD is independent
of it. Under these parameter choices, they achieve the same asymptotic neighbourhoods.

We empirically validate our theoretical insights on real dataset Crucially, the same insights de-
rived from DP-S1ignSGD empirically extend to DP—Adam as well as to test metrics: This under-
scores the mildness of our assumptions and the depth of our analysis.

Notation. In the following, we use the symbol < to suppress absolute numerical constants (e.g.,
2, 4, etc.), and never problem-dependent quantities such as d, i, L, or €: This convention lightens

the presentation. Finally, observe that @ := g+/log(1/6) = £,/log(1/6) = £ = ,/log(1/6).

We will often use  to highlight the privacy budget in relevant formulas.

4.1 PRoOTOCOL A: FIXED HYPERPARAMETERS

Following the tuning routine of |[Li et al.| (2023)), we conduce extensive grid search to select a con-
figuration (n, C, B, . ..) for one ¢ and keep them unchanged as we vary ¢. In particular, 1 does not
depend on € or on other hyperparameters. This absolute comparison exposes structural differences
in how DP noise interacts with adaptive vs non-adaptive updates.

'For all our experiments, we use the official GitHub repository https:/github.com/kenziyuliu/DP2| released
with the Google paper |Li et al.| (2023).
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Figure 3: Logistic regression on IMDB Dataset: From left to right, we decrease the batch noise, i.e.,
increase the batch size, taking values B € {48, 56,64, 72,80}: As per Theorem 4.5| the privacy
threshold e* that determines when DP-SignSGD is more advantageous than DP—SGD shifts to the
left. This confirms that if there is more noise due to the batch size, less privacy noise is needed for
DP-S1ignSGD to be preferable over DP—-SGD. For experimental details see Appendix @

4.1.1 DP-SGD: THE PRIVACY-UTILITY TRADE-OFF IS O (/%)

By definition, DP-SGD might alternate between a clipped and an unclipped phase. We first take a
didactic perspective to analyze each phase separately to isolate the role of £ on the dynamics, while
Theorem B8] covers the case where these phases are mixed.

Theorem 4.1 Let f be pu-PL and L-smooth, then we have that during

e Phase 1, i.e., when the gradient is clipped, the loss satisfies:

——sC ¢ - Tnd 2 LCo o2\ 1
< oy Va e oy P o I R
E[f(Xt)] ~ f(XU)‘e - ,+ <1 e ) L (dT + BQ) ) (6)
ecay
Privacy-Utility Trade-off
® Phase 2, i.e., when the gradient is not clipped, the loss satisfies:
TndL o P2\ 1
< —pt _ ,—ut "/ 2

BIF(X0)] 5 F(Xo)e ot (1= ) ( 2o Bz) | @

Decay

Privacy-Utility Trade-off

The decay rates are independent of <: in Phase 2 they depend only on p, while in Phase 1 nor-
malization spreads the signal over the sphere of radius C' (Vershynin|, [2018] Ch. 3), giving a rate

proportional to C'/(o.,v/d). In both phases, the privacy-utility term scales as 1/

We now turn to analyzing SDE dynamics assuming only L-smoothness of f. The following theorem
presents a bound on the expected gradient norm across both phases together: We observe that the
expected gradient norm admits the same O (/=) scaling.

Theorem 4.2 Let f be L-smooth, K; := max{1, "7 Y and Ky = max{ 2, < >Y. Then,

E[|VF(X:)2] S K ( %) 4 <K2 + ““”‘”)) , ®)

where t is a random time with uniform distribution over [0, 7).

Takeaway. Theorem [4.1] separates two effects: the decay terms, which determine the convergence
speed, and the privacy-utility terms, which determine the asymptotic neighbourhood under DP. Our
results show that the convergence speed of DP—SGD is unaffected by the privacy budget =: Figure[2]
confirms empirically that, whenever DP—SGD does not diverge, its convergence speed is indepen-
dent of e. Additionally, the privacy-utility trade-off scales as O (1/=%): This insight is validated in
Figure[T} on a quadratic function (left panel) the observed loss matches the theoretical values from
Theorem {.1] and the same scaling is reproduced when training logistic regression on IMDB and
StackOverflow (center and right panels). The behavior also persists on the test loss (Figure [C.4).

4.1.2 DP-S1GNSGD: THE PRIVACY-UTILITY TRADE-OFF IS O (1/¢)

As for DP—-SGD, we isolate the effect of £ on the dynamics of DP-SignSGD and study the loss in
each phase separately, while Theorem [B.T4]covers the case where these phases are mixed.
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Theorem 4.3 Let f be p-PL and L-smooth. Then, we have that during

e Phase 1, i.e., when the gradient is clipped, the loss satisfies:

—uB_e - TnLd3o., ®
B O] S JOt) ¥ (11— ot ) YL 2 ©
Decay

Privacy-Utility Trade-off

® Phase 2, i.e., when the gradient is not clipped, the loss satisfies:

L%W 292 / 027;‘02@2 TnLd o2 1
BIf (X)) S f(Xo) e/ "7 T Ty (1 eV m T \FZ Vor + G- (10)
Decay

Privacy-Utility Trade-off
The decay rate scales proportionally with £ in both phases (Eq. [9] and Eq. [I0), unlike DP-SGD,
where it is independent of = (Eq. [6] and Eq. [7). At the same time, the privacy-utility term in both
phases scales as O (1/c), which might be more favorable than the O (1/=*) scaling of DP—SGD in
high-privacy regimes, e.g., if € is sufficiently small.

Assuming only L-smoothness of f, the following theorem presents a bound on the expected gradi-
ent norm across both phases together. As the bound scales as O (1/<), it suggests that adaptivity
might mitigate the effect of large privacy noise on performance. Intuitively, the sign[-] effectively
clips the privatized gradient signal, capping the update magnitude and reducing sensitivity to noise
corruption.

Theorem 4.4 Let f be L-smooth and K3 := max { Vo i el \/E} Then,

E[IVA(XDI] S Ks (258 +ndLvT) L, an

nvT

where t is a random time with uniform distribution over [0, 7).

Takeaway: Theorem [4.3] suggests that the privacy noise directly enters the convergence dynamics
of DP-S1ignSGD, making its behavior qualitatively different from DP—SGD: The center column of
Figure 2] confirms that DP—SignSGD converges faster for larger ¢. Additionally, it also shows that
it never diverges as drastically as DP—SGD for small €. This is better shown in Figure [T} where we
validate that the asymptotic loss scales with %, while that of DP-SGD scales with 8% Therefore,
adaptive methods are preferable in high-privacy settings, and all these insights are verified also for
DP-Adam and generalize to the test loss (Figure [C.4).

4.1.3 WHEN ADAPTIVITY REALLY MATTERS UNDER FIXED HYPERPARAMETERS.

In this subsection, we quantify when an adaptive method such as DP-SignSGD achieves better
utility than DP—-SGD. To this end, we compare Privacy-Utility terms of Phase 2 for both methods
and derive conditions on the two sources of noise that govern the dynamics: the batch noise size o
and the privacy budget €.

Theorem 4.5 If 0'2v > B, then DP-SignSGD always achieves a better privacy-utility trade-off

than DP-SGD. Ifa% < B, there exists a critical privacy level e* = \/n??}?—f?) log(%> such that
Y

DP-S1gnSGD outperforms DP—SGD in utility whenever € < €*.

Takeaway: This result makes the comparison explicit: ¢) Under large batch noise (03 > B),
DP-SignSGD achieves a better utility than DP-SGD; 4¢) Under small batch noise (03/ < B), the
best optimizer depends on the privacy budget. For strict privacy (¢ < £*), DP-S1gnSGD has better
utility, while for looser privacy (¢ > €*), DP-SGD achieves better overall performance. Thus, £*
marks the threshold at which the advantage shifts from adaptive to non-adaptive methods when batch
noise is small. By contrast, when batch noise is large, adaptive methods are already known to be
more effective (Compagnoni et al., [2025bja), and the effect of DP noise is only marginal relative
to the intrinsic stochasticity of the gradients. We verify this result empirically in Figure 3} As we
increase the batch size B, €* decreases, in accordance with our theoretical prediction.

Practical Implication. If hyperparameter re-tuning is infeasible and the target regime involves
stronger privacy constraints, e.g., lower privacy budget ¢, or high stochasticity from small batches,
adaptive methods are preferable. Otherwise, DP—SGD is the method of choice.

8
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Figure 4: Empirical verification of Thm. and Thm. under Protocol B on the IMDB dataset
(Top Row) and on the StackOverflow dataset (Bottom Row). We tune (7, C') of each optimizer for
each ¢ and confirm that: ¢) all methods achieve comparable performance across privacy budgets;
i1) the optimal 1) of DP—SGD scales linearly with e, while that of adaptive methods is essentially e-
independent; i) failing to sweep over the “best” range of learning rates causes DP—SGD to severely
underperform, whereas adaptive methods are resilient. On the left, DP-SGD degrades sharply for
small €. Indeed, the right panels shows that the selected optimal 7 flattens out, while the theoretical
one would have linearly decayed more: The “best” n was simply missing from the grid. A posteriori,
re-running the sweep with a larger grid (DP-SGD Tuned) recovers the scaling law and matches the
performance of adaptive methods. For experimental details see Appendix |C_T5}
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4.2 PROTOCOL B: BEST-TUNED HYPERPARAMETERS

We now mirror standard practice by allowing (7, C') to be tuned over an extensive grid search for
each target privacy budget €. In contrast to Protocol A, this leads us to derive the theoretical optimal
learning rates, which, just as in empirical tuning, are allowed to depend on € explicitly.

To select the optimal learning rate n* for DP—SGD, we minimize the bound in Thm. [4.2]and conse-
quently derive the implied optimal privacy-utility trade-off for DP—SGD in the L-smooth case.

Theorem 4.6 (DP—SGD) Let n* = min {1 /%, £/ %c—’;}, then the expected gradient norm
.~ [ Cy\/dLf(Xo) . . . . .
bound of DP-SGD is O | ————— |, as we ignore logarithmic terms and those decaying in T.

This result aligns with the best-known privacy-utility trade-off obtained in prior works in these set-
tings (Koloskova et al., 2023} |Bassily et al.l[2014). Importantly, we notice that the optimal learning
rate of DP—SGD scales linearly in € and that the resulting asymptotic performance scales like %

To derive the optimal learning rate * of DP—SignSGD, we minimize the bound in Theorem £.4]
and derive a privacy-utility trade-off in the L-smooth case.

Theorem 4.7 (DP-SignSGD) Let n* = féfg). The expected asymptotic gradient norm bound of

DP-SignSGDis O (LT{(XO)) as we ignore logarithmic terms and those decaying in T.

Importantly, we observe that the asymptotic neighborhood of DP-SignSGD matches that of
DP-SGD, while the optimal learning rate is independent of €. This suggests that adaptivity automat-
ically handles the privacy noise injection: This facilitates the transferability of optimal parameters
to setups that require higher privacy. In contrast, DP—SGD needs retuning of the hyperparameters.

Takeaway: Our theory shows that while optimal learning rate scalings differ, the induced neighbor-
hoods match. As shown in Figure our experiments verify that: ¢) DP-SGD, DP-SignSGD, and
DP-Adam exhibit similar asymptotic performance across a broad range of ¢, including very small
values; i7) the optimal learning rate of DP—SGD is linear in €, while those of adaptive methods are
seemingly independent of it.
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Practical implication. Hyperparameter searches are not free under DP: each evaluation consumes
a portion of the privacy budget (Papernot & Steinkel 2021), making fine learning-rate grids costly.
This asymmetrically impacts the two optimizers. For DP-SGD, the optimal step size scales linearly
with e (Thm. [4.6), so the “right” n* moves as privacy tightens. If a fixed sweep grid misses a value
close to n*, the performance of DP—-SGD can degrade sharply. This is illustrated in our experiments
(Fig. [): in the left panel, the performance of DP—SGD collapses because the selected “optimal”
7 plateaus instead of decaying linearly as predicted (right panel) — the true n* was simply absent
from the grid. By contrast, the optimal step size of DP-SignSGD (and empirically DP—Adam)
is essentially e-invariant (Thm. 4.7, so a single well-chosen 7 transfers across privacy levels with
little or no re-tuning. This mechanism also helps explain prior empirical reports that non-adaptive
methods deteriorate more severely under stricter privacy (Zhou et all [2020b, Fig. 1), (L1 et al.,
2023|, Fig. 5), (Ast et al., 2021} Fig. 2): a plausible cause is that their fixed grids did not track the
e-dependent n* for DP—SGD. Importantly, when both optimizers are carefully tuned, DP—-SGD and
DP-Adam achieve matching performance in large-scale LLM fine-tuning (L1 et al.,|2021a, App. S).

5 CONCLUSION

We studied how differential privacy noise interacts with adaptive compared to non-adaptive opti-
mization through the lens of SDEs: To our knowledge, this is the first SDE-based analysis of DP
optimizers. Our results include explicit upper bounds on the expected loss and gradient norm, opti-
mal learning rates, as well as the first characterization of stationary distributions for DP optimizers.

Under a fixed-hyperparameter scenario (Protocol A), the analysis reveals a sharp contrast: )
DP-SGD converges at a speed independent of the privacy budget ¢ while incurring a O (1/<?)
privacy-utility trade-off; i7) DP—SignSGD converges at a speed proportional to € while exhibit-
ing a O (1/¢) privacy-utility trade-off. Additionally, when batch noise is large, adaptive methods
dominate in terms of utility, as the effect of DP noise is marginal compared to the intrinsic stochas-
ticity of the gradients, confirming known insights from non-private optimization. When batch noise
is small, the preferable method depends on the privacy budget: for strict privacy, DP—SignSGD
yields better utility, while for looser privacy, DP-SGD achieves better overall performance.

Under a best-tuned scenario (Protocol B), the picture changes: theory and experiments agree that
the optimal learning rate of DP-SGD scales linearly with e, whereas the optimal learning rate of
DP-SignSGD (and empirically DP—-Adam) is approximately e-independent. With this tuning, the
induced privacy-utility trade-offs match in order and the methods achieve comparable asymptotic
performance, including at very small €. A practical implication is that adaptive methods require less
re-tuning if regulations mandate tighter privacy budgets.

We validated these theoretical insights on both synthetic and real datasets. Importantly, we also
demonstrated that the qualitative behavior observed for DP-SignSGD extends empirically to
DP-Adam and to test metrics, underscoring the strength and generality of our framework.

Practitioner guidance. Under higher privacy requirements, e.g., regulations mandate a smaller
g, if per-e re-tuning of the hyperparameters is impractical because retraining/tuning is expected to
be costly (Protocol A), prefer an adaptive private optimizer such as DP-SignSGD (or DP-Adam):
their performance scales more favorably as € decreases compared to DP—SGD.

When re-tuning is feasible (Protocol B): Both DP—SGD and adaptive methods can reach comparable
asymptotic performance. However, hyperparameter searches are not free under DP: each sweep
consumes additional privacy budget (Papernot & Steinke| |2021), making fine grids expensive. This
creates an asymmetric risk: DP—SGD requires an e-dependent learning rate (n* « ¢), so if the sweep
grid does not track this scaling, its performance can degrade sharply. In contrast, adaptive methods
retain a portable, e-independent learning rate, making them more robust and less costly to tune
across privacy levels.
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A TECHNICAL RESULTS

In this section, we introduce some technical results used in the derivation of the SDEs.

Lemma A.1 Let X ~ N (u,0%1,) and fix a tolerance ¢ > 0. If 20!’(‘!)_%2) < ¢, for d — oo, we have
X 1 1
that]E(m) = g%+€0(d3/2).

Proof: Let us remember that if X ~ A (u, 021,),

X r(¢4+1-%& k d+2 2
E — (2 + 2) 1F1 = + ’_”:U’HZ s (12)
X% (202)**T (4+1) 27 2 202

where 1 Fi (a; b; z) is Kummer’s confluent hypergeometric function. We know that

T (% +1-— %) k=1 /2 1

vy = Varo(@m) @

Let z = Hz’ﬂl; If d > z, by expanding the series, we have

1d al™(—z)" z z\2
“(2 3" Z) 2 ira T O\g) <t-c (1
n>0
Combining everything together, we obtain [E (H ))((H2) = \/g L4 eO(7m) O
vl
Lemma A.2 Let K(v) = %FIE(;)) and X ~ t,(p,0%1,), for v > 1. Fix a tolerance € > 0: If
2

2
% < €, for d — oo, we have that E (ﬁ) = K(I/)\/gg + €O (dgl/Q).
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Proof: One can write X = p (0,1,) and S ~ x2 are independent. Define

T = then, conditioning on S and applyin Lemma we have
NG g pplying .

X _Jik —3/2
IE[ S]—\/;T—Fe(?(d ) (15)
()

X2
Remembering that E[v/S] = v/2 - (i) , we have
2

| ) = [( WB/Q))} 1
<\/2L\/_ S| + €O (d‘3/2>> (17)
_ K@ )\/; Lo (dj/2> (18)

O

Remark A.1 As discussed in the main paper, our analysis is based on the following two assump-
tions:

i) The number of trainable parameters is large, specifically d = (10%);

I\Vf(r)

ii) The signal-to-noise ratio satisfies Ivs @)l < d.

First, they ensure that the approximation of the confluent hypergeometric function in Equation
is highly accurate. Second, neither condition is restrictive for modern deep learning models.
The dimensionality assumption is trivially satisfied by contemporary architectures, which routinely
have millions of parameters. Regarding the second assumption, [Malladi et al| (2022) empirically

. . . v 2 . .
measured the signal-to-noise ratio % across a wide range of large-scale architectures and
Y

datasets, and consistently found values of at most O(10?). Thus, the regime in which our approx-
imation is valid closely matches the regime observed in practice. This is further supported by our
experimental results, which confirm our theoretical predictions across all models and tasks consid-
ered in this paper. In Figure [A.1] we numerically evaluate the confluent hypergeometric function
Sfor varying values of d, and show that, for sufficiently large parameter counts, the approximation
remains tight throughout the realistic signal-to-noise ratio range reported in (Malladi et al)| [2022)).

Confluent Hypergeometric Function
1.0

d=103 ~ 0.8
d=10* |
d=10° —~ 0.6
d=107 TN
d=10° oy
z=0(102) % 0.2

10! 103 10° 107
z

Figure A.1: Numerical validation of the approximation used in Equation For several values of
d, we plot the confluent hypergeometric function as a function of the signal-to-noise ratio z. In
the realistic range observed in (Malladi et al.| [2022)), approximating this function by 1 is extremely
accurate.
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B THEORETICAL FRAMEWORK

In this section, we introduce the theoretical framework, assumptions, and notations used to formally
derive the SDE models used in this paper. We briefly recall the definition of L-smoothness and p-PL
functions. Then we introduce the set of functions of polynomial growth G.

Definition B.1 A function f : R* — R is L-smooth if it is differentiable and its gradient is L-
Lipschitz continuous, namely

IVf(@) =V Il < Lz = yll2 Vo, y. (19)

Definition B.2 A function f : R? — R admitting a global minima x* satisfies the Polyak-
Lojasiewicz inequality if, for some yi > 0 and for all x € RY, it holds

L1
f@) =1 < IV (20)
In this case, we say that the function f is u-PL.

Definition B.3 Let G denote the set of continuous functions g : R¢ — R of at most polynomial
growth, namely such that there exist positive integers ki, ko > 0 such that |g(z)| < k1 (1+ ||z||3)*2,
forall x € R%,

To simplify the notation, we will write
b(x +n) = bo(x) + nb (2) + O(),
whenever there exists g € G, independent of 7, such that

|b(z + 1) — bo(z) — nbs (x)| < g(z)n”.

We now introduce the definition of weak approximation, which formalizes in which sense the solu-
tion to an SDE, which is a continuous-time random process, models a discrete-time optimizer.

Definition B4 Let0 <n < 1,7 >0andT = L%J We say that a continuous time process X over
[0, 7], is an order a weak approximation of a discrete process xy, for k = 0,..., N, if for every
g € G, there exists M, independent of n, such that forall k =0,1,..., N

|Eg(Xkn) — Eg(x)| < Mn®.

This framework focuses on approximation in a weak sense, meaning in distribution rather than path-
wise. Since G contains all polynomials, all the moments of both processes become closer at a rate
of n® and thus their distributions. Thus, while the processes exhibit similar average behavior, their
sample paths may differ significantly, justifying the term weak approximation.

Remark B.1 Our continuous-time models are derived using the standard order-1 weak-
approximation framework (see Section[2). In particular, Definition together with Theorems[B.J)]
and show that the drift and covariance of the discrete updates match those of the SDE up
to O(n?), so that the weak error over finite horizons is O(n). In line with the existing literature,
we therefore restrict attention to first-order SDEs; higher-order SDEs have been derived in special
cases but, to the best of our knowledge, have not led to additional practical insights. Finally, Fig-
ure empirically confirms that our SDEs closely track their corresponding algorithms on simple
landscapes, following the standard validation practice in the field (Compagnoni et al.| |2025¢).

The key ingredient for deriving the SDE is given by the following result (see Theorem 1, (Li et al.,
2017)), which provides sufficient conditions to get a weak approximation in terms of the single step
increments of both X; and . Before stating the theorem, we list the regularity assumption under
which we are working.

Assumption B.1 Assume that the following conditions are satisfied:

* f.fi € CGRY,R);
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* f, fi and its partial derivatives up to order T belong to G

» Vf,V f; satisfy the following Lipschitz condition: there exists L > 0 such that
d
IV £ () = VE@)ly + D IV filw) = VEiw)lly < Lilu =l
i=1

o Vf,V f; satisfy the following growth condition: there exists M > 0 such that
IVF(@)lly + D IV Fil@)lly < M1+ [|z]2).
i=1

Assumption B.2 Assume that the stochastic gradient can be written as V fy = V f+Z.. In Phase 1
(clipping regime), the batch noise Z., is modeled as heavy-tailed, e.g., a Student-t distribution with
v degrees of freedom and scale o.,: for v = oo we recover the Gaussian case, while if v < 2 the
variance is unbounded and if v = 1 the distribution becomes a Cauchy, therefore the expectation is
unbounded as well. In Phase 2 (non-clipping regime), the batch noise is modeled as a Gaussian of

2

variance %, reflecting the averaging effect of i.i.d., per-sample gradients.
Remark B.2 The distinction between the two phases stems from the effect of per-example clip-
ping on the noise distribution. In Phase 1, clipping is applied before the batch average, so the
noise of each individual stochastic gradient is not smoothed by averaging and can remain strongly
heavy-tailed; in this regime, a Gaussian model is no longer appropriate. We therefore model the
Phase 1 noise as a multivariate Student-t, which both captures this heavy-tailed behaviour and
admits tractable expressions for our SDE analysis, while recovering the Gaussian model used in
Phase 2 in the limit of large degrees of freedom.
Lemma B.3 Let 0 < n < 1. Consider a stochastic process Xy,t > 0 satisfying the SDE

dX; = b(Xt)dt + \/ﬁU(Xt)th, Xo==x (2])

where b, o together with their derivatives belong to G. Define the one-step difference A = X, —
and indicate the i-th component of A with A;. Then we have

I EA; = b+ 1 [Z}ll bjajb,} PO Vi=1,....d;

2. EAZAJ = [bibj—‘rO'O';H 772+O(773) Vi, =1,...,d;

3. EH;:lAi]‘ :O(’I]S) VSZS, ij:].,...,d.
All functions above are evaluated at x.
Theorem B4 Let 0 < n < 1, 7 > 0 and set T = |7/n]. Let Assumption hold and let
X be a stochastic process as in Lemma Define A = x1 — x to be the increment of the
discrete-time algorithm, and indicate the i-th component of A with A;. If in addition there exist
Kl, Ko, Kg, K, € G so that

1. |EA; — EA;| < Ky (2)n?, YVi=1,...,d;

2. |EA1AJ —]EA1AJ| SKQ(JJ)’I]Q, VZ,j = 1,...,d,’

3. ‘El‘[jzl Ay —ETL_ Ay| < Ks(@)?, Vs 23,5 =1,....d;
4. BT |A, | < Ka(z)n?, Vij=1,...,d.
Then, there exists a constant C' so that forall k = 0,1, ..., N we have

|Eg(Xky) — Eg(ak)| < Cn. (22)
We say Eq.[21]is an order 1 weak approximation of the update step of xi.
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B.1 DP-SGD

This subsection provides the formal derivation of the SDE model for DP-SGD and formal statements
of Theorem [{.1] Theorem .2} and Theorem [B.9} Since, by construction, the dynamic of the method
shifts stochastically between two phases, we first model and study each phase separately.

v+l
Theorem B.5 Let 0 < < 1,7 > 0and setT = |7/n| and K(v) = %Fﬁ(i)) Let z), € R?
2
denote a sequence of DP—SGD iterations defined in Eq.[d] Assume Assumption[B.1|and Assumption
[B:2] Let X, be the solution of the following SDEs with initial condition X, = x:

e Phase 1:
CK( )

dX, = VF(Xe)dt + /iy S(X,)dWr, 23)
o, Vd
where 3(z) = C? (E [Vfﬁéz}X£§|f§) } — i(l\’/g V@) V()" + %Id)
e Phase 2:
dX, = -Vf(X,)dt+/n S (Xy)dWs, 24)

where ¥(z) = ( + < ”DP) 1,.

Then, Eq.[23|and Eq.[24|are an order 1 approximation of the discrete update of Phase 1 and Phase 2
of DP-SGD, respectively.

Proof: e Phase 1: Let Zpp ~ N (0 ( , o UDP Id> be the differentially-private noise injected via

Gaussian Mechanism and denote with A = 1 — x the one-step increment for Phase 1. Applying
Lemma [A2] with tolerance € = 1 and by definition we have

Vi, () CK(v)

E[A] = —nE, pp [CM + ZDP} = Vi(z) +O0mn?). (25)
¥ ¥
Then, the second moment becomes
Cov(A) =EAAT —E [A]E[AT] (26)
_.2 V(@) _ CK(v) 2
=n EW,DP ( ||Vf»y( )||2+ZDP aw\/(ii Vf(l‘)—‘y—@(’l] )> 27
T
V() _ CK( ) 2
v v T
25 ()2
S @@ ) + ot 60)
v
o[ e va(x)Vfw(w)T} _C’K(v)? T C’ohp
- (C A e v @@+ =l | + O,
3D
Define now
~CK(v)
b(z) = o~ V() (32)
SN 2 Vfw(x)Vfw(w)T] _ CP°K(v)? T
Y(x). =C IE[ AGIE 07\/3 Vf(x)Vf(x) 32 LT, (33)
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Then, from Lem [B.3]and Thm. [B.4] the claim follows.

e Phase 2: Following the same steps as above, one obtains:

E[A] = =B, pp [V fy(x) + Zpp] = —nV f (), (34)
and
Cov(A) = 1°E [(Vf, (&) + Zpp = V(@) (Vfy(@) + Zop - VI@)"]  39)
02 2
= B [(Vf,(2) = V@) (V5 (@) = V)] + 7,2%1(1 (36)
o2 (202
= > (J; + BZPP ) Iy (37)
Define
b(x) = =Vf(x). (38)
B 0-2 020.2
S(z) = (1; + BQDP> Iy. (39)
Finally, from Lem[B.3]and Thm. the claim follows. O

Theorem B.6 Let f be L-smooth and p-PL. Then, for t € [0, 7], we have that

e Phase 1, i.e., when the gradient is clipped, the loss satisfies:

B § St 5y (1) TEECe (2 B L g
e Phase 2, i.e., when the gradient is not clipped, the loss satisfies:
E[f(X)] S f(Xo)e ™ + (1 — ™) T”TdL (iﬁ’f + Oﬁ) 5% (41)
Proof: e Phase 1: By construction we have
Tr (S(z)) < C* + d%. (42)

Since f is u-PL and L-smooth it follows that 2uf (z) < ||V f(z)||3 and V2 f(x) < LI,. Hence, by
applying the It6 formula we have

CK (v _ )
df (X;) = — ( )||Vf(Xt)H§dt + QTr (VQf(Xt)E(Xt)) dt + O(Noise) (43)
o, Vd 2
CK(v) ndL (C%*  C2%0%, .
< -2 X)dt + — | — dt N . 44
< uaw\/cilf( +)dt + 5 (d + E + O(Noise) (44)
Therefore,
—ouKWo, —ou Ko, nd%Lav c?  C?%0%,
Elf(X:)] < f(X oy Vd 1— oyVa ) —— L[ — ) 4
(X0 < F(Xo)e +(1- ) I (T + @s)
Let us now remind that
v/Tlog(1/6
opp = WIBLD) (46)
then
—ou KCy CopEWC N\ pdiLCo., (1 Tq*log(1/6)
E[f(X,)] < f(X oy Va 1— ova ) D s 2 L) (4
[f(Xe)] < f(Xo)e + ( e ) AuK(v) \d + B2:2 47
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e Phase 2: Similarly to Phase 1, we have
- o2 (202
_ v DP
Tr (S(z)) =d (B + g |- (48)

Again using the fact that f is y-PL and L-smooth and by applying the Itd formula, one obtains

df (Xy) < —||Vf(Xt)H dt + n;lL (B3 + ngjDP) + O(Noise) 49)
from which we have
E[f(X:)] < f(Xo)e " + (1 — e ) %L (ﬁ + 02;2”’> : (50)
Hence, by expanding opp
E[f(Xy)] < f(Xo)e 2 + (1 —e72) %L (ﬁ + W) : (51)

Finally, let & = ¢+/log(1/d) and suppress all problem-independent constants, such as 2, 7w, K (v),
to obtain the claim.

|
Theorem B.7 Let f be L-smooth and define
o Vd c? o2
K, ::max{ C;(( )} Ky ::max{d,l;}. (52)
then )
X dL C? (£) " Tlog(1/6
E(IV/(X)I] £ K (f() » 2L <K2 + C(B) Tloell/ ’)) S
nT 2 €
where t ~ Unif (0, 7).
Proof: Since f is L-smooth and by applying the Itd formula to Phase 1 we have:
CK(v .
df (Xy) < — \([) ||Vf(Xt)||2dt + Ty (LE(Xt)) dt + O(Noise) (54)
Oy
CK(v) ndL (C?* C?%0%p .
< - 7 ||Vf(Xt)||2dt+ 5 \ g + 2 dt + O(Noise). (55)
Similarly, in Phase 2 we obtain
df (X,) < —||VA(X)|2dt + 2 2 T (LE(X,)) dt + O(Noise) (56)
3 ndL (o5  C%0}p _
HVf(Xt)||2dt+ 5 (B + 72 dt + O(Noise). 37
Let K and K> as in Eq. Then, by integrating and taking the expectation, we have
T TndL C?0?
B [ IV Gl < K (1000 - 105 + 75 (Ko SZR2 ) ) 58)
0
1 Xo) — f( X, dL C?0?
=>IE/ SV F(X)5dt < K (f(())f() + 1= <K2 + ”5”’)) (59)
o T T 2 B
2e2(f(Xo) — f(X;)) + n?dLTK ndLTC?q?log(1/5)\ 1

where the last step follows from the Law of the Unconscious Statistician and £ ~ Unif (0, 7). Finally,
by suppressing problem-independent constants, 2, 7, we obtain the claim.

O
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B.1.1 MIXED-PHASE GRADIENT BOUND

In this section, we extend the two-phase SDE derivation to a single mixed setting. This is important
because, at any point during training, some per-example gradients may exceed the clipping threshold
while others remain below it. We show that in this scenario the same bound holds as in Theorem[B.7]
where it was previously derived under a worst-case approach.

Theorem B.8 Let f : RY — R be L-smooth. Then, we can write the SDE of DP—SGD as

AX; = boix (X3) dt + /7 S (X)) 2dW, (60)
where the drift and covariance satisfy, for all x,
1
(Vf(@), bmix(z)) < _EHVf(x)”Qa (61)
C?02

Tt Soie(2) < d ( Ky + B2DP> , 62)

where K1, Ko are defined in Equation Therefore, for t ~ Unif(0, T),

2 f(X()) ndL 020']2313
17Ol < Ko (L5204 2L (1, Eobe)) (63

i.e., the same L-smooth convergence bound as in Theorem[B.7| holds for any mixture of clipped and
unclipped samples in each mini-batch.

Proof: We proceed in three steps: i) drift under mixed clipping, ii) covariance under mixed clip-
ping using an explicit decomposition of G, into clipped and unclipped parts, and iii) It6’s formula
and the final bound.

e Step 1: Drift of the mixed batch. The DP-SGD update can be written as

1 1
Tha1 =Tk — 1 <G;€ + BZDp> ,  where Gy := B ; C(Vfi(xg)). (64)
1€k
Let
Sk i={i €y |VSfilzg)] > C}, Sok = {i €y ||V fi(zr)] < C}, (65)
B
By, = |81J€|7 Pr = fk < [O, 1] (66)

Intuitively, py represents the probability of a sample being in Phase 1. Define the per-sample contri-
butions

Y :=C(Vfi(zy)), i€ Sk, X; =V fi(xzr), i€ Sap, (67)
and the corresponding batch averages
1 1
o) =5 D Y g)=5 > X (68)
Z‘Eslvk i€S2,k
so that " @
Gy = g9, +9." - (69)
In the same way as in the proof of Theorem [B.3} we have that
CK(v)
ElY;] = a1V f(zp), ay = , (70)
[Yi] = a1V f(ak) V=
and
E[X;] = Vf(xk). (71)
Conditioned on the sets S , S2 i, the Y; are i.i.d. over S} ;, and the X are i.i.d. over S i, so
g | Si4l =~ 3 BV = ZEEYi] = praiVf () 72)
* ’ B €S B ’
b 1,k
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(2) _B—-bBy B
Elgy™ | S2.4] 7§k E[X 5 E[Xi] = (1 —pr)Vf(zk). (73)
Thus
E[Gk | Sl,k}v SQ’]@] = pka1Vf(ack) + (1 — pk)Vf(xk) (74)
Recall the definition of K from Equation[52]
K := max { g}(\(/g) } (75)

Then, it holds a; = CK (v)/(0,Vd) > 1/K; and ay == 1 > 1/K;. Since amix(px) is a convex
combination of a; and as,

1

amix(pr) = pra1 + (1 — pr)ag > min{ay,as} > i Vpr € [0,1]. (76)
Therefore, the drift in the SDE limit satisfies
1
bmix(7) = —amix(p(z)) V f(2), (Vf(@), bmix(z)) < —EIIVf(x)IIQ- (77)

e Step 2: Covariance of the mixed batch. We now compute the gradient noise covariance and show
it is a convex combination of the pure-phase covariances, which are already derived in Theorem (B3]
Define the centered contributions

Ui =Y, —E[Y;], i€Siy, Vi = X; —E[X;], j€ Sk (78)

Then
g —Elg" | Sl Z U, g7 —Elg? | Sl = Z V. (79

z€S1 & J€52 k

Hence

Gy — E[Gy, | Sik, Sa] = ZU+— >V (80)
t€51 k JES2 k
Let

siingle() := Cov(Y;) = Cov(U;), S50 (21) == Cov(X;) = Cov(V}). (81)
be the covariances of a single data-point. Conditioned on the sets S j, Sz, the random vectors
{Ui:i€ Sy }and {V;:j € Sy} are independent and zero-mean. Thus

Cov(Gk \ Sl’k,Sgk = Cov Z U+ = B Z Vj ‘51 ke 2.k (82)
1651 & JES2
1 1
S cov(iez Ui) + 5 Cov(jezsj Vj), (83)

where cross terms vanish by independence. Using i.i.d. within each group, we have

Cov( 3 Ui) = B, 23 (1y), cov( 3 Vj) = (B- Bp) S5 (), (84)

iESl,k jech
therefore
B 1mn, B B 11
Ygrad (k3 S1,k, S2.k) = Cov(Gy | Tk, S1,k, S2,1) = B’QES & (2p) + e kZS & (21). (85)
Since p, = By/B and 1 — p;, = (B — By;)/B, we obtain
p sing 1- p sin
Sgrad (Tk; S1,ky S2.k) = §k21 B () + B £ (). (86)
In the pure-phase SDEs of TheoremB.3] the batch-level (gradient and DP) covariances are given by
— 1 ingl 0202 — 1 singl CQO’
¥ (Z) = Ezi 8(x) + pr 1, ¥o(Z) = §z2 8€(x) + BQDP I,. (87)

24



Under review as a conference paper at ICLR 2026

From equation [86] the gradient part of the mixed-phase covariance is

02 2 020,2
Yorad(Tr; S1k, S2.k) = P (21(1‘k) — 32 Id) (1—pr) (22(%) - BQDP Id> . (88)

2 2
Adding the DP noise term ¢ Ba2DP 14 back in, the full covariance of the DP-SGD increment in the
mixed batch is

CQU%P
Ymix(Tr; S1,ks S2,k) = Lgrad (Th; Sk, S2k) + 52 1 (89)
= pr L1 (xx) + (1 — pr) Ba(xk). (90)

Thus, at the SDE level, the mixed-phase covariance is exactly a convex combination of the pure-
phase covariances X7 and 5. From Theorem@ we have the trace bounds

C?02
TI‘El(.T) S C2+d7DP, (91)
o2 C252
=) — ol DP
TrYs(z) = d <B + 52 . (92)
Let K5 asin Equationwe can write, for r € {1, 2},
C?c
Ty, (z) < d <K2 + B;”’) . (93)
Using equation[90] for any pj, € [0, 1],
C2
Tr Xmix(z) = pr TrZ1(zx) + (1 = pr) TrEa(zg) < d (K2 + ;531)) . 94)

Hence, the mixed-phase covariance satisfies exactly the same worst-case trace bound as the pure-
phase covariances.

o Step 3: It6 bound and convergence. Finally, we can rewrite the SDE of DP—-SGD as follows:

AXy = bunix (X1) dt 4 /7 Snix (X)) 2dW, (95)
where, for all x,
(Vf(2), bmix(2)) < —— IIVf ()%, (96)
2
Tr Siix(z) < d (KQ + C ;DP) . (97)

Since f is L-smooth, V2 f(z) < LI,. By 1t6’s formula,
df (Xy) = (VF(X1), bmix (X)) dt + g Tr (V2 f(Xe)Smix (X)) dt + O(Noise).  (98)

Using the drift and covariance bounds,

2
C O’DP

df (X)) < —— HVf(Xt)Hth + == "dL (K2 + ) dt + O(Noise). (99)

Integrating from O to 7 := nT

2 2
[(Xr) = f(Xo) < ——/ IV f(Xo)3 dt + —— "dL <K2 + C§§P> 74 O(Noise).  (100)
Rearranging,
T 2 2
Kil/ IVF(X)3dt < f(Xo) — f(X7)+ % <K2 + C];PP> 74 O(Noise).  (101)
0

Taking expectations,

T 2 2
B | IVl < Blp) - 106 + T <K2 ¢ B@DP) na0
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Lett ~ Unif (0, 7). Then, by the Law on Unconscious Statistician,

L[ X dL C?02
E||IVF(Xp)|* = ;E/O IVF(X0lI3 dt < Ky (f(TO)+"2 (Kz+ gfp))- (103)

Since 7 = T, this is exactly the gradient-norm bound as in Theorem [B.7} with the same constants
K1, Ko, now rigorously shown to hold under arbitrary mixtures of clipped and unclipped samples
at each iteration.

O

We now derive the stationary distribution of DP-SGD at convergence: We empirically validate this
result in Figure[C.3]

Theorem B.9 Let f(z) = 2" Hx where H = diag(\1, ..., \q). The stationary distribution at
convergence of DP—SGD is

2 2.2
(E[X],Cov(X;)) = (XoeHT In <€sz LY 25(1/5)> (1—62HT)H1>. (104)

Proof: Since H is diagonal, we can isolate each component. Furthermore, since f(-) is quadratic
we can rewrite the SDE as:

c? UDP

AWy ;. (105)

2
dXis = —NXei+1 ﬁ

We have immediately that
E[X;,;] = Xo,e M. (106)
Applying the It6 isometry, we obtain:
E[(X¢; — E[X¢,])%]

0-2 020.2 t
_ “v DP —2X;(t—s)
Ui (B + 52 /o ds
_ (A CPTIos(1/8)) (| oy
2 \ B B2e?
_ Tn 6203 C2 2 log(1/90) (1- 672)‘”)
262\, BT B? '

B.2 DP-S1GNSGD

This subsection provides the formal derivation of the SDE model for DP-SignSGD and formal
statements of Theorem {f.3] Theorem [.4] and Theorem [B:T5] Similarly to DP-SGD, the dynamics
of the method shifts again between two phases; we first model and study each phase separately.

v41
Theorem B.10 Ler 0 < < 1, 7 > O and set T = |7/n] and K(v) = \/grﬁ(ﬁ)) v > 1. Let
3
x5, € R denote a sequence of DP—S1ignSGD iterations defined in Eq.|5| Assume Assumption
and Assumption|[B2} Let X; be the solution of the following SDEs with initial condition Xo = x¢:

e Phase 1:

- B V(X )]
dX ——E EI’f d X de 0
t ”{ (aDpﬁHVf,Y(XtHQ E Vi (X) (107)
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2
_ Viy
where ¥(xz) =I5 — E, [Erf (ﬁ%)} ’

® Phase 2:
X -
dX, = — Exf VX dt + /) 2(X;)dWy, (108)
252 o2
2(Sghe + %)
2
where ¥(x) = I — Erf — Y@ | and Exf (+) is applied component-wise.

D

Then, Eq. and Eq. are an order 1 approximation of the discrete update of Phase 1 and
Phase 2 of DP-S1gnSGD, respectively.

Proof: The proof is virtually identical to that of Theorem Hence, we highlight only the

necessary details for each phase. Let A = x; — x be the one-step increment.

e Phase 1: We begin by computing the first moment:

A . Vi (x) ﬂ
E[A] = —pE C——~——+4+7 . 109
8= 1800 [se0 (O g P + Zor (109
Remember that, for any random variable Y, we have
Efsign(Y)] = 1 — 2P(Y < 0), (110)
and that if furthermore Y ~ N(0, 1), then
_ ! v
oy = 5 <1+Erf<\/§>>. (111)
Since Zpp ~ N (0, ngsz), we have that
Vfy(x) ) ( B V fy ()
1-2P(C-———"1—+ 7 <0)=1-2® (- 112
( VA@I, TP Copr VL ()], 2
B Vi (x) >)
=1—(1+Eef|— 113
(e ( o2 IVA@I)) MY
B V iy (2) )
= Erf . 114
' (aDm V5 @I, (o
Thus
X B ny(x) )]
E[A] = —E, |Erf . 115
)= o, B (aDpx/im(x)Q (s

The second moment is instead
Cov(A);; =n°E Kin(()w z )—IE [Erf( B Vi) )D
oV(B)ig = Ey.pp |\ sten \ O oy + 2o )~ By (B s e @) ),

(s (CM o) < (7 |VVJ§<(;>)|2)] ” (1o
sign (C’m T ZDp)isign <0m + ZDP) ] (117)

- B (o)) = [P (e o )jl'mg)

=n"E, pp

oppV2 VI (@),
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If ¢ = j, we have

_ B Vf(z) )r
Ay =n* —n’E, |Erf at . 119
U { (aDpﬁme)z a1

Otherwise, we have

E, [sign ( ”vj{?& 4 ZDp>isign ( IIV;?(())IIQ n ZDP)J] (120)
=&, |Bor [son (O + Zor ) | Bor s (05 P+ 2o H
=B Bt (oo ||vvj3?<(:cm>)||2>,.Erf (oo ||VVJ§((;C))||2>j] (20
=5, (0 VV;E(())” B (B (2 ||VVJ§<%)||2)J | (122

Where we used the independence of the i-th and j-th components. Hence

Cov(A);; = 0. e
Finally, we have
2
P [Ef< B Vf(x) )] 124
ov(A) =1"lq =y |Er oppV2 IV Iy (@)]ly e
Define now
B V() )]
b(z) = —E., |Exf 125
)= -, B <0Dm|m<x>|2 -
o B Vf(x) )]2
S(2) = I — E., |Exf . 126
(e) =1 { ' (ame(x)Q ()

Then, from Lem[B.3]and Thm. [B.4]the claim follows.

2
e Phase 2: Remember that, from Assumption Vfy=Vf+2Z, where Z, ~ N (O, %) We
calculate the expected increment
E[A] = —nE [sign(V f,(x) + Zpp)] (127)
— —yE[sign(Vf(x) + Z, + Zpp] (128)
— _pErf vf(x) (129)
(e 7)
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Instead, the covariance becomes

COV(A)Z‘J‘ ZUQE%DP sign(Vﬂy + ZDP) — Erf Vf(.’L‘) (130)
C20%p o3
2(“e+ %)) )
sign(Vf, + Zpp) — Exf Vi) (131)
()
J
=n"E,pp [sign(Vfy + Zpp)isign(V fy + Zpp);] (132)
— 1 Erf 0if (9”) Exf a’f (2) (133)
) ()
If ¢ = j, we have
2
Cov(A)y; =n? | 1 — Exf 0:f () ; (134)
C2ohp 75
2“3 9)
while if § # j
Cov(A);; =n* Exf 9/ (x) Erf %/(@) (135)
C2o%p o3 C20%p o3
2( B +§) 2( B? +§)
n? Erf 0:f(z) Erf 9 f(@) -0, (136
C2ohp 95 C2ohp o5
2 ( B2 + 7) 2 ( B2 + 7)
Define now
b(z) = — Exf Vi) (137)
C20%p o3
2(“5e + %)
2
S(x) = Iy — Exf Vi) (138)
9 (C D'DP + )
Then, from Lem [B.3]and Thm. [B.4] the claim follows.
U

Corollary B.11 Under our assumptions, the SDEs (Eq.[I07\and Eq.[108) modelling the two phases
of DP-S1ignSGD as follows:

e Phase 1:
2 BK(v) 2 B2K (v )
dX; = —1/ (X dt Iy— ———— X ))2d 13
‘ \/dﬂ'O'DPO',YV( ) +\f\/ UDPU’% ag(Vf(Xy))?dWy; (139)
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e Phase 2:

2 1 2 1

B2 B

Proof: Let us w.l.o.g. assume that that ‘Hgffw((m)n ‘ < 1 when ||V f,(x)]]2 > C: This is not

restrictive when the number of trainable parameters d is large as it is under our assumptions. Addi-

tionally, we recall that under our assumptions, 19: /()] < 1. Then one can write:
2(0% P +0’,2Y /B)

e _Oifo (@)
e Phase 1: Since TV fy @)=

as follows: Erf(z) ~ 2. Thanks to Lemma|A.1| we have

. B Vfy(x) _ 2 B Vfy(x) _ iBK(V) .
B [Ef(@mnvm)ngﬂ o MMDP |ny<x>|2] \/;oDPoWVf (z) (14D

Therefore, Eq.[T07]becomes

< 1, one can approximate the error function in a neighborhood of 0

dX; = —\/?BK(”)V f(Xy)dt + f\/f - 3327(02) diag(V f(X¢))2dW,.  (142)
v

T OpPO~ O'QDP
e Phase 2: Since 2f7($) < 1for¢ =1,...,d, one can use the same argument as before
V2(epp+03/B)
to use a linear approximation of the error function. In detail, one has
v 2 Vf
Erf /() = \/> Vf (z). (143)
C20DP

2<cam+ ) VT 2<cngP

Therefore, Eq. becomes

2 1 2 1 .
dX; = —\/7Vf(Xt) + 77\/Id T o2 o2 dlag(Vf(Xt))Qth‘ (144)
™ CZUQDP ﬁ s 9pp +

z
B2 ‘B
]
Theorem B.12 Let f be L-smooth and p-PL. Then, for t € [0, 7], we have that
® Phase 1, i.e., when the gradient is clipped, the loss satisfies:
—uB_ e —uB_ < TnLd:o., ®
BLAC0] S FXo)em H 4 (1 o) ikdi, . (145)
I €

® Phase 2, i.e., when the gradient is not clipped, the loss satisfies:

—pet 7ust

L, 02 252 c2q>2 I 1
E[(X0)] < F(Xo)e 2T+ (1 o5 Gr | VIl o e Ly

] €

Proof: First of all, observe that, in both phases, it holds that ¥(z) < I.

e Phase 1: Since f is -PL and L-smooth it follows that 2, f (z) < ||V f(2)||? and V2 f(z) < LI,.
Then, By applying the It6 formula, we have

2 K Be
df (X;) < — T U(W v) gT0s(1/9) ||Vf(Xt)H dt + Ty (V?f(Xy)14) dt + O(Noise) (147)
K(v) Be ndL

IA

—2u

dﬂT -, qlog(l/é)f(Xt)dt+Tdt—f—O(Noise). (148)
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Therefore,

E[f(X¢)] Sf(Xo)e_Q“( a1 ki )* (149)

3
+ <1 _ el tlszI?v")«lfﬁ%)t)  JTLndz Loy glog(1/9) ;50

2 4uK(v) Be

e Phase 2: As for Phase 1, by applying the Itd formula one has

e[V F(X)|3dt (151)

) < \F 1
V< /2
m \/623*103 + B72C2%¢%10g(1/6)T
+ g Tr (V2£(X4)1,) dt + O(Noise) (152)

ef(Xy)dt + #dt + O(Noise). (153)

o 1
& \/52B710,2Y + B72C2%¢%log(1/0)T

Therefore

_\/Z 24 et
” \/523*10,2\{+B*20242 log(1/8)T (154)

E[f(X:)] <f(Xo)e

+ (1 _ e_\/g\/ﬁs 1 2+52u202 2 10g(1/8)T > 7TT ﬂdL \/5202 C2¢? IOg(l/a)l
V B? e

Finally, by suppressing problem-independent constants, such as 2, 7, K (v), the thesis follows.

Theorem B.13 Let f be an L-smooth function. Define

Kgmax{ /d;fovq\/log 1/6) \[\/5202 02q21§§(1/5>}_ (155)

E[IVF(XI2] < K ({7 (o f)

Then

(156)

v
m\»—n

where t ~ Unif (0, 7).

Proof: Since in both phases the diffusion coefficient £(x) < I, the drift is the only term worth
comparing for a worst-case analysis. Let then K73 as in Eq.[I55 Applying the It6 formula to the
worst-case SDE we have

df(Xy) < —e(VTK3) Y|V f(Xy)|3dt + gTr (V2 f(X¢)14) dt + O(Noise) (157)
dL
< —e(VTK3) Y|V F(X)|2dt + ant + O(Noise). (158)
Then, by integrating and taking the expectation
T dL
E/ IV£(Xe)l5dt < KsvVT <f(X0) 1 5 T) et (159)
0
1 2 K ndLt\ _,
= —|IVf(X X 160
[ vt < 22 (00 + 257 ) (160)
f(Xo) ndL\F 1
E[ X; 2} <K - 161
= (IviIE] < a5 (720 + 15 ) (61
where in the last step we used the Law of the Unconscious Statistician and £ ~ Unif (0, 7). Finally,
by suppressing problem-independent constants, we get the thesis. (|
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B.2.1 MIXED-PHASE GRADIENT BOUND

Analogously to Section [B-I.1] we extend the two-phase SDE derivation to a single mixed setting.
Recall that, at any point during training, some per-example gradients may lie above the clipping
threshold while others remain below it. The next result shows that, even in this more realistic mixed
regime, we recover the same upper bound on the gradient norm as in Theorem [B.13]

Theorem B.14 Let f : R — R be L-smooth. Then, we can write the SDE of DP—S1ignSGD as

AX¢ = buix(Xy) dt + /7 Six (X)/2dW, (162)
where
bmix () = —E {Erf (BG(I‘)):l (163)
e CoppV?2 7
_ B 2
and .
=5 > C(Vfi(x) (165)
(S
Define
Ky = max{ [ i avq\/log 1/6 \/70q\/10g 1/6) } (166)
Then
2 f(Xo) UdL\F
E[IVF(Xl3] < K ( /TR ) - (167)

where t ~ Unif (0, 7).

Remark B.3 By construction we have K, < Ks, so Theorem |B.14| provides a formally tighter
upper bound than Theorem @ However, note that the first term in the definitions of K3 and
Ky (Equatlons 15 and 66| respectively) scales as \/d. Since d is assumed to be large, this term
typically dominates the maximum in both constants. As a consequence, in the high-dimensional
regime of interest we effectively have K3 = K4, and the improvement from the mixed-phase analysis
is negligible in practice.

Proof: We divide the proof into two steps: i) SDE derivation, ii) gradient bound.

e Step 1: SDE derivation. Using the same notation as in the proof of Theorem [B.8] we write the
update of DP-SignSGD as

1
Tyl = Tp — 1) (Gk + BZDP) ) (168)
where
| BB
G =i Zc Vii@) + (=) =g > Viilaw). (169)
i—1
Since Zpp ~ N we have
1
Elzri1 — 2] = —mE {sign <G;€ + Bpr)} (170)
B
= —E |Erf | ——=G 171
! [ ' (CUDP\/§ k)} (7
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and
Cov(zr1 — x) =n’E {(sign (Gk + ;ZDP> -E {Erf (OUB\/in)}> (172)
DP
1 B !
[CRRIE|
= (Id E |:E1"f (CUDPﬂGk . (174)
If we define
B
bmix(z) = —E {Erf (WG(@H , (175)
_ B 2

Then, the following SDE is an order-1 approximation of the update step of DP-SignSGD

dXy = bunix(Xt) + /N Sinix (X1 ) dW,. (77

e Step 2: Gradient bound. As argued in the proof of Corollary|B.11} we assume ‘

B
GonrvaC@)| <1

without loss of generality. Therefore, applying the 1t6 formula, we have

df, < \/5 b V£(X,) "E[Gyldt + gTr (V2 f(X)E(Xy)) dt + O(Noise) (178)

™ CO’DP
ndL .
—(pra1 + (1 — pr)az)Vf(Xy)dt + Tdt + O(Noise), (179)
where a; = %% (i(\’% and as = \/ETDP Expand opp and define
[ V1 1 0) [m Cqy/log(1/9)
Ky = max{ 5 U'Yq og / \/> a og /%) } (180)
Then
eVT1K; ! < prar + (1 — py)az, Vpr € [0,1] (181)
Then
dL
df, < —eVT K7V f(X,)dt + ant + O(Noise). (182)
Then, by taking the expectation and integrating over [0, 7]
T 5 . ndLt
E [ IVf(X0)l3dt < e VTE  f(Xo) + (183)
0
™1 9 Ky ( T]dLT) .
=K —||IVf(Xy < Xo) + € 184
f(Xo)  ndLVT\ 1
E X)|IF| < K - 185
= [va( t)||2}— 4<77\/T + 5 Py (185)
where in the last step we used the Law of the Unconscious Statistician and 7 ~ Unif (0, 7).
O

Finally, we derive the stationary distribution of DP-SignSGD: We empirically validate it in

Fig.
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Theorem B.15 Let f(z) = %xTHx where H = diag(\1, ..., \q). The stationary distribution of
Phase 2 is

E[X7] =Xoe KA, (186)
Cov(X7) =X2e 2KHT (e*ﬂKQHT - 1) (187)
+ n (2KH 4 T]H2K2)71 (1 _ e_(QKH+77K2H2)T> (188)

2 1
where K = \/j .
m \/EQB*10,2Y+B*2C2q2 log(l/&)TE

Proof: Since H is diagonal, we can work component-wise. Let us remember the SDE:

2 1 2
AX1i = =\ = e N K V] |1 =~ X AW (189)
2E + 5 ™ ( BT T F)

1
02+B~2C?q%10g(1/0)T

t
Xpg = woie 5N+ [ e ENOTD 1 - K2N2X2 AW, (190)
0

Due to the properties of the stochastic integral, we immediately have

. Hence, we can write X ;

To ease the notation, we write X = \/E
Iy \/ 2p—1

in closed form as

E[X;:] = Xo,ie7ﬁ¢623‘103+3120242 et (191)
Using the Ito formula on g(x) = 22, we have
d(X2,) = —2K\X2,dt + det _ gQKQ)\inidt + O(Noise) (192)
:>E[Xt2,i] — Xg,ie*(QKAanK%\f)t + M:?W (1 _ ef(QKAi+nK2>\f)t) ’ (193)
therefore
Cov(Xy,i) = E[X?;] - E[Xy,]? (194)
_ Xg)ie—(QK)\i-&-nKzAf)t + o J:]n)\gKQ (1 . e—(QK)\i-&-nKQ)\?)t) _ Xg’ie—QK)\it

O

Finally, we present a result that allows us to determine which of DP-SignSGD and DP-SignSGD
is more advantageous depending on the training setting.

2
Corollary B.16 If % > 1, then DP—SignSGD alm;ays achieves a better privacy-utility trade-off
than DP—-SGD, though its convergence is slower. If % < 1, there exists a critical privacy level

. C?TB 1
e* = \/n2 (B—O',%) log(é), (196)

such that DP—S1gnSGD outperforms DP—SGD in utility whenever € < €*, but still converges more
slowly than DP-SGD.
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Proof: The Phase 2 asymptotic terms at ¢t = T are

TndL 520‘2 \/TndL 520'2
Ascp = 7( 3

2 2
S rCE) s A= TE/R g as)

We compare Agjg, < Asgp. Cancelling the common factor "dTL gives

\/T 22 H2 T 202 2 H2
N8 < S (TF+0%) (198)
Multiplying by £2 and dividing by the positive square root yields
20_2 P
VT < T\ 73 +C2 %, (199)
All quantities are non-negative, so squaring preserves the inequality:
2 2 (3 2 92 a3\ 2 2 32
T < T (5 + %) = (1-F) < % (200)

Using £ = 2/log(1/4) gives
o2 C?
(1 . g)ﬁ < ﬁTlog(%). (201)
2 2
If % > 1, the left coefficient is non-positive and the inequality holds for all ¢ > 0. If % < 1,
C?TB 1 N
e< \/77/2) log (3) = &, (202)

solving for ¢ yields
which proves the claim. (|

Interestingly, by keeping 7 and C' depend on the optimizer, we get

o2 CZ% ®2 o2 C? 92
¥ sign 0 sgd
VTien\| g + oz < Thae (BT+ B2 ) (203)

We observe that if 0, — 0o, DP-SignSGD is always better than DP-SGD, while if o, — 0, there
is always a threshold *. Since the algebraic expressions are complex, we believe this is enough to
show that our insight is much more general than the case derived here and presented in the main

paper.

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

Our empirical analysis is based on the official GitHub repository https://github.com/kenziyuliu/
DP?2 released with the Google paper (Li et al.l |2023). In particular we consider the two following
classification problems:

IMDB (Maas et al.l [2011)) is a sentiment analysis dataset for movie reviews, posed as a binary
classification task. It contains 25,000 training samples and 25,000 test samples, with each review
represented using a vocabulary of 10,000 words. We train a logistic regression model with 10,001
parameters.

StackOverflow (Kagglel [2022), (TensorFlow Federated, 2022)) is a large-scale text dataset derived
from Stack Overflow questions and answers. Following the setup in (TensorFlow Federated, |2022),
we consider the task of predicting the tag(s) associated with a given sentence, but we restrict our
experiments to the standard centralized training setting rather than the federated one. We randomly
select 246,092 sentences for training and 61,719 for testing, each represented with 10,000 features.
The task is cast as a 500-class classification problem, yielding a model with approximately 5 million
parameters.
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Optimizers. We train both classification problems using DP-SGD, DP-SignSGD and DP—-Adam.
For k > 0, learning rate 7, variance o3p, and batches v, of size B modeled as i.i.d. uniform random

variables taking values in {1, ..., n}. Let g; be the private gradient, defined as
1 1
g = 35 3 C(Vfilwn) + SN0, C2odpla) (204)
1€V

and C[-] be the clipping function

C+= if [|z||2 > C
Clx) = =l - 205
(@) {7; if [|z]]2 < C (205)
The iterates of DP—SGD are defined as
Tht1 = Tk — NGk, (206)

while those of DP—-S1ignSGD are defined as
Tpy1 = Tp — 1sign [gi], (207)
where sign[-] is applied component-wise. The update rule of DP—Adam is defined as follows:

ME+1

miq1 = Bimy + (1 — B1) g, M1 = 1 g
1
N Vk+1
vker = Booe + (L= Bo) gk, Oert = g (208)
2
ﬁlk
Thy1 =Tl — 1N Aiﬂ-,
Vg1 T €

where gy, is the privatized stochastic gradient and is defined in Equation 204}

Hyper-parameters. Unless stated otherwise, we fix the following hyperparameters in our exper-
iments: for IMDB and StackOverflow respectively, we train for 100,50 epochs with batch size
B = 64. The choice of batch size follows the setting in 2023). We also aimed to avoid
introducing unnecessary variability, keeping the focus on the direction suggested by our theoretical
results. Finally, we set § = 10*5, 1076, corresponding to the rule § = 10~*, where k is the smallest
integer such that 10~% < 1/n for the training dataset size n.

Protocol A. we perform a grid search on learning rate n = {0.001,0.01,0.1,1,3,5,10} and
clipping threshold C = {0.1,0.25,0.5,1,5} for DP—SGD, DP-SignSGD and DP—Adam on both
datasets, using opp = 1: this gives ¢ = 2.712 and ¢ = 0.424 for IMDB and StackOverflow
respectively. We summarize the best set of hyperparameters for each method on both datasets in
Table[C 1]

Dataset DP-SGD DP-SignSGD DP-Adam
IMDB (5,0.5) (0.1, 0.5) (0.1, 0.5)
StackOverflow (3,0.25) (0.01, 0.5) (0.01,0.5)

Table C.1: Tuned hyperparameters for different methods across the two datasets. The values refer to
(learning rate, clipping parameter); For DP—Adam we also used 31 = 0.9, 2 = 0.999 and adaptivity
€ = 10~% in both cases.

Protocol B. For each noise multiplier, we tune a new pair of learning rate and clipping pa-
rameter by performing a grid search. IMDB: For DP-SignSGD and DP-Adam, we consider
the following learning rates n = {0.01, 0.05, 0.10, 0.15, 0.22, 0.27, 0.33, 0.38, 0.44, 0.50} and
clipping thresholds C' = {0.05, 0.1, 0.25, 0.5}, while for DP-SGD we consider a different
range of learning rates n = {0.5, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0} and
C = {0.1, 0.25, 0.5}. This tuning is designed to identify the best hyperparameters across a
broad range of privacy budgets ¢ = {0.01, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, which
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correspond to the following noise multipliers: {271.23, 13.56, 6.78, 4.52, 3.39, 2.71, 2.26, 1.94,
1.70, 1.51, 1.36}. StackOverflow: For DP-Adam we consider the following learning rates
{0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1, 0.5}, for DP—SignSGD we add {0.008, 0.015, 0.02,
0.03, 0.04} to the list, while for DP—SGD we consider a different range of learning rates
n = {0.1, 0.5, 1.0, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0}. For the clipping thresholds we consider C' =
{0.05, 0.1, 0.25, 0.35, 0.5, 1.0} for every method. This tuning is designed to identify the best
hyperparameters across a broad range of privacy budgets ¢ = {0.01, 0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4}, which correspond to the following noise multipliers: {42.384, 2.119, 1.060, 0.706,
0.530, 0.424, 0.353, 0.303}.

C.1 DP-SGD AND DP-S1GNSGD: SDE VALIDATION (FIGURE[C.]).

In this section, we describe how we validated the SDE models derived in Theorem [B.3] and Theo-
rem[B.10|(Figure[C.I). In line with works in the literature Compagnoni et al.| (2025cffa)), we optimize
a quadratic and a quartic function. We run both DP—-SGD and DP-SignSGD, calculating the full
gradient and injecting noise as described in Assumption[B.2] Similarly, we integrate our SDEs using
the Euler-Maruyama algorithm (See, e.g., (Compagnoni et al} [2025c), Algorithm 1) with At = 7.
Results are averaged over 200 repetitions. For each of the two functions, the details are presented in
the following paragraphs.

Quadratic function: We consider the quadratic function f(z) = %xTH x, with H =
0.1diag(2,1,...,1), in dimension d = 1024. The clipping parameter is set to C = 5, and each
algorithm is run for 7" = 10000 iterations. The gradient noise scale is 0, = 1/ Vd. The learning
rate is = 0.1 for DP-SGD and n = 0.01 for DP-SignSGD. The differential privacy parameters
are (,9,q) = (5, 10;(;1, 10~*), corresponding to a noise multiplier of o pp = 0.03. The initial point

is sampled as xg = WN (0, I;), using an independent seed for each method.

Quartic function: We also test on the quartic function f(z) = 1 S0 Hya? + 4 Y0 ot -
gzg;ol x?, where H = diag(—2,1,...,1), A = 0.5, and £ = 0.1. The problem dimension,
clipping, and number of iterations are the same: d = 1024, C' = 5, T' = 10000, with gradient noise
oy =1/ V/d. Both methods use a learning rate of 7 = 0.01. The differential privacy parameters are
(¢,6,q) = (5,107%,10~%) for DP-SGD and (5,107%,2 x 10~*) for DP-S1ignSGD, corresponding
to noise multipliers cpp = 0.03 and opp = 0.06, respectively. Initialization is ¢y = %J\f (0,1,)
for DP—SGD and yg = —x¢ for DP-SignSGD.

DP-SGD SDE DP-SGD ~ sseee = DP-SignSGD SDE DP-SignSGD
Gradient Norm - Quadratic Trajectories - Quadratic Gradient Norm - Quartic Trajectories - Quartic
[—— e — 15
2 \ 102 N\
/ X \ 1.0
/ \ ) )
—_— 11/ \ | — | I
o [ || = 0.5
= 10° || = 10t |
2 A 0 * ‘ s X 0.0 ‘ *
s | 1B \ |
= \ -1 [ = 100 | S B |
- ' / ~1.0{|
-2 / \
107t 107! -1.51%0
10! 10° 0 2 10! 103 -2 0 2
Iterations X1 Iterations X1

Figure C.1: Consistent with Theorem[B.5|and Theorem[B.10} we empirically validate that the SDEs
of DP-SGD and DP-S1ignSGD model their respective optimizers. For a convex quadratic function
(left two panels) and a nonconvex quartic function (right two panels), the SDEs accurately track
both the trajectories and the gradient norm of the corresponding algorithms, averaged over 200 runs.

C.2  AsSYMPTOTIC LOss BOUND (FIGURES [I|AND [C.4))

This section refers to Figure [1| and Figure We consider three different scenarios: A quadratic
function, IMDB, and StackOverflow. Each setup is optimized using DP-SGD, DP-SignSGD, and
DP-Adam, and we plot the final averaged training loss across a range of privacy levels. In the left
panel, we include the exact bounds from Theorem and Theorem to show agreement with
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theory; in the central and right panels, we compare the final losses with the trends in ¢ predicted by
the same theorems. Experimental details are as follows.

Quadratic: f(z) = %xTHw, H = 1014 d = 1024, C = 5,T = 50000, 0 = 0.01; learning rate
n = 0.01 - n; with n; = (1 + nt)~%%; Adam parameters: 3; = 0.9, 32 = 0.999,¢ = 1078, We
used 8 noise multipliers, linearly spaced from 0 to 2, which with ¢ = 10~%,§ = 10~ correspond to
e € {00, 6.78, 2.38, 1.19, 0.79, 0.59, 0.48, 0.40, 0.34}.

IMDB: Hyperparameters are given in Table We performed 10 runs for each
noise multiplier {0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0}, yielding the following values for &
{5.425, 2.712, 1.356, 0.678, 0.452, 0.339, 0.271, 0.226}, respectively. We report the average
training and test loss of the final epoch with confidence bounds (Figure|[I]and Figure [C.4).

StackOverflow: Hyperparameters are given in Table We performed 3 runs using
for each multiplier {0.1, 0.3, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0}, yielding the following values for &
{4.238, 1.413, 0.848, 0.424, 0.212, 0.106, 0.071, 0.053}, respectively. We report the average
training and test loss of the final epoch with confidence bounds (Figure[T]and Figure [C.4).

C.3 CONVERGENCE SPEED ANALYSIS (FIGURE[Z)

This section refers to Figure [2] We consider two different scenarios: IMDB and StackOverflow.
Each setup is optimized using DP—-SGD, DP-SignSGD, and DP—-Adam and six different privacy
levels: We plot the average trajectories of the training losses and observe that, when it converges,
the convergence speed of DP—SGD does not depend on the level of privacy, while the two adaptive
method are more resilient to the demands of high levels of privacy, but their convergence speed
changes for every ¢, as predicted in Theorem 4.3

IMDB: Hyperparameters are given in Table [C.I} We performed 10 runs for
each noise  multiplier {0.8, 1.0, 1.2, 1.6, 4.0, 6.0} and  corresponding  epsilons
{3.390, 2.712, 2.260, 1.695,0.678,0.452}. We report the average trajectories of the training
loss with confidence bounds (Figure [2).

StackOverflow: = Hyperparameters are given in Table We performed 3 runs
for each noise multiplier {0.37, 0.5, 0.64, 1.19, 1.46, 1.73} and corresponding epsilons
{1.146, 0.848, 0.662, 0.356, 0.290, 0.245}. We report the average trajectories of the training loss
with confidence bounds (Figure [2)).

C.4 WHEN ADAPTIVITY REALLY MATTERS (FIGURE[3)

This section refers to Figure [3] and Figure [C2] Each setup is optimized using DP-SGD,
DP-SignSGD, and DP-Adam. We consider different batch sizes and for each we plot the final
loss values for different privacy levels, similarly to Section We highlight the possible range of
€* and a dash-dotted line to mark its approximate value, suggested by each graph. As predicted by
Theorem[d.5] the empirical value of £* shifts left as we increase the batch size. Experimental details
are as follows.

IMDB: Hyperparameters are given in Table [C.I] We select a wide range of noise multipliers:
{0.5, 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 2.8, 3.0, 3.2, 3.5, 3.8, 4.0, 4.5, 5.0, 6.0, 8.0, 10.0, 12.0}
and increasing batch sizes B = {48, 56, 64, 72, 80}. The corresponding epsilons are

B = 48: {4.698, 2.349, 1.879, 1.566, 1.342, 1.174, 1.044, 0.940, 0.854, 0.783, 0.723, 0.671,
0.626, 0.587, 0.522, 0.470, 0.391, 0.294, 0.235, 0.196};

B = 56: {5.070, 2.535, 2.028, 1.690, 1.449, 1.268, 1.127, 1.014, 0.922, 0.845, 0.780, 0.724,
0.676, 0.634, 0.563, 0.507, 0.423, 0.317, 0.254, 0.211};

B = 64: {5.425,2.712, 2.170, 1.808, 1.550, 1.356, 1.205, 1.085, 0.986, 0.904, 0.835, 0.775,
0.723, 0.678, 0.603, 0.542, 0.452, 0.339, 0.271, 0.226};

B = 72: {5.740, 2.870, 2.296, 1.913, 1.640, 1.435, 1.276, 1.148, 1.044, 0.957, 0.883, 0.820,
0.765, 0.717, 0.638, 0.574, 0.478, 0.359, 0.287, 0.239};
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B = 80: {6.070, 3.035, 2.428, 2.023, 1.734, 1.517, 1.349, 1.214, 1.104, 1.012, 0.934, 0.867,
0.809, 0.759, 0.674, 0.607, 0.506, 0.379, 0.303, 0.253}.

For each batch size, we performed 10 runs and plotted the average final value of the Train Loss and
the empirical €*: these observed values follow the direction indicated in Thm.[4.5] For visualization
purposes, we show only a smaller window of € values satisfying 0.75 < e < 1.25.

StackOverflow: Due to the higher computational cost required, with our limited resources we man-
aged to select only a restricted range of noise multipliers: {0.1, 0.3, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0}
and batch sizes: {48, 56, 64}. The corresponding epsilons are

B = 48: {1.223, 0.734, 0.367, 0.184, 0.092, 0.061, 0.046};
B = 56: {1.322, 0.793, 0.396, 0.198, 0.099, 0.066, 0.050};
B = 64: {1.413, 0.848, 0.424, 0.212, 0.106, 0.071, 0.053}.

For each batch size, we performed 3 runs and plotted the average final value of the Train Loss and
the empirical €*: these observed values follow the direction indicated in Thm. .3] For visualization
purposes, we show only a smaller window of ¢ values satisfying 0.08 <& < 1.1.

DP-SGD —e— DP-SignSGD  —&— DP-Adam
Batch size 48 Batch size 56 Batch size 64

—— &' =0.571 —— £ =0.458 —— &' =0.418

4.00

3.0 i I i
815 030 0.45 0.60 0.75 0.15 0.30 045 0.60 0.75 0.15 0.30 045 0.60 0.75
& & &

Figure C.2: StackOverflow: From left to right, we decrease the batch noise, i.e., increase the batch
size, taking values B = 48, 56, 64: As per Theorem [4.3] the privacy threshold ¢* that determines
when DP-SignSGD is more advantageous than DP—SGD shifts to the left. This confirms that if
there is more noise due to the batch size, less privacy noise is needed for DP-SignSGD to be
preferable over DP-SGD.

C.5 BEST-TUNED HYPERPARAMETERS (FIGURES [4))

This section refers to Figure ] On top of the hyperparameter sweep performed described in Sec-
tion[C] we additionally tune DP—SGD for the smaller values of . As predicted by Theorem f.6] the
optimal learning rate for DP—-SGD scales with ¢, while those of the adaptive methods are almost con-
stant. Furthermore, we observe that once we reach the limits of the hyperparameter grid, DP-SGD
loses performance drastically.

IMDB: We additionally tune DP-SGD using n = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} and C' =
{0.1, 0.25, 0.5} and add the corresponding values using the cyan line. On the left, we plot the
average of the final 5 train loss values and confidence bound for each method against the privacy
budget €; On the right, we focus on the scaling of the optimal learning rate with respect to €.

StackOverflow: We additionally tune DP—SGD using 7 = {0.001, 0.01, 0.05} and add the corre-
sponding values using the cyan line. As above, on the left, we plot the average of the final 5 training
loss values and confidence bounds for each method against the privacy budget ¢; on the right, we
focus on the scaling of the optimal learning rate with respect to €.

C.6 STATIONARY DISTRIBUTIONS

In this paragraph, we describe how we validated the convergence behavior predicted in Theorem [B-9]
and Theorem To produce Figure [C.3] we run both DP-SGD and DP-SignSGD on f(z) =
1aTHx, where H = diag(2,1), o = (0.01, 0.005), n = 0.001, 0, = opp = 0.1, C = 5.
We average over 20000 runs and plot the evolution of the moments compared to the theoretical
prediction provided in Theorem [B.9]and Theorem [B.13]
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Figure C.3: The empirical dynamics of the first and second moments of the iterates X; of DP-SGD
(left two panels) and of DP—S1gnSGD (right two panels) match that prescribed in Theorem[B.9]and
Theorem [B.T5} respectively.

C.7 ADDITIONAL RESULTS — TEST LOSS

Interestingly, the insights provided in Theorem {.T]and Theorem [4.3]regarding both the asymptotic
bound and the convergence speed extend, in practice, also to the test loss. In the same set-up of
Section|C.2] we plot the asymptotic values of the Test Loss and interpolate with O(1/¢) and O(1/£?)
to show that they match the predicted scaling.
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Figure C.4: Privacy-utility trade-off on the fest loss, comparing DP-SGD, DP-SignSGD, and
DP-Adam. Left: Logistic regression on the IMDB dataset. Right: Logistic regression on the
StackOverflow dataset. In both cases, the empirical scalings predicted by Thm. 1] and Thm. .3
carry over from training to test: DP—SGD follows the E% trend, while adaptive methods follow the
% trend. This demonstrates that not only do our theoretical insights generalize to the widely used
DP-Adam, but also extend from training to test loss.

Similarly, in the same set-up as Section[C.3] we plot the trajectories of the Test Loss (Fig.[C.3): we
observe that once again the convergence speed of DP—SGD is not affected by the choice of , while
adaptive methods clearly present different e-dependent rates.
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Figure C.5: We compare the Test Loss of DP-SGD, DP-SignSGD, and DP—-Adam as we train
a logistic regression on the IMDB dataset (Top Row) and on the StackOverflow dataset (Bottom
Row).

D LIMITATIONS

As highlighted by |Li et al.|(2021b)), the approximation capability of SDEs can break down when the
learning rate 7 is large or when certain regularity assumptions on V f and the noise covariance matrix
are not fulfilled. Although such limitations can, in principle, be alleviated by employing higher-order
weak approximations, our position is that the essential function of SDEs is to provide a simplified
yet faithful description of the discrete dynamics that offers practical insight. We do not anticipate
that raising the approximation order beyond what is required to capture curvature-dependent effects
would deliver substantial additional benefits.

We stress that our SDE formulations have been thoroughly validated empirically: the derived SDEs
closely track their corresponding optimizers across a wide range of architectures, including MLPs,
CNNs, ResNets, and ViTs (Paquette et al., 2021; Malladi et al., |2022; |Compagnoni et al.l 2024;
2025cia; [ Xiao et al.| 2025 Marshall et al.| [2025)).
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