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Abstract

Sign languages are visual languages using manual articulations and non-manual
elements to convey information. For sign language recognition and translation, the
majority of existing approaches directly encode RGB videos into hidden represen-
tations. RGB videos, however, are raw signals with substantial visual redundancy,
leading the encoder to overlook the key information for sign language understand-
ing. To mitigate this problem and better incorporate domain knowledge, such as
handshape and body movement, we introduce a dual visual encoder containing
two separate streams to model both the raw videos and the keypoint sequences
generated by an off-the-shelf keypoint estimator. To make the two streams interact
with each other, we explore a variety of techniques, including bidirectional lateral
connection, sign pyramid network with auxiliary supervision, and frame-level self-
distillation. The resulting model is called TwoStream-SLR, which is competent for
sign language recognition (SLR). TwoStream-SLR is extended to a sign language
translation (SLT) model, TwoStream-SLT, by simply attaching an extra translation
network. Experimentally, our TwoStream-SLR and TwoStream-SLT achieve state-
of-the-art performance on SLR and SLT tasks across a series of datasets including
Phoenix-2014, Phoenix-2014T, and CSL-Daily.

1 Introduction

Sign languages, which are the primary means of communication among the deaf and hard-of-hearing
people, have been studied for a long time [46, 45, 4]. In linguistic terms, sign languages are as rich
and complex as any spoken language [2] and their word-order typology may differ from the spoken
languages. Moreover, there are limited parallel data for sign-to-text, and the gap between the visual
modality and the language modality poses another challenge to developing a well-performing sign
language translation (SLT) system [6]. To mitigate the problem, SLT often requires an intermediate
representation between an input visual signal and the output text, which is a sequence of glosses1, to
achieve satisfactory translation results. The process of generating gloss sequences from given sign
videos is termed as sign language recognition (SLR) [13], which does not have the word ordering
problem in SLT. Figure 1a illustrates the relationship between SLR [27, 56, 37, 11, 41, 14] and
SLT [8, 6, 31, 55, 10, 56]. In this paper, we work on both tasks.

The key to tackle SLR and SLT is to build a visual encoder to embed visual signals into hidden
representations. Inspired by the promising progress of action recognition [22, 48, 9, 51, 35, 3], a
majority of works [36, 20, 41, 11, 37, 5] explore to directly model RGB videos to understand sign
languages. However, a major problem with this kind of models is their robustness, and the models
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Figure 1: (a) We select a sign video from the Phoenix-2014T [6] dataset and visualize its gloss
sequence and the corresponding text. Sign language recognition (SLR) seeks to train a model
to recognize a gloss sequence from a sign video with weak sentence-level gloss annotations (i.e.,
gloss temporal boundaries are unknown). In contrast, sign language translation (SLT) aims to
directly generate spoken languages (texts) with or without intermediate representations (glosses).
(b) TwoStream-SLT is built upon TwoStream-SLR to enable SLT. We use HRNet [50] trained on
COCO-WholeBody [23] to extract keypoints of the face, hands, and upper body. Keypoints are
represented by heatmaps.

suffer from dramatic performance degradation when the background or signer is mismatched between
training and testing. To alleviate the problem, we consider injecting proper domain knowledge
(characteristic of sign languages) into learning. Sign languages use two types of visual signals
to convey information [26]: manual elements that include handshape, palm orientation, etc., and
non-manual markers such as facial expressions and movement of the body, head, mouth, eyes, and
eyebrows. In this paper, we advocate involving keypoints of the face, hands, and upper body in the
learning, and introduce a novel two-stream network named TwoStream-SLR to model both RGB
videos and keypoint sequences for sign language recognition (SLR). The proposed TwoStream-SLR
can be extended to handle sign language translation (SLT) by attaching an extra translation network.
The resulting model is termed as TwoStream-SLT. An overview of TwoStream-SLR and TwoStream-
SLT is shown in Figure 1b. Our contributions mainly lie in the proposed TwoStream-SLR; we
summarize our design principles and key components of TwoStream-SLR as follows:

1. Dual Visual Encoder. We use two separate S3D [51] backbones with lightweight head networks
to encode RGB videos and keypoint sequences which are represented by a set of heatmaps. Since
most sign language datasets do not provide keypoint annotations, we use an off-the-shelf keypoint
estimator, HRNet [50] which is trained on COCO-WholeBody [23], to generate pseudo keypoints
of face, hands, and upper body for each frame. Both streams are supervised by the well-known
connectionist temporal classification (CTC) loss [19]. In contrast to existing methods which either
utilize keypoints to crop concerned areas on feature maps [56]/original videos [38], or provide
supervision for multi-task learning [56, 1], we directly apply a convolutional neural network to
model keypoint sequences to avoid ad-hoc design [25, 47]. Our dual encoder architecture is differ-
ent from two-stream networks for action recognition which encode either image (video)/optical
flow [44, 9], or two videos of different frame rates [17]. We fuse different streams at late stage by
averaging their predicted frame-wise gloss probabilities before feeding them to a CTC decoder to
produce the final gloss sequences.

2. Information Interaction via Bidirectional Lateral Connection. Constrained by the photo-
graphic apparatus, motion blur heavily exists in sign videos [27, 6], resulting in inaccurate
keypoint estimation. This motivates us to use the information extracted by the video stream to
alleviate the negative impacts caused by inferior keypoints when modeling keypoint sequences.
On the other hand, heavy redundancy and irrelevant information (e.g., background and appear-
ance of signer) in sign videos may lead the model to overlook the salient information. Thus,
we propose to integrate the features extracted by the keypoint stream into the video stream as
supplementary information. Thanks to the dual encoder design, intermediate representations
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of video and keypoint sequence streams could be easily integrated via a bidirectional lateral
connection module [15] for information exchange.

3. Alleviate Data Scarcity via Sign Pyramid Network and Auxiliary Loss. Both SLR and SLT
greatly suffer from data scarcity. For example, there are only around 7K parallel training samples
in the widely used Phoenix-2014T [6] dataset. In contrast, training an effective neural machine
translation model usually requires a corpus of 1M parallel data [43]. Besides, similar to actions
with different visual tempos in the action recognition field [52], glosses also have different
temporal spans [42]. Thus, we present a sign pyramid network (SPN), which is inspired by the
feature pyramid network [33] in object detection and the temporal pyramid network [52] in action
recognition, on top of the dual encoder to better capture glosses of various temporal spans in the
low-data regime. The fused features yielded by SPN are further supervised by auxiliary CTC
losses, which enable the shallow layers to learn meaningful features.

4. Frame-Level Self-Distillation. We treat the averaged ensemble predictions as pseudo-targets and
propose an additional self-distillation loss calculated by the KL-divergence between each stream’s
predictions and pseudo-targets at the frame level. The self-distillation feeds rich knowledge in the
late ensemble predictions back into each stream’s learning. Moreover, compared with the CTC
loss which only provides sentence-level supervision without temporal boundary information, the
self-distillation loss is computed per frame to facilitate training with extra pseudo frame-level
supervision.

To enable sign language translation, we append a translation network to the TwoStream-SLR, yielding
our translation model named TwoStream-SLT. The proposed TwoStream-SLR and TwoStream-SLT
achieve state-of-the-art performance on both SLR and SLT across a series of benchmarks including
Phoenix-2014 [27], Phoenix-2014T [6], and the recently published CSL-Daily [55].

2 Related Work

Sign Language Recognition and Translation. Sign language recognition (SLR) aims to transcribe
an input sign video into a gloss sequence. An SLR model usually consists of two components, a
video encoder that extracts frame-level features from an input video, and a decoder (or head network)
that outputs gloss sequences from the extracted features. The video encoder is usually based on
CNNs including 3D-CNNs [10, 40, 31], 2D-CNNs [5, 37], and 2D+1D CNNs [56, 14], and both
single-stream [10, 40, 31] and multi-stream architectures [56, 14, 38] have been adopted. In this work,
we utilize two separate S3D [51] backbones to model both RGB videos and keypoint sequences. In
the design of gloss decoder, all recent works use either HMM [28–30] or CTC [11, 56, 36] following
their success in automatic speech recognition. We adopt CTC due to its simplicity. Since CTC loss
just provides weak sentence-level supervision, [14, 54] propose to iteratively generate fine-grained
pseudo labels from CTC outputs to introduce stronger frame-level supervision, while [36] achieves
frame-level knowledge distillation between the entire model and the visual encoder. In this work, as
a byproduct of the two-stream architecture, our frame-level distillation imparts the final ensemble
knowledge into each individual stream and enhances the interaction and consistency between the two
streams. Sign language translation (SLT) directly predicts texts given sign videos. Most existing
approaches formulate this task as a neural machine translation (NMT) problem by employing a visual
encoder as tokenizer to extract visual features and forwarding them to a translation network for
spoken text generation [10, 8, 31, 55, 53, 6]. We use mBART [34] as our translation network due to
its excellent SLT performance [10]. To achieve satisfactory results, gloss supervision is commonly
utilized in SLT by pretraining the visual encoder on SLR [8, 56, 55] and jointly training SLR and
SLT [56, 8].

Introduce Keypoints into SLR and SLT. How to leverage keypoints to boost the performance of
SLR and SLT is still an open problem. [56] and [38] utilize estimated keypoint coordinates to crop
feature maps and RGB videos to process each cue (hands, face, and body) independently. Some other
works [25, 7, 47] model keypoints from coordinates. For example, the SLT system in [25] feeds
keypoint coordinates into an MLP followed by recurrent neural networks. [47] represents keypoints
as skeleton graphs, which are further modeled by graph convolutional networks (GCNs). However,
all of the existing works treat keypoints as a set of coordinates, which is so sensitive to noise that
a small perturbation may lead to wrong predictions [15]. Besides, extra efforts need to be paid to
devise dedicated modules, e.g., GCN. In this work, we represent keypoints as heatmaps, which are
robust to noise and can simply share the same architecture with the video stream.
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Figure 2: Overview of TwoStream-SLR, which is composed of: 1) a video encoder; 2) a keypoint
sequence encoder; 3) a joint head; 4) a bidirectional lateral connection module; 5) two sign pyramid
networks. The whole network is jointly supervised by the CTC losses and the frame-level self-
distillation losses. Keypoint sequences are represented by heatmaps.

Multi-Stream Networks. Multi-Stream networks are widely explored in the action recognition
field [44, 16, 9, 57, 17]. For example, I3D [9] builds a two-stream 3D-CNN architecture and takes
RGB video and optical flow as inputs. SlowFast [17] encodes videos with different frame rates.
As for SLR and SLT, DNF [14] follows the idea of I3D to fuse information of RGB videos and
optical flow, while STMC [56] models the multi-cue property of sign languages with a multi-stream
architecture that takes cropped feature maps as inputs. In this work, our approach directly models
RGB videos and keypoint heatmaps via a dual encoder. Besides, to alleviate the data scarcity issue
and better capture glosses of various temporal spans, we present a sign pyramid network equipped
with auxiliary supervision to drive the shallow layers to learn meaningful representations. How to
model the interactions between different streams is non-trivial. I3D [9] uses a late fusion strategy by
simply averaging the predictions of two streams. Another way is to fuse the intermediate features of
each stream in early stage by lateral connections [17], concatenation [56], or addition [14]. In this
work, we extend lateral connections in [17] to bidirectional ones to make two streams complement
each other. In addition, our self-distillation integrates the knowledge of both streams to generate
pseudo-targets, which can also be regarded as a kind of interaction.

3 Method

In this section, we introduce our TwoStream-SLR and TwoStream-SLT for the SLR and SLT tasks,
respectively. Given a sign video V = (v1, ..., vT ) with T frames, our goal is to optimize TwoStream-
SLR that can predict the gloss sequence G = (g1, ..., gU ) with U glosses (i.e., SLR). Appending
a translation network onto TwoStream-SLR yields TwoStream-SLT, a model which is capable of
predicting associated spoken language sentence S = (s1, ..., sW ) with W words (i.e., SLT) from
sign videos. In general, U ̸= W . The proposed TwoStream-SLR and TwoStream-SLT are introduced
in Section 3.1 and Section 3.2, respectively.

3.1 TwoStream-SLR

Figure 2 shows the overview of our TwoStream-SLR, which consists of five parts: 1) a video encoder;
2) a keypoint sequence encoder; 3) a joint head; 4) a bidirectional lateral connection module; 5) two
sign pyramid networks with auxiliary supervision, to model RGB videos and keypoint sequences.

Video Encoder. We use S3D [51] with a lightweight head network as our video encoder. Only the
first four blocks of S3D are used since our goal is to extract dense representations along the temporal
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dimension. We feed each T ×H ×W × 3 video into the encoder to extract its features, where T
denotes the frame number, H and W represent the height and width of the sign video. We set H and
W as 224 by default. The output feature of the last S3D block is spatially pooled into the size of
T/4× 832 before it is fed into the head network. The goal of the head network is to further capture
the temporal context. It consists of a temporal linear layer, a batch normalization layer, a ReLU layer,
as well as a temporal convolutional block which contains two temporal convolutional layers with a
temporal kernel size of 3 and a stride of 1, a linear translation layer, and a ReLU layer. The output
feature which is named as gloss representation has a size of T/4× 512. Then a linear classifier and a
Softmax function are applied to extract frame-level gloss probabilities. At last, we use connectionist
temporal classification (CTC) loss LV

CTC to optimize the video encoder.

Keypoint Encoder. To model keypoint sequences, we first utilize the HRNet [50] which is trained on
COCO-WholeBody [23] to generate 42 hand keypoints, 68 face keypoints covering the mouth, eyes,
and face contour, and 11 upper body keypoints covering shoulders, elbows, and wrists per frame.
We empirically found that using only a subset of 26 face keypoints (10 mouth keypoints and 16 for
other parts) performs well while saving computational resources. In total, 79 keypoints are used.
We use heatmaps to represent the keypoints. Concretely, denoting the keypoint heatmap sequence
with a size of T ×H ′ ×W ′ ×K as G, where H ′ and W ′ represent the spatial resolution of each
heatmap, and K is the total number of keypoints, the elements of G are generated by a Gaussian
function: G(t,i,j,k) = exp

(
−[(i− xk

t )
2 + (j − ykt )

2]/2σ2
)
, where (xk

t , y
k
t ) denotes the coordinates

of the k-th keypoint in the t-th frame, and σ controls the scale of keypoints. We set σ = 4 by default
and H ′ = W ′ = 112 to reduce computational cost. The network architecture of the keypoint encoder
is the same as the video encoder, except for the first convolutional layer which is substituted to fit
the keypoint input. Note that weights of the video encoder and keypoint encoder are not shared.
Similarly, a CTC loss is utilized to train the keypoint encoder, which is denoted as LK

CTC .

Bidirectional Lateral Connection. To fuse the information of two streams, we propose lateral
connection, which is explored in action recognition [17, 12, 16, 15] and object detection [33]. The
lateral connection is implemented as an element-wise add operation between two feature maps of the
same resolution. We apply lateral connection on the features (C1, C2, and C3) generated by the first
three blocks (B1, B2, and B3) of the two S3D backbones. Since the spatial resolutions of interme-
diate features extracted by the two streams are different, we use spatially strided convolution and
transposed convolution to align their spatial resolutions. For implementation, the lateral connection is
bidirectional, and other variants such as unidirectional lateral connection are studied in Section 4.2.

Joint Head and Late Ensemble. Both the video encoder and keypoint encoder have their own head
networks. To fully explore the potential of our dual encoder architecture, we present an additional
head network named joint head, which takes the concatenation of outputs of the two S3D networks as
inputs. The architecture of the joint head is the same as the video head and keypoint head. The joint
head is supervised by a CTC loss as well, which is denoted as LJ

CTC . We average the frame-wise
gloss probabilities predicted by the video head, keypoint head, and joint head and feed them to a CTC
decoder to generate the gloss sequence G. This late ensemble strategy fuses multi-stream results and
improves over single-stream predictions as shown in our experiments.

Sign Pyramid Network. To better capture glosses of different temporal spans and efficiently
supervise the shallow layers to learn meaningful representations, we build a sign pyramid network
(SPN) with auxiliary supervision upon the dual visual encoder. The architecture of SPN is illustrated
in Figure 3a. Specifically, we denote outputs of the last three blocks of the S3D backbone as C2,
C3, and C4, respectively. Similar to [52], the construction of the sign pyramid involves a top-down
pathway and a lateral connection. We use element-wise add operation to fuse features extracted
by adjacent S3D blocks, and the fused features are termed as P2 and P3 (see Figure 3a). We use
transposed convolution to match both temporal and spatial dimensions of two feature maps before
element-wise addition. Then two separate head networks with the same architecture as the one used
in the dual encoder are applied on P2 and P3 to extract frame-level gloss probabilities. Similarly,
CTC losses are adopted to provide auxiliary supervision. Without loss of generality, we use two
independent SPNs for the video and keypoint stream. The auxiliary CTC losses of two streams are
denoted as LV

ACTC and LK
ACTC , respectively. SPN is dropped in the inference stage.

Frame-Level Self-Distillation. Existing datasets only provide sentence-level gloss annotations,
where gloss temporal boundaries are not labeled. Thus, CTC [19] loss is widely adopted to leverage
this kind of weak supervision. However, once well optimized, the visual encoder is able to generate
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Figure 3: (a) The sign pyramid network takes the features (C2, C3, and C4) of the last three blocks
of S3D backbone as inputs and generate the fused features P2 and P3. The construction of the sign
pyramid involves a top-down pathway and a lateral connection where the transposed convolution is
used to match both temporal and spatial dimensions of two feature maps. Two separate head networks
of the same architecture are applied on P2 and P3 to generate frame-level gloss probabilities. We
use the CTC loss as auxiliary supervision. Each stream in our dual encoder has an independent SPN.
(b) Simply appending a translation network onto our TwoStream-SLR yields TwoStream-SLT, a
framework for SLT. TwoStream-SLT is jointly supervised by the recognition loss and the translation
loss.

frame-wise gloss probabilities from which one can estimate the approximate temporal boundaries
of glosses. This inspires us to use the predicted frame-wise gloss probabilities as pseudo-targets to
provide extra fine-grained supervision in addition to the coarse-grained CTC loss. In accordance
with our two-stream design, we use the averaged gloss probabilities from the three head networks
as pseudo-targets to guide the learning of each stream. Formally, we minimize the KL-divergence
between the pseudo-targets and the predictions of the three head networks. We call it frame-level
self-distillation loss LDist as it not only provides frame-level supervision but also distills knowledge
in the late ensemble back into each individual stream.

Loss Function. The overall loss of TwoStream-SLR is composed of three parts: 1) the CTC losses
applied on the outputs of the video encoder (LV

CTC), keypoint encoder (LK
CTC), and joint head

(LJ
CTC); 2) the auxiliary CTC losses (LV

ACTC and LK
ACTC) applied on the outputs of two sign

pyramid networks; 3) the distillation loss (LDist). We formulate the recognition loss as follows:

LSLR = LV
CTC + LK

CTC + LJ
CTC + λV LV

ACTC + λKLK
ACTC + LDist, (1)

where λV and λK denote loss weights of the auxiliary CTC loss of the video stream and keypoint
stream. Up to now, we have introduced all components of TwoStream-SLR. Once the training is
finished, TwoStream-SLR is capable of predicting a gloss sequence by averaging predictions from
the three head networks.

3.2 TwoStream-SLT

Previous approaches [6, 8, 31, 56, 55, 10] formulate the SLT task as a neural machine translation
(NMT) problem, where the input of the translation network is the output of the visual encoder.
We follow this paradigm and append an MLP with two hidden layers and a subsequent translation
network onto TwoStream-SLR to enable SLT. The resulting network is called TwoStream-SLT, which
is illustrated in Figure 3b. We adopt mBART [34] as our translation network due to its excellent SLT
performance [10]. To take advantage of our TwoStream design, we append an MLP and a translation
network to each of the three heads of our TwoStream-SLR. The inputs of each MLP are the features
(i.e., gloss representations defined in Section 3.1) encoded by the corresponding head network. The
translation loss is a standard sequence-to-sequence cross-entropy loss [49]. The overall translation
loss LT is the sum of three translation losses. TwoStream-SLT is jointly supervised by the recognition
loss LSLR defined in Eq. 1 and the translation loss LT , which can be formulated as:

LSLT = LSLR + LT . (2)
During inference, we adopt the fusion strategy for multi-source translation ensemble [18] to combine
predictions of the three translation networks. More details can be found in the supplementary
materials.
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Table 1: Comparison with previous works on Sign Language Recognition (SLR). WER is adopted
as the evaluation metric. Previous best results are underlined. ∗ denotes methods which adopt
other modalities besides RGB videos such as pose keypoints [56], optical flow [14], or hand/mouth
shape [30]. The results of [5, 21, 14, 11, 8] on CSL-Daily are reproduced by SignBT [55].

Method Phoenix-2014 Phoenix-2014T CSL-Daily

Dev Test Dev Test Dev Test

SubUNets [5] 40.8 40.7 - - 41.4 41.0
LS-HAN [21] - - - - 39.0 39.4
IAN [40] 37.1 36.7 - - - -
ReSign [28] 27.1 26.8 - - - -
CNN-LSTM-HMMs (Multi-Stream)∗ [30] 26.0 26.0 22.1 24.1 - -
SFL [37] 24.9 25.3 25.1 26.1 - -
DNF (RGB) [14] 23.8 24.4 - - 32.8 32.4
FCN [11] 23.7 23.9 23.3 25.1 33.2 33.5
DNF (RGB+Flow)∗ [14] 23.1 22.9 - - - -
Joint-SLRT [8] - - 24.6 24.5 33.1 32.0
VAC [36] 21.2 22.3 - - - -
LCSA [59] 21.4 21.9 - - - -
CMA [41] 21.3 21.9 - - - -
SignBT [55] - - 22.7 23.9 33.2 33.2
MMTLB [10] - - 21.9 22.5 - -
SMKD [20] 20.8 21.0 20.8 22.4 - -
STMC-R (RGB+Pose)∗ [56] 21.1 20.7 19.6 21.0 - -
C2SLR (RGB+Pose)∗ [58] 20.5 20.4 20.2 20.4 - -

TwoStream-SLR (Ours)∗ 18.4 18.8 17.7 19.3 25.4 25.3

4 Experiment

Implementation Details. The S3D backbone is first pretrained on Kinetics-400 [24]. Then we
separately pretrain the video and keypoint encoder without the sign pyramid network under the
supervision of a single CTC loss. Finally, TwoStream-SLR loads the pretrained weights of both
encoders for SLR training with loss defined in Eq. 1. Following [10], we initialize our translation
network with mBART-large-cc252 pretrained on CC253 and freeze the S3D backbones during SLT
training to prevent overfitting. Unless otherwise specified, we set λV = 0.2 and λK = 0.5 in Eq. 1,
beam width as 5 for the CTC decoder and the SLT decoder during inference. We use cosine annealing
schedule of 40 epochs and an Adam optimizer with weight decay 1e− 3, initial learning rate 1e− 3
for TwoStream-SLR and 1e− 5 for the MLP and translation network in TwoStream-SLT. We train
our models on 8 Nvidia V100 GPUs. Please refer to the supplementary materials for more details.

Datasets. We use Phoenix-2014 [27], Phoenix-2014T [6], and CSL-Daily [55] to evaluate our method
on SLR, while the last two datasets are also leveraged for SLT evaluation since they provide text
annotations. All ablation studies are conducted on the Phoenix-2014T SLR task.

• Phoenix-2014 is a German SLR dataset with a vocabulary size of 1081 for glosses. It consists of
5672, 540, and 629 samples in the training, dev, and test set.

• Phoenix-2014T is an extension of Phoenix-2014 with a vocabulary size of 1066 for glosses and
2887 for German text. There are 7096, 519, and 642 samples in the training, dev, and test set.

• CSL-Daily is a newly released large-scale Chinese sign language dataset with a vocabulary size of
2000 for glosses and 2343 for Chinese text. It consists of 18401, 1077, and 1176 samples in the
training, dev, and test set.

Evaluation Metrics. Following previous works [56, 10, 8, 6, 55], we adopt word error rate (WER)
for SLR evaluation, and BLEU [39] and ROUGE-L [32] to evaluate SLT. Lower WER indicates
better recognition performance. For BLEU and ROUGE-L, the higher, the better.

2https://huggingface.co/facebook/mbart-large-cc25
3https://commoncrawl.org/
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Table 2: Comparison with previous works on Sign Language Translation (SLT). Sign2Gloss2Text
indicates a two-staged pipeline and Sign2Text indicates end-to-end sign-to-text translation. Previous
best results are underlined. † denotes methods without using gloss annotations. (R: ROUGE, B:
BLEU.) The results of [6, 8] on CSL-Daily are reproduced by SignBT [55].

Phoenix-2014T
Dev Test

Sign2Gloss2Text R B1 B2 B3 B4 R B1 B2 B3 B4

SL-Luong [6] 44.14 42.88 30.30 23.02 18.40 43.80 43.29 30.39 22.82 18.13
Joint-SLRT [8] - 47.73 34.82 27.11 22.11 - 48.47 35.35 27.57 22.45
SignBT [55] 49.53 49.33 36.43 28.66 23.51 49.35 48.55 36.13 28.47 23.51
STMC-Transf [53] 46.31 48.27 35.20 27.47 22.47 46.77 48.73 36.53 29.03 24.00
MMTLB [10] 50.23 50.36 37.50 29.69 24.63 49.59 49.94 37.28 29.67 24.60
TwoStream-SLT (Ours) 52.01 52.35 39.76 31.85 26.47 51.59 52.11 39.81 32.00 26.71
Sign2Text R B1 B2 B3 B4 R B1 B2 B3 B4

SL-Luong† [6] 31.80 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58
TSPNet† [31] - - - - - 34.96 36.10 23.12 16.88 13.41
Joint-SLRT [8] - 47.26 34.40 27.05 22.38 - 46.61 33.73 26.19 21.32
STMC-T [56] 48.24 47.60 36.43 29.18 24.09 46.65 46.98 36.09 28.70 23.65
SignBT [55] 50.29 51.11 37.90 29.80 24.45 49.54 50.80 37.75 29.72 24.32
MMTLB [10] 53.10 53.95 41.12 33.14 27.61 52.65 53.97 41.75 33.84 28.39
TwoStream-SLT (Ours) 54.08 54.32 41.99 34.15 28.66 53.48 54.90 42.43 34.46 28.95

CSL-Daily
Dev Test

Sign2Gloss2Text R B1 B2 B3 B4 R B1 B2 B3 B4

SL-Luong [6] 40.18 41.46 25.71 16.57 11.06 40.05 41.55 25.73 16.54 11.03
Joint-SLRT [8] 44.18 46.82 32.22 22.49 15.94 44.81 47.09 32.49 22.61 16.24
SignBT [55] 48.38 50.97 36.16 26.26 19.53 48.21 50.68 36.00 26.20 19.67
MMTLB [10] 51.35 50.89 37.96 28.53 21.88 51.43 50.33 37.44 28.08 21.46
TwoStream-SLT (Ours) 53.91 53.58 40.49 30.67 23.71 54.92 54.08 41.02 31.18 24.13
Sign2Text R B1 B2 B3 B4 R B1 B2 B3 B4

SL-Luong† [6] 34.28 34.22 19.72 12.24 7.96 34.54 34.16 19.57 11.84 7.56
Joint-SLRT [8] 37.06 37.47 24.67 16.86 11.88 36.74 37.38 24.36 16.55 11.79
SignBT [55] 49.49 51.46 37.23 27.51 20.80 49.31 51.42 37.26 27.76 21.34
MMTLB [10] 53.38 53.81 40.84 31.29 24.42 53.25 53.31 40.41 30.87 23.92
TwoStream-SLT (Ours) 55.10 55.21 42.31 32.71 25.76 55.72 55.44 42.59 32.87 25.79

4.1 Comparison with State-of-the-art Methods on SLR and SLT

For SLR, we compare our TwoStream-SLR with state-of-the-art methods on Phoenix-2014, Phoenix-
2014T, and CSL-Daily, as shown in Table 1. Our recognition network achieves a new state-of-the-art
on all datasets and outperforms the previous best method by 1.6% on Phoenix-2014, 1.1% on
Phoenix-2014T, and 6.7% on CSL-Daily, respectively. For SLT, we compare our TwoStream-SLT
with state-of-the-art methods on Phoenix-2014T and CSL-Daily as shown in Table 2. Following
common practice, we evaluate our method in two settings: 1) Sign2Text (as described in Section 3.2)
which directly generates texts given sign videos; 2) Sign2Gloss2Text where we first use a recognition
model to predict gloss sequences from sign videos, and then a translation model trained on gloss-text
pairs to translate predicted gloss sequences to texts. Our TwoStream-SLT surpasses all previous
methods in both settings. We believe that our better SLT performance is mainly attributed to the
superior visual representations encoded by TwoStream-SLR.

4.2 Ablation Study

Effects of Each Component. We first show the effects of each proposed component of TwoStream-
SLR in Table 3. Without the dual architecture, the two single streams (one models RGB videos and the
other models keypoint sequences) achieve 21.08% and 27.14% WER on the Phoenix-2014T Dev set.
By averaging the final predictions from two streams, the WER is reduced to 20.47%. The proposed
bidirectional lateral connection brings in information interaction between two streams, leading to
the significant improvement of 1.44%. Introducing the sign pyramid network (SPN) with auxiliary
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Table 3: Study the effects of each component of TwoStream-SLR on the Phoenix-2014T SLR task.
(V: video, K: keypoint, Bilateral: bidirectional lateral connection, SPN: sign pyramid network.)

V-Encoder K-Encoder Bilateral SPN Joint Head Distillation Dev Test

✓ 21.08 22.42
✓ 27.14 27.19

✓ ✓ 20.47 21.55
✓ ✓ ✓ 19.03 20.12
✓ ✓ ✓ ✓ 18.52 19.91
✓ ✓ ✓ ✓ ✓ 18.36 19.49
✓ ✓ ✓ ✓ ✓ ✓ 17.72 19.32

Table 4: Ablation studies of: (a) lateral connection; (b) sign pyramid network (SPN); (c) weights
of the auxiliary CTC losses; (d) the weight of the distillation loss; (e) self-distillation strategies, on
the Phoenix-2014T SLR task. See Section 3.1 for the definition of Ci and Pi. (V: video stream, K:
keypoint stream.)

V→K K→V Connection Dev Test

None 18.57 20.03

✓ C1, C2, C3 17.88 19.61
✓ C1, C2, C3 18.82 19.93

✓ ✓ C1, C2, C3 17.72 19.32
✓ ✓ C2, C3 17.91 19.54

(a) Lateral connection.

SPN-V SPN-K Level Dev Test

✓ P2, P3 17.99 19.39
✓ P2, P3 18.15 19.42

✓ ✓ P2, P3 17.72 19.32
✓ ✓ P1, P2, P3 18.07 19.35
✓ ✓ P3 17.96 19.51

(b) Sign pyramid network (SPN).

λV λK Dev Test

0.1 0.5 17.85 19.42
0.2 0.5 17.72 19.32
0.5 0.5 17.99 19.30
0.2 0.1 17.80 19.14
0.2 0.2 17.72 19.49

(c) Weights of the auxiliary
CTC loss.

Weight of LDist Dev Test

0.2 18.41 19.21
0.5 18.20 19.63
1.0 17.72 19.32
1.5 18.28 19.93
2.0 17.83 19.28

(d) The weight of the distillation
loss.

Teacher Students Target Dev Test

Joint Head V, K Soft 18.82 19.93
Ensemble V, K Soft 18.12 19.68
Ensemble V, K, J Soft 17.72 19.32
Ensemble V, K, J Hard 18.25 19.58

(e) Distillation strategies. “J” denotes joint
head.

CTC losses facilitates intermediate layers to learn more meaningful features, further boosting the
performance to 18.52%. As described in Section 3.1, besides the individual head networks, we present
a joint head to further integrate the encoded features from two streams. Our approach equipped with
the joint head achieves 18.36 WER. At last, by adding the auxiliary frame-wise self-distillation loss,
our framework attains the best result, yielding the WER of 17.72.

Study on Lateral Connection. The goal of lateral connection is to provide information interaction
such that the video stream and keypoint stream can complement each other. Here we compare our
default configuration where the bidirectional lateral connection is conducted on C1, C2, and C3

(see Section 3.1 for their definitions) of two streams, with other variants including unidirectional
lateral connection and different connection strategies. The comparison is shown in Table 4a. Without
the lateral connection, the baseline model achieves 18.57 WER on the Phoenix-2014T Dev set.
Thanks to the information interaction, both unidirectional (video→keypoint and keypoint→video)
and bidirectional lateral connection strategies outperform the baseline. We adopt the bidirectional
lateral connection performed on C1, C2, and C3 due to its best performance.

Study on Sign Pyramid Network and Auxiliary Supervisions. Sign language understanding suffers
from data scarcity. To capture glosses of various temporal spans and drive intermediate layers to learn
more meaningful features, we propose a sign pyramid network (SPN) with auxiliary CTC losses.
Here we study three key factors: 1) applying SPN on a single stream or both streams; 2) the levels of
SPN; 3) the loss weights of auxiliary CTC losses of the two streams. The first two factors are studied
in Table 4b while the last one in Table 4c. We observe that applying SPN on both video and keypoint
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Table 5: Ablation studies of: (a) various combinations of keypoints as the inputs of our keypoint
encoder; (b) the keypoint scale σ of the Gaussian function and the resolution of the generated
heatmaps, on the Phoenix-2014T SLR task.

Upper body Hand Mouth Face #Keypoints Dev Test

✓ 11 49.11 48.46
✓ ✓ 53 (+42) 37.15 36.88
✓ ✓ ✓ 63 (+10) 28.42 28.20
✓ ✓ ✓ ✓ 79 (+16) 27.14 27.19

(a) The effects of different combinations of keypoints as inputs of the key-
point encoder.

σ (H ′,W ′) Dev Test

1 56 29.78 28.72
2 56 30.10 29.02
2 112 27.22 27.52
4 112 27.14 27.19
6 112 27.94 27.10

(b) Keypoint scale σ and heatmap
resolution.

streams yields better results. We also find imposing extra CTC supervision on very shallow layers
(i.e., P1) hurts the performance, thus we advocate generating two levels of pyramid (P2 and P3) for
each stream. We set λV and λK in Eq. 1 as 0.2 and 0.5 as they give better performance.

Study on Self-Distillation Strategies. The proposed self-distillation loss provides frame-level
supervision. There is a trade-off between the pseudo fine-grained supervision (self-distillation loss)
and the coarse-grained supervision (CTC loss). Here we vary the weight of self-distillation loss LDist

and show the results in Table 4d. The best performance is obtained when the weight is set to 1.0.
Besides, we also study: 1) which prediction should be the pseudo-target (teacher) 2) which heads in
our dual visual encoder should be taught by the pseudo-target (students); 3) whether to binarize the
probabilities of the pseudo-target (soft target or hard target). Table 4e shows the results. As described
in Section 3.1, we present three head networks in the dual visual encoder, namely the video head,
keypoint head, and joint head. We observe that using averaged gloss probabilities from three heads
(Ensemble) as the pseudo-target outperforms using predictions of the joint head. We also find that
applying the self-distillation loss on all three heads achieves better results than teaching only two
heads, and using soft predictions as pseudo-targets outperforms the one with hard pseudo-targets.

Study on Keypoint Inputs. Sign languages utilize multiple visual signals including handshape, facial
expressions, the movement of body, head, mouth, and eyes, to convey information. To investigate
the importance of various keypoints in SLR, we train several single-stream keypoint encoders using
different combinations of keypoints as inputs and evaluate their performance on the Phoenix-2014T
SLR task. We use the HRNet trained on COCO-WholeBody to generate 79 keypoints in total. These
keypoints can be divided into 4 groups: 1) 11 upper body keypoints; 2) 42 hand keypoints; 3) 10
mouth keypoints; 4) 16 face keypoints (excluding the mouth). Step by step, we add each group of
keypoints into model training and the results are shown in Table 5a. It can be seen that all parts
contribute to sign language understanding. As described in Section 3.1, we use a Gaussian function
with a hyper-parameter σ, which denotes keypoint scale, to generate a set of heatmaps, each of
size H ′ ×W ′ to represent keypoint sequences. Here we study the value of σ and the resolution of
heatmaps in Table 5b. We find that σ = 4 and H ′ = W ′ = 112 achieves the best performance.

5 Conclusion

In this paper, we concentrate on how to introduce domain knowledge into sign language understanding.
To achieve the goal, we present a novel framework named TwoStream-SLR which adopts two
streams to model RGB videos and keypoint sequences for sign language recognition. A variety of
techniques are proposed to make the two streams interact with each other, including bidirectional
lateral connection, sign pyramid network, and frame-level self-distillation. We further extend
TwoStream-SLR to a sign language translation model by attaching an MLP and a translation network,
yielding the translation framework named TwoStream-SLT. Our TwoStream-SLR and TwoStream-
SLT achieve state-of-the-art performance on SLR and SLT tasks across a series of datasets including
Phoenix-2014, Phoenix-2014T, and CSL-Daily. We hope that our approach can serve as a baseline to
facilitate future research.
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