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Abstract

AI-generated text detectors have recently gained adoption in
educational and professional contexts. Prior research has un-
covered isolated cases of bias, particularly against English
Language Learners (ELLs) however, there is a lack of system-
atic evaluation of such systems across broader sociolinguistic
factors. In this work, we propose BAID, a comprehensive
evaluation framework for AI detectors across various types of
biases. As a part of the framework, we introduce over 200k
samples spanning 7 major categories: demographics, age, edu-
cational grade level, dialect, formality, political leaning, and
topic. We also generated synthetic versions of each sample
with carefully crafted prompts to preserve the original content
while reflecting subgroup-specific writing styles. Using this,
we evaluate four open-source state-of-the-art AI text detectors
and find consistent disparities in detection performance, partic-
ularly low recall rates for texts from underrepresented groups.
Our contributions provide a scalable, transparent approach for
auditing AI detectors and emphasize the need for bias-aware
evaluation before these tools are deployed for public use.

Introduction
As large language models (LLMs) such as GPT-4 (OpenAI
2024) and LLaMA (Touvron et al. 2023) continue to improve,
the line between machine-generated and human-written text
is becoming increasingly difficult to draw. These models
now produce writing that is not only grammatically correct
but also stylistically sophisticated and contextually nuanced
(Brown et al. 2020), while being indistinguishable to the
amateur eye. Recent advancements have introduced new risks
around the generation of deceptive content, raising serious
concerns about their potential to mislead or manipulate public
perception (Solaiman et al. 2019). These risks span a range
of real-world applications, including the automated creation
of fabricated news stories (Zellers et al. 2020), fake product
reviews (Meng et al. 2025), inauthentic social media posts
intended to influence public opinion (Loth, Kappes, and Pahl
2024) as well as phishing attacks (Thapa et al. 2025). In
parallel, educators have expressed growing unease over the
use of generative tools in academic settings (Currie 2023).

Recent works have proposed a variety of detection methods
aimed at distinguishing machine-written text from human-
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written text. These efforts span a range of approaches,
from leveraging statistical irregularities in generated outputs
(Gehrmann, Strobelt, and Rush 2019) to training supervised
classifiers on curated datasets (Mitchell et al. 2023). Most de-
tectors operate under a binary assumption that a given input
is either fully AI-generated or fully human-written. This im-
plies they evaluate the input text at a paragraph or document
level, while some work focusses on fine-grained detection,
including phrase-level or even token-level classification (Teja
et al. 2025).

Although significant progress has been made in develop-
ing and evaluating AI-generated text detectors, these models
have not been tested for fairness and equity. In particular,
research on bias in AI detectors remains sparse. (Liang et
al. 2023) systematically investigated this issue, where they
found that widely-used detectors disproportionately classify
texts written by non-native English speakers as AI-generated
due to their lower linguistic perplexity. This discovery under-
scores a troubling consequence: detectors may inadvertently
penalize individuals based on their language background,
even when their writing is entirely original. Motivated by
this insight, our work extends the investigation of bias in AI
detectors by evaluating their behavior across a broader and
more diverse set of dimensions. Specifically, we examine
seven types of bias - demographics, age, educational grade
level, dialect, formality, political leaning and topic, to offer a
more comprehensive assessment of how detection systems
may fail across different groups. By doing so, we aim to high-
light not only the technical limitations of current detectors
but also the social implications of deploying them at scale
without rigorous fairness evaluations.

Related Works
Various methods have been developed for the detection of AI-
generated text. Early approaches like (Gehrmann, Strobelt,
and Rush 2019) used statistical cues and visualizations to ex-
ploit the fact that AI-generated text often relies on a narrower
range of high-probability word patterns. Other methods like
(Bao et al. 2024) provide zero-shot way solutions by ana-
lyzing outputs via perplexity or entropy differences. ZipPy
(Thinkst Applied Research 2023) foregoes heavy neural net-
works for speed by using compression ratios to measure
textual novelty (an indirect perplexity metric) against a ref-
erence corpus of AI-generated text. However, more recent



works like GPTZero (Mitchell et al. 2023), Desklib (Desklib
2025) focus on this as a finetuning task on human vs ai-
generated texts. Beyond purely AI- or human-authored texts,
researchers have started examining hybrid human-AI texts.
(Zeng et al. 2024) explore sentence-level detection in collab-
orative writing, highlighting that identifying AI-generated
segments amid human revisions is extremely challenging.
They found that when humans selectively edit or intermix
AI-generated sentences, detectors struggle due to rapidly
switching authorship and minimal stylistic cues in short seg-
ments. This has lead to some more works on sentence-level
and phrase-level AI detection (Wang et al. 2023).

Recent benchmarking efforts have focused on systemat-
ically evaluating the quality and generalization of AI text
detectors across domains, models, and use cases. (Pudasaini
et al. 2025) highlight that detectors often fail under distri-
bution shifts, paraphrasing, and newer model generations,
highlighting the brittleness of current approaches. (Yu et al.
2025) examine the effectiveness of detectors in academic
review scenarios and reveal substantial false-positive risks
when evaluating legitimate human writing, especially in spe-
cialized or formal domains. (Tao et al. 2024) demonstrated
that detection performance varies widely across languages
and content genres. (Dugan et al. 2024), showed significant
degradation under paraphrased or obfuscated text conditions.

With more widespread use of these detectors, concerns
have risen around their reliability and bias. (Liang et al.
2023) in their paper ran an experiment which showed how
GPT-detectors were extremely biased against non-native En-
glish speakers, incorrectly classifying more than half of the
TOEFL human-written essays by English Language Learner
(ELL) students as LLM generated. This stems from the un-
derlying low perplexity values (inverse of word sequence
probability) of essays written by ELL students. (Chu et al.
2024)] discuss how source heuristics such as nationality and
content heuristics like linguistics attributes play a significant
factor in authenticity detection. They further talk about about
content from Asian and Hispanic writers are more likely to
be judged as AI users when labeled as domestic students,
suggesting interactions between racial stereotypes and AI
detection, even when judged by humans. However, they do
not run any experiments or show any empirical results to
prove this hypothesis, a gap which we explore in this work.

Dataset
Overview
We introduce BAID, a benchmark designed to evaluate the
fairness of AI-generated text detectors across diverse de-
mographic and linguistic subgroups. While existing bench-
marks primarily assess detector performance under standard
or neutral conditions, our benchmark evaluates fairness in
conditions where subgroup attributes may influence detector
outputs.

To build the dataset, we collect multiple human-written
documents spanning seven major bias groups, each contain-
ing multiple subgroups. For every human-written document,
we generate a corresponding AI-written version using LLMs
prompted with carefully crafted instructions that control for

a human-like tone. This ensures that both human and AI
texts share comparable semantic contexts while differing in
authorship. The resulting dataset consists of three fields:
human_written_document, AI_generated_document, and
subgroup_value.

In contrast to existing datasets that evaluate models under
typical or neutral inputs, BAID emphasizes fairness evalua-
tion under bias-revealing conditions. Similar to prior works
such as FLEX (Jung et al. 2025), which test language models
in extreme fairness scenarios, BAID seeks to expose poten-
tial disparities in how AI detectors behave across population
subgroups.

The design of BAID follows three guiding principles - (a)
Fairness coverage: The dataset should include a wide range
of demographic and linguistic variables that reflect real-world
diversity. (b) Semantic control: Human and AI texts should
express the same content and intent, ensuring that fairness
differences arise from subgroup attributes rather than topical
or stylistic drift. (c) Practical evaluation: BAID is intended as
a diagnostic tool to evaluate model fairness across a variety
of writing domains, from formal essays to conversational
text.

Bias Dimensions
While earlier work (e.g., Stanford HAI (Liang et al. 2023))
focused on the disadvantage faced by English Language
Learner (ELL) students, BAID broadens this scope to in-
clude demographic, social, and stylistic dimensions. Each
bias type represents a fairness-relevant variable where detec-
tor disparities could translate into real-world harms.

• Demographic bias. We use the ASAP 2.0 dataset (scross-
eye 2020), which contains persuasive essays from stan-
dardized writing assessments. Metadata includes author
race/ethnicity, gender, socioeconomic status, disability sta-
tus, and ELL status.

• Age bias. Based on the Blog Authorship Corpus (Tatman
2020), which includes 600K posts from roughly 19,000
bloggers aged 13–48, grouped into four ranges: teens, 20s,
30s, and 40s.

• Grade-level bias. The ASAP 2.0 corpus also includes
grade-level information ranging from 8 to 12, allowing
comparison of writing maturity effects on detector out-
comes.

• Dialect bias. We examine three English varieties which
include: African American Vernacular English (AAVE)
(Blodgett, Green, and O’Connor 2016), Singaporean En-
glish (Singlish) (Tatman 2017), and Standard American
English (SAE) (Groenwold et al. 2020) to measure robust-
ness across dialectal variation.

• Formality bias. We use the GenZ vs. Standard English
dataset (Seraaphonano 2024), which contains 820 paired
sentences contrasting informal GenZ phrasing with formal
equivalents.

• Topic bias. Using the Blog Authorship Corpus, we select
ten major topical categories (Arts, Communication/Media,



Education, Engineering, Internet, Law, Non-profit, Stu-
dent, Technology, and Unknown) to test whether detector
fairness depends on subject matter.

• Political ideology bias. We adopt the dataset from (Baly et
al. 2020), which includes articles annotated as left-leaning,
neutral, or right-leaning, to evaluate ideological sensitivity.

Prompt Design
To generate "AI-authored" counterparts, we use a set of struc-
tured zero-shot prompts that simulate light-touch human re-
visions. For essays and articles, the model is prompted to act
as an editor, rewriting overly formal or robotic phrases while
preserving paragraph structure and meaning. Prompts ex-
plicitly discourage stereotypical AI markers such as "in this
essay," "delve into," or "in conclusion," and instead promote
natural discourse connectors like "so," "but," and "also."

For short-form or conversational inputs (e.g., tweets and
messages), prompts are customized to match the linguistic
features of each dialect. For example, AAVE samples em-
phasize authentic syntactic and lexical constructions, while
Singlish prompts incorporate pragmatic particles and col-
loquial phrasing. In all cases, the models are instructed to
maintain semantic similarity to the human-written text. The
prompt template is provided in the Appendix

Generation Process
All AI-generated documents are produced using GPT-4.1
(OpenAI 2024) and Claude Sonnet 3.7 (Anthropic 2025). We
use a multi-threaded generation pipeline with built-in retry
mechanisms to handle rate-limit and timeout errors. Gen-
erated outputs are filtered for completeness and cleaned to
remove hashtags, emojis and links. Each generation is paired
with its corresponding human-written sample and subgroup
label.

Data Quality and Filtering
To ensure quality and reliability, we apply a multi-stage vali-
dation process:

• Automatic filtering: We discard samples with token repe-
tition and incomplete generations.

• Semantic alignment: Using sentence-level embeddings,
we compute cosine similarity between human and AI pairs
to confirm that the generated text preserves core meaning
with a threshold of 0.85.

This process ensures that fairness measurements reflect
true subgroup differences rather than artifacts of poor gen-
eration quality. The final dataset contains 208166 document
pairs distributed across seven bias types and 41 subgroups.
Table 1 illustrates the different types of biases, subgroups and
count.

Detectors
We evaluate two types of detectors: neural models and statisti-
cal models. In total, we apply four widely used AI-generated
text detectors on the BAID benchmark:

• Desklib (Desklib 2025) - A model developed by fine-
tuning a deberta-v3-large (He, Gao, and Chen 2023) model
with adversarial attacks across different domains.

• E5-small (MayZhou 2024) - A lightweight model built
using LoRA (Hu et al. 2021) fine-tuning on the E5-small
(Wang et al. 2024) encoder model.

• Radar (Hu, Chen, and Ho 2023) - A model jointly trained
on a detector and a paraphraser task via adversarial learn-
ing to improve resilience against LLM-based paraphrasing
and cross-model transfer.

• ZipPy (Thinkst Applied Research 2023) - A fast detection
model that correlates ease of compression to perplexity as
a metric for authorship authenticity.

We run each detector over the entire dataset, individually
for human-written and ai-generated text, and compare per-
formance across different biases and subgroups. We use the
default decision thresholds for each detector, treating them
as black-box systems.

Evaluation
Table 3 reports per-subgroup results for each bias. For a
fair evaluation, we evaluate the detectors only on the human-
written texts, as any observed bias would meaningfully origi-
nate from human authorship. In contrast, AI-generated texts
merely simulate subgroup characteristics through prompting
and do not truly represent the underlying demographic or
linguistic identity, making them unsuitable for assessing fair-
ness across real-world subgroups. The metrics we focus on
are precision, recall and F1. Three findings are consistent:

Precision. Across all bias dimensions, Desklib demon-
strated high precision (0.97-0.99) for demographic, grade-
level, and political subgroups, confirming its strong reliabil-
ity in identifying AI-generated text when present. However,
its precision declined on dialectal and informal writing (e.g.,
0.44 for Singlish and 0.16 for GenZ). E5 also achieves consis-
tently high precision on demographics and grade levels (0.95-
0.99), though its performance drops for dialectal text (0.28-
0.50) and some topic categories (0.60-0.75), with notably
poor precision for GenZ content (0.04). Radar maintains
stable, mid-range precision values (0.55-0.76) across sub-
groups, suggesting moderate but consistent performance. In
contrast, ZipPy records the lowest precision on demographic
and grade-level data (0.19-0.31) but achieves moderately
better precision (0.49-0.54) on dialect, formality, and topic
biases. Overall, the results indicate that neural models such as
Desklib and E5 handle precision more consistently, whereas
compression-based systems like ZipPy exhibit higher sensi-
tivity to writing style and input length.

Recall. Desklib achieves strong recall on demographic and
grade-level dimensions (0.83-0.96), demonstrating robust-
ness to linguistic diversity, though it declines on dialectal
and informal text (0.12-0.35). E5 records very low recall for
demographic and political groups (0.03-0.45) but substan-
tially higher recall for dialects such as Singlish and Standard



Bias Type Subgroup Dataset Citation Count

Demographic Race/ethnicity: (scrosseye 2020)
American Indian/Alaskan Native 184
Asian/Pacific Islander 2988
Black/African American 3800
Hispanic/Latino 3192
Two or more races/Other 2048
White 4000

ELL status:
Yes 3996
No 4000

Student disability status:
Yes 3996
No 3400

Socioeconomic status:
Economically disadvantaged 3880
Not economically disadvantaged 3996

Gender:
Female 4000
Male 3996

Grade level Grade 8 (scrosseye 2020) 1950
Grade 9 52
Grade 10 426
Grade 11 2754
Grade 12 2638

Age level Teens (Tatman 2020) 4991
20s 4996
30s 4996
40s 4985

Dialect AAVE (Blodgett, Green, and O’Connor 2016)
(Tatman 2017)

(Groenwold et al. 2020)

19180
Singlish 10000
SAE 8070

Formality bias GenZ English (Seraaphonano 2024) 3280
Standard English 3280

Topic level Arts (Tatman 2020) 4995
Communication/Media 4998
Education 4995
Engineering 4990
Internet 4984
Law 7487
Non-profit 4995
Student 4994
Technology 4998
Unknown 4154

Political leaning Left (Baly et al. 2020) 12800
Neutral 11010
Right 13722

Table 1: Dataset composition across bias dimensions, subgroups, and sample counts

English (0.35-0.97 and 0.55, respectively). Radar remains
relatively balanced (0.57-0.72) but shows reduced recall on di-
alectal and informal categories. ZipPy performs worst overall,
with recall collapsing on demographics and grade-level data
(0.02-0.55) but reaching extremely high levels (0.95-0.99)
for age, dialect, topic, and GenZ subgroups. These results
highlight the importance of recall in fairness-sensitive appli-
cations: detectors that underperform in recall risk misclassi-
fying human-written text as AI-generated, disproportionately
penalizing certain undunderrepresentedoups. Consequently,
improving recall robustness across linguistic variation re-
mains an essential goal for fair detection.

F1. Desklib performs the most consistently across all bias
dimensions, with high F1 scores ranging from 0.89 to 0.96
on demographic and grade-level subgroups. Its performance

decreases, however, on dialectal and informal registers (0.14-
0.47). Radar follows with moderate F1 scores (0.60-0.75),
though it also experiences noticeable drops on dialect and for-
mality dimensions (0.21-0.33). Despite its high precision, E5
yields relatively low F1 values for demographics (0.30-0.45)
and GenZ English (0.04), improving only for Standard En-
glish (0.66) and certain topical categories (0.44-0.55). ZipPy
exhibits the weakest overall performance, with very low F1
on demographics and grade levels (0.03-0.27), but achieves
higher values (0.65-0.70) on dialectal, formality, and topical
text. These findings underscore that aggregate F1 averages
can mask substantial subgroup disparities, reinforcing the
need for disaggregated fairness evaluations.



Dimension Subgroup Desklib E5 Radar ZipPy

P R F1 P R F1 P R F1 P R F1

Gender F 0.98 0.84 0.91 0.98 0.17 0.29 0.60 0.66 0.62 0.24 0.15 0.20
M 0.99 0.85 0.92 0.99 0.25 0.40 0.61 0.64 0.62 0.23 0.16 0.19

Race

American Indian 0.97 0.65 0.78 0.89 0.17 0.30 0.54 0.61 0.57 0.19 0.13 0.15
API 0.98 0.82 0.90 0.99 0.19 0.31 0.55 0.64 0.59 0.24 0.15 0.19
African American 0.98 0.87 0.93 0.98 0.29 0.45 0.63 0.66 0.64 0.28 0.21 0.24
Hispanic 0.99 0.85 0.91 0.99 0.23 0.37 0.61 0.65 0.63 0.25 0.18 0.21
White 0.98 0.86 0.92 0.97 0.21 0.34 0.60 0.65 0.62 0.24 0.17 0.20
Two or more 0.99 0.84 0.91 0.95 0.21 0.34 0.60 0.70 0.65 0.26 0.21 0.23

Economic Disadvantage Y 0.98 0.84 0.90 0.97 0.27 0.43 0.60 0.65 0.62 0.26 0.20 0.23
N 0.98 0.83 0.90 0.98 0.20 0.33 0.59 0.65 0.61 0.22 0.16 0.19

Disability Status Y 0.98 0.81 0.89 0.98 0.19 0.32 0.62 0.65 0.63 0.29 0.26 0.27
N 0.99 0.84 0.91 0.98 0.37 0.54 0.60 0.66 0.63 0.23 0.15 0.18

ELL Status Y 0.97 0.77 0.86 0.99 0.20 0.32 0.61 0.63 0.62 0.23 0.17 0.20
N 0.99 0.85 0.92 0.97 0.24 0.45 0.61 0.65 0.63 0.29 0.23 0.25

Grade Level

8 0.98 0.89 0.93 0.99 0.23 0.38 0.72 0.57 0.63 0.10 0.34 0.05
9 0.99 0.99 0.99 0.99 0.27 0.43 0.76 0.73 0.75 0.58 0.55 0.56
10 0.99 0.90 0.94 0.99 0.23 0.37 0.74 0.75 0.74 0.06 0.02 0.04
11 0.99 0.92 0.95 0.99 0.18 0.30 0.72 0.67 0.70 0.08 0.03 0.04
12 0.99 0.93 0.96 0.99 0.26 0.41 0.75 0.73 0.74 0.08 0.02 0.03

Age Level

Teens 0.64 0.92 0.76 0.58 0.55 0.57 0.27 0.31 0.29 0.49 0.95 0.65
20s 0.65 0.88 0.75 0.63 0.39 0.48 0.23 0.22 0.23 0.50 0.97 0.66
30s 0.68 0.86 0.76 0.65 0.32 0.43 0.28 0.26 0.27 0.50 0.96 0.66
40s 0.68 0.80 0.74 0.66 0.28 0.39 0.30 0.26 0.28 0.50 0.96 0.66

Dialect Bias
Singlish 0.44 0.26 0.33 0.28 0.35 0.31 0.18 0.25 0.21 0.49 0.98 0.66
AAVE 0.38 0.20 0.27 0.42 0.71 0.52 0.30 0.52 0.38 0.50 0.98 0.66
SAE 0.74 0.35 0.47 0.50 0.97 0.66 0.32 0.72 0.44 0.50 0.99 0.67

Formality Bias GenZ 0.16 0.12 0.14 0.04 0.04 0.04 0.01 0.04 0.02 0.50 0.99 0.67
Standard 0.52 0.41 0.46 0.72 0.55 0.62 0.38 0.30 0.33 0.54 0.97 0.70

Topic Level

Arts 0.69 0.89 0.78 0.60 0.46 0.52 0.28 0.25 0.26 0.50 0.97 0.65
Communication/Media 0.73 0.85 0.79 0.63 0.35 0.45 0.29 0.24 0.27 0.50 0.97 0.66
Education 0.73 0.88 0.80 0.66 0.39 0.49 0.32 0.28 0.30 0.50 0.95 0.66
Engineering 0.72 0.88 0.79 0.64 0.44 0.52 0.32 0.29 0.30 0.50 0.97 0.66
Internet 0.68 0.86 0.76 0.62 0.34 0.43 0.29 0.24 0.26 0.50 0.96 0.66
Law 0.79 0.89 0.83 0.66 0.32 0.43 0.29 0.24 0.26 0.51 0.98 0.67
Non-profit 0.75 0.88 0.81 0.72 0.44 0.55 0.31 0.22 0.25 0.50 0.97 0.66
Student 0.68 0.90 0.77 0.59 0.51 0.55 0.28 0.28 0.28 0.49 0.96 0.65
Technology 0.71 0.86 0.78 0.64 0.38 0.48 0.27 0.23 0.25 0.50 0.97 0.66
Unknown 0.70 0.87 0.78 0.66 0.41 0.51 0.30 0.26 0.28 0.49 0.96 0.65

Political Ideology
Left leaning 0.98 0.93 0.96 0.73 0.06 0.11 0.51 0.99 0.68 0.45 0.81 0.58
Neutral 0.99 0.89 0.93 0.57 0.03 0.06 0.51 0.99 0.68 0.46 0.83 0.59
Right leaning 0.99 0.95 0.97 0.78 0.08 0.14 0.51 0.99 0.68 0.45 0.82 0.58

Table 2: Performance by subgroup across all bias dimensions on human-written texts

Length Sensitivity in ZipPy
ZipPy relies on compression-based heuristics rather than
supervised training. The detector "seeds" a compression
stream with AI-generated text and then measures how effi-
ciently new samples compress relative to that seed. TextTexts
that share lexical or structural similarity with AI-generated
ones achieve higher compression ratios, while human-written
texts are typically more variable and compress less effi-
ciently.ever, ZipPy’s effectiveness is highly sensitive to input
length, shorter texts offer fewer repeating tokens and thus
less reliable compression estimates.

Limitations
While we provide a benchmark across a variety of domains,
our analysis is limited to a fixed set of only four detectors.
Including larger commercial systems or emerging hybrid
detectors (e.g multimodal or cross-lingual models) could
provide additional insight into fairness trends. Another lim-
itation is that even though it spans seven bias dimensions,
the focus is on English text, which can be extended to other
languages to enable multilingual evaluation. Finally, ZipPy

and other statistical detectors are highly sensitive to input
length and formatting, while neural detectors may be influ-
enced by pretraining corpora biases. These architectural
differences complicate direct comparisons, which call for
including multi-language corpora, dynamic threshold calibra-
tion, and experiments with hybrid detection models to better
understand fairness under broader real-world conditions.

Conclusion
In this work, we introduced a benchmark designed to system-
atically evaluate the fairness of AI-generated text detectors
across diverse demographic and linguistic subgroups. We
revealed consistent disparities in detection behavior, most
notably recall gaps that disproportionately penalize under-
represented writing styles such as dialectal and informal En-
glish. While neural detectors like Desklib maintain high
overall accuracy, statistical systems such as ZipPy exhibit
length-dependent variability, underscoring how detector ar-
chitecture and input characteristics jointly shape fairness out-
comes. Our findings highlight that existing detectors, though
effective in aggregate metrics, exhibit bias. This emphasizes



the need for bias-aware auditing, training data diversity, and
model calibration in AI detection research. We hope BAID
will serve as a foundation for developing more equitable and
transparent detection systems that perform reliably across
different types of population, writing styles, and contexts.
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Appendix
Evaluation of AI-Generated Texts
We also ran the same subgroup-level evaluation on the AI-
generated samples of the BAID dataset. However, it is impor-
tant to note that these results do not reflect inherent bias in the
same way as the human-written samples. Each AI-generated
text was produced using prompts that explicitly instructed the
model to rewrite an existing human-written document from
the perspective of the original author’s subgroup. As such,
any linguistic or stylistic variation in these samples is a result
of the generation process rather than genuine demographic
or experiential differences. Consequently, the subgroup-level
patterns observed in this analysis should be interpreted cau-
tiously, as they reflect prompt conditioning of the language
models and quality analysis rather than authentic subgroup
bias.

Across most dimensions, detectors show noticeably higher
recall on AI-generated text than on human-written samples,
suggesting that synthetic outputs still carry the statistical fin-
gerprints of machine generation. Among all systems, Desklib
stands out for its consistency since it maintains high precision
(0.8-0.9) and recall above 0.97 across subgroups, leading to
F1 scores well over 0.9. In other words, Desklib reliably
identifies generated text regardless of subgroup condition-
ing. E5 also achieves very high recall but at the expense
of precision (0.55-0.60), indicating a tendency to predict AI
falsely, an expected trade-off for detectors tuned toward re-
call. Radar, which incorporates adversarial training and para-
phrase modeling, performs more unevenly, with F1 scores
typically in the 0.6-0.7 range and weaker results on stylis-
tic dimensions such as dialect and formality. This pattern
suggests that Radar’s adversarial robustness does not fully
capture stylistic or prompt-induced variation. Finally, ZipPy,

the compression-based detector, behaves less predictably. It
achieves very high recall (above 0.9) on longer, more regular
texts but suffers from low precision (0.3-0.5) and inconsistent
F1 scores across subgroups, reflecting its sensitivity to text
length and lexical repetition.

Overall, this demonstrates that fairness metrics computed
on AI-generated text primarily capture model calibration and
sensitivity to surface-level linguistic properties, not represen-
tational bias. The uniformly high recall across subgroups
confirms that detectors reliably recognize the statistical reg-
ularities of generated text, while small subgroup variations
reveal the influence of prompt structure and lexical complex-
ity. These results assess how detectors generalize across
controlled synthetic variations, rather than how they behave
toward real human diversity.

Prompt Template
Prompt Template for GenZ Rewriter

SYSTEM_PROMPT_GENZ
You are an AI rewriter that transforms and paraphrases
existing text messages into Gen Z style.
Your job is to rewrite a piece of text to sound like it was
written in the casual, slang-filled, playful, and internet-
savvy style of Gen Z online communication. You will
receive input text and your task is to rephrase it into a short,
natural-sounding message written in Gen Z tone.
Rules to follow:
• Keep it short and tweet-like.

• Use Gen Z slang, abbreviations, exaggerations, or dra-
matic flair when natural.

• Don’t include hashtags, links, or attribution.

• Do not include emojis or punctuation.

• The top priority is to make the rewritten message sound
like something a real Gen Z person might post.

• If the text cannot be rewritten (e.g., inappropriate or
nonsensical), return “ERROR_404”.

Additional instruction: Just output the final text,
and nothing else. Do not give pointers or
explanations.



Dimension Subgroup Desklib E5 Radar ZipPy

P R F1 P R F1 P R F1 P R F1

Gender F 0.86 0.99 0.92 0.55 0.99 0.71 0.61 0.55 0.58 0.36 0.47 0.41
M 0.87 0.99 0.93 0.57 0.99 0.73 0.62 0.59 0.60 0.36 0.47 0.41

Race

American Indian 0.74 0.98 0.84 0.54 0.98 0.70 0.55 0.48 0.51 0.32 0.41 0.36
API 0.84 0.99 0.91 0.55 0.99 0.71 0.56 0.47 0.51 0.38 0.51 0.44
African American 0.89 0.99 0.93 0.59 0.99 0.74 0.64 0.61 0.62 0.36 0.45 0.40
Hispanic 0.87 0.99 0.92 0.56 0.99 0.72 0.62 0.58 0.60 0.37 0.47 0.41
White 0.87 0.98 0.93 0.56 0.99 0.71 0.61 0.55 0.58 0.36 0.46 0.40
Two or more 0.86 0.99 0.92 0.55 0.99 0.71 0.64 0.53 0.58 0.33 0.40 0.36

Economic Disadvantage Y 0.86 0.98 0.92 0.58 0.99 0.73 0.62 0.57 0.59 0.35 0.43 0.39
N 0.85 0.98 0.91 0.55 0.99 0.71 0.60 0.54 0.57 0.34 0.44 0.39

Disability Status Y 0.84 0.99 0.91 0.61 0.99 0.76 0.63 0.59 0.61 0.34 0.39 0.36
N 0.86 0.99 0.92 0.55 0.99 0.71 0.63 0.57 0.60 0.37 0.50 0.43

ELL Status Y 0.82 0.99 0.90 0.59 0.99 0.74 0.62 0.61 0.61 0.36 0.43 0.39
N 0.87 0.99 0.93 0.55 0.99 0.71 0.62 0.59 0.60 0.35 0.45 0.39

Grade Level

8 0.90 0.98 0.94 0.57 0.99 0.72 0.64 0.78 0.71 0.41 0.68 0.51
9 0.99 0.99 0.99 0.58 0.99 0.73 0.74 0.77 0.75 0.42 0.73 0.54
10 0.91 0.99 0.95 0.57 0.99 0.72 0.74 0.74 0.74 0.39 0.63 0.48
11 0.93 0.99 0.96 0.55 0.99 0.71 0.69 0.74 0.72 0.42 0.69 0.52
12 0.93 0.99 0.96 0.57 0.99 0.73 0.74 0.76 0.75 0.42 0.72 0.53

Age Level

Teens 0.86 0.49 0.62 0.57 0.60 0.59 0.19 0.17 0.18 0.21 0.01 0.02
20s 0.82 0.53 0.64 0.56 0.77 0.65 0.24 0.25 0.24 0.36 0.01 0.03
30s 0.81 0.60 0.69 0.55 0.83 0.66 0.30 0.32 0.31 0.42 0.03 0.05
40s 0.76 0.62 0.68 0.54 0.86 0.67 0.35 0.40 0.38 0.57 0.05 0.09

Dialect Bias
Singlish 0.48 0.67 0.56 0.12 0.09 0.10 0.50 0.99 0.67 0.12 0.00 0.01
AAVE 0.45 0.66 0.54 0.43 0.02 0.04 0.50 0.99 0.67 0.19 0.00 0.01
SAE 0.57 0.88 0.69 0.01 0.00 0.00 0.50 0.99 0.67 0.05 0.00 0.00

Formality Bias GenZ 0.31 0.40 0.35 0.00 0.00 0.00 0.50 0.99 0.67 0.00 0.00 0.00
Standard 0.50 0.98 0.66 0.50 0.99 0.67 0.50 0.99 0.67 0.86 0.17 0.29

Topic Level

Arts 0.85 0.60 0.70 0.56 0.70 0.62 0.33 0.37 0.35 0.34 0.02 0.03
Communication/Media 0.82 0.69 0.75 0.55 0.79 0.65 0.35 0.41 0.38 0.51 0.04 0.07
Education 0.85 0.68 0.76 0.57 0.80 0.66 0.37 0.42 0.39 0.52 0.05 0.09
Engineering 0.85 0.66 0.74 0.57 0.75 0.65 0.35 0.39 0.37 0.62 0.05 0.09
Internet 0.81 0.61 0.69 0.54 0.79 0.64 0.35 0.41 0.38 0.57 0.04 0.08
Law 0.87 0.76 0.81 0.55 0.84 0.67 0.35 0.40 0.37 0.74 0.07 0.13
Non-profit 0.86 0.70 0.77 0.60 0.83 0.69 0.39 0.51 0.44 0.60 0.05 0.09
Student 0.85 0.57 0.68 0.57 0.65 0.61 0.28 0.28 0.28 0.31 0.02 0.03
Technology 0.82 0.65 0.73 0.56 0.78 0.65 0.33 0.38 0.36 0.51 0.03 0.06
Unknown 0.83 0.63 0.72 0.57 0.79 0.67 0.34 0.39 0.37 0.30 0.02 0.03

Political Ideology
Left leaning 0.94 0.98 0.96 0.51 0.98 0.67 0.95 0.05 0.09 0.03 0.01 0.01
Neutral 0.90 0.99 0.94 0.50 0.98 0.66 0.96 0.05 0.09 0.05 0.01 0.02
Right leaning 0.95 0.99 0.97 0.51 0.98 0.67 0.93 0.04 0.08 0.04 0.01 0.01

Table 3: Performance by subgroup across all bias dimensions on AI-generated texts


