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Abstract

Multimodal representation learning techniques typically require paired samples to
learn shared representations, but collecting paired samples can be challenging in
fields like biology, where measurement devices often destroy the samples. This
paper presents an approach to address the challenge of aligning unpaired samples
across disparate modalities in multimodal representation learning. We draw an
analogy between potential outcomes in causal inference and potential views in
multimodal observations, allowing us to leverage Rubin’s framework to estimate
a common space for matching samples. Our approach assumes experimentally
perturbed samples by treatments, and uses this to estimate a propensity score
from each modality. We show that the propensity score encapsulates all shared
information between a latent state and treatment, and can be used to define a
distance between samples. We experiment with two alignment techniques that
leverage this distance—shared nearest neighbours (SNN) and optimal transport
(OT) matching—and find that OT matching results in significant improvements
over state-of-the-art alignment approaches in on synthetic multi-modal tasks, in
real-world data from NeurIPS Multimodal Single-Cell Integration Challenge, and
on a single cell microscopy to expression prediction task.

1 Introduction

Large-scale multimodal representation learning techniques such as CLIP [Radford et al., 2021] have
lead to remarkable improvements in zero-shot classification performance and have enabled the recent
success in conditional generative models. However, the effectiveness of multimodal methods hinges
on the availability of paired samples—such as images and their associated captions—across data
modalities. This reliance on paired samples is most obvious in the InfoNCE loss [Gutmann and
Hyvärinen, 2010, van den Oord et al., 2018] used in CLIP [Radford et al., 2021] which explicitly
learns representations to maximize the true matching between images and their captions.

While paired image captioning data is abundant on the internet, paired multimodal data is often
challenging to collect in scientific experiments. For instance, unpaired data are the norm in biology
for technical reasons: RNA sequencing, protein expression assays, and the collection of microscopy
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Figure 1: Visualization of propensity score matching for two modalities (e.g., Microscopy images
and RNA expression data). We first train classifiers to estimate the propensity score for samples
from each modalities; the propensity score reveals the shared information p(t|zi), which allows us to
re-pair the observed disconnected modalities. The matching procedure is then performed within each
perturbation class based on the similarity bewteen the propensity scores.

images for cell painting assays are all destructive processes. As such, we cannot collect multiple
different measurements from the same cell, and can only explicitly group cells by their experimental
condition. If we could accurately match unpaired samples across modalities, we could use the aligned
samples as proxies for paired samples and apply existing multimodal learning techniques.

In this paper, we formalize this setting by viewing each modality as a potential measurement,
X(1)(Z) ∈ X (1), X(2)(Z) ∈ X (2), of the same underlying latent state Z ∈ Z , where we are only
able to make a single measurement for each sample unit (e.g. an individual cell). The task is
to reconcile (match) unpaired observations x(1) and x(2) with the same (or maximally similar) z.
Estimating the latent, Z, is hopelessly underspecified without making unverifiable assumptions on the
system, and furthermore, Z may still be sparse and high-dimensional, leading to inefficient matching.
This motivates the need for approaches that use only the observable data.

We identify two major challenges for this problem. First, measurements are often made in very
different spaces X (1) and X (2) (e.g., pixel space and gene expression counts), which make defining
a notion of similarity across modalities challenging. Second, the measurement process inevitably
introduces modality-specific variation that can be impossible to disentangle from the relevant infor-
mation (Z). For example in cell imaging, we would not want the matching to depend on irrelevant
appearance features such as the orientation of the cell or the lighting of the plate.

In this paper, we address these challenges by appealing to classical ideas from causal inference
[Rubin, 1974], in the case where we additionally observe some label t for each unit, e.g., indexing an
experiment. By making the assumption that t perturbs the observations via their shared latent state,
we identify an observable link between modalities with the same underlying z. Under conditions
which we discuss in Section 2, the propensity score, defined as p(t|Z), is a transformation of the
latent Z that satisfies three remarkable properties (Proposition 3.1): (1) it provides a common space
for matching, (2) it is fully identifiable via classification on individual modalities, and (3) it maximally
reduces the dimension of Z, retaining only the information revealed by the perturbations.

The practical implementation of the methodology (as illustrated in Fig. 1) is then straightforward:
we train two separate classifiers, one for each modality, to predict the treatment t applied to X(i).
We then match across modalities based on the similarity between the predicted probabilities (the
propensity score) within each treatment group. This matching procedure is highly versatile and can be
applied to match labeled observations between any modalities for which a classifier can be efficiently
trained. However, since the same sample unit does not appear in both modalities, we cannot use naive
bipartite matching. To address this, we use soft matching techniques to estimate the missing modality
for each sample unit by allowing matching to multiple observations. We experiment with two recent
matching approaches: shared nearest neighbours (SNN) matching [Lance et al., 2022, Cao and Gao,
2022] and optimal transport (OT) matching Villani [2009].
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In our experiments, we find that OT matching with distances defined on the proposenity score
leads to significant improvement on matching and a downstream cross-modality prediction task on
both synthetic and real-world biological data. Notably, our prediction method, which leverages
the soft matching to optimize an OT projected loss, outperforms supervised learning on the true
pairs on CITE-seq data from the NeurIPS Multimodal Single-Cell Integration Challenge [Lance
et al., 2022]. Finally, we applied our method to match single-cell expression data (from a PeturbSeq
assay [Dixit et al., 2016]) with single cell crops of image data [Fay et al., 2023]. We find improved
generalization in predicting the distribution of gene expression from the cell imaging data in with
unseen perturbations.

1.1 Related Work

Unpaired and Multimodal Data Learning from unpaired data has long been considered for image
translation [Liu et al., 2017, Zhu et al., 2017, Almahairi et al., 2018], and more recently for biological
modality translation [Amodio and Krishnaswamy, 2018, Yang et al., 2021]. In particular, Yang et al.
[2021] also takes the perspective of a shared latent variable for biological modalities. This setting
has been studied more generally for multi-view representation learning [Gresele et al., 2020, Sturma
et al., 2023] for its identifiability benefits.

Perturbations and Heterogeneity Many methods in biology treat observation-level heterogeneity
as a nuisance dimension to globally integrate, even when cluster labels are observed [Butler et al.,
2018, Korsunsky et al., 2019, Foster et al., 2022]. This is sensible when clusters correspond to
noise rather than the signal of interest. However, it is well known in causal representation learning
that heterogeneity—particularly heterogeneity arising from perturbations—has theoretical benefits
in constraining the solution set [Khemakhem et al., 2020, Squires et al., 2023, Ahuja et al., 2023,
Buchholz et al., 2023, von Kügelgen et al., 2023]. There, the benefits (weakly) increase with the
number of perturbations, which is also true of our setting (Proposition 3.2). In the context of unpaired
data, only Yang et al. [2021] explicitly leverage this heterogeneity in their method, while Ryu et al.
[2024] treat it as a constraint in solving OT. Specifically, Yang et al. [2021] require their VAE
representations to classify experimental labels in addition to reconstructing modalities, while our
method is simpler, only requiring the classification objective. Notably, Yang et al. [2021] treat our
objective as a regularizer, but our theory suggests that it is actually primarily responsible for the
matching performance. Our experiment results coincide with the theoretical insights; requiring
reconstruction, as in a VAE, led to worse matching performance with identical model architectures.

Optimal Transport Matching OT is a common tool in single-cell biology. In cell trajectory
inference, the unpaired samples are gene expression values measured at different time points in a
shared (metric) space. OT matching minimizes this shared metric between time points [Schiebinger
et al., 2019, Tong et al., 2020]. Recent work [Demetci et al., 2022] extends this to our setting where
each modality is observed in separate metric spaces by using the Gromov-Wasserstein distance, which
computes the difference between the metric evaluated within pairs of points from each modality
[Demetci et al., 2022]. In concurrent work, this approach was recently extended to ensure matching
within experimental labels [Ryu et al., 2024]. In addition to these “pure” OT approaches, Gossi et al.
[2023] use OT on contrastive learning representations, though this approach requires matched pairs
for training, while Cao et al. [2022] use OT in the latent space of a multi-modal VAE.

2 Setting

We consider the setting where there exist two potential views, X(e) ∈ X (e) from two different
modalities indexed by e ∈ {1, 2}, and experiment t that perturbs a shared latent state of these
observations. This defines a jointly distributed random variable (X(1), X(2), e, t), from which we
observe only a single modality, its index, and label, {x(ei)

i , ei, ti}ni=1.2 We aim to match or estimate
the samples from the missing modality, which corresponds to the realization of the missing random
variable. Since t is observed, in practice we match observations within the same label class t.

Formally, we assume each modality is generated by a common latent random variable Z as follows:

t ∼ PT , Z
(t) | t ∼ P

(t)
Z , U (e) ∼ P

(e)
U , U (e)⊥⊥Z, U (e)⊥⊥U (e′), X(e) | t = f (e)(Z(t), U (e)), (1)

2We will denote random variables by upper-case letters, and samples by their corresponding lower-case letter.
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where t indexes the experimental perturbations, and we take t = 0 to represent a base environ-
ment. U (e) represents the modality-specific measurement noise that is unperturbed by t, and also
independent across samples. The structural equations fe are deterministic after accounting for the
randomness in Z and U : it represents the measurement process that captures the latent state. For
example, in a microscopy image, this would be the microscope and camera that maps a cell to pixels.

Comparison to Multimodal Generative Models Our setting is technically that of a multimodal
generative model with latent perturbations. However, by focusing on matching rather than generation,
we are able to make significantly weaker and more meaningful assumptions while still ensuring the
theoretical validity of our method. Without the effects of the perturbation, our Eq. (1) is essentially
the same as [Yang et al., 2021, Equation 1] in an abstract sense. However, in order to fit the generative
model, it is required to formulate explicit models over f (e) and P

(t)
Z , which requires specifying the

function class (e.g., continuous) and the space of Z (e.g., Rd) as assumptions, even in universal
approximation settings. In contrast, since we will not directly fit the model Eq. (1), we do not
make any technical assumptions about the generative model. Instead, we will make the following
assumptions on the underlying data generating process itself.

Key Assumptions Our theory makes the following assumptions about the data generating process.

(A1) t ⊥̸⊥Z, and t⊥⊥U (e). In words, t has a non-trivial effect on Z, but does not affect U (e),
implying that interventions target the common underlying process without affecting modality-
specific properties. For example, an intervention that affects the underlying cell state, but
not the measurement noise of the individual modalities.

(A2) Injectivity of f (e): f (e)(z, u) = f (e)(z′, u′) =⇒ (z, u) = (z′, u′). In words, each
modality captures enough information to distinguish changes in the underlying state.3

(A1) ensures that the conditional distribution t | X(e) is identical for e = 1, 2. (A2) then ensures that
t | X(1) d= t | X(2) d= t | Z, which allows us to estimate the conditional distribution t | Z with
observed data alone. Though sharp assumptions are required for the theory, versions replaced with
approximate distributional equalities intuitively also allow for effective matchings when combined
with our soft matching procedures in practice. A particular relaxation of (A1) when combined with
OT matching is described in Appendix A.

3 Multimodal Propensity Scores

Under (1), if Z were observable, an optimal matching can be constructed by simply matching the
samples with the most similar zi. However, the prerequisite of inverting the model and disentangling
Z is arguably more difficult than the matching problem itself. In particular, Z is unidentifiable without
strong assumptions on Eq. (1) [Xi and Bloem-Reddy, 2023], and even formulating the identifiability
problem requires well-specification of the model as a prerequisite. We take an alternative approach
that is robust to these problems, by using the perturbations t as an observable link to reveal information
about Z. Specifically, we show that the propensity score

π(z) := P (t|Z = z) ∈ [0, 1]T+1, (2)

is identifiable as a proxy for the latent Z under our assumptions of the data generating process. This
is a consequence of the injectivity of f (e), since it will be that π(Z) = π(X(e)), e = 1, 2, indicating
that we can compute it from either modality. Not only does the propensity score reveal shared
information, classical causal inference theory [Rubin, 1974] states that it captures all information
about Z that is contained in t, and does so minimally, in terms of having minimum dimension and
entropy. Since t contains the only observable information that is useful for matching, the propensity
score is hence an optimal compression of the observed information. We collect these observations
into the following proposition.

Proposition 3.1. In the model described by Eq. (1), further assume that f (e) are injective for
e = 1, 2. Then, the propensity scores in either modality is equal to the propensity score given by Z,

3Note that the injectivity is in the sense of f as a function of both u and z, which allows observations that
have a shared z but differ by their value in u, and the function remains injective. For example, rotated images
with the exact same content can have a shared z, but remain injective due to the rotation being captured in u.

4



i.e., π(X(1)) = π(X(2)) = π(Z) as random variables. This implies

I(t, Z | π(Z)) = I(t, Z | π(X(e))) = 0, (3)

for each e = 1, 2, where I is the mutual information. Furthermore, any other function b(Z) satisfying
I(t, Z | b(Z)) = 0 is such that π(Z) = f(b(Z)).

The proof can be found in Appendix C. Practically, Proposition 3.1 shows that computing the
propensity score on either modality is equivalent to computing it on the unobserved shared latent,
which means that it is identifiable, and thus estimable, from the observations alone. Furthermore,
the estimation does not require modified objectives or architectures for joint multimodal processing,
instead they are simple and separate classification problems for each modality. Finally, t does not
affect U (e) by assumption, and thus the propensity score, being a representation of the information in
t, discards the modality-specific information that may be counterproductive to matching. Therefore,
even if Z were observed, it may be sensible to match on its propensity score instead.

Number of Perturbations Note that point-wise equality of the propensity score π(z1) = π(z2)
does not necessarily imply equality of the latents z1 = z2, due to potential non-injectivity of π. For
example, consider t ∈ {0, 1}, then π(z) is a compression to a single dimension z → p(t = 1 | z).
Intuitively, collecting data from more perturbations improves the amount of information contained in
the label t. If the latent space is Rd, the propensity score necessarily compresses information about
Z(t) if the latent dimension exceeds the number of perturbations, echoing impossibility results from
the causal representation learning literature [Squires et al., 2023].

Proposition 3.2. Let Z(t) ∈ Rd. Suppose that P (t)
Z has a smooth density p(z|t) for each t = 0, . . . , T .

Then, if T < d, the propensity score π, restricted to its strictly positive part, is non-injective.

The proof can be found in Appendix C. Note the above only states an impossibility result when
T < d. More generally, it can be seen from the proof of Proposition 3.2 that the injectivity of the
propensity score depends on the injectivity of the following expression in z:

g(z) =

 log(p(z|t = 1))− log(p(z|t = 0))
...

log(p(z|t = T ))− log(p(z|t = 0))

 , (4)

which then depends on the latent process itself. If the above mapping is non-injective, this represents a
fundamental indeterminacy that cannot be resolved without making strong assumptions on point-wise
latent variable recovery. As we have already established in Proposition 3.1, the propensity score
contains the maximal shared information across modalities. Nonetheless, collecting data form a
larger number of perturbations is clearly beneficial for matching, since g in Eq. (4) is injective if any
of the subset of its entries are.

4 Estimation and Matching

For the remainder of the paper, we drop the notation e and use (xi, ti) to denote observations from
modality 1, and (xj , tj) to denote observations from modality 2. Given a multimodal dataset with
observations {(xi, ti)}n1

i=1 and {(xj , tj)}n2
j=1, we wish to compute a matching matrix (or coupling)

between the two modalities. We define a n1 × n2 matching matrix M where Mij represents the
likelihood of xi being matched to xj . Since t is observed, we always perform matching only within
observations with the same value of t, so that in practice we obtain a matrix Mt for each t.

Our method approximates the propensity scores by training separate classifiers that predicts t given x
for each modality. We denote the estimated propensity score by πi and πj respectively, where

πi ≈ π(xi) = P (T = t | X(e)
i = xi). (5)

This yields the transformed datasets {πi}n1
i=1 and {πj}n2

j=1, where πi, πj are in the T dimensional
simplex. We use this correspondence to compute a cross-modality distance function:

d(xi, xj) := d′(πi, πj). (6)

In practice, we typically compute the Euclidean distance in RT of the logit-transformed classification
scores, but any metric over a bijective transformation of the propensity scores are also theoretically
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valid. Given this distance function, we use existing matching techniques to constructing a matching
matrix. In our experiments, we found that OT matching gave the best performance, but we also
evaluated Shared Nearest Neighbour matching; details of the latter can be found in Appendix B.

Optimal Transport Matching The propensity score distance allows us to easily compute a cost
function associated with transporting mass between modalities, c(xi, xj) = d′(πi, πj). Let p1, p2
denote the uniform distribution over {πi}n1

i=1 and {πj}n2
j=1 respectively. Discrete OT aims to solve

the problem of optimally redistributing mass from p1 to p2 in terms of incurring the lowest cost. Let
Cij = c(xi, xj) denote the n1 × n2 cost matrix. The Kantorovich formulation of optimal transport
aims to solve the following constrained optimization problem:

min
M

n1∑
i

n2∑
j

CijMij , Mij ≥ 0, M1 = p1, M⊤1 = p2. (7)

This is a linear program, and for n1 = n2, it can be shown that the optimal solution is a bipartite
matching between {πi}n1

i=1 and {πj}n2
j=1. We refer to this as exact OT; in practice we add an entropic

regularization term, resulting in a soft matching, that ensures smoothness and uniqueness, and can be
solved efficiently using Sinkhorn’s algorithm. Entropic OT takes the following form:

min
M

n1∑
i

n2∑
j

CijMij − λH(M), Mij ≥ 0, M1 = p1, M⊤1 = p2, (8)

where H(M) = −
∑

i,j Mij log(Mij), the entropy of the joint distribution implied by M . This
approach regularizes towards a higher entropy solution, which has been shown to have statistical
benefits [Genevay et al., 2018], but nonetheless for small enough λ serves as a computationally
appealing approximation to exact OT.

5 Downstream Tasks

The matching matrix M can be seen as defining an empirical joint distribution over the samples
in each modality. The OT approach in particular makes this explicit. Each row is proportional to
the probability that each sample i from modality (1) is matched to sample j in modality (2), i.e.,
Mi,j = P (xj |xi). We can thus use M to obtain pseudosamples for any learning task that uses paired
samples by (xi, x̂j), where x̂j is obtained by sampling from the conditional distribution defined by
M , or by a suitable conditional expectation, e.g., the barycentric projection (conditional mean) as
EM [Xj | Xi = xi] =

∑
j Mi,jxj . In what follows, we describe a cross-modality prediction method

based on both barycentric projection and stochastic gradients according to Mi,j .

Cross-modality prediction We can use the matching matrix to design a method for cross-modality
prediction/translation. The following MSE loss corresponds to constructing a prediction function fθ
such that the barycentric projection EM [fθ(Xj) | Xi = xi], under M minimizes the squared error
for predicting xi:

L(θ) :=
∑
i

(xi −
∑
j

Mi,jfθ(xj))
2. (9)

However, this requires evaluating fθ for all n2 examples from modality (2) for each of the n1

examples in modality (1). In practice, we can avoid this cost with stochastic gradient descent by
sampling from modality (2) via Mi· for each training example (1). To obtain an unbiased estimate of
∇θL, we need two independent samples from modality (2) for each sample from modality (1),

∇L(θ) ≈− 2 (xi − fθ(ẋj))∇θfθ(ẍj) ẋj , ẍj ∼ P (xj |xi). (10)

By taking two samples as in Eq. (10), we get an unbiased estimator of ∇L(θ), whereas a single
sample would have resulted in optimizing an upper-bound on equation (9); for details, see Hartford
et al. [2017] where a similar issue arises in the gradient of their causal effect estimator. We thus refer
to prediction models trained via Eq. (10) as unbiased.
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6 Experiments

We present a comprehensive evaluation of our proposed methodology on three distinct datasets: (1)
synthetic paired images, (2) single-cell CITE-seq dataset (simultaneous measurement of single-cell
RNA-seq and surface protein measurements) [Stoeckius et al., 2017], and (3) Perturb-seq and single-
cell image data. In the first two cases, there is a ground-truth matching that we use for evaluation, but
samples are randomly permuted during training. This allows us to exactly compute the quality of
the matching in comparison to the ground truth. The final dataset is a more realistic setting where
ground truth paired samples do not exist, and matching becomes necessary in practice. In this case,
we compute distributional metrics to compare our proposed methodology against other baselines.

Experimental Details All models for the experiments are implemented using Torch v2.2.2
[Paszke et al., 2017] and Pytorch Lightning v2.2.4 [Falcon and PyTorch Lightning Team,
2023]. The classifier used to estimate the propensity score is always a linear head on top of an encoder
Ei, which is specific to each modality and dataset. All models are saved at the optimal validation
loss to perform subsequent matching. Shared nearest neighbours (SNN) is implemented using
scikit-learn v1.4.0 [Pedregosa et al., 2011] using a single neighbour, and OT is implemented
using the Sinkhorn algorithm as implemented in the pot v0.9.3 package [Flamary et al., 2021].
Both SNN and OT use the Euclidean distance as the metric. Whenever random variation can affect
the results of the experiments, we report quantiles corresponding to variation from different random
seeds. Additional experimental details are provided in Appendix D.

Description of Baselines Our main baseline, which we evaluate against on all three datasets, is
matching using representations learned by the multimodal VAE of Yang et al. [2021], which is the
only published method that is able to leverage perturbation labels for unpaired multimodal data (they
refer to the labels as “prior information”). The standard multimodal VAE loss is a reconstruction
loss based on encoder and decoders Ei, Di for each modality, plus a latent invariance loss that aims
to align the modalities in the latent space. In our setting, the multimodal VAE loss further includes
an additional label classification loss from the latent space of each modality, i.e., encouraging the
encoder to simultaneously learn P (t | Ei(xi)). This additional objective, which acts as a regularizer
for the multimodal VAE, is exactly the loss for our proposed method. To ensure a fair comparison, we
always use the same architecture in the encoders Ei of multimodal VAE and in our propensity score
classifier. The performance differences between propensity score matching and multimodal VAE
then represent the effects of the VAE reconstruction objective and latent invariance objectives. For
additional baselines, we also compare against a random matching, where the samples are matched
with equal weight within each perturbation as a sanity check. For datasets (1) and (2), we also
compare against Gromov-Wasserstein OT (SCOT) [Demetci et al., 2022] computed separately within
each perturbation. SCOT uses OT directly by computing a cost function derived based on pairwise
distances within each modality, thus learning a local description of the geometry which can be
compared between modalities. For the CITE-seq dataset, we also compare against matching using a
graph-linked VAE, scGLUE [Cao and Gao, 2022], where the graph is constructed from linking genes
with the associated proteins.

Evaluation Metrics We use the known ground truth matching to compute performance metrics
on datasets (1) and (2). The trace and FOSCTTM [Liu et al., 2019] measure how much weight M
places on the true pairing. However, this is not necessarily indicative of downstream performance
as similar, but not exact matches are penalized equally to wildly incorrect matches. For this reason,
we also measure the latent MSE for dataset (1) and the performance of a CITE-seq gene–to–protein
predictive model based on the learned matching for dataset (2). For more details, see Appendix D.1.

6.1 Experiment 1: Synthetic Interventional Images

Data We followed the data generating process Eq. (1) with a latent variable Z encoding the coordi-
nates of two objects. Perturbations represent different do-interventions on the different dimensons of
Z. The difference between modalities corresponds to whether the objects are circular or square, and
a fixed transformation of Z, while the modality-specific noise U controls background distortions.

Model and Evaluation We used a convolutional neural network adapted from Yang et al. [2021]
as the encoder. We report two evaluation metrics: (1) the trace metric, and (2) the MSE between
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Synthetic Image Data CITE-seq Data

Method MSE (↓) Trace (↑) FOSCTTM (↓) Trace (↑)
Med (Q1, Q3) Med (Q1, Q3) ×10−3 Med (Q1, Q3) Med (Q1, Q3)

PS+OT 0.0316 18.329 0.3049 0.1163
(0.0300, 0.0330) (17.068, 18.987) (0.3008, 0.3078) (0.1093, 0.1250)

VAE+OT 0.0324 7.733 0.3953 0.0814
(0.0316, 0.0350) (7.473, 7.794) (0.3912, 0.4045) (0.0777, 0.8895)

PS+SNN 0.0552 7.924 0.3126 0.0941
(0.0530, 0.0558) (7.569, 9.504) (0.3121, 0.3160) (0.0880, 0.0989)

VAE+SNN 0.0622 3.116 0.3816 0.0612
(0.0571, 0.0676) (2.818, 3.213) (0.3760, 0.3822) (0.0588, 0.0634)

SCOT 0.0354 0.5964 0.4596 0.0200
GLUE+SNN - - 0.4412 0.0362
GLUE+OT - - 0.5309 0.0323
Random 0.0709 - - -

(0.0707, 0.0714)
Table 1: Alignment metrics results using synthetic interventional image dataset and CITE-seq data.

the matched and the true latents. The latent MSE metric does not penalize close neighbours of the
true match (i.e. examples for which ∥zi − z∗i ∥ is small) as heavily as the trace metric. These “near
matches” will typically still be useful on downstream multimodal tasks.

Results In Table 1, metrics are computed on a held out test set over 12 groups corresponding to
interventions on the latent position, with approximately 1700 observations per group. A random
matching, with weight 1/n, will hence have a trace metric of of 1/1700 ≈ 0.588 × 10−3. This
implies, for example, that the median performance of PS+OT is approximately 31 times that of
random matching. On both metrics, we found that propensity scores matched with OT (PS + OT)
consistently outperformed other matching methods on both metrics.

6.2 Experiment 2: CITE-Seq Data

Data We used the CITE-seq dataset from the NeurIPS 2021 Multimodal single-cell data integration
competition [Lance et al., 2022], consisting of paired RNA-seq and surface level protein measurements
over 45 cell types. In the absence of perturbations, we used the cell type as the observed label to
classify and match within. Note the cell types are determined by consensus by pooling annotations
from marker genes/proteins. In most cells, the annotations from each modality agreed, suggesting that
the label is independent from the modality-specific noise. We used the first 200 principal components
as the gene expression modality, and normalized (but otherwise raw) protein measurements as input.

Model and Evaluation We used fully-connected MLPs as encoders. To assess matching, we
report (1) the trace, and (2) the Fraction Of Samples Closer Than the True Match (FOSCTTM)
([Demetci et al., 2022], [Liu et al., 2019]) (lower is better, 0.5 corresponds to random guessing). To
evaluate against a downstream task, we also compared the performance of random and VAE matching
procedures, as well as directly using the ground truth (Mii = 1), on predicting protein levels from
gene expression. We trained a 2-layer MLP (the same architecture for all matchings) with both MSE
loss and the unbiased procedure as described in Section 5 using pseudosamples sampled according to
the matching matrix. We evaluated the predictive models against ground truth pairs by computing the
prediction R2 (higher is better) on a held-out, unpermuted, test set.

Results In Table 1, metrics are computed on a held-out test set averaged over 45 cell types with
varying observation counts per group. While interpreting the average trace can be challenging due to
group size variations, OT matching on PS consistently outperformed other methods both within and
across groups. In these experiments, OT matching on PS was consistently the top performer, often
followed by SNN matching on PS or OT matching on VAE embeddings.

We present downstream task performance in Table 2. Note that R2 is computed using the sample
average across possibly multiple cell types, which explains why random matching within each cell
type results in non-zero R2 (see Appendix D.1). We found that PS + OT matching outperforms other
methods on this task. Surprisingly, the PS + OT prediction model performed even better on average
than training with the standard MSE loss on ground truth pairings (though confidence intervals
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CITE-seq Data PerturbSeq/Single Cell Image Data

Method MSE Loss Unbiased Loss In Distribution Out of Distribution
R2 Med (Q1, Q3) (↑) R2 Med (Q1, Q3) (↑) KL Med (Q1, Q3) (↓) KL (↓)

Random 0.138 0.173 58.806 51.310
(0.137, 0.140) (0.170, 0.173) (58.771, 60.531)

VAE+OT 0.149 0.114 55.483 47.910
(0.118, 0.172) (0.079, 0.159) (55.410, 56.994)

PS+OT 0.217 0.233 50.967 43.554
(0.206, 0.223) (0.207, 0.250) (50.898, 52.457)

True Pairs 0.224 - - -
(0.223, 0.226)

Table 2: Cross-modal prediction results using CITE-seq data and PerturbSeq/single cell image data
including an out of distribution distance evaluation for PerturbSeq/single cell images.

overlap). This highlights the potential benefit of soft (OT) matching as a regularizer, beyond that of
simply reconciling most likely pairs: the soft matching effectively averages over modality specific
variation from samples with similar latent states in a manner analogous to data augmentation (with an
unknown group action).

6.3 Experiment 3: PerturbSeq and Single Cell Images

Data We collected PerturbSeq data (200 genes) and single-cell images of HUVEC cells with 24
gene perturbations and a control perturbation, resulting in 25 total labels across both modalities.
As preprocessing, we embed the raw PerturbSeq counts into a 128-dimensional space using scVI
[Lopez et al., 2018] and the cell images into a 1024-dimensional space using a pre-trained Masked
Autoencoder [He et al., 2022, Kraus et al., 2023] to train our gene expression and image classifiers.

Model and Evaluation We used a fully connected 2-layer MLP as the encoder for both PerturbSeq
and cell image classifiers. Similarly to the CITE-seq dataset, we evaluated the matchings based on
downstream prediction of gene expression from (embeddings of) images. We used the unbiased
procedure to minimize the projected loss Eq. (9) and evaluated on two held-out sets, one consisting
of in-distribution samples from the 25 perturbations the classifier was trained on, and an out-of-
distribution set consisting of an extra perturbation not seen in training. In the absence of ground truth
matching, we assessed three distributional metrics between the actual and predicted gene expression
values within each perturbation: the L2 norm of the difference in means, the Kullback-Leibler
(KL) divergence, and 1-Wasserstein distance (lower indicates better alignment). We report inverse
cell-count weighted averages over each perturbation group. Each metric measures a slightly different
aspect of fit—the L2 norm reports a first-order deviation, while the KL divergence is an empirical
estimate of the deviation of the underlying predicted distribution, while the 1-Wasserstein distance
measures deviations in terms of the empirical samples themselves.

Note that matching is performed using classifiers trained on scVI embeddings, but the cross-modal
predictions are generated in the original log transformed gene expression space (i.e. we predicted
actual observations, not embeddings). We also evaluated distance measures on an out-of-distribution
gene perturbation that was not used in either the matching or training of the translation model.

Results We present KL divergence values for in-distribution and out-of-distribution in Table 2.4
Additional metrics show similar patterns and can be found in Appendix D.4. OT + PS matching
consistently outperforms its VAE counterpart both on in-distribution and out-of-distribution metrics,
supporting our findings on the CITE-seq data to the case where ground truth pairs are not available.

6.4 Validation Monitor

As in our Perturb-seq and cell imaging example, the ground truth matching is typically unknown
in real problems. It is hence desirable to have an observable proxy of the matching performance

4We computation of in-distribution metrics using random subsamples from the test set. The out-of-distribution
metric was computed on a small dataset with a single perturbation and subsamples were not needed.
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Figure 2: VAE and classifier validation metrics on the CITE-seq dataset. Notice that validation
cross-entropy inversely tracks the ground truth matching metrics, and thus can be used as a proxy in
practical settings where the ground truth is unknown. The same pattern does not hold for the VAE
[Yang et al., 2021], which we suspect is because reconstruction is largely irrelevant for matching.

as a validation during hyperparameter tuning. Figure 2 demonstrates that the propensity score
validation loss (cross-entropy) empirically satisfies this role in our CITE-seq experiments, where
lower validation loss corresponds to better matching performance, as if it were computed with the
ground truth. By contrast, we found that the optimal VAE, in terms of matching, had higher validation
loss. This empirically supports our intuition that the reconstruction loss minimization requires the
VAE to capture modality specific information, i.e., the U (e) variables, which hinders its matching
performance.

7 Limitations

Our methods are limited to settings where we have some signal to play the role of an experiment label,
but we believe this is where these methods are most needed. Matching is impossible in general—e.g.,
if you tried to match modalities that have no shared information, it would clearly fail—but our theory
formally articulates both where we expect this method to succeed and its limitations. Both (A1) and
(A2) are strong assumptions, but the empirical results suggest the method is fairly robust to failures.

8 Conclusion

This work presents a simple algorithm for aligning unpaired data from different modalities using
propensity scores. The method is very general, requiring only a classifier to be trained on each
modality, and demonstrates excellent matching performance, which we validate both theoretically
and empirically. We also showcase the effectiveness of the matching algorithm in a downstream
cross-modality prediction task, achieving better generalization compared to random matching, VAE-
based matching, and even the ground truth matching on the evaluated dataset. This improved
generalization over the ground truth may be attributed to implicitly enforcing invariance to modality-
specific information; a rigorous investigation of this phenomenon would be interesting for further
investigation.
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A Relaxing (A1)

Relaxing Assumption 1 Consider the propensity score

π(x(e,t)) = P (t|X(e,t) = x(e,t)) (11)

where we do not necessarily require U (e)⊥⊥t | Z(t), and thus we obtain

π(x(1,t)) = P (t|Z(t) = z(t), U (1) = u(1)) ̸= P (t|Z(t) = z(t), U (2) = u(2)) = π(x(2,t)), (12)

see the proof of Proposition 3.1 for details.

Suppose that the two observed modalities are indeed generated by a shared {zi}ni=1, but where
the indices of modality 2 are potentially permuted, and with values differing by modality specific
information:

{x(1,t)
i = f (1)(zi, u

(1)
i )}ni=1, {x

(2,t)
j = f (2)(z2, u

(2)
j )}nj=1, (13)

where j = π(i) denotes a permutation of the sample indices. Under (A1), we would be able to find
some j such that π(x(1,t)

i ) = π(x
(2,t)
j ) for each i.

Matching via OT can allow us to relax (A1) in a very particular way. Consider the simple case where
t ∈ {0, 1}, so that π can be written in a single dimension, e.g., P (t = 1|X(e,t) = x(e,t)) ∈ [0, 1]. In
this case, exact OT is equivalent to sorting π(x

(1,t)
i ) and π(x

(2,t)
j ), and matching the sorted versions

1-to-1. Under (A1), the sorted versions will be exactly equal. A relaxed version of (A1) that would
still result in the correct ground truth matching is to assume that t affects U (1) and U (2) differently,
but that the difference is order preserving, or monotone. Denote (π(x

(1,t)
i ), π(x

(2,t)
i )) = (π

(1)
i , π

(2)
i )

as the true pairing, noting that we use the same index i. We require the following:

(π
(1)
i1

− π
(1)
i2

)(π
(2)
i1

− π
(2)
i2

) ≥ 0, ∀i1, i2 = 1, . . . , n. (14)

This says that, even if π(1)
i ̸= π

(2)
i , that their relative orderings will still coincide. Then, exact OT will

still recover the ground truth matching. See Fig. 3 for a visual example of this type of monotonicity.
For example, suppose that t is a chemical perturbation of a cell, and thus π(1)

i , π(2)
j can be seen as a

measure of biological response to the perturbation, e.g., in a treated population, πi1 > πi2 indicates
samples i1 had a stronger response than sample i2, as perceived by the first modality indexed by i.
Then, this monotonocity states that we should see the same πj1 > πj2 in the other modality as well,
if the samples i1 and i2 truly corresponded to j1 and j2.

A.1 Cyclic Monotonicity

We can see the monotonicity requirement Eq. (14) as the monotonicity of the function with graph
(π

(1)
i , π

(2)
i ) ∈ [0, 1]2. In higher dimensions, we require that the “graph” satisfies the following cyclic

monotonicity property [Villani, 2009]:

Definition A.1. The collection {(π(1)
i , π

(2)
i )}ni=1 is said to be c-cyclically monotone for some cost

function c, if for any n = 1, . . . , N , and any subset of pairs (π(1)
1 , π

(2)
1 ), . . . , (π

(1)
n , π

(2)
n ), we have

N∑
n=1

c(π(1)
n , π(2)

n ) ≤
N∑

n=1

c(π(1)
n , π

(2)
n+1). (15)

Importantly, we define πn+1 = π1, so that the sequence represents a cycle.

Note in our setting, the OT cost function is the Euclidean distance, c(x, y) = ∥x− y∥2. It is known
that the OT solution must satisfy cyclic monotonicity. Thus, if the true pairing is uniquely cyclically
monotone, we can recover it with OT. However, we are unaware of common violations of (A1) that
would satisfy cyclic monotonicity.
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Figure 3: OT matching allows for t to have different effects on the modality specific information, here
u
(1)
i and u

(2)
i , as long as they can be written as transformations that preserve the relative order within

modalities. Exact OT in 1-d always matches according to the relative ordering, and thus exhibits this
type of “no crossing” behaviour shown in the figure on the left. The figure on the right shows a case
where we would fail to correctly match across modalities because of the crossing shown in orange.

B Shared Nearest Neighbours Matching

Using the propensity score distance, we can compute nearest neighbours both within and between
the two modalities. We follow Cao and Gao [2022] and compute the normalized shared nearest
neighbours (SNN) between each pair of observations as the entry of the matching matrix. For each
pair of observations (π(1)

i , π
(2)
j ), we define four sets:

• 11ij : the k nearest neighbours of π(1)
i amongst {π(1)

i }n1
i=1. π(1)

i is considered a neighbour
of itself.

• 12ij : the k nearest neighbours of π(2)
j amongst {π(1)

i }n1
i=1.

• 21ij : the k nearest neighbours of π(1)
i amongst {π(2)

j }n2
j=1.

• 22ij : the k nearest neighbours of π(2)
j amongst {π(2)

j }n2
j=1. π(2)

j is considered a neighbour
of itself.

Intuitively, if π(1)
i and π

(2)
j correspond to the same underlying propensity score, their nearest neigh-

bours amongst observations from each modality should be the same. This is measured as a set
difference between 11ij and 12ij , and likewise for 21ij and 22ij . Then, a modified Jaccard index is
computed as follows. Define

Jij = |11ij ∩ 12ij |+ |21ij ∩ 22ij |, (16)

the sum of the number of shared neighbours measured in each modality. Then, we compute the
following Jaccard distance to populate the unnormalized matching matrix:

M̃ij =
Jij

4k − Jij
, (17)

where notice that 4k = |11ij |+ |12ij |+ |21ij |+ |22ij |, since each set contains k distinct neighbours,
and thus 0 ≤ M̃ij ≤ 1, as with the standard Jaccard index. Then, we normalize each row to produce
the final matching matrix:

Mij =
M̃ij∑n1

i=1 M̃ij

. (18)

Note Mij is always well defined because π
(1)
i and π

(2)
j are always considered neighbours of them-

selves.
Lemma B.1. M̃ij has at least one non-zero entry in each of its rows and columns for any number of
neighbours k ≥ 1.

Proof. We prove that Jij > 0 for at least one j in each i, which is equivalent to M̃ij > 0. Fix an
arbitrary i. 21ij by definition is the same set for every j. By the assumption of k ≥ 1 it is non-empty,
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so there exists π(2)
j∗ ∈ 21ij . Since π

(2)
j∗ is a neighbour of itself, we have π

(2)
j∗ ∈ 22ij∗ , showing that

Jij∗ > 0. The same reasoning applied to 11 and 12 also shows that Jij for at least one i in each
j.

C Proofs

C.1 Proof of Proposition 3.1

Proof. Let x(e) denote the observed modality and z, u(e) be the unique corresponding latent values.
By injectivity,

π(x(e)) = P (t|X(e) = x(e))

= P (t|Z = z, U (e) = u(e))

= P (t|Z = z) = π(z), (19)

for e = 1, 2, since we assumed U (e)⊥⊥t | Z. Since this holds pointwise, it shows that π(X(1) =
π(X(2)) = π(Z) as random variables. Now, a classical result of Rubin [1974] gives that Z⊥⊥t | π(Z),
and that for any other function b (a balancing score) such that Z⊥⊥t | b(Z), we have π(Z) = g(b(Z)).
The first property written in information theoretic terms yields,

I(t, Z | π(Z)) = I(t, Z | π(X(e))) = 0, (20)

since π(X(e)) = π(Z(t)) as random variables, as required.

C.2 Proof of Proposition 3.2

Proof. In what follows, we write π to be the restriction to its domain where it is strictly positive. The
i-th dimension of the propensity score can be written as

(π(z))i = p(t = i|z) = p(z|t = i)p(t = i)∑T
i=0 p(z|t = i)p(t = i)

, (21)

which, when restricted to be strictly positive, maps to the relative interior of the T -dimensional
probability simplex. Consider the following transformation:

h(π(z))i = log

(
(π(z))i
(π(z))0

)
(22)

= log(p(z|t = i))− log(p(z|t = 0)) + C, (23)

where C = log(p(t = i)) − log(p(t = 0)) is constant in z, and that h(π(z))0 ≡ 0. Ignoring the
constant first dimension, we can view h as an invertible map to RT . Under this convention, the map
h ◦ π : Rd → RT is smooth (log is smooth, and the densities are smooth by assumption). Since it is
smooth, it cannot be injective if T < d [Spivak, 2018]. Finally, since h is bijective, this implies that
π cannot be injective.

D Experimental Details

D.1 Evaluation Metrics

D.1.1 Known Ground Truth

In the synthetic image and CITE-seq datasets, a ground truth matching is known, and we can evaluate
the quality of the synthetic matching directly against the truth. In these cases, the dataset sizes are
necessarily balanced, so that n = n1 = n2. In each case, we evaluate the quality of our n × n
matching matrix M , which we compute within samples with the same t. Our reported results are
then averaged over each cluster. Note we randomize the order of the datasets before performing the
matching to avoid pathologies.
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Trace Metric Assuming the sample indices correspond to the true matching, we can compute the
average weight on correct matches, which is the normalized trace of M :

1

n
Tr(M) =

1

n

n∑
i=1

Mii. (24)

As a baseline, notice that a uniformly random matching that assigns Mij = 1/n for each cell yields
Tr(M) = 1 and hence will obtain a metric of 1/n. This metric however does not capture potential
failure modes of matching. For example, exactly matching one sample, while adversarially matching
dissimiliar samples for the remainder also yields a trace of 1/n, which is equal to that of a random
matching.

Latent MSE On the image dataset, we have access to the ground truth latent values that generated
the images, z = {zi}ni=1. We compute matched latents as Mz, the barycentric projection according
to the matching matrix. Then, to evaluate the quality of the matching in terms of finding similar
latents, we compute the MSE:

MSE(M) =
1

n
∥z−Mz∥22. (25)

FOSCTTM We do not have access to ground truth latents in the CITE-seq dataset, so use the
Fraction Of Samples Closer Than the True Match (FOSCTTM) [Demetci et al., 2022, Liu et al., 2019]
as an alternative matching metric. First, we use M to project x(2) = {xj}nj=1 to x(1) = {xi}ni=1 as
x̂(1) = Mx(2). Then, we can compute a cross-modality distance as follows. For each point in x̂(1),
we compute the Euclidean distance to each point in x(1), and compute the fraction of samples in x(1)

that are closer than the true match. We also repeat this for each point in x(1), computing the fraction
of samples in x̂(1) in this case. That is, assuming again that the given indices correspond to the true
matching, we compute:

FOSCTTM(M) =

1

2n

[ n∑
i=1

(
1

n

∑
j ̸=i

1{d(x̂(1)
i ,x

(1)
j ) < d(x̂

(1)
i ,x

(1)
i )}

)
(26)

+

n∑
j=1

(
1

n

∑
i ̸=j

1{d(x(1)
j , x̂

(1)
i ) < d(x

(1)
j , x̂

(1)
j )}

)]
, (27)

where notice that this evaluates M through the computation x̂(1) = Mx(2). As a baseline, we should
expect a random matching, when distances between points are randomly distributed, to have an
FOSCTTM of 0.5.

Prediction Accuracy We also trained a cross-modality prediction (translation) model fθ,M to predict
CITE-seq protein levels from gene expression based on matched pseudosamples. Let x(1) = {xi},
x(2) = {xj} denote protein and gene expression, respectively. We trained a simple 2-layer MLP
minimizing either the standard MSE, using pairs (xi, x̂j), x̂j ∼ Mi·, or following the projected loss
with unbiased estimates in Section 5. Each batch in general consists of samples from all t, but the
x̂j sampling step occurs within the perturbation. Let x̂(1)

test = {fθ,M (xj)}. We report the R2 on a
randomly held-out test set of ground truth pairs (again, consisting of samples from all t), which is
defined as the following:

R2(fθ,M ) =
MSE(x

(1)
test, x̂

(1)
test)

MSE(x
(1)
test, x̄

(1)
test)

, (28)

where x̄
(1)
test is the naive mean (over all perturbations) estimator which acts as a baseline.

D.1.2 Unknown Ground Truth

We train a cross-modality prediction model to predict gene expression from cell images based on
matched pseudosamples in the same way as in CITE-seq, but only using the projected loss with
unbiased estimates. Denote this model for a matching matrix M by fθ,M .
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Because we do not have access to ground truth pairs within each perturbation, we resort to distribu-
tional metrics. Let x(1)

t = {xi,t}nt1
i=1, x(2)

t = {xj,t}nt2
j=1 denote gene expression and cell images in

a held out test set respectively in perturbation t. Let x̂(1)
t = {fθ,M (xj,t)}nt2

j=1. We compute empirical
versions of statistical divergences

Dt(fθ,M ) := D(x
(1)
t , x̂

(1)
t ), (29)

where D is either the L2 norm of the difference in empirical mean, empirical Kullback-Leibler
divergence or 1-Wasserstein distance. We report these weighted averages of Dt over the perturbations
t according to the number of samples in the modality of prediction interest.

D.2 Models

In this section we describe experimental details pertaining to the propensity score and VAE [Yang
et al., 2021]. SCOT [Demetci et al., 2022] and scGLUE [Cao and Gao, 2022] are used according to
tutorials and recommended default settings by the authors.

Loss Functions The propensity score approach minimizes the standard cross-entropy loss for both
modalities. The VAE includes, in addition to the standard ELBO loss (with parameter λ on the
KL term), two cross-entropy losses based on classifiers from the latent space: one, weighted by a
parameter α to classify t as in the propensity score, and another, weighted by a parameter β, that
classifies which modality the latent point belongs to.

Hyperparameters and Optimization We use the Adam optimizer with learning rate 0.0001 and
one cycle learning rate scheduler. We follow Yang et al. [2021] and set α = 1, β = 0.1, but found
that λ = 10−9 (compared to λ = 10−7 in Yang et al. [2021]) resulted in better performance. We used
batch size 256 in both instances and trained for either 100 epochs (image) or 250 epochs (CITE-seq).

For the VAE and classifiers of experiment 3, we use an Adam optimizer with learning 0.001 and
weight decay 0.001 and max epoch of 100 (PerturbSeq) and 250 (single cell images) using batch sizes
of 256 and 2048 correspondingly. We follow similar settings as Yang et al. [2021] and implement
α = 1 with λ = 10−9, and since we do not have matched data, β = 0. For the cross-modal prediction
models in experiment 3, we use Stochastic Gradient Descent optimizer with learning rate 0.001 and
weight decay 0.001 with max epochs 250 and batch size 256. We implement early stopping with
delay of 50 epochs which we then checkpoint the last model to use for downstream tasks

Architecture For the synthetic image dataset, we use an 5-layer convolutional network (channels
= 32, 54, 128, 256, 512) with batch normalization and leaky ReLU activations, with linear heads for
classification (propensity score and VAE) and posterior mean and variance estimation (VAE). For the
VAE, the decoder consists of convolutional transpose layers that reverse those of the encoder.

For the CITE-seq dataset, we use a 5-layer MLP with constant hidden dimension 1024, with batch
normalization and ReLU activations (adapted from the fully connected VAE in Yang et al. [2021]) as
both the encoder and VAE decoder. We use the same architecture for both modalities, RNA-seq (as
we process the top 200 PCs) and protein.

For the PerturbSeq classifier encoder, we use a 2-layer MLP architecture. Each layer consists of
a linear layer with an output feature dimension of 64, followed by Rectified Linear Unit (ReLU)
activation, Batch Normalization, and dropout (p=0.1). A final layer with Leaky ReLU activation that
brings dimensionality to 128 before feeding into a linear classification head with an output feature
dimension of 25.

For the single-cell image encoder classifier, we use a proprietary Masked Autoencoder [Kraus
et al., 2023] to generate 1024-dimensional embeddings. Subsequently, a 2-layer MLP is trained
on these embeddings. Each MLP layer has a linear layer, Batch Normalization, and Leaky ReLU
activation. The output feature dimensions of the linear layers are 512 and 256, respectively, and the
latent dimension remains at 1024 before entering a linear classification head with an output feature
dimension of 25.

Optimal Transport We used POT [Flamary et al., 2021] to solve the entropic OT problem, using
the log-sinkhorn solver, with regularization strength γ = 0.05.
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Figure 4: Example pair of synthetic images with the same underlying z.

D.3 Data

Synthetic Data We follow the data generating process Eq. (1) to generate coloured scenes of
two simple objects (circles, or squares) in various orientations and with various backgrounds. The
position of the objects are encoded in the latent variable z, which is perturbed by a do-intervention
(setting to a fixed value) randomly sampled for each t. Each object has an x and y coordinate, leading
to a 4-dimensional z, for which we consider 3 separate interventions each, leading to 12 different
settings. The modality then corresponds to whether the objects are circular or square, and a fixed
transformation of z, while the modality-specific noise U controls background distortions. Scenes are
generated using a rendering engine from PyGame as f (e). Example images are given in Fig. 4.

CITE-seq Data We also use the CITE-seq dataset from Lance et al. [2022] as a real-world benchmark
(obtained from GEO accession GSE194122). These consist of paired RNA-seq and surface level
protein measurements, and their cell type annotations over 45 different cell types. We used scanpy, a
standard bioinformatics package, to perform PCA dimension reduction on RNA-seq by taking the
first 200 principal components. The protein measurements (134-dimensional) was processed in raw
form. For more details, see Lance et al. [2022].

PerturbSeq and Single Cell Image Data We collect single-cell PerturbSeq data (200 genes) and
single-cell painting images in HUVEC cells with 24 gene perturbations and a control perturbation,
resulting in 25 labels for matching across both modalities. The target gene perturbations are selected
based on the 24 genes with the highest number of cells affected by the CRISPR guide RNAs targeting
those genes. The PerturbSeq data is filtered to include the top 200 genes with the highest mean count,
then normalized and log-transformed. The single-cell painting images are derived from multi-cell
images, with each single-cell nucleus centered within a 32x32 pixel box. We use scVI Lopez et al.
[2018] to embed the raw PerturbSeq counts into a 128-dimensional space before training the gene
expression classifier. Similarly, we train our image classifier using 1024-dimensional embeddings
obtained from a pre-trained Masked Autoencoder Kraus et al. [2023], He et al. [2022]. Following
matching, we perform cross-modality translation from the single-cell embeddings to the transformed
gene expression counts.

D.4 Supplementary Results
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In Distribution Out of Distribution

Method Wasserstein-1 (↓) L2 Norm (↓) Wasserstein-1 (↓) L2 Norm (↓)
Med (Q1, Q3) Med (Q1, Q3)

PS+OT 4.199 3.280 5.394 7.219
(4.173, 4.226) (3.267, 3.284)

VAE+OT 4.339 3.490 5.629 7.444
(4.314, 4.348) (3.486, 3.495)

Random 4.499 3.826 6.239 7.793
(4.478, 4.525) (3.823, 3.828)

Table 3: Wasserstein-1 and L2 norm distance values for PerturbSeq and single cell images experiments
where distance is evaluated between cross-modal predictions and actual gene expression values.
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