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Abstract
Inspired by human conscious planning, we propose Skipper, a model-based rein-1

forcement learning framework utilizing spatio-temporal abstractions to generalize2

better in novel situations. It automatically decomposes the given task into smaller,3

more manageable subtasks, and thus enables sparse decision-making and focused4

computation on the relevant parts of the environment. The decomposition relies5

on the extraction of an abstracted proxy problem represented as a directed graph,6

in which vertices and edges are learned end-to-end from hindsight. Our theoreti-7

cal analyses provide performance guarantees under appropriate assumptions and8

establish where our approach is expected to be helpful. Generalization-focused9

experiments validate Skipper’s significant advantage in zero-shot generalization,10

compared to some existing state-of-the-art hierarchical planning methods.11

1 Introduction12

Attending to relevant aspects in both time and space, human conscious planning breaks down long-13

horizon tasks into more manageable steps, each of which can be narrowed down further. Stemming14

from consciousness in the first sense (C1) [15], this type of planning focuses attention on mostly the15

important decision points [63] and relevant environmental factors linking the decision points [66],16

thus operating abstractly both in time and in space. In contrast, existing Reinforcement Learning (RL)17

agents either operate solely based on intuition (model-free methods) or are limited to reasoning over18

mostly relatively shortsighted plans (model-based methods) [29]. The intrinsic limitations constrain19

the real-world application of RL under a glass ceiling formed by challenges of generalization.20

Building on our previous work on conscious planning [73], we take inspirations to develop a planning21

agent that automatically decomposes the complex task at hand into smaller subtasks, by constructing22

abstract “proxy” problems. A proxy problem is represented as a graph where 1) the vertices consist23

of states imagined by a generative model, corresponding to sparse decision points; and 2) the edges,24

which define temporally-extended transitions, are constructed by focusing on a small amount of25

relevant information from the states, using an attention mechanism. Once a proxy problem is26

constructed and the agent solves it to form a plan, each of the edges defines a new sub-problem,27

on which the agent will focus next. This divide-and-conquer strategy allows constructing partial28

solutions that generalize better to new situations, while also giving the agent flexibility to construct29

abstractions necessary for the problem at hand. Our theoretical analyses establish guarantees on the30

quality of the solution to the overall problem.31

We also examine empirically advantages of out-of-training-distribution generalization of our method32

after using only a few training tasks. We show through detailed controlled experiments that the33

proposed framework, named Skipper, in most cases performs significantly better in terms of zero-shot34

generalization, compared to the baselines and to some state-of-the-art Hierarchical Planning (HP)35

methods [45, 23].36
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2 Preliminaries37

Reinforcement Learning & Problem Setting. An RL agent interacts with an environment via a38

sequence of actions to maximize its cumulative reward. The interaction is usually modeled as a39

Markov Decision Process (MDP)M≡ ⟨S,A, P,R, d, γ⟩, where S and A are the set of states and40

actions, P : S × A → Dist(S) is the state transition function, R : S × A × S → R is the reward41

function, d : S → Dist(S) is the initial state distribution, and γ ∈ [0, 1] is the discount factor. The42

agent needs to learn a policy π : S → Dist(A) that maximizes the value of the states, i.e. the expected43

discounted cumulative reward Eπ,P [
∑T⊥

t=0 γ
tR(St, At, St+1)|S0 ∼ d], where T⊥ denotes the time44

step at which the episode terminates. A value estimator Q : S × A → R can be used to search for45

a good policy. However, real-world problems can be partially observable, meaning that, instead of46

states, the agent receives an observation xt+1 ∈ X , where X is the observation space. The agent47

needs to infer the state from the sequence of observations, usually with a state encoder.48

One important goal of RL is to achieve high (generalization) performance on evaluation tasks after49

learning from a limited number of training tasks, where the evaluation and training distributions may50

differ; for instance, a policy for a robot may need to be trained in a simulated environment for safety51

reasons, but would need to be deployed on a physical device, a setting called sim2real. Discrepancy52

between task distributions is often recognized as a major reason why RL agents are yet to be applied53

pervasively in the real world [28]. To address this issue, in this paper, agents are trained on a small54

set of fixed training tasks, then evaluated in unseen tasks, where there are environmental variations,55

but the core strategies needed to finish the task remain consistent. To generalize well, the agents need56

to build learned skills which capture the consistent knowledge across tasks.57

Deep Model-based RL. Deep model-based RL uses predictive or generative models to help search58

for policies [59]. For generalization, rich models, expressed by Neural Networks (NNs), may capture59

generalizable information and infer latent causal structure. Background planning agents e.g., Dreamer60

[25] use a model as a data generator to improve the value estimators and policies, which executes61

in background without directly engaging in the environment [61]. These agents do not improve on62

the trained policy at decision time. In contrast, decision-time planning agents e.g., MuZero [54]63

and PlaNet [24] actively use models to make better decisions. Recently, [1] suggests that the latter64

approach provides better generalization, aligning with observations from cognitive behaviors [40].65

Options & Goal-Conditioned RL. Temporal abstraction allows agents to use sub-policies, and66

to model the environment over extended time scales, to achieve both better generalization and the67

divide and conquer of larger problems. Options and their models provide a formalism for temporal68

abstraction in RL [63]. Each option consists of an initiation condition, a policy, and a termination69

condition. For any set of options defined on an MDP, the decision process that selects only among70

those options, executing each to termination, is a Semi-MDP (SMDP) [63, 49], consisting of the71

set of states S, the set of options O, and for each state-option pair, an expected return, and a joint72

distribution of the next state and transit time. In this paper, we focus on goal-conditioned options,73

where the initiation set covers the whole state space S . Each such option is a tuple o = ⟨π, β⟩, where74

π : S → Dist(A) is the (intra-)option policy and β : S → {0, 1} indicates when a goal state is75

reached. Hindsight Experience Replay (HER) [3] is often used to train goal-conditioned options by76

sampling a transition ⟨xt, at, rt+1, xt+1⟩ together with an additional observation x⊙ from the same77

trajectory, which is re-labelled as a “goal".78

3 Skipper: Spatially & Temporally Abstract Planning79

In this section, we describe the main ingredients of Skipper - a framework that formulates a proxy80

problem for a given task, solves this problem, and then proceeds to “fill in" the details of the plan.81

3.1 Proxy Problems82

Proxy problems are finite graphs constructed at decision-time, whose vertices are states and whose83

directed edges estimate transitions between the vertices, as shown in Fig. 1. We call the states84

selected to be vertices of the proxy problems checkpoints, to differentiate from other uninvolved85

states. The current state is always included as one of the vertices. The checkpoints are proposed by a86

generative model and represent some states that the agent might experience in the current episode,87

often denoted as S⊙ in this paper. Each edge is annotated with estimates of the cumulative discount88
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and reward associated with the transition between the connected checkpoints; these estimates are89

learned over the relevant aspects of the environment and depend on the agent’s capability. As the90

low-level policy implementing checkpoint transitions improves, the edges strengthen. Planning in a91

proxy problem is temporally abstract, since the checkpoints act as sparse decision points. Estimating92

each checkpoint transition is spatially abstract, as an option corresponding to such a task would base93

its decisions only on some aspects of the environment state [7, 34], to improve generalization as well94

as computational efficiency [73].95

Figure 1: A Proxy Prob-
lem on a Navigation Task:
the MDP of the original
problem is in gray and the
terminal states are marked
with squares. An agent
needs to get from the red
position, to the goal (green).
Distant goals can be reached
by leveraging a proxy prob-
lem with 12 checkpoints
(outlined orange).

A proxy problem can be viewed as a deterministic SMDP, where each96

directed edge is implemented as a checkpoint-conditioned option. It can97

be fully described by the discount and reward matrices, Γπ and V π , where98

γπ
ij and vπij are defined as:99

γπ
ij

.
= Eπ

[
γT⊥ |S0 = si, ST⊥ = sj

]
(1)

vπij
.
= Eπ

[∑T⊥
t=0 γ

tRt|S0 = si, ST⊥ = sj

]
. (2)

By planning with Γπ and V π, e.g. using SMDP value iteration [63], we100

can solve the proxy problem, and form a jumpy plan to travel between101

states in the original problem. If the proxy problems can be estimated102

well, the obtained solution will be of good quality, as established in the103

following theorem:104

Theorem 1 Let µ be the SMDP policy (high-level) and π be the low-level105

policy. Let V̂ π and Γ̂π denote learned estimates of the SMDP model. If106

the estimation accuracy satisfies:107

|vπij − v̂πij | < ϵvvmax ≪ (1− γ)vmax and (3)

|γπ
ij − γ̂π

ij | < ϵγ ≪ (1− γ)2 ∀i, j.

Then, the estimated value of the composite v̂µ◦π(s) is accurate up to error terms linear in ϵv and ϵγ:108

v̂µ◦π(s)
.
=

∞∑
k=0

v̂π(s
⊙
k |s

⊙
k+1)

k−1∏
ℓ=0

γ̂π(s
⊙
ℓ |s

⊙
ℓ+1) = vµ◦π(s)±

ϵvvmax

1− γ
± ϵγvmax

(1− γ)2
+ o(ϵv + ϵγ)

where v̂π(si|sj) ≡ v̂πij and γ̂π(si|sj) ≡ γ̂π
ij , and vmax denotes the maximum value.109

The theorem indicates that once the agent achieves high accuracy estimation of the model for the110

proxy problem and a near-optimal lower-level policy π, it converges toward optimal performance111

(proof in Appendix D.2). The theorem also makes no assumption on π, since it would likely be112

difficult to learn a good π for far away targets. Despite the theorem’s generality, in the experiments,113

we limit ourselves to navigation tasks with sparse rewards for reaching goals, where the goals are114

included as permanent vertices in the proxy problems. This is a case where the accuracy assumption115

can be met non-trivially, i.e., while avoiding degenerate proxy problems whose edges involve no116

rewards. Following Thm. 1, we train estimators for vπ and γπ and refer to this as edge estimation.117

3.2 Design Choices118

To implement planning over proxy problems, Skipper embraces the following design choices:119

Decision-time planning is employed due to its ability to improve the policy in novel situations;120

Spatio-temporal abstraction: temporal abstraction breaks down the given task into smaller ones,121

while spatial abstraction1 over the state features improves local learning and generalization;122

Higher quality proxies: we introduce pruning techniques to improve the quality of proxy problems;123

Learning end-to-end from hindsight, off-policy: to maximize sample efficiency and the ease of124

training, we propose to use auxiliary (off-)policy methods for edge estimation, and learn a context-125

conditioned checkpoint generation, both from hindsight experience replay;126

1We use “spatial abstraction” to denote specifically the behavior of constraining decision-making to the
relevant environmental factors during an option. Please check Section 4 for discussions and more details.
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Delusion suppression: we propose a delusion suppression technique to minimize the behavior of127

chasing non-existent outcomes. This is done by exposing edge estimation to imagined targets that128

would otherwise not exist in experience.129

3.3 Problem 1: Edge Estimation130

First, we discuss how to estimate the edges of the proxy problem, given a set of already generated131

checkpoints. Inspired by conscious information processing in brains [15] and existing approach132

in [64], we introduce a local perceptive field selector, σ, consisting of an attention bottleneck that133

(soft-)selects the top-k local segments of the full state (e.g. a feature map by a typical convolutional134

encoder); all segments of the state compete for the k attention slots, i.e. irrelevant aspects of state135

are discouraged or discarded, to form a partial state representation [41, 66, 73, 2]. We provide an136

example in Fig. 2 (see purple parts). Through σ, the auxiliary estimators, to be discussed soon,137

force the bottleneck mechanism to promote aspects relevant to the local estimation of connections138

between the checkpoints. The rewards and discounts are then estimated from the partial state σ(S),139

conditioned on the agent’s policy.140

3.3.1 Basis for Connections: Checkpoint-Achieving Policy141

The low-level policy π maximizes an intrinsic reward, s.t. the target checkpoint S⊙ can be reached.142

The choice of intrinsic reward is flexible; for example, one could use a reward of +1 when St+1 is143

within a small radius of S⊙ according to some distance metric, or use reward-respecting intrinsic144

rewards that enable more sophisticated behaviors, as in [62]. In the following, for simplicity, we will145

denote the checkpoint-achievement condition with equality: St+1 = S⊙.146

3.3.2 Estimate Connections147

We learn the connection estimates with auxiliary reward signals that are designed to be not task-148

specific [74]. These estimates are learned using C51-style distributional RL, where the output of each149

estimator takes the form of a histogram over scalar support [14].150

Cumulative Reward. The cumulative discounted task reward vπij is learned by policy evaluation on151

an auxiliary reward that is the same as the original task reward everywhere except when reaching152

the target. Given a hindsight sample ⟨xt, at, rt+1, xt+1, x
⊙⟩ and the corresponding encoded sample153

⟨st, at, rt+1, st+1, s
⊙⟩, we train Vπ with KL-divergence as follows:154

v̂π(σ(st), at|σ(s⊙))←
{
R(st, at, st+1) + γv̂π(σ(st+1), at+1|σ(s⊙)) if st+1 ̸= s⊙

R(st, at, st+1) if st+1 = s⊙
(4)

where σ(s) is the spatially-abstracted from the full state s and at+1 ∼ π(·|σ(st+1), σ(s
⊙)).155

Cumulative Distances / Discounts. With C51 and uniform supports, the cumulative discount leading156

to s⊙ under π is unfortunately more difficult to learn than Vπ , since the prediction would be heavily157

skewed towards 1 if γ ≈ 1. Yet, we can instead effectively estimate cumulative (truncated) distances158

(or trajectory length) under π. Such distances can be learned with policy evaluation, where the159

auxiliary reward is +1 on every transition, except at the targets:160

Dπ(σ(st), at|σ(s⊙))←


1 +Dπ(σ(st+1), at+1|σ(s⊙)) if st+1 ̸= s⊙

1 if st+1 = s⊙

∞ if st+1 is terminal and st+1 ̸= s⊙

161

where at+1 ∼ π(·|σ(st+1), σ(s
⊙)). The cumulative discount is then recovered by replacing the162

support of the output distance histogram with the corresponding discounts. Additionally, the learned163

distance is used to prune unwanted checkpoints to simplify the proxy problem, as well as prune164

far-fetched edges. The details of pruning will be presented shortly.165

Please refer to the Appendix D.1 for the properties of the learning rules for v̂π and γ̂π .166

3.4 Problem 2: Vertex Generation167

The checkpoint generator aims to directly imagine the possible future states without needing to know168

how exactly the agent might reach them nor worrying about if they are reachable. The feasibility of169

checkpoint transitions will be abstracted by the connection estimates instead.170
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To make the checkpoint generator generalize well across diverse tasks, while still being able to171

capture the underlying causal mechanisms in the environment (a challenge for existing model-based172

methods) [71], we propose that the checkpoint generator learns to split the state representation into173

two parts: an episodic context and a partial description. In a navigation problem, for example, as in174

Fig. 2, a context could be a representation of the map of a gridworld, and the partial description be175

the 2D-coordinates of the agent’s location. In different contexts, the same partial description could176

correspond to very different states. Yet, within the same context, we should be able to recover the177

same state given the same partial description.178

full state s

attention
select

partial state σ(s)

checkpoint policy π 

reward estimator V

discount estimator D

splitter fuser

context c(s)

partial desc.
z(s) vertices

targets

edges

proxy problemproxy problem

k-
p

ru
n

e

spatial abstraction

temporal abstractionobservation xobservation x state encoding planning

Figure 2: Skipper Framework: 1) Partial states consist of a few local fields, soft-selected via top-k attention
[22]. Skipper’s edge estimations and low-level behaviors π are based on the partial states. 2) The checkpoint
generator learns by splitting the full state into context and partial descriptions, and fusing them to reconstruct the
input. It imagines checkpoints by sampling partial descriptions and combining them with the episodic contexts;
3) We prune the vertices and edges of the denser graphs to extract sparser proxy problems. Once a plan is formed,
the immediate checkpoint target is used to condition the policy. In the proxy problem example, blue edges are
estimated to be bidirectional and red edges have the other direction pruned.

As shown in Fig. 2, this information split is achieved using two functions: the splitter ECZ , which179

maps the input state S into a representation of a context c(S) and a partial description z(S), as well180

as the fuser
⊕

which, when applied to the input ⟨c, z⟩, recovers S. In order to achieve consistent181

context extraction across states in the same episode, at training time, we force the context to be182

extracted from other states in the same episode, instead of the input.183

We sample in hindsight a diverse distribution of target encoded (full) states S⊙, given any current184

St. Hence, we make the generator a conditional Variational AutoEncoder (VAE) [60] which learns a185

distribution p(S⊙|C(St)) =
∑

z p(S
⊙|C(St), z)p(z|C(St)), where C(St) is the extracted context186

from St and zs are the partial descriptions. We train the generator by minimizing the evidence lower187

bound on ⟨St, S
⊙⟩ pairs chosen with HER.188

Similarly to [25], we constrain the partial description as a bundle of binary variables and train them189

with the straight-through gradients [8]. These binary latents can be easily sampled or composed for190

generation. Compared to models such as that in Director [23], which generates intermediate goals191

given the on-policy trajectory, ours can generate and handle a more diverse distribution of states,192

beneficial for planning in novel scenarios.193

3.4.1 Pruning194

In this paper,we limit ourselves only to checkpoints from a return-unaware conditional generation195

model, leaving the question of how to improve the quality of the generated checkpoints for future196

work. Without learning, the proxy problem can be improved by making it more sparse, and making197

the proxy problem vertices more evenly spread in state space. To achieve this, we propose a pruning198

algorithm based on k-medoids clustering [30], which only requires pairwise distance estimates199

between states. During proxy problem construction, we first sample a larger number of checkpoints,200

and then cluster them and select the centers (which are always real states instead of imaginary201

weighted sums of state representations).202

Notably, for sparse reward tasks, the generator cannot guarantee the presence of the rewarding203

checkpoints in the proposed proxy problem. We could remedy this by explicitly learning the204

generation of the rewarding states with another conditional generator. These rewarding states should205

be kept as vertices (immune from pruning).206

In addition to pruning the vertices, we also prune the edges according to a distance threshold, i.e., all207

edges with estimated distance over the threshold are deleted from the complete graph of the pruned208
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vertices. This biases potential plans towards shorter-length, smaller-scale sub-problems, as far-away209

checkpoints are difficult for π to achieve, trading optimality for robustness.210

3.4.2 Safety & Delusion Control211

Model-based HRL agents can be prone to blindly optimizing for objectives without understanding the212

consequences [36, 46]. We propose a technique to suppress delusions by exposing edge estimation to213

potentially delusional targets that do not exist in the experience replay buffer. Details and examples214

are provided in the Appendix.215

4 Related Works & Discussions216

Temporal Abstraction. Resembling attention, choosing a checkpoint target is a selection towards217

certain decision points in the dimension of time, i.e. a form of temporal abstraction. Constraining218

options, Skipper learns the options targeting certain “outcomes”, which dodges the difficulties219

of option collapse [5] and option outcome modelling by design. The constraints indeed shift the220

difficulties to generator learning [58, 65]. We expect this to entail benefits where states are easy to221

learn and generate, and / or in stochastic environments where the outcomes of unconstrained options222

are difficult to learn. Constraining options was also investigated in [56] in an unsupervised setting.223

Spatial Abstraction is different from “state abstraction” [52, 33], which evolved to be a synonym for224

state space partitioning [37]. Spatial abstraction, defined to capture the behavior of conscious planning225

in the spatial dimension, focuses on the within-state partial selection of the environmental state for226

decision-making. It corresponds naturally to the intuition that state representations should contain227

useful aspects of the environment, while not all aspects are useful for a particular intent. Efforts228

toward spatial abstraction are traceable to early hand-coded proof-of-concepts proposed in e.g. [16].229

Until only recently, attention mechanisms had primarily been used to construct state representations230

in model-free agents for sample efficiency purposes, without the focus on generalization [41, 38, 66].231

In [20, 70, 55], 3 more recent model-based approaches, spatial abstractions are attempted to remove232

visual distractors. Concurrently, emphasizing on generalization, our previous work [73] used spatially-233

abstract partial states in decision-time planning. We proposed an attention bottleneck to dynamically234

select a subset of environmental entities during the atomic-step forward simulation, without explicit235

goals provided as in [70]. Skipper’s checkpoint transition is a step-up from our old approach, where236

we now show that spatial abstraction, an overlooked missing flavor, is as crucial for longer-term237

planning as temporal abstraction [34].238

Task Abstraction via Goal Composition The early work [39] suggested to use bottleneck states239

as subgoals to abstract given tasks into manageable steps. [43, 19] use generative model to imagine240

subgoals while [18] search directly on the experience replay. In [31], promising states to explore241

are generated and selected with shortest-path algorithms. Similar ideas have been attempted for242

guided exploration [17, 35]. Similar to [23], [13] generate fixed-steps ahead subgoals for reasoning243

tasks, while [6] augments the search graph by states reached fixed-steps ahead. [45, 69, 57] employ244

CEM to plan a chain of subgoals towards the task goal [50]. Skipper utilizes proxy problems to245

abstract the given tasks via spatio-temporal abstractions [6]. Checkpoints can be seen as sub-goals246

that generalize the notion of “landmarks" or “waypoints” in [63, 16, 53]. [72] used latent landmark247

graphs as high-level guidance, where the landmarks are sparsified with weighted sums in the latent248

space to compose subgoals. In comparison, our checkpoint pruning selects a subset of generated249

states, which is less prone to issues created by weighted sums.250

Planning Estimates. [72] propose a distance estimate with an explicit regression. With TDMs251

[48], LEAP [45] embraces a sparse intrinsic reward based on distances to the goal. Contrasting with252

our distance estimates, there is no empirical evidence of TDMs’ compatibility with stochasticity253

and terminal states. Notably, [18] employs a similar distance learning scheme to learn the shortest254

path distance between states found in the experience replay; while our estimators learn the distance255

conditioned on evolving policies. Such aspect was also investigated in [42].256

Decision-Time HP with evolutionary algorithms were investigated in [44, 24, 45].257
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5 Experiments258

As introduced in Sec. 2, our first goal is to test the zero-shot generalization ability of trained agents.259

To fully understand the results, it is necessary to have precise control of the difficulty of the training260

and evaluation tasks. Also, to validate if the empirical performance of our agents matches the formal261

analyses (Thm. 1), we need to know how close to the (optimal) ground truth our edge estimations262

and checkpoint policies are. These goals lead to the need for environments whose ground truth263

information (optimal policies, true distances between checkpoints, etc) can be computed. Thus,264

we base our experimental setting on the MiniGrid-BabyAI framework [10, 9, 27]. Specifically, we265

build on the experiments used in our previous works [73, 1]: the agent needs to navigate to the goal266

from its initial state in gridworlds filled with terminal lava traps generated randomly according to a267

difficulty parameter, which controls their density. During evaluation, the agent is always spawned268

at the opposite side from the goals. During training, the agent’s position is uniformly initialized to269

speed up training. We provide results for non-uniform training initialization in the Appendix.270

These fully observable tasks prioritize on the challenge of reasoning over causal mechanisms over271

learning representations from complicated observations. Across all experiments, we sample training272

tasks from an environment distribution of difficulty 0.4: each cell in the field has probability 0.4 to273

be filled with lava while guaranteeing a path from the initial position to the goal. The evaluation274

tasks are sampled from a gradient of OOD difficulties - 0.25, 0.35, 0.45 and 0.55, where the training275

difficulty acts as mean. To step up the long(er) term generalization difficulty compared to existing276

work, we conduct experiments done on large, 12× 12 maze sizes, (see the visualization in Fig 2).277

The agents are trained for 1.5× 106 interactions. The compared agents include:278

Skipper-once: A Skipper agent that generates one proxy problem at the start of the episode, and the279

replanning (choosing a checkpoint target based on the existing proxy problem) only triggers a quick280

re-selection of the immediate checkpoint target;281

Skipper-regen: A Skipper agent that re-generates a proxy problem when replanning is triggered;282

modelfree: A model-free baseline agent sharing the same base architecture with the Skipper variants283

- a prioritized distributional Double DQN [14, 68];284

Director: A tuned Director agent [23] fed with simplified visual inputs. Since Director discards285

trajectories that are not long enough for training purposes, we make sure that the same amount of286

training data is gathered as for the other agents;287

LEAP: A re-implemented LEAP for discrete action spaces. Due to low performance, we replaced the288

VAE and the distance learning mechanisms with our counterparts. We waived the interaction costs289

for its generator pretraining stage, only showing the second stage of RL pretraining.290

Please refer to the Appendix for more details and insights on these agents.291

5.1 Generalization Performance292

Fig. 3 shows how the agents’ generalization performance evolves during training. These results293

are obtained with 50 fixed sampled training tasks (different 50s for each seed), a representative294

configuration of different numbers of training tasks including {1, 5, 25, 50, 100,∞}2, whose results295

are in the Appendix. In Fig. 3 a), we observe how well an agent performs on its training tasks. If an296

agent performs well here but badly in b), c), d) and e), e.g. the modelfree baseline, then we suspect297

that it overfitted on training tasks, likely indicating a reliance on memorization [11].298

We observe a (statistically-)significant advantage in the generalization performance of the Skipper299

agents throughout training. We have also included significance tests and power analyses [12, 47]300

in the Appendix, together with results for other training configurations. The regen variant exhibits301

dominating performance over all others. This is likely due to the frequent reconstruction of the302

graph makes the agent less prone to being trapped in a low-quality proxy problem and provides extra303

adaptability in novel scenarios (more discussions in the Appendix). During training, Skippers behave304

less optimally than expected, despite the strong generalization on evaluation tasks. As our ablation305

results and theoretical analyses consistently show, such a phenomenon is a composite outcome306

of inaccuracies both in the proxy problem and the checkpoint policy. One major symptom of an307

2∞ training tasks mean that an agent is trained on a different task for each episode. In reality, this may lead
to prohibitive costs in creating the training environment.
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inaccurate proxy problem is that the agent would chase delusional targets. We address this behavior308

with the delusion suppression technique, to be discussed in the Appendix.309
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Figure 3: Generalization Performance of Agents During Training: the x-axes correspond to training
progress, while the aligned y-axes represent the success rate of episodes (optimal is 1.0). Each agent is trained
with 50 tasks. Each data point is the average success rate over 20 evaluation episodes, and each error bar (95%
confidence interval) is processed from 20 independent seed runs. Training tasks performance is shown in (a)
while OOD evaluation performance is shown in (b), (c), (d), (e).

Better than the modelfree baseline, LEAP obtains reasonable generalization performance, despite the310

extra budget it needs for pretraining. In the Appendix, we show that LEAP benefits largely from the311

delusion suppression technique. This indicates that optimizing for a path in the latent space may be312

prone to errors caused by delusional subgoals. Lastly, we see that the Director agents suffer in these313

experiments despite their good performance in the single environment experimental settings reported314

by [23]. We present additional experiments in the Appendix to show that Director is ill-suited for315

generalization-focused settings: Director still performs well in single environment configurations, but316

its performance deteriorates fast with more training tasks. This indicates poor scalability in terms of317

generalization, a limitation to its application in real-world scenarios.318

5.2 Ablation & Sensitivity Studies319

In the Appendix, we present ablation results confirming the effectiveness of delusion suppression,320

k-medoids pruning and the effectiveness of spatial abstraction via the local perception field. We also321

provide sensitivity study for the number of checkpoints in each proxy problem.322

5.3 Summary of Experiments323

Within the scope of the experiments, we conclude that Skipper provides benefits for generalization;324

And it achieves better generalization when exposed to more training tasks;325

From the content presented in the Appendix, we deduce additionally that:326

• Spatial abstraction based on the local perception field is crucial for the scalability of the agents;327

• Skipper performs well by reliably decomposing the given tasks, and achieving the sub-tasks328

robustly. Its performance is bottlenecked by the accuracy of the estimated proxy problems as well329

as the checkpoint policies, which correspond to goal generalization and capability generalization,330

respectively, identified in [36]. This matches well with our theory. The proposed delusion suppres-331

sion technique (in Appendix) is effective in suppressing plans with non-existent checkpoints as332

targets, thereby increasing the accuracy of the proxy problems;333

• LEAP fails to generalize well within its original form and can generalize better when combined334

with the ideas proposed in this paper; Director may generalize better only in domains where long335

and informative trajectory collection is possible;336

• We verified empirically that, as expected, Skipper is compatible with stochasticity.337

6 Conclusions338

Building on previous work on spatial abstraction [73], we proposed, analyzed and validated Skipper,339

which generalizes its learned skills better than the compared methods, due to its combined spatio-340

temporal abstractions.341
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A APPENDIX520

Please use the following to quickly navigate to your points of interest.521

• Weaknesses & Limitations (Sec. B)522

• Skipper Algorithmic Details (Sec. C): pseudocodes, k-medoids based pruning, delusion suppres-523

sion524

• Theoretical Analyses (Sec. D.1): detailed proofs, discussions525

• Implementation Details (Sec. E): for Skipper, LEAP and Director526

• More Experiments (Sec. F): experimental results that cannot be presented in the main paper due527

to page limit528

• Ablation Tests & Sensitivity Analyses (Sec. G)529

B Weaknesses & Limitations530

We would like to expand the discussions on the limitations to the current form of Skipper, as well as531

the design choices that we seek to improve in the future:532

• We generate future checkpoints at random by sampling the partial description space. Despite the533

post-processing such as pruning, the generated checkpoints do not prioritize on the predictable,534

important states that matter the most to form a meaningful long-term plan.535

• The current implementation is intended for pixel input fully-observable tasks with discrete state and536

action spaces. Such a minimalistic form is because we wish to isolate the unwanted challenges from537

other factors that are not closely related to the idea of this work, as well as to make the agent as538

generalist as possible. Skipper is naturally compatible with continuous actions spaces and the only539

thing we will need to do is to replace the baseline agent with a compatible one such as TD3 [21];540

on the other hand, for continuous state spaces, the identification of the achievement of a checkpoint541

becomes tricky. This is due to the fact that a strict identity between the current state and the target542

checkpoint may be ever established, we either must adopt a distance measure for approximate state543

equivalence, or rely on the equivalence of the partial descriptions (which is adopted in the current544

implementation). We intentionally designed the partial descriptions to be in the form of bundles545

of binary variables, so that this comparison could be done fast and trivially for any forms of the546

state space; for partial observability, despite that no recurrent mechanism has been incorporated547

in the current implementation, the framework is not incompatible. To implement that, we will548

need to augment the state encoder with recurrent or memory mechanisms and we need to make549

the checkpoint generator directly work over the learned state representations. We acknowledge550

that future work is needed to verify Skipper’s performance on the popular partially-observable551

benchmark suites, which requires the incorporation of components to handle partial observability552

as well as scaling up the architectures for more expressive power;553

• We do not know the precise boundaries of the motivating theory on proxy problems, since it only554

indicates performance guarantees on the condition of estimation accuracy, which in turn does not555

correspond trivially to a set of well-defined problems. We are eager to explore, outside the scope of556

sparse-reward navigation, how this approach can be used to facilitate better generalization, and at557

the same time, try to find more powerful theories that guide us better;558

C Skipper’s Algorithmic Details559

C.1 Overall Skipper Framework (Pseudo-Code)560

The pseudocode of Skipper is provided in Alg. 1, together with the hyperparameters used in our561

implementation.562

C.2 k-medoids based pruning563

We present the pseudocode of the modified k-medoids algorithm for pruning overcrowded checkpoints564

in Alg. 2. Note that the presented pseudocode is optimized for readers’ understanding, while the565
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Algorithm 1: Skipper with Random Checkpoints (implementation choice in purple)
for each episode do

// — start of the subroutine to construct the proxy problem
generate more than necessary (32) checkpoints by sampling from the partial descriptions

given the extracted context from the initial state;
(k = 12)-medoid pruning upon estimated distances among all checkpoints; // prune vertices
use estimators to annotate the edges between the nodes (including a terminal state estimator

to correct the estimates);
prune edges that are too far-fetched according to distance estimations (threshold set to be 8,

same as replan interval); // prune edges
// — end of the subroutine to construct the proxy problem
for each agent-environment interaction step until termination of episode do

if decided to explore (DQN-style annealing ϵ-greedy) then
take a random action;

else
if abstract problem just constructed or a checkpoint / timeout reached (≥ 8 steps

since last planned) then
[OPTIONAL] call the subroutine above for Skipper-regen;
run value iteration (for 5 iterations) on the proxy problem, select the target

checkpoint;
follow the action suggested by the checkpoint-achieving policy;

if time to train (every 4 actions) then
sample hindsight transitions and train checkpoint-achieving policy, estimators
(including a teriminal state estimator) and checkpoint generator;

[OPTIONAL]: train estimators with generated checkpoints to suppress delusion;
save interaction into the trajectory experience replay;

convert trajectory into HER samples (relabel 4 random states as additional goals);

actual implementation is parallelized. The changes upon the original k-medoids algorithm is marked566

in purple, which implement a forced preservation of data points: when k-medoids is called after the567

unpruned graph is constructed, S∨ is set to be the set containing the goal state only. This is intended568

to span more uniformly in the state space with checkpoints, while preserving the goal.569

Let the estimated distance matrix be D, where each element dij represents the estimated trajectory570

length it takes for π to fulfill the transition from checkpoint i to checkpoint j. Since k-medoids571

cannot handle infinite distances (e.g. from a terminal state to another state), the distance matrix D is572

truncated, and then we take the elementwise minimum between the truncated D and DT to preserve573

the one-way distances. The matrix containing the elementwise minimums would be the input of the574

pruning algorithm.575

C.3 Delusion Suppression576

RL agents are prone to blindly optimizing for an intrinsic objective without fully understanding the577

consequences of its actions. Particularly in model-based RL or in Hierarchical RL (HRL), there is578

a significant risk posed by the agents trying to achieve delusional future states that do not exist or579

beyond the safety constraints. With a use of a learned generative model, as in Skipper and other HP580

frameworks, such risk is almost inevitable, because of uncontrollable generalization effects.581

Generalization abilities of the generative models are a double-edged sword. The agent would take582

advantage of its potentials to propose novel checkpoints to improve its behavior, but is also at risk583

of wanting to achieve non-existent unknown consequences. In Skipper, checkpoints imagined by584

the generative model could correspond to non-existent “states” that would lead to delusional edge585

estimates and therefore confuse planning. For instance, arbitrarily sampling partial descriptions may586

result in a delusional state where the agent is in a cell that can never be reached from the initial states.587

Since such states do not exist in the experience replay, the estimators will have not learned how to588

handle them appropriately when encountered in the generated proxy problem during decision time.589

We present a resulting failure mode in Fig. 4.590
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Algorithm 2: Checkpoint Pruning with k-medoids
Data: X = {x1, x2, . . . , xn} (state indices), D (estimated distance matrix), S∨ (states that must

be kept), k (#checkpoints to keep)
Result: S⊙ ≡ {M1,M2, . . . ,Mk} (checkpoints kept)

Initialize S⊙ ≡ {M1,M2, . . . ,Mk} randomly from X
make sure S∨ ⊂ S⊙
repeat

Assign each data point xi to the nearest medoid Mj , forming clusters C1, C2, . . . , Ck;
foreach medoid Mj do

Calculate the cost Jj of Mj as the sum of distances between Mj and the data points in
Cj ;

Find the medoid Mj with the lowest cost Jj ;
if Mj changes then

make sure S∨ ⊂ S⊙
Replace Mj with the data point in Cj that minimizes the total cost;

until Convergence (no cost improvement);

D=1.1?

D=1.1?

delusional 
checkpoint

Figure 4: Example of Failure Caused
by Delusions: we illustrate an instance of
chasing delusional checkpoint in one of
our experimental runs by Skipper. The
distance (discount) estimator, probably
due to the ill-generalization, estimates
that the delusional checkpoint (yellow) is
very close to every other state. A result-
ing plan was that the agent thought it
could reach any far-away checkpoints by
using the delusional state to form a short-
cut: the goal that was at least 17 steps
away would be reached in 2.2.
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Figure 5: Performance of Skipper-once with the proposed Delusion Suppression Technique: each curve
and corresponding error bar (95% CI) are processed from 20 independent seed runs. a) the performance across
training tasks is shown. A more optimal performance can be achieved with Skipper-once in training tasks, when
delusions are suppressed; b) During training interactions, the error in estimated (truncated) distance from and
to delusional targets are significantly reduced with the technique; c) The frequency of selecting a delusional
target is reduced to almost negligible during the whole training process; d) The optimality of target checkpoint
during training can be improved by the suppression. Each agent is trained with 50 environments and each curve
is processed from 20 independent seed runs.
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To address such concerns, we propose an optional auxiliary training procedure that makes the agent591

stay further away from delusional checkpoints. Due to the favorable properties of the update rules592

of Dπ (in fact, Vπ as well), all we have to do is to replace the hindsight-sampled target states593

with generated checkpoints, which contain non-existent states. Then, the auxiliary rewards will all594

converge to the minimum in terms of favorability on the non-existent states. This is implemented595

trivially by adding a loss to the original training loss for the distance estimator, which we give a 0.25596

scaling for stability.597

Algorithm 3: Delusion Suppression
// This whole code block should be injected into the training loop if used
generate using the checkpoint generator, from the sampled batch of encoded states, the target

states (to overwrite those relabelled in the HER) i.e. replace ⟨st, at, rt+1, st+1, s
⊙⟩ with

⟨st, at, rt+1, st+1, s
⊙
∗ ⟩, where s⊙∗ are generated from the context of st

train the distance estimator D as if these are sampled from the HER

We provide analytic results and related discussion for Skipper-once agents trained with the proposed598

delusion suppression technique on 50 training tasks in Fig. 5. The delusion suppression technique is599

not enabled by default because it was not introduced in the main manuscript due to the page limits.600

The delusion suppression technique can also be used to help us understand the failure modes of LEAP601

in Sec. E.2.4.602

D Theoretical Analyses603

D.1 Update Rules for Edge Estimation604

First, we want to show that the update rules proposed in the main paper indeed estimate the desired605

cumulative discount and reward.606

The low-level checkpoint-achieving policy π is trained with an intrinsic reward to reach target state607

s⊙. The cumulative reward and cumulative discount are estimated by applying policy evaluation608

given π, on the two sets of auxiliary reward signals, respectively.609

For the cumulative discounted reward random variable:610

Vπ(st, at|s⊙) = R(st, at, St+1) + γVπ(St+1, At+1|s⊙) (5)

=

∞∑
τ=t

γτ−tR(Sτ , Aτ , Sτ+1), (6)

where St+1 ∼ p(·|st, at), At+1 ∼ π(·|St+1, s
⊙), and with Vπ(St+1, At+1|s⊙) = 0 if St+1 = s⊙.611

We overload the notation as follows: Vπ(s|s⊙)
.
= Vπ(s,A|s⊙) with A ∼ π(·|s, s⊙).612

The cumulative discount random variable denotes the event that the trajectory did not terminate613

before reaching the target s⊙:614

Γπ(St, At|s⊙) = γ · Γπ(St+1, At+1|s⊙), (7)

= γT⊥−tI{ST⊥ = s⊙}, (8)
where T⊥ denotes the timestep when the trajectory terminates, and with Γπ(St+1, At+1|s⊙) = 1615

if St+1 = s⊙ and Γπ(St+1, At+1|s⊙) = 0 if St+1 ̸= s⊙ is terminal. We overload the notation as616

follows: Γπ(st|s⊙)
.
= Γπ(st, At|s⊙) with At+1 ∼ π(·|St+1, s

⊙).617

Note that, for the sake of simplicity, we take here the view that the terminality of states is deterministic,618

but this is not reductive as any state with a stochastic terminality can be split into two identical states:619

one that is deterministically non-terminal and the other that is deterministically terminal. Note also620

that we could adopt the view that the discount factor is the constant probability of the trajectory to621

not terminate.622

D.2 Performance Bound623

We are going to denote the expected cumulative discounted reward, a.k.a. the state-action value624

with qπ
.
= Eπ[V ], and let q̂π be our estimate for it. We are also going to consider the state value625
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vπ(s|s⊙)
.
=

∑
a π(a|s, s⊙)qπ(s, a|s⊙) and its estimate v̂π. Similarly, we denote the expected626

cumulative discount with γπ
.
= Eπ[Γ] and its estimate with γ̂π .627

We are in the presence of a hierarchical policy. The high level policy µ consists in (potentially)628

stochastically picking a sequence of checkpoints. The low-level policy is implemented by π which629

is assumed to be given and fixed for the moment. The composite policy µ ◦ π is non-Markovian: it630

depends both on the current state and the current checkpoint goal. So there is no notion of state value,631

except when we arrive at a checkpoint, i.e. when a high level action (checkpoint selection) needs to632

be chosen.633

Proceeding further, we adopt the view where the discounts are a way to represent the hazard of the634

environment: 1 − γ is the probability of sudden trajectory termination. In this view, vπ denotes635

the (undiscounted: there is no more discounting) expected sum of reward before reaching the next636

checkpoint, and more interestingly γπ denotes the binomial random variable of non-termination637

during the transition to the selected checkpoint.638

Making the following assumption that the trajectory terminates almost surely when reaching the goal,639

i.e. γπ(si, sg) = 0,∀si, the gain V can be written:640

V0 = V (S⊙
0 |S

⊙
1 ) + Γ(S⊙

0 |S
⊙
1 )V1 =

∞∑
k=0

V (S⊙
k |S

⊙
k+1)

k−1∏
i=0

Γ(S⊙
i |S

⊙
i+1), (9)

where Sk+1 ∼ µ(·|Sk), where V (S⊙
k |S

⊙
k+1) is the gain obtained during the path between S⊙

k and641

where S⊙
k+1, and Γ(S⊙

k |S
⊙
k+1) is either 0 or 1 depending whether the trajectory terminated or reached642

S⊙
k+1. If we consider µ as a deterministic planning routine over the checkpoints, then the action space643

of µ boils down to a list of checkpoints {s⊙0 = s0, s
⊙
1 , · · · , s⊙n = sg}. Thanks to the Markovian644

property in checkpoints, we have independence between Vπ and Γπ , therefore for the expected value645

of µ ◦ π, we have:646

vµ◦π(s0)
.
= Eµ◦π[V |S0 = s0] =

∞∑
k=0

vπ(s
⊙
k |s

⊙
k+1)

k−1∏
i=0

γπ(s
⊙
i |s

⊙
i+1) (10)

Having obtained the ground truth value, in the following, we are going to consider the estimates647

which may have small error terms:648

|vπ(s)− v̂π(s)| < ϵvvmax ≪ (1− γ)vmax and |γπ(s)− γ̂π(s)| < ϵγ ≪ (1− γ)2 ∀s.
(11)

We are looking for a performance bound, and assume without loss of generality that the reward649

function is non-negative, s.t. the values are guaranteed to be non-negative as well. We provide an650

upper bound:651

v̂µ◦π(s)
.
=

∞∑
k=0

v̂π(s
⊙
k |s

⊙
k+1)

k−1∏
i=0

γ̂π(s
⊙
i |s

⊙
i+1) (12)

≤
∞∑
k=0

(
vπ(s

⊙
k |s

⊙
k+1) + ϵvvmax

) k−1∏
i=0

(
γπ(s

⊙
i |s

⊙
i+1) + ϵγ

)
(13)

≤ vµ◦π(s) +

∞∑
k=0

ϵvvmax

k−1∏
i=0

(
γπ(s

⊙
i |s

⊙
i+1) + ϵγ

)
+

∞∑
k=0

(
vπ(s

⊙
k |s

⊙
k+1) + ϵvvmax

)
kϵγγ

k + o(ϵv + ϵγ)

(14)

≤ vµ◦π(s) + ϵvvmax

∞∑
k=0

γk + ϵγvmax

∞∑
k=0

kγk + o(ϵv + ϵγ) (15)

≤ vµ◦π(s) +
ϵvvmax

1− γ
+

ϵγvmax

(1− γ)2
+ o(ϵv + ϵγ) (16)
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Similarly, we can derive a lower bound:652

v̂µ◦π(s)
.
=

∞∑
k=0

v̂π(s
⊙
k |s

⊙
k+1)

k−1∏
i=0

γ̂π(s
⊙
i |s

⊙
i+1) (17)

≥
∞∑
k=0

(
vπ(s

⊙
k |s

⊙
k+1)− ϵvvmax

) k−1∏
i=0

(
γπ(s

⊙
i |s

⊙
i+1)− ϵγ

)
(18)

≥ vµ◦π(s)−
∞∑
k=0

ϵvvmax

k−1∏
i=0

(
γπ(s

⊙
i |s

⊙
i+1)− ϵγ

)
−

∞∑
k=0

(
vπ(s

⊙
k |s

⊙
k+1)− ϵvvmax

)
kϵγγ

k + o(ϵv + ϵγ)

(19)

≥ vµ◦π(s)− ϵvvmax

∞∑
k=0

γk − ϵγvmax

∞∑
k=0

kγk + o(ϵv + ϵγ) (20)

≥ vµ◦π(s)−
ϵvvmax

1− γ
− ϵγvmax

(1− γ)2
+ o(ϵv + ϵγ) (21)

We may therefore conclude that v̂µ◦π equals vµ◦π up to an accuracy of ϵvvmax
1−γ +

ϵγvmax
(1−γ)2 + o(ϵv + ϵγ).653

Note that the requirement for the reward function to be positive is only a cheap technical trick to654

ensure we bound in the right direction of ϵγ errors in the discounting, but that the theorem would still655

stand if it were not the case.656

D.3 No Assumption on Optimality657

If the low-level policy π is perfect, then the best high-level policy µ is to choose directly the goal658

as target3. Our approach assumes that it would be difficult to learn effectively a π when the target659

is too far, and that we would rather use a proxy to construct a path with shorter-distance transitions.660

Therefore, we’ll never want to make any optimality assumption on π, otherwise our approach is661

pointless. These theories we have initiated makes no assumption on π.662

The Theorem provides guarantees on the solution to the overall problem. The quality of the solution663

depends on both the quality of the estimates (distances/discounts, rewards) and the quality of the664

policy, as the theorem guarantees accuracy to the solution of the overall problem given a current665

policy, which should evolve towards optimal during training. This means bad policy with good666

estimation will lead to an accurate yet bad overall solution. No matter the quality of the policy, with a667

bad estimation, it will result in a poor estimate of solutions. Only a near-optimal policy and good668

estimation will lead to a near-optimal solution.669

E Implementation Details for Experiments670

E.1 Skipper671

E.1.1 Training672

The agent is based on a distributional prioritized double DQN. All the trainable parameters are673

optimized with Adam at a rate of 2.5 × 10−4 [32], with a gradient clipping by value (maximum674

absolute value 1.0). The priorities for experience replay sampling are equal to the per-sample training675

loss.676

E.1.2 Full State Encoder677

The full-state encoder is a two layered residual block (with kernel size 3 and doubled intermediate678

channels) combined with the 16-dimensional bag-of-words embedder of BabyAI [27].679

3A triangular inequality can be shown that with a perfect π and a perfect estimate of vπ and γπ , the
performance will always be minimized by selecting s⊙1 = sg .
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E.1.3 Partial State Selector (Spatial Abstraction)680

The selector σ is implemented with one-head (not multiheaded, therefore the output linear transfor-681

mation of the default multihead attention implementation in PyTorch is disabled.) top-4 attention,682

with each local perceptive field of size 8× 8 cells. Layer normalization [4] is used before and after683

the spatial abstraction.684

E.1.4 Estimators685

𝛾

𝐷

𝛾
𝛾ଵ 𝛾ଶ 𝛾ଷ 𝛾ସ ⋯ 𝛾ଷଵ𝛾ଷ𝛾ଶଽ𝛾ଶ଼

0 1 2 3 4 ⋯ 31302928

Figure 6: Estimating Distribu-
tions of Discount and Distance
with the Same Histogram: by
transplanting the support with the
corresponding discount values, the
distribution of the cumulative dis-
count can be inferred.

The estimators, which operate on the partial states, are 3-layered686

MLPs with 256 hidden units.687

An additional estimator for termination is learned, which instead688

of taking a pair of partial states as input, takes only one, and is689

learned to classify terminal states with cross-entropy loss. The690

estimated distance from terminal states to other states would be691

overwritten with ∞. The internal γ for intrinsic reward of π is692

0.95, while the task γ is 0.99693

The estimators use C51 distributional TD learning [14]. That is,694

the estimators output histograms (softmax over vector outputs)695

instead of scalars. We regress the histogram towards the targets,696

where these targets are skewed histograms of scalar values, towards697

which KL-divergence is used to train. At the output, there are698

16 bins for each histogram estimation (value for policy, reward,699

distance).700

E.1.5 Recovering Discounts from Distances701

We recover the distribution of the cumulative discount by replacing702

the support of the discretized truncated distances with the corre-703

sponding discounts, as illustrated in Fig. 6. This addresses the704

problem of E[γD] ̸= γE[D], as the probability of having a trajec-705

tory length of 4 under policy π from state st to s⊙ is the same as a706

trajectory having discount γ4.707

E.1.6 Checkpoint Generator708

Despite Skipper is designed to have the generator work on state level, that is, it should take learned709

state representations as inputs and have state representations as outputs, in our experiments, the710

generator actually operates on observation inputs and outputs. This is because of the preferred711

compactness of the observations and the equivalence to full states under full observability in our712

experiments.713

The context extractor Ec is a 32-dimensional BabyAI BOW embedder. It encodes an input observation714

into a representation of the episodic context.715

The partial description extractor Ez is made of a 32-dimensional BabyAI BOW embedder, followed by716

3 aforementioned residual blocks with 3×3 convolutions (doubling the feature dimension every time)717

in between, ended by global maxpool and a final linear projection to the latent weights. The partial718

descriptions are bundles of 6 binary latents, which could represent at most 64 “kinds” of checkpoints.719

Inspired by VQ-VAE [67], we use the argmax of the latent weights as partial descriptions, instead of720

sampling according to the softmax-ed weights. This enables easy comparison of current state to the721

checkpoints in the partial description space, because each state deterministically corresponds to one722

partial description. We identify reaching a target checkpoint if the partial description of the current723

state matches that of the target.724

The fusing function first projects linearly the partial descriptions to a 128-dimensional space and then725

uses deconvolution to recover an output which shares the same size as the encoded context. Finally,726

a residual block is used, followed by a final 1x1 convolution that downscales the concatenation of727

context together with the deconv’ed partial description into a 2D weight map. The agent’s location is728

taken to be the argmax of this weight map.729
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The whole checkpoint generator is trained end-to-end with a standard VAE loss. That is the sum730

of a KL-divergence for the agent’s location, and the entropy of partial descriptions, weighted by731

2.5 × 10−4, as suggested in https://github.com/AntixK/PyTorch-VAE. Note that the per-732

sample losses in the batches are not weighted for training according to priority from the experience733

replay.734

We want to mention that if one does not want to generate non-goal terminal states as checkpoints, we735

could also seek to train on reversed ⟨S⊙, St⟩ pairs. In this case, the checkpoints to reconstruct will736

never be terminal.737

E.1.7 HER738

Each experienced transition is further duplicated into 4 hindsight transitions at the end of each episode.739

Each of these transitions is combined with a randomly sampled observation from the same trajectory740

as the relabelled “goal”. The size of the hindsight buffer is extended to 4 times that of the baseline741

that does not learn from hindsight accordingly, that is, 4× 106.742

E.1.8 Planning743

As introduced, we use value iteration over options [63] to plan over the proxy problem represented744

as an SMDP. We use the matrix form Q = RS×S + ΓV , where R and Γ are the estimated edge745

matrices for cumulative rewards, respectively. Note that this notation is different from the ones we746

used in the manuscript. The checkpoint value V , initialized as all-zero, is taken on the maximum747

of Q along the checkpoint target (the actions for µ) dimension. When planning is initiated during748

decision time, the value iteration step is called 5 times. We do not run until convergence since with749

low-quality estimates during the early stages of the learning, this would be a waste of time. The edges750

from the current state towards other states are always set to be one-directional, and the self-loops are751

also removed. This means the first column as well as the diagonal elements of R and Γ are all zeros.752

Besides pruning edges based on the distance threshold, as introduced in the main paper, the terminal753

estimator is also used to prune the matrices R and Γ: the rows corresponding to the terminal states754

are all zeros.755

The only difference between the two variants, i.e. Skipper-once and Skipper-regen is that the latter756

variant would discard the previously constructed proxy problem and construct a new one every time757

the planning is triggered. This introduces more computational effort while lowering the chance that758

the agent gets “trapped” in a bad proxy problem that cannot form effective plans to achieve the goal.759

If such a situation occurs with Skipper-regen, as long as the agent does not terminate the episode760

prematurely, a new proxy problem will be generated to hopefully address the issue. Empirically, as761

we have demonstrated in the experiments, such variant in the planning behavior results in generally762

significant improvements in terms of generalization abilities at the cost of extra computation.763

E.1.9 Hyperparameter Tuning764

Some hyperparameters introduced by Skipper can be located in the pseudocode in Alg. 1.765

Timeout and Pruning Threshold Intuitively, we tied the timeout to be equal to the distance pruning766

threshold. The timeout kicks in when the agent thinks a checkpoint can be achieved within e.g. 8767

steps, but already spent 8 steps yet still could not achieve it.768

This leads to how we tuned the pruning (distance) threshold: we fully used the advantage of our769

experiments on DP-solvable tasks: with a snapshot of the agent during its training, we can sample770

many ⟨ starting state, target state ⟩ pairs and calculate the ground truth distance between the pair, as771

well as the failure rate of reaching from the starting state to the target state given the current policy π,772

then plot them as the x and y values respectively for visualization. We found such curves to evolve773

from high failure rate at the beginning, to a monotonically increasing curve, where at small true774

distances, the failure rates are near zero. We picked 8 because the curve starts to grow explosively775

when the true distances are more than 9.776

k for k-medoids We tuned this by running a sensitivity analysis on Skipper agents with different k’s,777

whose results are presented previously in this Appendix.778

Additionally, we prune from 32 checkpoints because 32 checkpoints could achieve (visually) a good779

coverage of the state space as well as its friendliness to NVIDIA accelerators.780
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Size of local Perception Field We used a local perception field of size 8 because our baseline model-781

free agent would be able to solve and generalize well within 8 × 8 tasks, but not larger. Roughly782

speaking, our spatial abstraction breaks down the overall tasks into 8× 8 sub-tasks, which the policy783

could comfortably solve.784

Model-free Baseline Architecture The baseline architecture (distributional, Double DQN) was785

heavily influenced by the architecture used in the previous work [73], which demonstrated success786

on similar but smaller-scale experiments (8× 8). The difference is that while then we used compu-787

tationally heavy components such as transformer layers on a set-based representation, we replaced788

them with a simpler and effective local perception component. We validated our model-free baseline789

performance on the tasks proposed in [73].790

E.2 LEAP791

E.2.1 Adaptation for Discrete Action Spaces792

The LEAP baseline has been implemented from scratch for our experiments, since the original793

open-sourced implementation4 was not compatible with environments with discrete action spaces.794

LEAP’s training involves two pretraining stages, that are, generator pretraining and distance estimator795

pretraining, which were originally named the VAE and RL pretrainings. Despite our best effort, that796

is to be covered in detail, we found that LEAP was unable to get a reasonable performance in its797

original form after rebasing it on a discrete model-free RL baseline.798

E.2.2 Replacing the Model799

We tried to identify the reasons why the generalization performance of the adapted LEAP was800

unsatisfactory: we found that the original VAE used in LEAP is not capable to handle even few801

training tasks, let alone generalize well to the evaluation tasks. Even by combining the idea of the802

context / partial description split (still with continuous latents), during decision time, the planning803

results given by the evolutionary algorithm (Cross Entropy Method, CEM, [51]) almost always804

produce delusional plans that are catastrophic in terms of performance. This was why we switched805

into LEAP the same conditional generator we proposed in the paper, and adapted CEM accordingly,806

due to the change from continuous latents to discrete.807

We also did not find that using the pretrained VAE representation as the state representation during808

the second stage helped the agent’s performance, as the paper claimed. In fact, the adapted LEAP809

variant could only achieve decent performance after learning a state representation from scratch in810

the RL pretraining phase. Adopting Skipper’s splitting generator also disables such choice.811

E.2.3 Replacing TDM812

The original distance estimator based on Temporal Difference Models (TDM) also does not show813

capable performance in estimating the length of trajectories, even with the help of a ground truth814

distance function (calculated with DP). Therefore, we switched to learning the distance estimates815

with our proposed method. Our distance estimator is not sensitive to the sub-goal time budget as816

TDM and is hence more versatile in environments like that was used in the main paper, where the817

trajectory length of each checkpoint transition could highly vary. Like for Skipper, an additional818

terminal estimator has been learned to make LEAP planning compatible with the terminal lava states.819

Note that this LEAP variant was trained on the same sampling scheme with HER as in Skipper.820

The introduced distance estimator, as well as the accompanying full-state encoder, are of the same821

architecture, hyperparameters, and training method as those used in Skipper. The number of822

intermediate subgoals for LEAP planning is tuned to be 3, which close to how many intermediate823

checkpoints Skipper typically needs to reach before finishing the tasks. The CEM is called with 5824

iterations for each plan construction, with a population size of 128 and an elite population of size825

16. We found no significant improvement in enlarging the search budget other than additional wall826

time. The new initialization of the new population is by sampling a ϵ-mean of the elite population827

(the binary partial descriptions), where ϵ = 0.01 to prevent the loss of diversity. Because of the828

very expensive cost of using CEM at decision time and its low return of investment in terms of829

4https://github.com/snasiriany/leap
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Table 1: The changed parameters and their values in the config file of the Director agent.

Parameter Value
replay_size 2M
replay_chunk 12
imag_horizon 8
env_skill_duration 4
train_skill_duration 4
worker_rews {extr: 0.5, expl: 0.0, goal: 1.0}
sticky False
gray False

generalization performance, during the RL pretraining phase, the agent performs random walks over830

uniformly random initial states to collect experience.831

E.2.4 Failure Mode: Delusional Plans832

Interestingly, we find that a major reason why LEAP does not generalize well is that it often833

generates delusional plans that lead to catastrophic subgoal transitions. This is likely because of its834

blind optimization in the latent space towards shorter path plans: any paths with delusional shorter835

distances would be preferred. We present the results with LEAP combined with our proposed delusion836

suppression technique in Fig. 7. We find that the adapted LEAP agent, with our generator, our837

distance estimator, and the delusion suppression technique, is actually able to achieve significantly838

better generalization performance.839
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Figure 7: Comparative Results of LEAP with and without the delusion suppression technique: the results
are obtained with 50 training tasks. The results are obtained from 20 independent seed runs.

E.3 Director840

E.3.1 Adaptation841

Figure 8: An example for
simplified observations for
Director.

We based our experiments of Director [23] on the publicly available code842

(https://github.com/danijar/director) released by the authors.843

Except for a few changes in the parameters, which are depicted in Tab. 1,844

we have used the default configuration provided for Atari environments.845

Note that as the Director version in which the worker receives no task846

rewards performed worse in our tasks, we have used the version in which847

the worker receives scaled task rewards (referred to as “Director (worker848

task reward)” in [23]). This agent has also been shown to perform better849

across various domains in [23].850

Encoder. Unlike Skipper and LEAP agents, the Director agent receives851

as input a simplified RGB image of the current state of the environment852

(see Fig. 8). This is because we found that Director performed bet-853

ter with its original architecture, which was designed for image-based854

observations. We removed all textures to simplify the RGB observations.855

22

https://github.com/danijar/director


E.3.2 Failure856

Modes: Bad Generalization, Sensitive to Short Trajectories857

Training Performance. We investigated why Director is unable to achieve good training perfor-858

mance(Fig. 3). As Director was designed to be trained solely on environments where it is able to859

collect long trajectories to train a good enough recurrent world model [23], we hypothesized that860

Director may perform better in domains where it is able to interact with the environment through861

longer trajectories by having better recurrent world models (i.e., the agent does not immediately die862

as a result of interacting with specific objects in the environment). To test this, we experimented with863

variants of the used tasks, where the lava cells are replaced with wall cells, so the agent does not die864

upon trying to move towards them (we refer to this environment as the “walled” environment). The865

corresponding results on 50 training tasks are depicted in Fig. 9. As can be seen, the Director agent866

indeed performs better within the training tasks than in the environments with lava.867

Generalization Performance. We also investigated why Director is unable to achieve good gen-868

eralization (Fig. 3). As Director trains its policies solely from the imagined trajectories predicted869

by its learned world model, we believe that the low generalization performance is due to Director870

being unable to learn a good enough world model that generalizes to the evaluation tasks. The871

generalization performances in both the “walled” and regular environments, depicted in Fig. 9, indeed872

support this argument. Similar to what we did in the main paper, we also present experimental results873

for how the generalization performance changes with the number of training environments. Results874

in Fig. 10 show that the number of training environments has little effect on its poor generalization875

performance.876
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Figure 9: Comparative Results of Director on Environments with Lavas and on those with Walls: the
results are obtained with 50 training tasks. The results for Director-lava (same as in the main paper) are obtained
from 20 independent seed runs.
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Figure 10: Generalization Performance of Agents on Different Numbers of Training Tasks (while Director
runs on the walled environments): besides Director, each data point and corresponding error bar (95%
confidence interval) are processed from the final performance from 20 independent seed runs. Director-wall’s
results are obtained from 20 runs.

F Experimental Results (Cont.)877

We present the experimental results that the main paper could not hold due to the page limit.878

23



F.1 Scalability of Generalization Performance879

Like [11], we investigate the scalability of the agents’ generalization abilities across different numbers880

of training tasks. To this end, in Fig. 11, we present the results of the agents’ final evaluation881

performance after training over different numbers of training tasks.882

With more training tasks, Skippers and the baseline show consistent improvements in generalization883

performance. While both LEAP and Director behave similarly as in the previous subsection, notably,884

the modelfree baseline can reach similar performance as Skipper, but only when trained on a885

different task in each episode, which is generally infeasible in the real world beyond simulation.886
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Figure 11: Generalization Performance of Agents on Different Numbers of Training Tasks: each data point
and corresponding error bar (95% confidence interval) are based on the final performance from 20 independent
seed runs. Training task performance is shown in (a) while OOD performance is shown in (b), (c), (d), (e).
Notably, the Skipper agents as well as the adapted LEAP behave poorly during training when being trained on
only one task, as the split of context and partial information cannot be achieved. Training on one task invalidates
the purpose of the proposed generalization-focused checkpoint generator.

F.2 Skipper-once Scalability887

We present the performance of Skipper-once on different numbers of training tasks in Fig. 12.888
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Figure 12: Generalization Performance of Skipper-once on different numbers of training tasks: each error
bar (95% confidence interval) is obtained from 20 independent seed runs.

F.3 Skipper-regen Scalability889

We present the performance of Skipper-regen on different numbers of training tasks in Fig. 13.890

F.4 modelfree Baseline Scalability891

We present the performance of the modelfree baseline on different numbers of training tasks in Fig.892

14.893

F.5 LEAP Scalability894

We present the performance of the adapted LEAP baseline on different numbers of training tasks in895

Fig. 15.896
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Figure 13: Performance of Skipper-regen on different numbers of training tasks: each error bar (95%
confidence interval) is obtained from 20 independent seed runs.
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Figure 14: Generalization Performance of the modelfree baseline on different numbers of training tasks:
each error bar (95% confidence interval) is obtained from 20 independent seed runs.

F.6 Director Scalability897

We present the performance of the adapted Director baseline on different numbers of training tasks in898

Fig. 16.899

F.7 Generalization Performance on Different Numbers of Training Tasks900

The performance of all agents on all training configurations, i.e. different numbers of training tasks,901

are presented in Fig. 17, Fig. 18, Fig. 19, Fig. 20, Fig. 21 and Fig. 22.902

F.7.1 Statistical Significance & Power Analyses903

Besides visually observing generally non-overlapping confidence intervals, we present the pairwise904

t-test results of Skipper-once and Skipper-regen against the compared methods. In addition, if the905

advantage is significant, we perform power analyses to determine if the number of seed runs (20) was906

enough to make the significance claim. These results are shown in Tab. 2 and Tab. 3, respectively.907
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Figure 15: Generalization Performance of the LEAP baseline on different numbers of training tasks:
each error bar (95% confidence interval) is obtained from 20 independent seed runs.
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Figure 16: Generalization Performance of the Director baseline on different numbers of training tasks:
each error bar (95% confidence interval) is obtained from 20 independent seed runs.
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Figure 17: Generalization Performance of the Agents when trained with 1 training task: each error bar
(95% confidence interval) is obtained from 20 independent seed runs.
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Figure 18: Generalization Performance of the Agents when trained with 5 training tasks: each error bar
(95% confidence interval) is obtained from 20 independent seed runs.
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Figure 19: Generalization Performance of the Agents when trained with 25 training tasks: each error bar
(95% confidence interval) is obtained from 20 independent seed runs.
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Figure 20: Generalization Performance of the Agents when trained with 50 training tasks (same as in the
main paper): each error bar (95% confidence interval) is obtained from 20 independent seed runs.
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Figure 21: Generalization Performance of the Agents when trained with 100 training tasks: each error bar
(95% confidence interval) is obtained from 20 independent seed runs.

As we can observe from the tables, generally there is significant evidence of generalization advantage908

in Skipper variants compared to the other methods, especially when the number of training environ-909

ments are between 25 to 100. Additionally, as expected, Skipper-regen displays more dominating910

performance compared to that of Skipper-once.911

G Ablation & Sensitivity912

G.1 Validation of Effectiveness on Stochastic Environments913

We present the performance of the agents in stochastic variants of the used environment. Specifically,914

with probability 0.1, each action is changed into a random action. We present the 50-training915

tasks performance evolution in Fig. 23. The results validate the compatibility of our agents with916

stochasticity in environmental dynamics. Notably, the performance of the baseline deteriorated917

to worse than even Director with the injected stochasticity. The compatibility of Hierarchical RL918

frameworks to stochasticity has been investigated in [26].919
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Figure 22: Generalization Performance of the Agents when trained with ∞ training tasks (a new task
each training episode): each error bar (95% confidence interval) is obtained from 20 independent seed runs.
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Table 2: Skipper-once v.s. others: significance & power

method \task difficulty 0.25 0.35 0.45 0.55

1 train envs
leap 22 NO NO NO

director 15 11 22 11
baseline NO 38 36 NO

5 train envs
leap 28 NO NO NO

director NO NO NO 22
baseline 11 8 10 12

25 train envs
leap 15 13 11 7

director 2 2 2 2
baseline 2 2 2 2

50 train envs
leap 17 16 11 11

director 2 2 2 2
baseline 2 2 2 2

100 train envs
leap 15 10 7 9

director 2 2 2 2
baseline 2 2 2 2

inf train envs
leap 32 5 7 3

director 2 2 2 2
baseline NO NO NO NO

t threshold: 0.05.
Effect size set to be the difference of the means of the compared pairs [12].

Cells are bold if results NOT significant or insufficient seeds for statistical power.
For significant cases, the minimum number of seeds for statistical power 0.2 is provided.

Table 3: Skipper-regen v.s. others: significance & power

method \task difficulty 0.25 0.35 0.45 0.55

1 train envs
leap 32 NO NO NO

director 16 13 23 10
baseline NO NO NO NO

5 train envs
leap NO NO NO NO

director 33 NO NO NO
baseline 6 8 4 5

25 train envs
leap 10 7 5 4

director 2 2 2 2
baseline 2 2 2 2

50 train envs
leap 6 4 3 3

director 2 2 2 2
baseline 2 2 2 2

100 train envs
leap 7 3 3 2

director 2 2 2 2
baseline 2 2 2 2

inf train envs
leap 15 3 2 2

director 2 2 2 2
baseline NO NO 35 5

t threshold: 0.05.
Effect size set to be the difference of the means of the compared pairs [12].

Cells are bold if results NOT significant or insufficient seeds for statistical power.
For significant cases, the minimum number of seeds for statistical power 0.2 is provided.
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Figure 23: Generalization Performance of agents in stochastic environments: ϵ-greedy style randomness
is added to each primitive action with ϵ = 0.1. Each agent is trained with 50 environments and each curve is
processed from 20 independent seed runs.

G.2 Ablation for Spatial Abstraction920

We present in Fig. 24 the ablation results on the spatial abstraction component with Skipper-once921

agent, trained with 50 tasks. The alternative component of the attention-based bottleneck, which is922

without the spatial abstraction, is an MLP on a flattened full state. The results confirm significant923

advantage in terms of generalization performance as well as sample efficiency in training, introduced924

by spatial abstraction.925
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Figure 24: Ablation for Spatial Abstraction on Skipper-once agent: each agent is trained with 50 environ-
ments and each curve is processed from 20 independent seed runs.

G.3 Accuracy of Proxy Problems & Checkpoint Policies926

We present in Fig. 25 the ablation results on the accuracy of proxy problems as well as the checkpoint927

policies of the Skipper-once agents, trained with 50 tasks. The ground truths are computed via DP928

on the optimal policies, which are also suggested by DP. Concurring with our theoretical analyses,929

the results indicate that the performance of Skipper is determined (bottlenecked) by the accuracy of930

the proxy problem estimation on the high-level and the optimality of the checkpoint policy on the931

lower level. Specifically, the curves for the generalization performance across training tasks, as in (a)932

of 25, indicate that the lower than expected performance is a composite outcome of errors in the two933

levels. In the next part, we address a major misbehavior of inaccurate proxy problem estimation -934

chasing delusional targets.935

G.4 Training Initialization: uniform v.s. same as evaluation936

We compare the agents’ performance with and without uniform initial state distribution. The non-937

uniform starting state distributions introduce additional difficulties in terms of exploration. In938

Presented in Fig. 26, these results are obtained from training on 50 tasks. We conclude that given939

similar computational budget, using non-uniform initialization only slows down the learning curves940

without introducing significant changes to our conclusions, and thus we use the ones with uniform941

initialization for presentation in the main paper.942
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Figure 25: Skipper-once Empirical Performance v.s. ground truths: both the optimal policy and optimal
plan variants are assisted by DP. The default deterministic setting induces the fact that combining optimal policy
and optimal plan results in 1.0 success rate. The figures suggest that the learned agent is limited by errors both
in the proxy problem estimation and the checkpoint policy π. Each agent is trained with 50 environments and
each curve is processed from 20 independent seed runs.
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Figure 26: Comparative Results on 50 training tasks without uniform initial state distribution: each curve
is processed from 20 independent seed runs.

G.5 Ablation: Vertex Pruning943

As mentioned previously, each proxy problem in the experiments are reduced from 32 vertices to944

12 with such techniques. We compare the performance curves of the used configuration against945

a baseline that generates 12-vertex proxy problems without pruning. We present in Fig. 27 these946

ablation results on the component of k-medoids checkpoint pruning. We observe that the pruning not947

only increases the generalization but also the stability of performance.948
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Figure 27: Ablation Results on 50 training tasks for k-medoids pruning: each curve is processed from 20
independent seed runs.

G.6 Sensitivity: Number of Vertices949

We provide a sensitivity analysis to the number of checkpoints (number of vertices) in each proxy950

problem. We present the results of Skipper-once on 50 training tasks with different numbers of951

post-pruning checkpoints (all reduced from 32 by pruning), in Fig. 28. From the results, we can952

see that as long as the number of checkpoints is above 6, Skipper exhibits good performance. We953

therefore chose 12, the one with a rather small computation cost, as the default hyperparameter.954
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Figure 28: Sensitivity of Skipper-once on the number of checkpoints in each proxy problem: each agent is
trained with 50 environments. All curves are processed from 20 independent seed runs.

G.7 Ablation: Planning over Proxy Problems955

We provide additional results for the readers to intuitively understand the effectiveness of planning956

over proxy problems. This is done by comparing the results of Skipper-once with a baseline Skipper-957

goal that blindly selects the task goal as its target all the time. We present the results based on 50958

training tasks in Fig. 29. Concurring with our vision on temporal abstraction, we can see that solving959

more manageable sub-problems leads to faster convergence. The Skipper-goal variant catches up960

later when the policy slowly improves to be capable of solving longer distance navigation.961
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Figure 29: Effectiveness of Proxy Problem based Planning: each agent is trained with 50 environments and
each curve is processed from 20 independent seed runs.
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