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Abstract

Future Event Generation (FEG) aims to gener-001
ate fluent and reasonable future event descrip-002
tions given preceding events. It requires not003
only fluent text generation but also common-004
sense reasoning to maintain the coherence of005
the entire event story. However, existing FEG006
methods are easily trapped into repeated or007
general events without imposing any logical008
constraint to the generation process. In this009
paper, we propose a novel explainable FEG010
framework that consists of a commonsense in-011
ference model (IM) and an event generation012
model (GM). The IM, which is pre-trained on013
a commonsense knowledge graph ATOMIC,014
learns to interpret the preceding events and015
conducts commonsense reasoning to reveal the016
character’s psychology such as intent, reaction017
and needs as latent variables. The GM further018
takes the commonsense knowledge as prompts019
to guide and enforce the generation of logisti-020
cally coherent future events. As a unique merit,021
the commonsense prompts can be further de-022
coded into textual descriptions, yielding expla-023
nations for the future event. Automatic and hu-024
man evaluation demonstrate that our approach025
can generate more coherent, specific, and logi-026
cal future events than the strong baselines. All027
the programs and resources will be made pub-028
lic upon acceptance.029

1 Introduction030

Future event generation (FEG) is the task of gener-031

ating descriptions of future human activities given032

the preceding events. As exemplified in Figure 1,033

given the previous and current events, Leah moved034

to a new town and she had to go to a new school,035

a FEG system is expected to generate a conse-036

quence event, e.g., she felt nervous about making037

new friends. FEG is beneficial to many real-world038

applications, such as story telling (Fan et al., 2018,039

2019), question answering (Shwartz et al., 2020),040

abductive reasoning (Bhagavatula et al., 2019).041

Current Event:�So, Leah had to go to a new school.

She was nervous that she would not make any friends.

However on her first day of school her classmates were very friendly.

How does Leah 
feel about itҘ

Context: Leah's family moved away to a new town.

What does Leah 
need to doҘ

What is Leah’s 
motivationҘ

gets nervous;go to school to start a new life

What does Leah 
want to doҘ

How will Leah feel 
about it?

worried; lonelyto make friends

Figure 1: Examples of future event generation and com-
monsense explanation. The smiley faces indicate the
dominant information for future events.

Recent studies have explored pre-trained lan- 042

guage models (PLMs), such as BERT (Devlin et al., 043

2018), GPT (Radford et al., 2019; Brown et al., 044

2020), and BART (Lewis et al., 2020), and lever- 045

aged external commonsense Knowledge Graphs 046

(KG), such as ConceptNet (Speer et al., 2017) and 047

ATOMIC (Martin et al., 2018), to improve the gen- 048

eration of stories1 and future events (Guan et al., 049

2020; Xu et al., 2020). However, the future events 050

generated by these studies are either too generic 051

or lack logically coherence, which is mainly due 052

to the reason that they either fine-tune the PLMs 053

on the commonsense KG (Guan et al., 2020) and 054

thus the approaches cannot well retain the common- 055

sense inference capability during the generation of 056

future events, or rely on information retrieval to re- 057

turn the most relevant knowledge (Xu et al., 2020; 058

Ammanabrolu et al., 2020) while the coverage of 059

the KGs is far from enough. 060

To tackle these challenges, we propose a novel 061

solution to jointly infer the latent commonsense 062

knowledge from preceding events and take it as 063

prompts for FEG. Our motivation is that there is 064

a wide spectrum of inferential knowledge, such 065

as the cause and effect of the preceding events or 066

1In this work, a story is defined as a sequence of events.

1



the intent, reaction, needs of the character inferred067

from the preceding events, which naturally leads068

the story forward and the prediction of the future069

events. As shown in Figure 1, given that Leah had070

to go to a new school, if we correctly infer that071

the emotional reaction of Leah would be nervous,072

we can better predict a future event, Leah felt ner-073

vous about making new friends. However, there074

is still a critical question remaining: how to best075

leverage the latent commonsense knowledge to en-076

hance future event generation, especially there are077

no available datasets providing sufficient annota-078

tions for various latent commonsense inference?079

We further propose to answer the question with a080

novel COEP framework that infers Commonsense081

Explanations to Prompt FEG. It consists of a com-082

monsense Inference Model (IM) learning to infer083

the latent commonsense knowledge from preced-084

ing events and a future event Generation Model085

(GM) that takes the commonsense knowledge as086

soft prompts conditional on preceding events to087

predict future events. Inspired by the prior stud-088

ies (Bosselut et al., 2019; Hwang et al., 2021), we089

first fine-tune the IM on ATOMIC. An additional090

discriminator is also pre-trained with IM to distin-091

guish whether the commonsense inference is corre-092

lated with the input events, which is further applied093

to weakly supervise the learning of the common-094

sense prompts in GM. Compared with all previous095

studies on FEG, a unique advantage of COEP lies096

in that the latent commonsense prompts can be097

further decoded into textual descriptions, yielding098

explanations for the future event.099

In summary, the contributions of this work are:100

(i) We propose a new COEP framework which101

infers the latent commonsense knowledge from102

preceding events and takes it as soft prompts to103

guide the logically coherent future event genera-104

tion. (ii) Our COEP framework is explainable as105

the commonsense representations corresponding106

to prompts can be decoded into particular textual107

explanations by IM. (iii) We have conducted ex-108

tensive experiments on publicly available bench-109

marks. Both automatic and human evaluations110

demonstrate the effectiveness of COEP, and further111

ablation studies on our results highlight the consis-112

tent, specific, and logical generation process.113

2 Methodology114

We formulate the FEG task as follows: given a115

sequence of history events X = (e1, e2, . . . , en−1)116

indicating the background context and a current 117

event 2 en which is directly prior to the future event 118

en+1, the model learns to capture the contextual 119

and commonsense information and generate en+1. 120

Our COEP framework aims to incorporate the 121

commonsense knowledge inferred from preceding 122

events to guide the FEG task. As shown in Fig- 123

ure 2, it consists of two components: (1) a common- 124

sense Inference Model (IM), which is fine-tuned 125

on ATOMIC to infer the commonsense knowledge 126

given events and a particular commonsense relation 127

(i.e., 9 commonsense dimensions as illustrated in 128

Table 1) as input; and (2) a future event Generation 129

Model (GM) that takes the various commonsense 130

knowledge as soft prompts to enhance the future 131

event generation. Both of these two models are 132

based on BART (Lewis et al., 2020), a large-scale 133

pre-trained language model. Based on the fine- 134

tuned IM, we directly use the latent representations 135

from IM encoder as continuous prompt vectors to 136

GM. To tune the prompts during the future event 137

generation, we also design a discriminator to es- 138

timate the coherence between the commonsense 139

inference decoded from the latent representations 140

and the preceding events.

Input Event: PersonX repels PersonY’s attack

xIntent xEffect oReact
(PersonX intent) (PersonX effect) (Other react)
to protect others gains an enemy weak; ashamed

xNeed xWant oWant
(PersonX need) (PersonX want) (Other want)
to defense himself to call the police attack again

xAttr xReact oEffect
(PersonX attribute) (PersonX react) (Other effect)
skilled; brave angry; tired get hurts

Table 1: An example of ATOMIC. Texts in () show the
extended relations for IM fine-tuning. 141

2.1 Commonsense Inference Model 142

As aforementioned, the commonsense Inference 143

Model (IM) is based on a pre-trained BART (Lewis 144

et al., 2020). Following previous studies (Bosse- 145

lut et al., 2019; Hwang et al., 2021), we first fine- 146

tune the IM on ATOMIC (Martin et al., 2018), a 147

large-scale commonsense KG covering 9 dimen- 148

sions of inferential knowledge as described in Ta- 149

ble 1. We formulate the training tuples for IM 150

as 〈xI , u〉, where xI denotes a multi-segment se- 151

quence which concatenates an input event e and an 152

extended relational phrase r corresponding to each 153

2In event stories, each event is a sentence describing hu-
man’s daily activities as shown in Figure 1
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Knowledge Fine-tuning

GM 
Encoder

IM 
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GM 
Decoder

IM 
Decoder
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Relations
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Event Generation 
Model

Architecture Overview

Commonsense 
Explanations

Input Events
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with 

Relations
Commonsense 

Prompts

Future Event
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Training tuple: <event+relations, inferences>

Training tuple: <context+event, future event>
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Need
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Need

Intent

Want
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Figure 2: The architecture of COEP framework. We decompose the framework into the following two parts: 1)
the commonsense inference model (IM) fine-tuned with ATOMIC; 2) the event generation model (GM) to capture
the contextual information of preceding events. The prompting block can integrate commonsense information as
prompts to guide the event generation, which is illustrated in the right dashed frame.

commonsense dimension3, e.g., PersonX intent, as154

shown in the parenthesis in Table 1. For each seg-155

ment, we add two special tokens 〈s〉 and 〈/s〉 to156

represent the beginning and ending separately fol-157

lowing (Bhagavatula et al., 2019). u is a textual158

description denoting the commonsense knowledge159

inferred from xI .160

P (ut|u<t) = σ(DECI(Hl
u<t

,ENCI(xI))W+b)161

where ut and u<t denote the t-th token and all162

the previous t-1 tokens in u. Hu<t are the decoder163

hidden states of all the t-1 tokens. l is the total num-164

ber of layers in the encoder and decoder. ENCI165

and DECI indicate the encoder and decoder in IM166

respectively. W and b are learnable parameters.167

σ represents the softmax function to produce the168

probability of output tokens throughout this paper.169

The training objective is to minimize the following170

negative log-likelihood:171

Llm
I = −

|u|∑
t=1

logP (ut|u<t)172

where |u| denotes the total number of tokens in the173

target commonsense inference.174

To better encourage the IM to infer the common-175

sense knowledge, we further designed a discrim-176

inator to score the coherence between the com-177

monsense inference and the input event and re-178

lation. For each tuple s = 〈xI , u〉 constructed179

from ATOMIC, we randomly sample another u′180

from other tuples and construct a negative sample181

〈xI , u′〉. We then design a discriminator based on182

3We use the training splits from (Sap et al., 2019), which
splits 24,313 seed events into training, validation, and test sets
(80%/10%/10%), for fine-tuning the IM where the average
number of words in each event is 4.6.

the BART sequence classification head, which is 183

optimized with the cross-entropy objective: 184

LD
I = −logP (Is = Ĩs|s = 〈xI , u〉) 185

186
Is=〈xI ,u〉 =

{
0, u : true
1, u : negative

187

where Ĩs refers to the binary logits produced by the 188

discriminator. 189

The overall objective of fine-tuning IM is to min- 190

imize the combination of the two objectives: 191

LI = Llm
I + LD

I 192

2.2 Event Generation Model 193

The event Generation Model (GM) is based on an- 194

other pre-trained BART that considers the preced- 195

ing events as well as the commonsense inference 196

from the IM to generate the future events. To bet- 197

ter acquire the future event generation capability, 198

we leverage the ConceptNet (Speer et al., 2017), 199

a general multilingual KG covering 36 relations, 200

such as Antonym, SimilarTo, HasSubevent and so 201

on. We carefully select 6 types of relations that 202

are related to sequential events4 and collect 39,530 203

event pairs 〈ep, ef 〉 for fine-tuning GM, where ep 204

and ef denote the preceding and future event re- 205

spectively. The average number of words in the 206

events is 2.67. The objective of ConceptNet fine- 207

tuning is to generate ef given ep by minimizing the 208

following negative log-likelihood: 209

Lcn = −
|w|∑

σ(DECG(H l
w<t

,ENCG(ep))W+b) 210

where |w| denotes the total tokens in target tail 211

events. ENCG and DECG indicate GM encoder and 212

decoder. 213
4The relations indicate sequential order between events are:

Causes, HasPrerequisite, HasSubevent, HasFirstSubevent,
HasPrerequisite,HasLastSubevent.
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After fine-tuning GM on the ConceptNet, we fi-214

nally train it on FEG task by considering both the215

preceding events and the commonsense inference216

from IM. To enrich the context information, GM217

will take all the history events as well as the current218

event as input, which are concatenated as a multi-219

segment sequence xG, where each segment corre-220

sponds to a preceding event and special tokens 〈s〉221

and 〈/s〉 are also added at the beginning and ending222

of each segment. To incorporate the commonsense223

inference from the IM, we introduce a prompting224

block that collects the last hidden state of 〈/s〉 from225

IM encoder based on each commonsense relation226

and take them as soft prompts. Given an extended227

input xIi based on the preceding events and a par-228

ticular commonsense relation ri, we obtain the last229

hidden state of the corresponding 〈/s〉 as follows:230

hki = ENCI(xIi)〈/s〉, i ∈ [1, 9]231

We then take the 9 dimensional commonsense232

prompts as well as context encoding of all preced-233

ing events from the GM encoder as input to the GM234

decoder and generate a future event:235

H = [hk1 , hk2 , . . . , hk9 , ENCG(xG)]236

237 P (wt|w<t) = σ( DECG(Hl
w<t

,H)W + b)238

where wt is the t-th token in the target future event.239

The objective of future event generation is to240

minimize the negative log-likelihood as follows:241

Llm
G = −

|w|∑
logP (wt|w<t)242

We add an auxiliary classification layer to im-243

prove the contrastive comprehension of GM. Given244

a FEG training sample 〈e1, . . . , en, en+1〉, the neg-245

ative sample is constructed by replacing en+1 with246

a randomly sample event e′, where e′ 6= en+1.247

The classification task is designed to distinguish248

whether a future event is sequentially consistent249

with the preceding events similar to the discrimina-250

tor in IM, whose objective function is represented251

as Lcls
G . The overall training loss for FEG is:252

LG = Llm
G + Lcls

G253

2.3 Prompt Training Strategy254

As we use the latent continuous commonsense rep-255

resentations as soft prompts to guide the generation256

of the future event, the next question is: How to257

supervise the prompts training? It is challenging258

because there are no available datasets containing259

the annotations of both future events and the latent260

commonsense inference in-between the events. We 261

propose to solve this problem by taking advantage 262

of the discriminator pre-trained for the IM, which 263

is to measure the coherence of the commonsense 264

inference to the input event and relation. 265

Specifically, given an event and a common- 266

sense relation ri, denoted as xIi , we use IM en- 267

coder to get the latent commonsense representa- 268

tion ENCI(xIi )
as prompts to GM. As there is no 269

gold standard target commonsense inference, we 270

use the pre-trained discriminator to measure the 271

coherence between input events and decoded infer- 272

ences. To solve the non-differentiable problem for 273

conditional decoding, we use the straight-through 274

Gumbel Softmax (GS) estimator (Jang et al., 2016) 275

which provides a continuous relaxation for the one- 276

hot distribution of argmax, and get the common- 277

sense inference as follows: 278

H̃l
ut

= DECI(Hl
u<t

,ENCI(xIi )
)

upt = argmax(σ(H̃l
ut
W + b))

H0
ut

= GS(σ(H̃l
ut
W + b)) ·EV

279

where EV is the vocabulary embedding matrix. 280

When optimizing the commonsense prompts, we 281

freeze the parameters of the IM decoder and dis- 282

criminator and only update the IM encoder, to min- 283

imize the following loss function: 284

Lsc = −logP (Ĩs = 0|s = 〈xI , up〉) 285

where Ĩs is the estimated label produced by the 286

IM discriminator given xI and commonsense infer- 287

ence up generated by IM decoder. In the end, the 288

overall training loss for future event generation is 289

defined as follows: 290

L = LG + Lsc 291

3 Experiments 292

3.1 Dataset 293

We evaluate our model on a commonsense story 294

dataset (Rashkin et al., 2018), which is con- 295

structed based on the ROCStories Corpus, con- 296

taining 14,738 stories that are claimed to have in- 297

ner psychology of story characters as a chain of 298

mental states to push the story forward. It has 299

various settings for mental states detection (Tan- 300

don et al., 2018; Paul and Frank, 2019; Otani and 301

Hovy, 2019), future event generation (Chaturvedi 302

et al., 2017; Wang et al., 2017), story telling (Yao 303

et al., 2019; Guan et al., 2020) and story cloze test 304

(Mostafazadeh et al., 2016). Here we create two 305
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settings for future event generation and story telling306

respectively. As each story consists of 5 sentences307

of events, for FEG task, we construct a Common-308

Event dataset by unfolding each story and taking309

the i-th sentence as the current event, all previous310

sentences as history context, and the next sentence311

as the future event. For story telling, we simply312

give the first sentence of each story as a start event313

and have the models generate all follow-up events.314

3.2 Baselines315

We use the following approaches as baselines316

as they are commonly used in various genera-317

tion tasks and have achieved the state-of-the-art318

performance. Pointer Generator with coverage319

(See et al., 2017) uses a hybrid pointer-generator320

network using coverage to keep track of repeat321

tokens to discourage repetition. GPT-2 (Fine-322

tune) is fine-tuned on event dataset (Mostafazadeh323

et al., 2016) GPT-2 model following (Guan et al.,324

2020). GPT-2 (wKG) is a knowledge-enhanced325

pre-trained model (Guan et al., 2020) for com-326

monsense story generation based on GPT-2 model.327

BART (Fine-tune) (Lewis et al., 2020) is based on328

the pre-trained BART-base model5 and fine-tuned329

on the CommonEvent dataset. BART (wKG) is330

based on the pre-trained BART-base model and331

fine-tuned on ATOMIC similar to GPT-2 (wKG)332

before event training.333

We also introduce several variants of COEP to334

study the effectiveness of each main component:335

(1) COEP w/o CN which omits the ConceptNet336

fine-tuning on GM to evaluate if implicitly fine-337

tuning on sequential knowledge improves FEG. (2)338

COEP w/o PT which removes prompt training ob-339

jective Lsc to evaluate the effectiveness of the pro-340

posed prompt training strategy, which is equivalent341

to directly concatenating the prompts without any342

constraint. (3) COEP w/o CLS which omits the343

classification task Lcls
G to verify if the contrastive344

comprehension can promote event generation.345

3.3 Evaluation Metrics346

We evaluate the experimental results with both au-347

tomatic metrics and human evaluation. The auto-348

matic metrics include: Perplexity (PPL) defined349

as the exponential average negative log-likelihood350

evaluating the fluency. Automated metrics to mea-351

sure the performance of text generation: BLEU352

5We use the pre-trained BART-base model from
Hugginface https://huggingface.co/facebook/
bart-base

(Papineni et al., 2002), ROUGE_L (Lin, 2004), 353

METEOR (Banerjee and Lavie, 2005), CIDEr 354

(Vedantam et al., 2015), and BERTScore (Zhang 355

et al., 2019) 6. Repetition-n (Shao et al., 2019) 356

measures the redundancy of stories by computing 357

the average ratio of repetitive n-grams in generated 358

stories. Distinct-n (Li et al., 2016) measures the 359

generation diversity by the ratio of distinct ones 360

within all generated n-grams. 361

For human evaluation, we randomly sampled 362

100 instances from the test set and obtained 400 363

future events generated by the BART-based models 364

which come top in FEG among the baselines, a 365

variant model w/o PT to investigate the impact of 366

prompt training strategy, and our approach. With 367

the ground-truth, for each instance, we obtain five 368

candidate future events and ask three annotators to 369

rank them based on the logical consistency. Hit@k 370

measures the winning rate of each model by com- 371

puting the percentage of its ranking landing in top 372

k among the candidates. We also use Spearman’s 373

ρ (Spearman, 1961) and the Kendall’s τ (Kendall, 374

1945) to measure the inter-agreement of annotators. 375

3.4 Evaluation of Future Event Generation 376

3.4.1 Automatic Evaluation 377

Table 2 shows the automatic evaluation of FEG per- 378

formance of all baselines and our approach7. We 379

can see that (1) our model significantly outperforms 380

all the baselines and variants based on all evalua- 381

tion metrics. (2) BART-based models show obvious 382

superiority compared with both Pointer Generator 383

and GPT-2 models but still suffer the issue of il- 384

logicality, even with conventional KG fine-tuning, 385

which demonstrates the effectiveness of the latent 386

commonsense representations as prompts to fu- 387

ture event generation. (3) The highest BERTScore 388

shows that COEP can promote the semantic consis- 389

tency of generated events, which reveals that our 390

model can effectively capture the commonsense 391

information from KG and apply it to FEG. 392

Ablation studies on the main components are 393

shown at the bottom of Table 2. We can see that 394

(1) without prompt training (w/o PT) which is 395

equivalent to directly concatenating the common- 396

sense prompts and the preceding events, CIDEr and 397

BERTScore drop rapidly. This verifies the effec- 398

tiveness of the prompt training strategy to maintain 399

6All these automated metrics are implemented following
(Hwang et al., 2021)

7We use topk-4 searching strategy to generate future events
and commonsense explanations.
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Models PPL↓ BLEU-1↑ BLEU-2↑ BLEU-4↑ METEOR↑ ROUGE_L↑ CIDEr↑ BERTScore↑

Ptr-Gen 25.79 5.73 0.89 0.00 4.63 6.60 0.82 38.00
GPT-2 (Finetune) 14.51 8.35 3.98 0.67 8.95 11.45 12.29 47.61
BART (Finetune) 11.0 15.01 5.79 1.60 10.66 14.35 17.25 49.50

GPT-2 (wKG) 12.17 13.41 4.37 0.80 9.75 12.57 13.82 48.63
BART (wKG) 11.38 15.38 6.13 1.75 11.01 14.52 20.25 49.91

COEP 9.62 16.31 6.74 1.94 11.95 15.36 25.30 50.72
w/o PT-CN 10.80 15.62 6.29 1.79 11.27 14.88 21.19 50.17
w/o PT 10.83 15.85 6.40 1.79 11.44 14.93 21.88 50.22
w/o CN 10.59 15.74 6.57 1.94 11.76 15.09 24.48 50.33
w/o CLS 11.30 15.61 6.35 1.82 11.43 14.73 24.21 50.41

Table 2: Automatic evaluation results on FEG task. Bold: the best performance. Underlined: the second place.

semantic consistency. (2) Fine-tuning GM on Con-400

ceptNet brings limited improvements. It is consis-401

tent with our claim that implicitly fine-tuning the402

pre-trained language model with KG lacks effective403

constraints to control the knowledge inferring on404

downstream tasks. (3) The additional classification405

task in GM improves the semantic similarity be-406

tween the events and references, as it uses a related407

task to enhance the model’s contrastive ability.408

3.4.2 Human Evaluation409

Models Hit@1 (%) Hit@2 (%) ρ

BART (Finetune) 3.34 16.70 0.23
BART (wKG) 2.00 12.34 0.24
COEP (w/o PT) 2.00 33.34 0.29
COEP 19.33 63.00 0.28

Golden Story 72.67 86.67 0.44

Table 3: Human evaluation results for FEG.

The human evaluation results on generated410

events are shown in Table 3, we can see (1) our411

model achieves a relatively unanimous high rank412

only second to the ground truth. 19.33 percentage413

of events are rated as the most consistent results,414

and 63 percentage of events are rated as top 2 re-415

sults. (2) The performance gaps are even larger416

than that of automatic evaluation. That is, the ac-417

tual achievements of our proposed model are more418

than our expectation, the automatic metrics need419

further improvements. (3) Spearman’s ρ calculates420

the inter agreement between annotators on the rank-421

ings of each model and Kendall’s τ computes the422

agreement on all instances. It seems that the rank-423

ing of Golden Story achieves a relatively high con-424

sistency among annotators while other models get425

even performance which is acceptable to consider426

the human evaluations are convincing. We have an427

average Kendall’s τ of 0.412, which shows mod-428

erate agreement among annotators on the sort of 5429

candidates in each instance. 430

3.5 Evaluation of Story Telling 431

To further investigate the commonsense inferring 432

ability of proposed models, we also provide the 433

performance of several models on story telling task. 434

Different from GPT-2 based models, which pro- 435

duce next tokens autogressively until the end of 436

story, BART-based models generate next sentences 437

step by step till the last event. Since each story in 438

ROCStories dataset contains 5 sentences, we use 439

the first sentence as the start event and make the 440

models to recurrently generate 4 future events to 441

complete it. The results are shown in Table 4. Our 442

model achieves the best performance based on al- 443

most all metrics except CIDEr, because it relies on 444

low-frequency words rather than the semantic con- 445

sistency between sentences. The lowest repetition- 446

4 and highest distinct-4 scores indicate that our 447

approach can also generate more diverse and spe- 448

cific events, demonstrating the effectiveness of two 449

sub-model designs combined via prompting. 450

3.6 Analysis of Commonsense Prompts 451

We conduct an additional ablation study on the 452

impact of commonsense prompts based on differ- 453

ent commonsense relations. We compare the fu- 454

ture event generation performance of our approach 455

based on the commonsense prompt from each di- 456

mension, as shown in the left columns in Table 5. 457

We can see that among the 9-dimensional common- 458

sense prompts, xEffect is the most effective one, 459

and even shows better performance than BART 460

(wKG) in Table 2 which is implicitly enhanced 461

with all dimensions of commonsense knowledge. 462

As the commonsense prompts can also be ex- 463

plained by decoding them into textual common- 464

sense inference with IM decoder, we further eval- 465

uate the commonsense prompts based on the cor- 466
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Models BLEU-1↑ BLEU-2↑ METEOR↑ CIDEr↑ BertScore↑ Repetition-4↓ Distinct-4↑

GPT-2 (Finetune) 17.02 5.43 11.75 6.84 50.50 5.73 90.32
GPT-2 (wKG) 17.69 5.78 12.35 8.87 50.97 6.05 91.75
BART (Finetune) 20.53 5.86 14.23 17.01 50.32 9.44 84.01
BART (wKG) 20.18 7.81 13.96 17.31 51.13 8.48 81.31

COEP 22.32 7.85 14.98 17.14 52.16 1.96 98.82

Table 4: Automatic evaluation on Story Telling task. Bold: the best performance. Underlined: the second place.

Relation Automatic Human

BLEU-2/4 BERTScore Task#1 Task#2

xNeed 6.12 / 1.59 50.12 0.55 0.22
xAttr 6.06 / 1.54 50.09 0.62 0.48
xEffect 6.30 / 1.71 50.08 0.46 0.35
xReact 6.25 / 1.60 50.15 0.47 0.39
xWant 6.10 / 1.55 49.98 0.75 0.63
xIntent 6.09 / 1.50 49.98 0.86 0.68

oEffect 6.13 / 1.64 50.05 0.66 0.51
oReact 6.10 / 1.60 50.09 0.57 0.49
oWant 6.10 / 1.52 50.04 0.74 0.54

Table 5: Automatic and human evaluations results on
FEG task with different commonsense prompts.

rectness of the textual explanations with human467

evaluation. We design two tasks for annotators468

to judge: Task #1: whether the explanation is co-469

herent with input preceding events and Task #2:470

whether the explanation provides necessary infor-471

mation for generated events, where 1 stands for yes472

and 0 is for no. The right columns in Table 5 show473

the average answer scores on randomly sampled474

100 instances. We can see that (1) our model can475

generate reasonable and coherent explanations on476

9 dimensions of commonsense relations, especially477

xIntent, which shows the highest correlation with478

input events. (2) The explanations serve as a bridge479

between preceding events and future events, as their480

score is highly correlated, which well supports our481

explicitly explainable framework. We find an inter-482

esting phenomenon that human evaluations show483

that the most correlated commonsense explanations484

come from xIntent relation, but the automatic eval-485

uation results considering only xIntent prompt are486

rather low. It reveals that although the IM performs487

well in commonsense reasoning, how to effectively488

integrating such information in downstream tasks489

still has a long way to go, which motivates our490

future work on model’s explainability.491

4 Case Study492

4.1 Qualitative Comparison493

Table 6 presents several examples with future494

events generated by various methods, which in-495

Context: None.
Current Event: Ron needed to learn how to throw

a curveball.

Future Event: He ended up consulting his high school’s
coach for advice.

GPT-2 (wKG): I told my friend I would play with him.
BART (FT): He decided to go to the doctor.
BART (wKG): He decided to try out for the team.
COEP: He went to the coach and asked for help.
Explanations: xAttr: determined, curious;

xEffect: gets exercise;

Context: Jack was taking his SAT test on friday.
He studied hard all week. On Thursday
he was invited to a party.

Current Event: He knew he should not but he went
to the party anyway.

Future Event: Jack did poorly on the test because
he was too sleepy to concentrate.

GPT-2 (wKG): He had a good weekend and a great time.
BART (FT): He had a great time.
BART (wKG): Jack had a great time at the party.
COEP: Jack did not study for his test and he

failed the test!
Explanations: xNeed: to study;

xEffect: gets nervous

Table 6: Generated future events from different models.
Bold phrases denote key information coherent with in-
puts. Italic words donate improper events which is il-
logical or neutral. Underlined words denote effective
explanations for event generation from COEP.

dicates that our approach consistently generates 496

more reasonable and coherent future events than 497

the baselines. For example, given that Ron wants 498

to learn about sports (curveball), COEP will gen- 499

erate a future event suggesting him to ask a coach 500

for help. We also observe that our approach can 501

also capture the turning points. Considering the 502

second example, the explanation shows that Jack 503

needs to study, but he went to the party the day just 504

before the test leads to his failure in the test. 505

4.2 Error Analysis 506

We also present some typical errors made by our 507

model in Table 7. It shows that although COEP 508

significantly outperforms the baselines and variants 509

in generating reasonable future events, it still makes 510

some errors, such as improper synonym (bike & 511
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Input: Tom always wanted a motorcycle. Tom went
to his local Harley Davidson dealership.

COEP: Tom picked up a bike he liked.

Input: In 1996, my parents tooks a trip to Europe.
COEP: They went on a trip to Mexico.

Input: Mark was so in love with his girlfriend.
Mark was going to propose to her tonight.
He took her out to the nicest place in town.
Mark got down on one knee and ask her
to marry him.

Next Event: She said no she stopped loving him
months ago.

COEP: She said yes and Mark was so happy!

Table 7: Typical errors made by our model. Italic
words denote the improper synonym replacement or re-
gional inclusion relation. Underlined words represent
a totally different but reasonable event compared with
ground truth.

motorcycle), chaotic regional relations (Mexico &512

Europe) and opposite understanding of contexts513

(yes & no to the same content). Especially the last514

case, it shows our framework makes yet reasonable515

but different understanding about preceding events,516

which is actually not the model’s fault, but due to517

the open ending. It also demonstrates that human518

evaluation is still necessary for measuring logical519

coherence in event generation tasks.520

5 Related Work521

Future Event Generation Pre-trained language522

models such as GPT (Radford et al., 2019; Brown523

et al., 2020), BART (Lewis et al., 2020), T5 (Raffel524

et al., 2019) have shown the effectiveness in gen-525

eration tasks such as text summarization (Gupta526

et al., 2021) and machine translation (Radford et al.,527

2019). Compared with such tasks of which the in-528

puts have contained sufficient information to gen-529

erate the desired output, future event generation530

is an open-ended generation task and especially531

requires commonsense inferences to generate log-532

ically consistent output. Previous studies on this533

task explored context clues and commonsense KG534

based pre-training to enforce the model to generate535

reasonable and coherent stories (Guan et al., 2019,536

2020; Xu et al., 2020; Ammanabrolu et al., 2020).537

However, simply fine-tuning PLMs on common-538

sense KGs cannot guarantee that it can retain the539

capability of commonsense inference when it’s fine-540

tuned for future event generation, and the coverage541

of the KGs is also uncontrollable. In stark contrast,542

our approach explicitly generates commonsense ex-543

planations and takes the commonsense representa-544

tions as prompts to generate coherent future events.545

Prompt Tuning Prompt tuning (Brown et al., 546

2020) is a simple yet effective mechanism for learn- 547

ing “soft prompts" from PLMs to perform specific 548

downstream tasks. The prompts are usually con- 549

tinuous representations from a frozen model which 550

typically refer to a task description and/or several 551

canonical examples (Shin et al., 2020; Reynolds 552

and McDonell, 2021; Li and Liang, 2021; Lester 553

et al., 2021). There are two significant differences 554

between our work and previous studies. First, in- 555

stead of learning task-oriented prompts as previous 556

studies did, we propose to generate all types of la- 557

tent commonsense representations based on preced- 558

ing events and take them as instance-level prompts 559

to guide FEG. Second, the prompts in our model 560

are independent vectors attached to contextual rep- 561

resentations of input events, while above prompts 562

are partial inner representations in pre-trained mod- 563

els (e.g., prefix of hidden states in a layer). It can 564

keep the commonsense prompts customized for 565

each instance. 566

6 Conclusion and Future Work 567

In this paper, we propose a novel FEG framework 568

name COEP which infers commonsense knowledge 569

as soft prompts to enhance the logicality of fu- 570

ture event generation. There are two key compo- 571

nents: 1) commonsense Inference Model (IM) and 572

2) event Generation Model (GM). We initialize 573

the components by inheriting a BART-base model 574

pre-trained on a large corpus. Two different KG 575

are used to fine-tune the models for commonsense 576

reasoning and sequential inference separately. The 577

soft prompts are supervised by a pre-optimized dis- 578

criminator in IM and the corresponding latent repre- 579

sentations can be decoded into textual descriptions, 580

which provide explanations and justification for the 581

future event. Extensive experiments on an open- 582

domain event story dataset show that our model can 583

outperform strong baselines in FEG. Automatic and 584

manual evaluations substantiate the contextual and 585

logical coherence of generated events. 586

For future work, it would be very interesting to 587

migrate the architecture to a more advanced pre- 588

training model like GPT-3, like achieving the com- 589

monsense knowledge in a Few-Shot way or Zero- 590

Shot way to decrease training costs. The pluggable 591

design of the prompting framework is extensible 592

because we can update IM and GM separately with- 593

out re-training the whole model, and we would like 594

to explore its application on other generation tasks 595

like summarization and dialogue generation. 596
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