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Abstract

Recently, Large Language Models (LLMs)
have seen significant advancements, and su-
pervised fine-tuning (SFT) plays a pivotal role
in unleashing LLMs’ potential to follow the
users’ instructions. As an emerging research
field, data selection for fine-tuning LLMs aims
to select a subset from a given candidate dataset
for training selective-enhanced models to im-
prove their performance and accelerate their
training. Although some studies have already
investigated these works, there is a lack of com-
prehensive analysis and comparison of them to
provide potential research directions. To fill the
gap, we first summarize a three-step scheme for
data selection on existing works, including data
preprocessing, data selector construction, and
data selector evaluation, and comprehensively
sort out the existing works according to this
scheme. Then, we conduct an in-depth analy-
sis of existing works from their efficiency and
feasibility by making quantitative and qualita-
tive comparisons and find that (1) the model-
specific method who takes the loss output of the
pending fine-tune model as an optimized goal
is more effective; (2) increasing the complexity
of the selector can improve the performance
of the selective-enhanced model, but it needs
more careful design to avoid introducing exter-
nal factors. Finally, we summarize the trends
in data selection and point out that the current
main challenges are the lack of unified and effi-
cient data quality measurement, as well as data
selection for specific tasks and multiple turns
of conversations.

1 Introduction

Large language models nowadays can generate
natural and authentic human languages and com-
plete many classic NLP challenges as well as real-
world tasks (Naveed et al., 2023; Vaswani et al.,
2023; Wang et al., 2022; Zhong et al., 2022). After
the knowledge-based pretraining, the user-oriented
supervised instruction fine-tuning endows LLMs
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Figure 1: The Process of Data Selection.

with the most significant performance rise. With
the success of LIMA (Zhou et al., 2023), data se-
lection, that is, how to select a few high-quality
samples from existing datasets to fine-tune better
models in downstream tasks according to some
prior indicators, has gradually become a research
hotspot. It can improve fine-tuned LLMs’ perfor-
mance and accelerate their training simultaneously.
Although recent works (Wang et al., 2024; Albalak
et al., 2024) list most of the existing data selection
methods for fine-tuning LLMs, there is a lack of
in-depth analysis and comparison between each
method for providing potential research directions.

Although recent works (Wang et al., 2024; Al-
balak et al., 2024) list most of the existing data
selection methods for fine-tuning, there is a lack
of in-depth analysis and comparison between each
method.

To address these issues, we first summarize a
three-step data selection scheme that can cover key
parts of the entire data selection process, including
data preprocessing, data selector construction, and
data selector evaluation, after reviewing existing
popular works. Then we conduct a comprehen-
sive sort of the existing works based on the conver-
sion format of the data to be selected, the indicator
sources and calculation methods used by the selec-
tor, and the candidate datasets, models, and metrics
used in the evaluation process.



Data Preprocess {3

Dimensionality
Reduction

|

Leveraging
External Information|
~——

Data Selector Construction ‘

[P B
JE Y —_—
fe] . =
. =
i Leveraging ( \ »| Exclusive [ — p
I i ol o Model nsTag C i
{I_ndlca(o_rs Internal Information| % e e bI andidat

Discrete Quality Labels

from LLM Preference / L3»| Community -)| DEITA 5 m
~——— Model @VS @
Preference
———— C t
( (Gi\‘ ) [stactomimmd Models Other Model
AR

/..ﬁ\ > wmsder InstructionGPT-4T)
4 Nugget 5

Data Selector Evaluation &2

H ——

Centric 'ar—un e
S —_—J E Win-Tie-Lose
-) Continuous Quality B @ - 7
Labels from N
Raw Text Sample Influence > pata- >[LEss ) Metrics Bes‘:g:;:;rk

Centric

Figure 2: The Scheme of Data Selection for Fine-tuning LLMs.

Furthermore, we compared the existing work
through quantitative and qualitative analysis.
Specifically, we develop a unified efficiency mea-
surement method based on the efficiency curve
assumption to evaluate the performance of various
models in selecting data, addressing hard compar-
isons due to different experimental settings. We
also qualitatively evaluate their feasibility by con-
sidering simplicity and flexibility, including imple-
mentation costs and reproducibility.

Through the analysis of the above two aspects,
we not only obtained the technological develop-
ment path of existing work, but also identified the
following two findings that can help with data selec-
tion in future work: (1) the selector taking the out-
put of the pending fine-tune model as an optimized
goal is more effective; (2) increasing the complex-
ity of the selector can improve the performance of
the selective-enhanced model, but it needs more
careful design to avoid introducing external factors.
Meanwhile, we point out that there are still many
challenges to further research, including building
unified and efficient data quality measurement and
designing data selection for specific domains or
multi-turn conversations.

2 Scheme of Data Selection

The data selection for fine-tuning LLM aims to
select high-quality samples consisting of a subset
from a given candidate dataset according to the
data quality, resulting in the Selective-Enhanced
Model (SEM) fine-tuned on the high-quality subset
being better than the Baseline model (BM) trained
on the full dataset.

Therefore, building a data selection method
requires considering the following three aspects.
Firstly, the form of data representation. For data
selection, it is necessary to determine the selection

perspectives. In addition to considering the char-
acteristics of the text itself, linguistic features or
vector representation of the text are also commonly
used. After the conversion of original samples, the
key to building a data selector is determining the se-
lection measurement, which includes two aspects:
the source of data quality clues and how to obtain
the quality label of a sample. On the one hand, it
can be obtained by calculating the statistical charac-
teristics of the data itself. On the other hand, it can
also be obtained through external information such
as third-party scorer models or by comparing the
performance with known good samples. Finally, it
is necessary to verify the usefulness of the data se-
lection method after obtaining a subset selected by
the selector. It can pair-wise compare the response
from the basic model and the selective-enhanced
model directly or compare their scoring in some
popular benchmarks.

By considering the above factors, we construct a
full process scheme of data selection after review-
ing existing popular works, which is divided into
three steps: (1) data preprocessing (Section 3), (2)
data selector construction (Section 4), and (3) data
selector evaluation (Section 5).

3 Data Preprocessing

Data preprocessing converts raw texts into fea-
ture representations of the data for selection. Ac-
cording to the converted forms, it can be divided
into human-preferred explicit features (Cao et al.,
2023; Wei et al., 2023), such as the length of input,
model-oriented implicit features (Xia et al., 2024),
such as low-dimensional gradients from LoRA (Hu
etal., 2021) or purely original texts (Li et al., 2023;
Chen et al., 2024) where the raw texts can preserve
the most information.

Explicit Features. Some works usually take a



series of indicators as explicit features manually
based on the human’s prior linguistic knowledge
that can be extracted from the sample. For exam-
ple, InstructionMining (Cao et al., 2023) converts
each sample into a bag of NLP indicators (such as
the length of input, the length of output, understand-
ability, etc.). Utilizing such interpretable indicators
of linguistic knowledge to represent the original
sample can guide future selection with respect to
these human-preferred aspects of a sample.

Implicit Features. Other works convert original
texts to vector representations as implicit features
of the sample. For example, LESS (Xia et al.,
2024) randomly projects all candidate samples into
low-dimensional gradient features with a warm-up
LoRA, which can reflect the influence of each sam-
ple on the optimization process of the loss function.
These implicit representations, though less inter-
pretable to humans, are more objective features
indicating the quality of the data.

4 Data Selector Construction

The choice of data quality measurement is the
primary concern in constructing the data selector,
which can be divided into two branches. One
branch leverages internal information like statis-
tical features from the candidate dataset (Li et al.,
2024a). Another branch leverages the external in-
formation from LLM or datasets rather than from
the SEM and candidate datasets. The leveraging
external information works can be further divided
into the group that uses discrete quality labels from
LLM’s preference, which refers to the score given
by the external models like ChatGPT (Chen et al.,
2024; Lu et al., 2023; Liu et al., 2023), and the
group uses continuous quality label from sample
influence (Cao et al., 2023; Wei et al., 2023; Li
et al., 2024b; Xia et al., 2024).

4.1 Leveraging Internal Information

Leveraging internal information means using
only the features of a given candidate dataset as
quality clues to determine whether to select them.
The pioneering work (Li et al., 2023) proposes In-
struction Following Difficulty (IFD) as a quantified
metric, which can be obtained by using only a can-
didate dataset and a backbone pre-trained model.
A higher IFD score indicates a closer relationship
between the sample’s instruction and output, which
means more useful information is given in the in-
struction and, thus, a higher quality of that sam-

ple. To obtain the IFD score, they train a LL.aMa-
7b as a warm-up selector on only a small portion
of the candidate dataset to give the model basic
instruction-following ability. Then, the IFD score
can be computed by the following equation:

s0(A|Q)

7o(Q, A) 50(A) ey
where 79(Q, A) is the IFD score of a (@, A) sample
pair, 6 means the warm-up selector model while
s9(A|Q) and s¢(A) are the likelihood of generat-
ing the same answer with or without giving the
question as instruction.

Another work, SuperFiltering (Li et al., 2024a)
adopts a modified version of the IFD score by re-
placing the likelihood function with perplexity val-
ues and selects samples with lower scores. More-
over, they use GPT-2 to train a smaller selector
to determine data quality compared the previous
work (Li et al., 2023).

4.2 Leveraging External Information

Leveraging external information for data qual-
ity measurement uses knowledge that is not acces-
sible from the given candidate datasets or Pend-
ing Fine-tune Models (PFMs). PFM is the target
model to be fine-tuned on the selected subset, us-
ing the same backbone model as SEM. To compute
quality labels, external information is used in the
form of either discrete quality labels from other
LLMs (Chen et al., 2024; Lu et al., 2023; Liu et al.,
2023) or continuous quality labels from sample
influence (Cao et al., 2023; Wei et al., 2023; Li
et al., 2024b; Xia et al., 2024), where the sample
influence is reflected in model’s performance gain
induced by the sample.

4.2.1 Discrete Quality Labels from LLM
Preference

Obtaining discrete quality labels relies on the
use of external LLMs for their direct scoring or
annotations on the candidate data. Such quality
labels are discrete since other LLMs work as a
blackbox that takes in the candidate data and out-
puts a response reflecting their preference. Based
on whether the external LLLM is trainable, one can
obtain quality labels either exclusive LLMs, which
are closed-source commercial models like GPT-
4, or community LLMs, which are open-source
trainable models like LLL.aMa.

Exclusive LLM Preference. Exclusive LLM’s
preference can be utilized as data quality labels



because many commercial models have high agree-
ment with human annotators when evaluating the
quality of data. AlpaGasus (Chen et al., 2024) de-
termines data quality entirely from ChatGPT’s pref-
erence reflected in its direct scoring on each sample.
The score is obtained by prompting ChatGPT with
a scoring template with common evaluation aspects,
like helpfulness and accuracy. Then, they select
higher quality samples with higher scores. Com-
pared with AlpaGasus’ straightforward prompt,
InsTag (Lu et al., 2023) specifies clearer evalua-
tion dimensions as tags when prompting ChatGPT.
They propose a Complexity-first Diverse Sampling
procedure for data selection. To obtain quality la-
bels, their measure first sample-level complexity
(average number of tags for each sample in the
candidate subset) and then dataset-level diversity
(the total number of distinct tags in the subset),
balancing the interplay between data quality and
diversity.

Community Model Preference. Community
models are open-source, trainable models, which
can be tailored for specific evaluation tasks after
aligning them with external commercial models.
DEITA (Liu et al., 2023) relies on the preference
of a community model LLaMa to measure data
quality, where the LLaMa learns from ChatGPT
for scoring. To train the scorer, they utilize the
ideas of evolving from WizardLM (Xu et al., 2023)
to evolve a small set of sample seeds into differ-
ent levels of complexity and quality and then fine-
tunes a LLaMa on ChatGPT’s scoring on these
evoloved samples. For selection, they propose the
Score-First, Diversity-Aware selection similar to
that proposed in InsTag.

4.2.2 Continuous Quality Labels from Sample
Influence

In search of more direct and model-specific data
selection methods, this research line obtains contin-
uous quality labels from sample influence, which
is quantified by the performance improvement a
model gains when fine-tuned on a sample. These
improvements are gauged by continuous outputs
like model-centric evaluation scores (Cao et al.,
2023; Wei et al., 2023; Li et al., 2024b) or data-
centric gradient similarity (Xia et al., 2024).

Model-centric. When using one sample to fine-
tune the PFM, performance improvement in SEM
is expexted to reflect the quality of that sample.
Based on the assumption, InstructionMining (Cao
et al., 2023) constructs the mapping between the

9-dimensional-indicator representations of the sam-
ple and the inference loss(Wang et al., 2023; Zheng
et al., 2023). Then, they utilize BLENDSEARCH,
effectively combining global and local optimiza-
tions with bayesian optimization and different lo-
cal search threads, to determine the final selected
dataset size. InstructionGPT-4 adopts the same
logic on a multimodal model that can also process
visual-caption features as input. To further avoid
the fine-tuning cost, Nugget (Li et al., 2024b) mea-
sures the sample influence towards SEM by prompt-
ing the PFM to answer the same set of questions
with or without that certain sample. Better question-
answering results indicate a larger improvement the
sample brings to PFM.

Data-centric. Compared with model-centric
methods, data-centric approach compares the sim-
ilarity between candidate data and known high-
quality data’s ability to improve model perfor-
mance. To make comparison between data, LESS
(Xia et al., 2024) proposes the Low-rank gradiEnt
Similarity Search method. They first perform a
warm-up LoRA to obtain gradient representations
of the candidate dataset and then compare the simi-
larity with high-quality dataset.

5 Data Selector Evaluation

To evaluate the usefulness of selectors, the
method is to select a subset from a candidate dataset
through the selector and then fine-tune a model to
be the selectively enhanced model (SEM) based
on this subset to compare the performance with
the same model fine-tuned on full data (Baseline
model, BM) or other popular oracle LLMs. Table 1
shows the detailed evaluation setting, including the
choice of candidate datasets, counterpart models
used in the comparison, and evaluation metrics that
provide the performance.

Candidate Datasets. Most of the works (Li
et al., 2024a, 2023; Liu et al., 2023) use the pop-
ular open-sourced datasets as candidate datasets
to push forward better performance of fine-tuned
models by selecting higher-quality samples in them.
The candidate dataset is further divided into the typ-
ical group, including Alpaca, Dolly, FLAN, etc.,
and the advanced group developed from the typ-
ical datasets to achieve higher quality, including
WizardLM, UltraChart, etc.

Counterpart Models. To objectively evaluate
the performance of the SEM, most works choose
BM as the counterpart model for comparison. They



Method Candidate Datasets Evaluating SEMs

Counterpart Models Evaluation Metrics

BM Others Wins-ties-losses Benchmark Scoring
AlpaGasus Alpaca LLaMA-2 7B (4 v Vicuna, Koala, WizardLM, InstructEval
self-Instruct
Instruction-Mining ~ ALPACA & OPEN ASSISTANT, STACK- LLaMA 7B v X OPENORCA & DOLLY  OPENLLM
EXCHANGE & WIKIHOW
InstructionGPT-4 MiniGPT-4 LLaMA-2 v X LLaVA-Bench MME, VQA, MM-Bench
IFD Alpaca & WizardLM LLaMA-2 7B (4 X Vicuna, Koala, WizardLM, OPENLLM
self-Instruct, LIMA
Superfiltering Alpaca & Alpaca-GPT4 & WizardLM LLaMA-2 7B/13B v X WizardLM OPENLLM, AlpacaEval
Nugget Alpaca LLaMA-2 7B v X - MT-Bench, AlpacaEval
LESS FLAN V2 & CoT & DOLLY & OPEN LLaMA2-13B; Mistral 7B ¢/ X MMLU, TYDIQA, BBH
ASSISTANT 1
InsTag WizardLM & UltraChat & ShareGPT LLaMA-1/-2 X v MT-Bench
DEITA Alpaca & DOLLY & Oassit & FLAN 2022 LLaMA-1/-2 13B; Mistral X v OPENLLM, MT-Bench

& WizardLM & UltraChat & ShareGPT 7B

Table 1: The candidate dataset, SEMs, counterpart models, and evaluation metrics used in each method. Some
works, such as Instruction-Mining, use part of several datasets mentioned to form a candidate dataset. The "v"
under BM means the work uses the same BM as the evaluating SEM.; under Other Models, it means the work uses
many models other than BM, including oracle LLM and other fine-tuned SEM; under wins-ties-losses, it means the
work uses various methods to evaluate wins-ties-losses, such as AlpacEval, and directly using GPT-4 .

tend to use the popular LLaMa series (Chen et al.,
2024; Lu et al., 2023) as well as Mistral (Liu et al.,
2023; Xia et al., 2024) models as backbones of the
SEM and BM to obtain relative improvement evalu-
ation, which directly shows the improvement effect
of the selector. Other works (Xia et al., 2024; Chen
et al., 2024) compare the SEM with SOTA mod-
els (such as GPT-4, Claude, and LLaMA-Chat 7B)
to obtain absolute improvement evaluation, which
indicates how good SEM achieves.

Evaluation Metrics. Similar to the counterpart
models, the evaluation metric adopts the relative
and absolute methods to comprehensively evaluate
the selector. The absolute metric uses Wins-ties-
losses pairing scored by GPT-4 to indicate the di-
rect performance difference between the SEM and
counterpart model, while the absolute metric uses
benchmark scoring to directly score and rank the
SEM. Benchmark scoring is separated into a tradi-
tional group, which examines the loss of response
on test tasks (such as MLU, TYDIQA, and Mosaic
Eval Gauntle), and a group, which uses GPT-4 to
score on various tasks, including MT-Bench, MM-
Bench, AlpacaEval, and VicunaQA et al.

6 Analysis of Data Selection Method

To spot the common designs that lead to supe-
rior performance, we analyze the efficiency and
feasibility of the existing data selection methods,
distinguishing the superior and inferior work. Effi-
ciency is quantified to examine the selection com-
petence filtering, which is measured based on the
overall consideration of the performance of SEM
and the data size (selected dataset fraction), while
feasibility uses a qualitative method to evaluate the
difficulty of implementation, which entails both

simplicity and flexibility.

6.1 Efficiency of the Selector

We manage to compare the data selection com-
petence across different works by using efficiency,
which refers to the expectation of probability in
selecting the ground truth high-quality data at each
bet (Appendix A.1).

Performance Improvement Ratio. The compe-
tence is reflected in the performance of SEM, where
higher-quality data leads to a larger performance
improvement. Performance improvement is the ra-
tio of SEM’s performance to that of the counterpart
model, evaluated under various settings. Therefore,
we first classify the evaluation settings into four cat-
egories and use Equation 4 to calculate the overall
improvement rate for each category, and then fur-
ther unify the four categories into the one that is the
wins rate of SEM to BM which directly reflects the
improvement effect brought by the selected subset
(detailed information is in Appendix A.2).

Selected Dataset Fraction. However, the in-
crease in data size also improves the performance
(Kaplan et al., 2020). To evenly evaluate the im-
pact of data size between different works, we use
the selected dataset fraction, which refers to the
fraction of the selected subset to the entire dataset.
Though the size of the selected dataset is directly
provided in the works, it is abandoned because it
is heavily affected by the size of the entire dataset
varying from 3,439 (Wei et al., 2023) to 306,044
(Lu et al., 2023).

To acquire efficiency from performance improve-
ment, we further use the selected dataset fraction to
eliminate the impact of data size. Figure 3 reflects
the efficiency of the selected dataset fraction and



performance improvement ratio. In addition, as
there are many pairs of dataset fractions and perfor-
mances in a work, the one that achieves the optimal
performance is adopted.
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Figure 3: The comparison among popular data selec-
tion methods. The yellow line is the baseline based on
Instruction-Mining and InstructionGPT-4. The signed
distance between the method point and baseline is the
efficiency difference between methods and baselines.

From the position of work in Figure 3, IFD has
the highest efficiency because it achieves a colos-
sal performance improvement with a small size
of data. By contrast, AlpaGasus, which uses the
largest selected dataset fraction but achieves the
lowest performance improvement ratio, is the least
efficient. Besides these two works, the superiority
and inferiority of other works are elusive. There-
fore, we develop the efficiency curve assumption
to make the rest of the works mutually comparable
(details are in Appendix A.3).

Under this assumption, the yellow dashed line
represents the efficiency curve of Instruction-
Mining and InstrucitonGPT-4, which is the baseline
for separating the superior and inferior works. The
grey area illustrates an infeasible area that every
work has, where the efficiency of other work is
incomparable (Appendix A.4). The red and green
line, respectively indicates the superior and inferior
efficiency of the work in comparison to the baseline,
which is the signed distance between the baseline
and the work, as calculated by the following:

Ax;+ By; + C
Effi= ——>F—— 2
11 VA? + B2 &
lpase : Ar+By+C =0 3)

where (x;, y;) is the position of work 4, and lpse
is the mathematical expression of the baseline. We

present the comparison efficiency of each work in
Figure 4, where the efficiency of DEITA is invisible
because it is in the infeasible area of InsTag. We
consider DEITA to be better than InsTag because it
refines the method InsTag used.
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B Inferior Efficiency
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Figure 4: The comparison efficiency of each work rela-
tive to Instruction-Mining and InstructionGPT-4.

Figure 4 shows that the SEM-specific work ex-
empted from indirect preference tends to achieve
high efficiency. All the superior works use the BM
LLM loss to measure the quality according to SEM
preference instead of human or Oracle LLM pref-
erence, while the three least efficient works use the
Oracle LLM score. Specifically, IFD achieves the
highest efficiency by leveraging internal informa-
tion, which is independent of all outer preferences
and biases. LESS is far worse because it resorts to
leveraging external information, which introduces
human preferences. AlpaGasus is the worst be-
cause it solely relies on Oracle LLM to generate
quality scores, whose preference deviates far from
the SEM.

6.2 Feasibility of the Selector

Superior work should not only have high effi-
ciency but also high feasibility. Feasibility employs
the simplicity and the flexibility of the selector to
respectively assess its implementation difficulty
and competence in handling new selection tasks.
We develop the feasibility rank of each work in
Table 2, based on the consideration of these two
aspects.

Simplicity. We evaluate the simplicity of
method from its cost of implementation and re-
producibility. The cost of implementing a method
focuses on the training and inference cost of model,



Methods Feasibility Rank Simplicity Flexibility
AlpaGasus 1 1 1
InsTag

Nugget

IFD

Superfilter

LESS

DEITA
Instruction-Mining
InstructionGPT-4
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Table 2: The feasibility rank, and the corresponding
simplicity and flexibility rank of each work. A smaller
number indicates the work does better.

as the algorithm cost is so much smaller that it
can be neglected. The cost of implementation con-
siders the number of time involves model training
and inference, and the actual number of models be-
ing trained. The reproducibility considers whether
the implementation details is provided and code
is open-sourced. Table 4 in Appendix A.5 shows
the simplicity rank and the above considerations
of each work. Specifically, the work uses oracle
LLM score as quality measurement is with high
simplicity, where AlpaGasus is the simpliest, who
involves 1 time of model inference.

Flexibility. Flexibility evaluates the extensibil-
ity and transferability of the selector. Extensibility
examines the flexibility of reforming the model
used in the selector, and transferability considers
whether the work is dataset-independent or model-
independent when dealing with migration tasks.
Table 5 in Appendix A.5 shows the flexibility rank
and the two considerations of each work, which
are respectively derived from two questions: (1)
Whether substitute the SOTA model used in the
selector into open-sourced model defunct the se-
lector; (2). Whether the model used in the selector
needs to be retrained to maintain the optimal effi-
ciency in handling new candidate datasets or SEM.
Specifically, all the works that rely on oracle LLM
to acquire quality scores are model inextensible,
while six works using PLM loss are model depen-
dent(Li et al., 2024b; Xia et al., 2024; Wei et al.,
2023; Cao et al., 2023; Li et al., 2023).

6.3 Overall Consideration of the Selector

According to the overall performance of the
works on efficiency and feasibility, we find out
that: (1) The model-specific method achieves high
efficiency without cost of feasibility; (2) Complex
method can improve the efficiency, if it is delib-
erately designed to avoid the negative effect on
model-specification, but it is always accompanied

with the feasibility loss.

Specifically, We divide the works into a group
using oracle LLM score (Li et al., 2023, 2024a; Xia
et al., 2024; Cao et al., 2023; Wei et al., 2023; Li
et al., 2024b) and a group using PFM loss (Lu et al.,
2023; Chen et al., 2024; Liu et al., 2023), based on
the different choice of data quality measurement.
The PFM loss is model-specific which examine
the loss of PFM generated by data, while orcale
LLM score is human-basic which leverages oracle
LLM to imitate human scoring. The work in PFM
loss group is always more efficient than the work
in another group With the same feasibility rank,
indicating that PFM loss is superior to oracle LLM
score.

Moreover, these two groups have opposite re-
lationship between efficiency and feasibility. The
work using oracle LLm score has a trade-off rela-
tionship between these two aspects. AlpaGasus has
the worst efficiency but highest feasibility, while
DEITA and InsTag sacrifice feasibility to achieve
better efficiency by using more complex methods.
By contrast, in the group of BM LLM loss, the
one with high efficiency typically has low feasibil-
ity. Among these works, IFD manages to achieve
both high efficiency and feasibility, because it only
resorts to the internal information without introduc-
ing redundant element during filtering. LESS, who
leverages on an outer dataset to filter data, does
worse on both aspects. The simple work tends to
achieve high efficiency, because they are direct who
truncate the irrelevant and detrimental information
from data selection. The result shows that the com-
plex method may be beneficial or detrimental to
the efficiency, which depends on its impact on the
directness of method.

7 Discussions

7.1 Trend

Figure 5 shows the trend of data selector. To
achieve superior overall performance, the data se-
lector becomes more model-specific which reflects
on the goal designation and the choice of quality
approximation method. Specifically, the goal is
changed from selector motivation to task motiva-
tion. The early works aim to develop the selector
with high transferability to handle any data selec-
tion task (Cao et al., 2023; Wei et al., 2023; Chen
et al., 2024), while the later works focus on improv-
ing the performance of SEM of the specific task
(Lietal., 2023; Xia et al., 2024).
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Figure 5: The timeline of the data selection methods.

The approximation method uses an explanation
metric to predict the approximation object, which
refers to the data quality label generated by the
quality measurement. The quality measurement de-
veloped from relying on external oracle LLM score
(Chen et al., 2024) to internal PFM loss (Xia et al.,
2024) becomes more direct to the PFM, while the
explanation metric becomes more complex from
using concrete indicator to abstract indicator, and
from using single to multiple indicators. The early
works tend to use explicit indicators such as quality
score and diversity, which introduce semantic fac-
tors to explain data quality, while the later works
use abstract indicators developed from the PFM
loss to reflect the data quality. On the other hand,
the number of explicit indicators used in the se-
lector increases. DEITA and InsTag employ more
explicit indicators than AlpaGasus, which solely
relies on quality scores from oracle LLM as qual-
ity indicators. Specifically, data diversity as the
explicit indicator can largely improve the overall
performance. DEITA and InsTag achieve far better
overall performance than AlpaGasus because they
take diversity into consideration.

7.2 Challenges

Through the above review and analysis, although
there has been significant progress in data selection
for fine-tuning LLMs, there are still three chal-
lenges.

(1) Lack of unified and efficient metrics for
high-quality data. The existing data selection
methods still have a vague definition of high quality.
Although some methods consider explainable lin-
guistic features or the complexity of data as well as
the diversity of sampling, most of them focus on im-
proving the performance of the model, that is, sam-
ples that can improve model performance are high-
quality samples. Interestingly, recent work (Bai
et al., 2024) has shown that some seemingly low-
quality datasets considering their data sources also

have improvement effects on LLM fine-tuning. Our
analysis has shown that different methods have
their own strengths, and the main challenge is to
organically combine their advantages to build a
unified and efficient data selection method for fine-
tuning.

(2) Lack of data selection methods for specific
domains. Most data selection methods focus on
overall performance improvement, but the contri-
bution of selected data to different domains is not
the same. The existing works (Cao et al., 2023;
Wei et al., 2023; Chen et al., 2024; Lu et al., 2023;
Li et al., 2024b) demonstrated that selected data
can bring significant improvements in writing and
role-playing but minor improvements in mathemat-
ics and reasoning. Therefore, future work needs to
consider how to dynamically select data based on
the shortcomings of the model in a specific domain
to compensate for its performance.

(3) Lack of data selection methods for muti-
turn conversations. Most existing data selection
methods are aimed at single-turn conversations be-
cause their quality is easier to measure but lacks
attention to multi-turn conversation data. Although
current work (Lu et al., 2023; Li et al., 2024b; Liu
et al., 2023) evaluates models in static multi-turn
conversation scenarios such as MT-Bench, there is
a lack of suitable metrics for measuring multi-turn
conversation data quality for data selection.

8 Conclusion

In this paper, we conducted an extensive sur-
vey on data selection for fine-tuning large-scale
language models. We first construct a three-stage
data selection scheme for the entire process and
review the current research progress of data se-
lection based on it, including data preprocessing,
data selector construction, and data selector evalua-
tion. To address the issue of incompatibility caused
by different experimental settings, we propose a
quantitative evaluation based on the assumption
of efficiency curves to compare the existing work.
We also qualitatively analyzed the feasibility of ex-
isting work, including implementation costs and
reproducibility. We find that the model-specific
work achieves high efficiency, whereas complex
method can improve the efficiency if it is delib-
erately designed to avoid the negative effect on
model-specification, but it is always accompanied
by feasibility loss. We have summarized the exist-
ing trends and provided insights for future research.



Limitation

(1) In analyzing the efficiency of the selector,
the two assumptions are proposed to make the effi-
ciency of the method comparable. Because of the
lack of information on the efficiency curve of the
method, we use distance to demonstrate the effi-
ciency of the methods, which generates the prob-
lem of infeasible area. Following the increase of
work included in a comparable group, the infeasi-
ble area enlarges, which limits the number of works
in the group.

(2) This paper mainly focuses on data selec-
tion for instruction fine-tuning LLMs instead of
data rewriting or enhancement. Although we have
already comprehensively examined the existing
works, there may still be some works we neglected.
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A Appendix

A.1 Efficiency and High Quality Dataset

Efficiency Definition The efficiency of work
is the expectation of probability in selecting the
ground truth high quality data at each bet, which is
derived from the consideration on the quality struc-
ture of the selected subset. The quality structure
refers to the proportion of high quality data to the
size of dataset.
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Efficiency Definition

High quality

Data
Selector 1

Causes of Performance Improvement

Fine-Tuning

i Data | 3
| Selector 2 |: <

é@i

Impact of

Efficient Data Size

Figure 6: The left figure indicates the definition of effi-
ciency is related to the quality distribution of selected
subset. The right figure shows that the performance im-
provement of the corresponding fine-tuned PLM comes
from both a better quality distribution and a larger data
size

In Figure 6, data selector 1 and 2 selects two
subsets with different quality structure from a can-
didate set. Subset 1 has better quality structure than
subset 2, because data selector 1 has higher proba-
bility in selecting the high quality data at each bet,
whose expectation is the proportion of high quality
data to the size of subset.

Causes of Performance Improvement The
quality of dataset decides the performance of PLM
who is fine-tuned on it(Zhou et al., 2023). How-
ever, the performance also increases following the
increase of data size, if the augmented data set has
the same quality distribution with the original one
(Chung et al., 2022).

A.2 Performance Improvement Ratio

Table 3 shows the performance improvement
developed from the original performance values
under 4 kinds of evaluation setting which we con-
clude and extract from the primitive article. Wins
rate and benchmark improvement is repectively de-
veloped from the wine-ties-losses and benchmark
scoring using the formula:

I
ni:OYi

where n is the total number of the evaluation
settings using the same counterpart model with
different evaluation metrics or candidate datasets,
X, and Y; is respectively the score of the SEM and
the counterpart model under the same evaluation
setting 1.

Then, the SEM Wins rate under Same Counter-
part Model is chosen as the unified performance
improvement ratio. Missing value is calculated by

“
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Method Same Counterpart Model (BM) SEM Other Counterpart Models (LLaMA chat 7B/13B)
Wins Rate Benchmark Improvement Wins Rate Benchmark Improvement

AlpaGasus 1.284 0.949 LLaMA-2 7B -

Superfiltering 1.475 0.962 LLaMA-2 7B -

InsTag 1.344 - LLaMA 13B 0.985

DEITA 1.467 LLaMA-2 13B 1.000

InstructionGPT-4 1.443 MiniGPT-4 -

Nuggets 1.519 LLaMA-2 7B

IFD 1.747 - LLaMA-2 7B

LESS - 0.973 LLaMA-2 13B - -

Instruction-Mining - - LLaMA-2 7B 0.212 0.991

Table 3: The table shows the performance improvement under four evaluation settings which we deliberately choose
and leverage on, to generate a unified performance improvement rate for each method. In the Other Counterpart
Models, the parameter size of LLaMA chat is chosen as the same as the SEM to offset the impact of model size.

leveraging on the other method that bridges the
value from other evaluation settings to the unified
performance improvement ratio.

A.3 Assumption of Efficiency Curve

W inferior Curve

1.7 1

=
o

¥ Nugget

v DEITA

Performance Improvement
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¥insTag |
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BN Superior Curve
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Fraction of Selected Dataset
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Figure 7: The demonstration of potential efficiency
curve. The green, yellow, and red dashed lines rep-
resent the slopes of the methods at the same value of
fraction.

We develop these assumptions to construct the
efficiency curve of the work. The work on the same
theoretical efficiency curve has the same efficiency,
where the performance is purely affected by the
impact of data size:

The first assumption. We assume for a dataset
with fixed structure, its function of the performance
improvement ratio and selected dataset fraction
complys to the logrithem-like function which is
upwarded, concaved, and approaching to linear
after experiencing a rapid but short increasing.

The second assumption. We assume for two
methods with different efficiency, the function’s
slope of the superior one is always larger than the
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inferior one in the whole feasible domain of the
selected dataset fraction which is between 0 and 1.

Figure 7 demonstrates the potential efficiency
curves of three works. As IFD is the most efficient
and AlpaGasus is the least efficiency, the slope of
IFD is larger than AlpaGasus at the same selected
dataset fraction.

For the first assumption, many articles suggest
that the impact of logarithm data size on the loss is
linear, if the augmented dataset maintains the same
quality structure (Kaplan et al., 2020; Sun et al.,
2017; Moskovskaya et al., 2023). Assumption 1
extends this relationship to the pair of the perfor-
mance improvement ratio and selected dataset frac-
tion. Moreover, the statement of rapid but short
growth complies with the fact that the slope of
baseline (=~ 1.303) is far less than the slope (= 56)
between Instruction-Mining and the original point,
which implies a rapidly growth of performance at
early stage.

The second assumption can be intuitively de-
duced from the first assumption with the fact that
high quality data leads to better performance of
SEM (Zhou et al., 2023). Therefore, if the meth-
ods is superior which indicate its selected dataset
is with good structure, its increasing on the per-
formance improvement must be greater than the
inferior one at every point selected dataset fraction.

A.4 Infeasible Area

Because of a lack of information, each work
generates an infeasible area, which is in fact the
possible area of its efficiency curve. Therefore, if
other work is in the infeasible area, it is incompara-
ble with the work that generates this infeasible area.
The infeasible of the inferior work and superior
work is generated differently, where Figure 8 shows
respectively the by using LESS and InsTag. For
both superior and inferior works, the yellow bound-
ary of the infeasible area is parallel to the baseline.



vIFD == Efficiency Curve

1.7 1

Iy
o

¥ Nugget
1.5 1 Superfiltering ¢ 0
LESS ¥y~ 7\ e

e

Performance Improvement

1.3 v AlpaGasus

----- Potential Efficiency Curve

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Fraction of Selected Dataset

Figure 8: The demonstration of infeasible area. The
green line is the efficiency curve of InsTag, where the
dashed lines indicates its potential position.

For inferior work, the red boundary is horizontal
because it cannot perform worse with a larger data
size; For superior work, the red boundary is the line
between the work and Instruction-Mining because
the efficiency curve will never penetrate each other
under the assumption.

A.5 Detailed Information of Feasibility

Table 4 shows the complexity rank and the corre-
sponding considerations in structure difficulty and
cost of running. Table 5 shows the flexibility rank
and the corresponding considerations of each work.
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a

Data Selection Method Cost of i Reproducibility
# Times involves Model Training # Times involves Model Inference # Models Being Trained Implementation Details Code Open Sourced

ity Rank

AlpaGasus 0 0 1 v X 1
Nuggets 0 2 0 v 4 2
InsTag 0 2 0 v x 3
IFD 1 2 1 v v 4
Superfilter 1 2 1 v v 4
LESS 1 2 1 v v 4
InstructionGPT-4 1 3 1 v v 5
DEITA 2 3 1 v v 6
Instruction-Mining 1 0 129 v X 7

Table 4: The complexity rank and the corresponding considerations in structure difficulty and cost of running.

Method Extensiblility Transferability Flexibility Rank
Model Independent Dataset Independent Model Independent

InsTag

AlpaGasus
Nuggets
Instruction-Mining
DEITA

LESS
Superfiltering

IFD
InstructionGPT-4

X CRNUxXxN %X X
X X XXX\
X %X X X< %X xS
DsBEE WD ——

Table 5: The feaibility rank and the corresponding considerations. In the real practicing, the indicator under
Extensibility and Transferability has different priority. Therefore, we consider they contributes differently to the rank
of feasibility, if the work has the same number of ¢/. The priority from the highest to lowest is: Model Independent
in Transferability, Dataset Independent, Model Independent in Extensibility.
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