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Abstract

Recently, Large Language Models (LLMs)001
have seen significant advancements, and su-002
pervised fine-tuning (SFT) plays a pivotal role003
in unleashing LLMs’ potential to follow the004
users’ instructions. As an emerging research005
field, data selection for fine-tuning LLMs aims006
to select a subset from a given candidate dataset007
for training selective-enhanced models to im-008
prove their performance and accelerate their009
training. Although some studies have already010
investigated these works, there is a lack of com-011
prehensive analysis and comparison of them to012
provide potential research directions. To fill the013
gap, we first summarize a three-step scheme for014
data selection on existing works, including data015
preprocessing, data selector construction, and016
data selector evaluation, and comprehensively017
sort out the existing works according to this018
scheme. Then, we conduct an in-depth analy-019
sis of existing works from their efficiency and020
feasibility by making quantitative and qualita-021
tive comparisons and find that (1) the model-022
specific method who takes the loss output of the023
pending fine-tune model as an optimized goal024
is more effective; (2) increasing the complexity025
of the selector can improve the performance026
of the selective-enhanced model, but it needs027
more careful design to avoid introducing exter-028
nal factors. Finally, we summarize the trends029
in data selection and point out that the current030
main challenges are the lack of unified and effi-031
cient data quality measurement, as well as data032
selection for specific tasks and multiple turns033
of conversations.034

1 Introduction035

Large language models nowadays can generate036

natural and authentic human languages and com-037

plete many classic NLP challenges as well as real-038

world tasks (Naveed et al., 2023; Vaswani et al.,039

2023; Wang et al., 2022; Zhong et al., 2022). After040

the knowledge-based pretraining, the user-oriented041

supervised instruction fine-tuning endows LLMs042
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Figure 1: The Process of Data Selection.

with the most significant performance rise. With 043

the success of LIMA (Zhou et al., 2023), data se- 044

lection, that is, how to select a few high-quality 045

samples from existing datasets to fine-tune better 046

models in downstream tasks according to some 047

prior indicators, has gradually become a research 048

hotspot. It can improve fine-tuned LLMs’ perfor- 049

mance and accelerate their training simultaneously. 050

Although recent works (Wang et al., 2024; Albalak 051

et al., 2024) list most of the existing data selection 052

methods for fine-tuning LLMs, there is a lack of 053

in-depth analysis and comparison between each 054

method for providing potential research directions. 055

Although recent works (Wang et al., 2024; Al- 056

balak et al., 2024) list most of the existing data 057

selection methods for fine-tuning, there is a lack 058

of in-depth analysis and comparison between each 059

method. 060

To address these issues, we first summarize a 061

three-step data selection scheme that can cover key 062

parts of the entire data selection process, including 063

data preprocessing, data selector construction, and 064

data selector evaluation, after reviewing existing 065

popular works. Then we conduct a comprehen- 066

sive sort of the existing works based on the conver- 067

sion format of the data to be selected, the indicator 068

sources and calculation methods used by the selec- 069

tor, and the candidate datasets, models, and metrics 070

used in the evaluation process. 071

1



Data Selector Construction 

 

Community
Model 

Preference

Data Preprocess

input_length = 65.443
output_length = 453.266
understandability = 0.778
...

Vector Representation

Low Dimension Features

<Instruction> 
Given an address and city, 
come up with the zip code.
<Input> 
Address: 123 Main Street, City: 
San Francisco
<Output>
As an AI assistant...

Raw Text

Discrete Quality Labels
from LLM Preference

Continuous Quality 
Labels from 

Sample Influence

<Instruction> 
Given an address and city, 
come up with the zip code.
<Input> 
Address: 123 Main Street, City: 
San Francisco
<Output>
As an AI assistant...

Raw Text

Leveraging
Internal Information

Leveraging
External Information

 IFD

 SuperFiltering
 AlpaGasus

 InsTag

 DEITA

 InstructionMining

 InstructionGPT-4

 Nugget

 LESS

Dimensionality
Reduction

Indicators
Calculation

 

Exclusive
Model 

Preference

 

Model-
Centric

 

Data-
Centric

No Operation

Data Selector Evaluation 

Baseline
Model

Other Model

Win-Tie-Lose

Benchmark
Scoring

Candidate
Dataset

Counterpart
Models

Evaluation
Metrics

VS

Figure 2: The Scheme of Data Selection for Fine-tuning LLMs.

Furthermore, we compared the existing work072

through quantitative and qualitative analysis.073

Specifically, we develop a unified efficiency mea-074

surement method based on the efficiency curve075

assumption to evaluate the performance of various076

models in selecting data, addressing hard compar-077

isons due to different experimental settings. We078

also qualitatively evaluate their feasibility by con-079

sidering simplicity and flexibility, including imple-080

mentation costs and reproducibility.081

Through the analysis of the above two aspects,082

we not only obtained the technological develop-083

ment path of existing work, but also identified the084

following two findings that can help with data selec-085

tion in future work: (1) the selector taking the out-086

put of the pending fine-tune model as an optimized087

goal is more effective; (2) increasing the complex-088

ity of the selector can improve the performance of089

the selective-enhanced model, but it needs more090

careful design to avoid introducing external factors.091

Meanwhile, we point out that there are still many092

challenges to further research, including building093

unified and efficient data quality measurement and094

designing data selection for specific domains or095

multi-turn conversations.096

2 Scheme of Data Selection097

The data selection for fine-tuning LLM aims to098

select high-quality samples consisting of a subset099

from a given candidate dataset according to the100

data quality, resulting in the Selective-Enhanced101

Model (SEM) fine-tuned on the high-quality subset102

being better than the Baseline model (BM) trained103

on the full dataset.104

Therefore, building a data selection method105

requires considering the following three aspects.106

Firstly, the form of data representation. For data107

selection, it is necessary to determine the selection108

perspectives. In addition to considering the char- 109

acteristics of the text itself, linguistic features or 110

vector representation of the text are also commonly 111

used. After the conversion of original samples, the 112

key to building a data selector is determining the se- 113

lection measurement, which includes two aspects: 114

the source of data quality clues and how to obtain 115

the quality label of a sample. On the one hand, it 116

can be obtained by calculating the statistical charac- 117

teristics of the data itself. On the other hand, it can 118

also be obtained through external information such 119

as third-party scorer models or by comparing the 120

performance with known good samples. Finally, it 121

is necessary to verify the usefulness of the data se- 122

lection method after obtaining a subset selected by 123

the selector. It can pair-wise compare the response 124

from the basic model and the selective-enhanced 125

model directly or compare their scoring in some 126

popular benchmarks. 127

By considering the above factors, we construct a 128

full process scheme of data selection after review- 129

ing existing popular works, which is divided into 130

three steps: (1) data preprocessing (Section 3), (2) 131

data selector construction (Section 4), and (3) data 132

selector evaluation (Section 5). 133

3 Data Preprocessing 134

Data preprocessing converts raw texts into fea- 135

ture representations of the data for selection. Ac- 136

cording to the converted forms, it can be divided 137

into human-preferred explicit features (Cao et al., 138

2023; Wei et al., 2023), such as the length of input, 139

model-oriented implicit features (Xia et al., 2024), 140

such as low-dimensional gradients from LoRA (Hu 141

et al., 2021) or purely original texts (Li et al., 2023; 142

Chen et al., 2024) where the raw texts can preserve 143

the most information. 144

Explicit Features. Some works usually take a 145
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series of indicators as explicit features manually146

based on the human’s prior linguistic knowledge147

that can be extracted from the sample. For exam-148

ple, InstructionMining (Cao et al., 2023) converts149

each sample into a bag of NLP indicators (such as150

the length of input, the length of output, understand-151

ability, etc.). Utilizing such interpretable indicators152

of linguistic knowledge to represent the original153

sample can guide future selection with respect to154

these human-preferred aspects of a sample.155

Implicit Features. Other works convert original156

texts to vector representations as implicit features157

of the sample. For example, LESS (Xia et al.,158

2024) randomly projects all candidate samples into159

low-dimensional gradient features with a warm-up160

LoRA, which can reflect the influence of each sam-161

ple on the optimization process of the loss function.162

These implicit representations, though less inter-163

pretable to humans, are more objective features164

indicating the quality of the data.165

4 Data Selector Construction166

The choice of data quality measurement is the167

primary concern in constructing the data selector,168

which can be divided into two branches. One169

branch leverages internal information like statis-170

tical features from the candidate dataset (Li et al.,171

2024a). Another branch leverages the external in-172

formation from LLM or datasets rather than from173

the SEM and candidate datasets. The leveraging174

external information works can be further divided175

into the group that uses discrete quality labels from176

LLM’s preference, which refers to the score given177

by the external models like ChatGPT (Chen et al.,178

2024; Lu et al., 2023; Liu et al., 2023), and the179

group uses continuous quality label from sample180

influence (Cao et al., 2023; Wei et al., 2023; Li181

et al., 2024b; Xia et al., 2024).182

4.1 Leveraging Internal Information183

Leveraging internal information means using184

only the features of a given candidate dataset as185

quality clues to determine whether to select them.186

The pioneering work (Li et al., 2023) proposes In-187

struction Following Difficulty (IFD) as a quantified188

metric, which can be obtained by using only a can-189

didate dataset and a backbone pre-trained model.190

A higher IFD score indicates a closer relationship191

between the sample’s instruction and output, which192

means more useful information is given in the in-193

struction and, thus, a higher quality of that sam-194

ple. To obtain the IFD score, they train a LLaMa- 195

7b as a warm-up selector on only a small portion 196

of the candidate dataset to give the model basic 197

instruction-following ability. Then, the IFD score 198

can be computed by the following equation: 199

rθ(Q,A) =
sθ(A|Q)

sθ(A)
(1) 200

where rθ(Q,A) is the IFD score of a (Q, A) sample 201

pair, θ means the warm-up selector model while 202

sθ(A|Q) and sθ(A) are the likelihood of generat- 203

ing the same answer with or without giving the 204

question as instruction. 205

Another work, SuperFiltering (Li et al., 2024a) 206

adopts a modified version of the IFD score by re- 207

placing the likelihood function with perplexity val- 208

ues and selects samples with lower scores. More- 209

over, they use GPT-2 to train a smaller selector 210

to determine data quality compared the previous 211

work (Li et al., 2023). 212

4.2 Leveraging External Information 213

Leveraging external information for data qual- 214

ity measurement uses knowledge that is not acces- 215

sible from the given candidate datasets or Pend- 216

ing Fine-tune Models (PFMs). PFM is the target 217

model to be fine-tuned on the selected subset, us- 218

ing the same backbone model as SEM. To compute 219

quality labels, external information is used in the 220

form of either discrete quality labels from other 221

LLMs (Chen et al., 2024; Lu et al., 2023; Liu et al., 222

2023) or continuous quality labels from sample 223

influence (Cao et al., 2023; Wei et al., 2023; Li 224

et al., 2024b; Xia et al., 2024), where the sample 225

influence is reflected in model’s performance gain 226

induced by the sample. 227

4.2.1 Discrete Quality Labels from LLM 228

Preference 229

Obtaining discrete quality labels relies on the 230

use of external LLMs for their direct scoring or 231

annotations on the candidate data. Such quality 232

labels are discrete since other LLMs work as a 233

blackbox that takes in the candidate data and out- 234

puts a response reflecting their preference. Based 235

on whether the external LLM is trainable, one can 236

obtain quality labels either exclusive LLMs, which 237

are closed-source commercial models like GPT- 238

4, or community LLMs, which are open-source 239

trainable models like LLaMa. 240

Exclusive LLM Preference. Exclusive LLM’s 241

preference can be utilized as data quality labels 242
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because many commercial models have high agree-243

ment with human annotators when evaluating the244

quality of data. AlpaGasus (Chen et al., 2024) de-245

termines data quality entirely from ChatGPT’s pref-246

erence reflected in its direct scoring on each sample.247

The score is obtained by prompting ChatGPT with248

a scoring template with common evaluation aspects,249

like helpfulness and accuracy. Then, they select250

higher quality samples with higher scores. Com-251

pared with AlpaGasus’ straightforward prompt,252

InsTag (Lu et al., 2023) specifies clearer evalua-253

tion dimensions as tags when prompting ChatGPT.254

They propose a Complexity-first Diverse Sampling255

procedure for data selection. To obtain quality la-256

bels, their measure first sample-level complexity257

(average number of tags for each sample in the258

candidate subset) and then dataset-level diversity259

(the total number of distinct tags in the subset),260

balancing the interplay between data quality and261

diversity.262

Community Model Preference. Community263

models are open-source, trainable models, which264

can be tailored for specific evaluation tasks after265

aligning them with external commercial models.266

DEITA (Liu et al., 2023) relies on the preference267

of a community model LLaMa to measure data268

quality, where the LLaMa learns from ChatGPT269

for scoring. To train the scorer, they utilize the270

ideas of evolving from WizardLM (Xu et al., 2023)271

to evolve a small set of sample seeds into differ-272

ent levels of complexity and quality and then fine-273

tunes a LLaMa on ChatGPT’s scoring on these274

evoloved samples. For selection, they propose the275

Score-First, Diversity-Aware selection similar to276

that proposed in InsTag.277

4.2.2 Continuous Quality Labels from Sample278

Influence279

In search of more direct and model-specific data280

selection methods, this research line obtains contin-281

uous quality labels from sample influence, which282

is quantified by the performance improvement a283

model gains when fine-tuned on a sample. These284

improvements are gauged by continuous outputs285

like model-centric evaluation scores (Cao et al.,286

2023; Wei et al., 2023; Li et al., 2024b) or data-287

centric gradient similarity (Xia et al., 2024).288

Model-centric. When using one sample to fine-289

tune the PFM, performance improvement in SEM290

is expexted to reflect the quality of that sample.291

Based on the assumption, InstructionMining (Cao292

et al., 2023) constructs the mapping between the293

9-dimensional-indicator representations of the sam- 294

ple and the inference loss(Wang et al., 2023; Zheng 295

et al., 2023). Then, they utilize BLENDSEARCH, 296

effectively combining global and local optimiza- 297

tions with bayesian optimization and different lo- 298

cal search threads, to determine the final selected 299

dataset size. InstructionGPT-4 adopts the same 300

logic on a multimodal model that can also process 301

visual-caption features as input. To further avoid 302

the fine-tuning cost, Nugget (Li et al., 2024b) mea- 303

sures the sample influence towards SEM by prompt- 304

ing the PFM to answer the same set of questions 305

with or without that certain sample. Better question- 306

answering results indicate a larger improvement the 307

sample brings to PFM. 308

Data-centric. Compared with model-centric 309

methods, data-centric approach compares the sim- 310

ilarity between candidate data and known high- 311

quality data’s ability to improve model perfor- 312

mance. To make comparison between data, LESS 313

(Xia et al., 2024) proposes the Low-rank gradiEnt 314

Similarity Search method. They first perform a 315

warm-up LoRA to obtain gradient representations 316

of the candidate dataset and then compare the simi- 317

larity with high-quality dataset. 318

5 Data Selector Evaluation 319

To evaluate the usefulness of selectors, the 320

method is to select a subset from a candidate dataset 321

through the selector and then fine-tune a model to 322

be the selectively enhanced model (SEM) based 323

on this subset to compare the performance with 324

the same model fine-tuned on full data (Baseline 325

model, BM) or other popular oracle LLMs. Table 1 326

shows the detailed evaluation setting, including the 327

choice of candidate datasets, counterpart models 328

used in the comparison, and evaluation metrics that 329

provide the performance. 330

Candidate Datasets. Most of the works (Li 331

et al., 2024a, 2023; Liu et al., 2023) use the pop- 332

ular open-sourced datasets as candidate datasets 333

to push forward better performance of fine-tuned 334

models by selecting higher-quality samples in them. 335

The candidate dataset is further divided into the typ- 336

ical group, including Alpaca, Dolly, FLAN, etc., 337

and the advanced group developed from the typ- 338

ical datasets to achieve higher quality, including 339

WizardLM, UltraChart, etc. 340

Counterpart Models. To objectively evaluate 341

the performance of the SEM, most works choose 342

BM as the counterpart model for comparison. They 343
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Method Candidate Datasets Evaluating SEMs Counterpart Models Evaluation Metrics
BM Others Wins-ties-losses Benchmark Scoring

AlpaGasus Alpaca LLaMA-2 7B ✔ ✔ Vicuna, Koala, WizardLM,
self-Instruct

InstructEval

Instruction-Mining ALPACA & OPEN ASSISTANT, STACK-
EXCHANGE & WIKIHOW

LLaMA 7B ✔ ✘ OPENORCA & DOLLY OPENLLM

InstructionGPT-4 MiniGPT-4 LLaMA-2 ✔ ✘ LLaVA-Bench MME, VQA, MM-Bench
IFD Alpaca & WizardLM LLaMA-2 7B ✔ ✘ Vicuna, Koala, WizardLM,

self-Instruct, LIMA
OPENLLM

Superfiltering Alpaca & Alpaca-GPT4 & WizardLM LLaMA-2 7B/13B ✔ ✘ WizardLM OPENLLM, AlpacaEval
Nugget Alpaca LLaMA-2 7B ✔ ✘ - MT-Bench, AlpacaEval
LESS FLAN V2 & CoT & DOLLY & OPEN

ASSISTANT 1
LLaMA2-13B; Mistral 7B ✔ ✘ - MMLU, TYDIQA, BBH

InsTag WizardLM & UltraChat & ShareGPT LLaMA-1/-2 ✘ ✔ - MT-Bench
DEITA Alpaca & DOLLY & Oassit & FLAN 2022

& WizardLM & UltraChat & ShareGPT
LLaMA-1/-2 13B; Mistral
7B

✘ ✔ - OPENLLM, MT-Bench

Table 1: The candidate dataset, SEMs, counterpart models, and evaluation metrics used in each method. Some
works, such as Instruction-Mining, use part of several datasets mentioned to form a candidate dataset. The "✔"
under BM means the work uses the same BM as the evaluating SEM.; under Other Models, it means the work uses
many models other than BM, including oracle LLM and other fine-tuned SEM; under wins-ties-losses, it means the
work uses various methods to evaluate wins-ties-losses, such as AlpacEval, and directly using GPT-4 .

tend to use the popular LLaMa series (Chen et al.,344

2024; Lu et al., 2023) as well as Mistral (Liu et al.,345

2023; Xia et al., 2024) models as backbones of the346

SEM and BM to obtain relative improvement evalu-347

ation, which directly shows the improvement effect348

of the selector. Other works (Xia et al., 2024; Chen349

et al., 2024) compare the SEM with SOTA mod-350

els (such as GPT-4, Claude, and LLaMA-Chat 7B)351

to obtain absolute improvement evaluation, which352

indicates how good SEM achieves.353

Evaluation Metrics. Similar to the counterpart354

models, the evaluation metric adopts the relative355

and absolute methods to comprehensively evaluate356

the selector. The absolute metric uses Wins-ties-357

losses pairing scored by GPT-4 to indicate the di-358

rect performance difference between the SEM and359

counterpart model, while the absolute metric uses360

benchmark scoring to directly score and rank the361

SEM. Benchmark scoring is separated into a tradi-362

tional group, which examines the loss of response363

on test tasks (such as MLU, TYDIQA, and Mosaic364

Eval Gauntle), and a group, which uses GPT-4 to365

score on various tasks, including MT-Bench, MM-366

Bench, AlpacaEval, and VicunaQA et al.367

6 Analysis of Data Selection Method368

To spot the common designs that lead to supe-369

rior performance, we analyze the efficiency and370

feasibility of the existing data selection methods,371

distinguishing the superior and inferior work. Effi-372

ciency is quantified to examine the selection com-373

petence filtering, which is measured based on the374

overall consideration of the performance of SEM375

and the data size (selected dataset fraction), while376

feasibility uses a qualitative method to evaluate the377

difficulty of implementation, which entails both378

simplicity and flexibility. 379

6.1 Efficiency of the Selector 380

We manage to compare the data selection com- 381

petence across different works by using efficiency, 382

which refers to the expectation of probability in 383

selecting the ground truth high-quality data at each 384

bet (Appendix A.1). 385

Performance Improvement Ratio. The compe- 386

tence is reflected in the performance of SEM, where 387

higher-quality data leads to a larger performance 388

improvement. Performance improvement is the ra- 389

tio of SEM’s performance to that of the counterpart 390

model, evaluated under various settings. Therefore, 391

we first classify the evaluation settings into four cat- 392

egories and use Equation 4 to calculate the overall 393

improvement rate for each category, and then fur- 394

ther unify the four categories into the one that is the 395

wins rate of SEM to BM which directly reflects the 396

improvement effect brought by the selected subset 397

(detailed information is in Appendix A.2). 398

Selected Dataset Fraction. However, the in- 399

crease in data size also improves the performance 400

(Kaplan et al., 2020). To evenly evaluate the im- 401

pact of data size between different works, we use 402

the selected dataset fraction, which refers to the 403

fraction of the selected subset to the entire dataset. 404

Though the size of the selected dataset is directly 405

provided in the works, it is abandoned because it 406

is heavily affected by the size of the entire dataset 407

varying from 3,439 (Wei et al., 2023) to 306,044 408

(Lu et al., 2023). 409

To acquire efficiency from performance improve- 410

ment, we further use the selected dataset fraction to 411

eliminate the impact of data size. Figure 3 reflects 412

the efficiency of the selected dataset fraction and 413
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performance improvement ratio. In addition, as414

there are many pairs of dataset fractions and perfor-415

mances in a work, the one that achieves the optimal416

performance is adopted.417

Figure 3: The comparison among popular data selec-
tion methods. The yellow line is the baseline based on
Instruction-Mining and InstructionGPT-4. The signed
distance between the method point and baseline is the
efficiency difference between methods and baselines.

From the position of work in Figure 3, IFD has418

the highest efficiency because it achieves a colos-419

sal performance improvement with a small size420

of data. By contrast, AlpaGasus, which uses the421

largest selected dataset fraction but achieves the422

lowest performance improvement ratio, is the least423

efficient. Besides these two works, the superiority424

and inferiority of other works are elusive. There-425

fore, we develop the efficiency curve assumption426

to make the rest of the works mutually comparable427

(details are in Appendix A.3).428

Under this assumption, the yellow dashed line429

represents the efficiency curve of Instruction-430

Mining and InstrucitonGPT-4, which is the baseline431

for separating the superior and inferior works. The432

grey area illustrates an infeasible area that every433

work has, where the efficiency of other work is434

incomparable (Appendix A.4). The red and green435

line, respectively indicates the superior and inferior436

efficiency of the work in comparison to the baseline,437

which is the signed distance between the baseline438

and the work, as calculated by the following:439

Effi =
Axi +Byi + C√

A2 +B2
(2)440

lbase : Ax+By + C = 0 (3)441

where (xi, yi) is the position of work i, and lbase442

is the mathematical expression of the baseline. We443

present the comparison efficiency of each work in 444

Figure 4, where the efficiency of DEITA is invisible 445

because it is in the infeasible area of InsTag. We 446

consider DEITA to be better than InsTag because it 447

refines the method InsTag used. 448

Figure 4: The comparison efficiency of each work rela-
tive to Instruction-Mining and InstructionGPT-4.

Figure 4 shows that the SEM-specific work ex- 449

empted from indirect preference tends to achieve 450

high efficiency. All the superior works use the BM 451

LLM loss to measure the quality according to SEM 452

preference instead of human or Oracle LLM pref- 453

erence, while the three least efficient works use the 454

Oracle LLM score. Specifically, IFD achieves the 455

highest efficiency by leveraging internal informa- 456

tion, which is independent of all outer preferences 457

and biases. LESS is far worse because it resorts to 458

leveraging external information, which introduces 459

human preferences. AlpaGasus is the worst be- 460

cause it solely relies on Oracle LLM to generate 461

quality scores, whose preference deviates far from 462

the SEM. 463

6.2 Feasibility of the Selector 464

Superior work should not only have high effi- 465

ciency but also high feasibility. Feasibility employs 466

the simplicity and the flexibility of the selector to 467

respectively assess its implementation difficulty 468

and competence in handling new selection tasks. 469

We develop the feasibility rank of each work in 470

Table 2, based on the consideration of these two 471

aspects. 472

Simplicity. We evaluate the simplicity of 473

method from its cost of implementation and re- 474

producibility. The cost of implementing a method 475

focuses on the training and inference cost of model, 476
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Methods Feasibility Rank Simplicity Flexibility
AlpaGasus 1 1 1
InsTag 2 3 1
Nugget 2 2 2
IFD 3 4 4
Superfilter 3 4 4
LESS 3 4 4
DEITA 4 6 3
Instruction-Mining 4 7 2
InstructionGPT-4 5 5 5

Table 2: The feasibility rank, and the corresponding
simplicity and flexibility rank of each work. A smaller
number indicates the work does better.

as the algorithm cost is so much smaller that it477

can be neglected. The cost of implementation con-478

siders the number of time involves model training479

and inference, and the actual number of models be-480

ing trained. The reproducibility considers whether481

the implementation details is provided and code482

is open-sourced. Table 4 in Appendix A.5 shows483

the simplicity rank and the above considerations484

of each work. Specifically, the work uses oracle485

LLM score as quality measurement is with high486

simplicity, where AlpaGasus is the simpliest, who487

involves 1 time of model inference.488

Flexibility. Flexibility evaluates the extensibil-489

ity and transferability of the selector. Extensibility490

examines the flexibility of reforming the model491

used in the selector, and transferability considers492

whether the work is dataset-independent or model-493

independent when dealing with migration tasks.494

Table 5 in Appendix A.5 shows the flexibility rank495

and the two considerations of each work, which496

are respectively derived from two questions: (1)497

Whether substitute the SOTA model used in the498

selector into open-sourced model defunct the se-499

lector; (2). Whether the model used in the selector500

needs to be retrained to maintain the optimal effi-501

ciency in handling new candidate datasets or SEM.502

Specifically, all the works that rely on oracle LLM503

to acquire quality scores are model inextensible,504

while six works using PLM loss are model depen-505

dent(Li et al., 2024b; Xia et al., 2024; Wei et al.,506

2023; Cao et al., 2023; Li et al., 2023).507

6.3 Overall Consideration of the Selector508

According to the overall performance of the509

works on efficiency and feasibility, we find out510

that: (1) The model-specific method achieves high511

efficiency without cost of feasibility; (2) Complex512

method can improve the efficiency, if it is delib-513

erately designed to avoid the negative effect on514

model-specification, but it is always accompanied515

with the feasibility loss. 516

Specifically, We divide the works into a group 517

using oracle LLM score (Li et al., 2023, 2024a; Xia 518

et al., 2024; Cao et al., 2023; Wei et al., 2023; Li 519

et al., 2024b) and a group using PFM loss (Lu et al., 520

2023; Chen et al., 2024; Liu et al., 2023), based on 521

the different choice of data quality measurement. 522

The PFM loss is model-specific which examine 523

the loss of PFM generated by data, while orcale 524

LLM score is human-basic which leverages oracle 525

LLM to imitate human scoring. The work in PFM 526

loss group is always more efficient than the work 527

in another group With the same feasibility rank, 528

indicating that PFM loss is superior to oracle LLM 529

score. 530

Moreover, these two groups have opposite re- 531

lationship between efficiency and feasibility. The 532

work using oracle LLm score has a trade-off rela- 533

tionship between these two aspects. AlpaGasus has 534

the worst efficiency but highest feasibility, while 535

DEITA and InsTag sacrifice feasibility to achieve 536

better efficiency by using more complex methods. 537

By contrast, in the group of BM LLM loss, the 538

one with high efficiency typically has low feasibil- 539

ity. Among these works, IFD manages to achieve 540

both high efficiency and feasibility, because it only 541

resorts to the internal information without introduc- 542

ing redundant element during filtering. LESS, who 543

leverages on an outer dataset to filter data, does 544

worse on both aspects. The simple work tends to 545

achieve high efficiency, because they are direct who 546

truncate the irrelevant and detrimental information 547

from data selection. The result shows that the com- 548

plex method may be beneficial or detrimental to 549

the efficiency, which depends on its impact on the 550

directness of method. 551

7 Discussions 552

7.1 Trend 553

Figure 5 shows the trend of data selector. To 554

achieve superior overall performance, the data se- 555

lector becomes more model-specific which reflects 556

on the goal designation and the choice of quality 557

approximation method. Specifically, the goal is 558

changed from selector motivation to task motiva- 559

tion. The early works aim to develop the selector 560

with high transferability to handle any data selec- 561

tion task (Cao et al., 2023; Wei et al., 2023; Chen 562

et al., 2024), while the later works focus on improv- 563

ing the performance of SEM of the specific task 564

(Li et al., 2023; Xia et al., 2024). 565
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Figure 5: The timeline of the data selection methods.

The approximation method uses an explanation566

metric to predict the approximation object, which567

refers to the data quality label generated by the568

quality measurement. The quality measurement de-569

veloped from relying on external oracle LLM score570

(Chen et al., 2024) to internal PFM loss (Xia et al.,571

2024) becomes more direct to the PFM, while the572

explanation metric becomes more complex from573

using concrete indicator to abstract indicator, and574

from using single to multiple indicators. The early575

works tend to use explicit indicators such as quality576

score and diversity, which introduce semantic fac-577

tors to explain data quality, while the later works578

use abstract indicators developed from the PFM579

loss to reflect the data quality. On the other hand,580

the number of explicit indicators used in the se-581

lector increases. DEITA and InsTag employ more582

explicit indicators than AlpaGasus, which solely583

relies on quality scores from oracle LLM as qual-584

ity indicators. Specifically, data diversity as the585

explicit indicator can largely improve the overall586

performance. DEITA and InsTag achieve far better587

overall performance than AlpaGasus because they588

take diversity into consideration.589

7.2 Challenges590

Through the above review and analysis, although591

there has been significant progress in data selection592

for fine-tuning LLMs, there are still three chal-593

lenges.594

(1) Lack of unified and efficient metrics for595

high-quality data. The existing data selection596

methods still have a vague definition of high quality.597

Although some methods consider explainable lin-598

guistic features or the complexity of data as well as599

the diversity of sampling, most of them focus on im-600

proving the performance of the model, that is, sam-601

ples that can improve model performance are high-602

quality samples. Interestingly, recent work (Bai603

et al., 2024) has shown that some seemingly low-604

quality datasets considering their data sources also605

have improvement effects on LLM fine-tuning. Our 606

analysis has shown that different methods have 607

their own strengths, and the main challenge is to 608

organically combine their advantages to build a 609

unified and efficient data selection method for fine- 610

tuning. 611

(2) Lack of data selection methods for specific 612

domains. Most data selection methods focus on 613

overall performance improvement, but the contri- 614

bution of selected data to different domains is not 615

the same. The existing works (Cao et al., 2023; 616

Wei et al., 2023; Chen et al., 2024; Lu et al., 2023; 617

Li et al., 2024b) demonstrated that selected data 618

can bring significant improvements in writing and 619

role-playing but minor improvements in mathemat- 620

ics and reasoning. Therefore, future work needs to 621

consider how to dynamically select data based on 622

the shortcomings of the model in a specific domain 623

to compensate for its performance. 624

(3) Lack of data selection methods for muti- 625

turn conversations. Most existing data selection 626

methods are aimed at single-turn conversations be- 627

cause their quality is easier to measure but lacks 628

attention to multi-turn conversation data. Although 629

current work (Lu et al., 2023; Li et al., 2024b; Liu 630

et al., 2023) evaluates models in static multi-turn 631

conversation scenarios such as MT-Bench, there is 632

a lack of suitable metrics for measuring multi-turn 633

conversation data quality for data selection. 634

8 Conclusion 635

In this paper, we conducted an extensive sur- 636

vey on data selection for fine-tuning large-scale 637

language models. We first construct a three-stage 638

data selection scheme for the entire process and 639

review the current research progress of data se- 640

lection based on it, including data preprocessing, 641

data selector construction, and data selector evalua- 642

tion. To address the issue of incompatibility caused 643

by different experimental settings, we propose a 644

quantitative evaluation based on the assumption 645

of efficiency curves to compare the existing work. 646

We also qualitatively analyzed the feasibility of ex- 647

isting work, including implementation costs and 648

reproducibility. We find that the model-specific 649

work achieves high efficiency, whereas complex 650

method can improve the efficiency if it is delib- 651

erately designed to avoid the negative effect on 652

model-specification, but it is always accompanied 653

by feasibility loss. We have summarized the exist- 654

ing trends and provided insights for future research. 655
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Limitation656

(1) In analyzing the efficiency of the selector,657

the two assumptions are proposed to make the effi-658

ciency of the method comparable. Because of the659

lack of information on the efficiency curve of the660

method, we use distance to demonstrate the effi-661

ciency of the methods, which generates the prob-662

lem of infeasible area. Following the increase of663

work included in a comparable group, the infeasi-664

ble area enlarges, which limits the number of works665

in the group.666

(2) This paper mainly focuses on data selec-667

tion for instruction fine-tuning LLMs instead of668

data rewriting or enhancement. Although we have669

already comprehensively examined the existing670

works, there may still be some works we neglected.671
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A Appendix808

A.1 Efficiency and High Quality Dataset809

Efficiency Definition The efficiency of work810

is the expectation of probability in selecting the811

ground truth high quality data at each bet, which is812

derived from the consideration on the quality struc-813

ture of the selected subset. The quality structure814

refers to the proportion of high quality data to the815

size of dataset.816

×

Data 

Selector 2

Data 

Selector 1

More 

Efficient
More 

Efficient

Impact of 

Data Size

Efficiency Definition

High quality

Low quality

Causes of Performance Improvement

×Less 

Efficient

PLM

PLM

Fine-Tuning

Figure 6: The left figure indicates the definition of effi-
ciency is related to the quality distribution of selected
subset. The right figure shows that the performance im-
provement of the corresponding fine-tuned PLM comes
from both a better quality distribution and a larger data
size

In Figure 6, data selector 1 and 2 selects two 817

subsets with different quality structure from a can- 818

didate set. Subset 1 has better quality structure than 819

subset 2, because data selector 1 has higher proba- 820

bility in selecting the high quality data at each bet, 821

whose expectation is the proportion of high quality 822

data to the size of subset. 823

Causes of Performance Improvement The 824

quality of dataset decides the performance of PLM 825

who is fine-tuned on it(Zhou et al., 2023). How- 826

ever, the performance also increases following the 827

increase of data size, if the augmented data set has 828

the same quality distribution with the original one 829

(Chung et al., 2022). 830

A.2 Performance Improvement Ratio 831

Table 3 shows the performance improvement 832

developed from the original performance values 833

under 4 kinds of evaluation setting which we con- 834

clude and extract from the primitive article. Wins 835

rate and benchmark improvement is repectively de- 836

veloped from the wine-ties-losses and benchmark 837

scoring using the formula: 838

1

n

n∑
i=0

Xi

Yi
(4) 839

where n is the total number of the evaluation 840

settings using the same counterpart model with 841

different evaluation metrics or candidate datasets, 842

Xi and Yi is respectively the score of the SEM and 843

the counterpart model under the same evaluation 844

setting i. 845

Then, the SEM Wins rate under Same Counter- 846

part Model is chosen as the unified performance 847

improvement ratio. Missing value is calculated by 848

10

https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
http://arxiv.org/abs/2308.12067
http://arxiv.org/abs/2308.12067
http://arxiv.org/abs/2308.12067
http://arxiv.org/abs/2402.04333
http://arxiv.org/abs/2402.04333
http://arxiv.org/abs/2402.04333
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2022.emnlp-main.131
https://doi.org/10.18653/v1/2022.emnlp-main.131
http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/2305.11206
http://arxiv.org/abs/2305.11206


Method Same Counterpart Model (BM) SEM Other Counterpart Models (LLaMA chat 7B/13B)
Wins Rate Benchmark Improvement Wins Rate Benchmark Improvement

AlpaGasus 1.284 0.949 LLaMA-2 7B - -
Superfiltering 1.475 0.962 LLaMA-2 7B - -
InsTag 1.344 - LLaMA 13B - 0.985
DEITA 1.467 - LLaMA-2 13B - 1.000
InstructionGPT-4 1.443 - MiniGPT-4 - -
Nuggets 1.519 - LLaMA-2 7B - -
IFD 1.747 - LLaMA-2 7B - -
LESS - 0.973 LLaMA-2 13B - -
Instruction-Mining - - LLaMA-2 7B 0.212 0.991

Table 3: The table shows the performance improvement under four evaluation settings which we deliberately choose
and leverage on, to generate a unified performance improvement rate for each method. In the Other Counterpart
Models, the parameter size of LLaMA chat is chosen as the same as the SEM to offset the impact of model size.

leveraging on the other method that bridges the849

value from other evaluation settings to the unified850

performance improvement ratio.851

A.3 Assumption of Efficiency Curve852

Figure 7: The demonstration of potential efficiency
curve. The green, yellow, and red dashed lines rep-
resent the slopes of the methods at the same value of
fraction.

We develop these assumptions to construct the853

efficiency curve of the work. The work on the same854

theoretical efficiency curve has the same efficiency,855

where the performance is purely affected by the856

impact of data size:857

The first assumption. We assume for a dataset858

with fixed structure, its function of the performance859

improvement ratio and selected dataset fraction860

complys to the logrithem-like function which is861

upwarded, concaved, and approaching to linear862

after experiencing a rapid but short increasing.863

The second assumption. We assume for two864

methods with different efficiency, the function’s865

slope of the superior one is always larger than the866

inferior one in the whole feasible domain of the 867

selected dataset fraction which is between 0 and 1. 868

Figure 7 demonstrates the potential efficiency 869

curves of three works. As IFD is the most efficient 870

and AlpaGasus is the least efficiency, the slope of 871

IFD is larger than AlpaGasus at the same selected 872

dataset fraction. 873

For the first assumption, many articles suggest 874

that the impact of logarithm data size on the loss is 875

linear, if the augmented dataset maintains the same 876

quality structure (Kaplan et al., 2020; Sun et al., 877

2017; Moskovskaya et al., 2023). Assumption 1 878

extends this relationship to the pair of the perfor- 879

mance improvement ratio and selected dataset frac- 880

tion. Moreover, the statement of rapid but short 881

growth complies with the fact that the slope of 882

baseline (≈ 1.303) is far less than the slope (= 56) 883

between Instruction-Mining and the original point, 884

which implies a rapidly growth of performance at 885

early stage. 886

The second assumption can be intuitively de- 887

duced from the first assumption with the fact that 888

high quality data leads to better performance of 889

SEM (Zhou et al., 2023). Therefore, if the meth- 890

ods is superior which indicate its selected dataset 891

is with good structure, its increasing on the per- 892

formance improvement must be greater than the 893

inferior one at every point selected dataset fraction. 894

A.4 Infeasible Area 895

Because of a lack of information, each work 896

generates an infeasible area, which is in fact the 897

possible area of its efficiency curve. Therefore, if 898

other work is in the infeasible area, it is incompara- 899

ble with the work that generates this infeasible area. 900

The infeasible of the inferior work and superior 901

work is generated differently, where Figure 8 shows 902

respectively the by using LESS and InsTag. For 903

both superior and inferior works, the yellow bound- 904

ary of the infeasible area is parallel to the baseline. 905
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Figure 8: The demonstration of infeasible area. The
green line is the efficiency curve of InsTag, where the
dashed lines indicates its potential position.

For inferior work, the red boundary is horizontal906

because it cannot perform worse with a larger data907

size; For superior work, the red boundary is the line908

between the work and Instruction-Mining because909

the efficiency curve will never penetrate each other910

under the assumption.911

A.5 Detailed Information of Feasibility912

Table 4 shows the complexity rank and the corre-913

sponding considerations in structure difficulty and914

cost of running. Table 5 shows the flexibility rank915

and the corresponding considerations of each work.916
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Data Selection Method Cost of Implementation Reproducibility Complexity Rank
# Times involves Model Training # Times involves Model Inference # Models Being Trained Implementation Details Code Open Sourced

AlpaGasus 0 0 1 ✔ ✘ 1
Nuggets 0 2 0 ✔ ✔ 2
InsTag 0 2 0 ✔ ✘ 3
IFD 1 2 1 ✔ ✔ 4
Superfilter 1 2 1 ✔ ✔ 4
LESS 1 2 1 ✔ ✔ 4
InstructionGPT-4 1 3 1 ✔ ✔ 5
DEITA 2 3 1 ✔ ✔ 6
Instruction-Mining 1 0 129 ✔ ✘ 7

Table 4: The complexity rank and the corresponding considerations in structure difficulty and cost of running.

Method Extensiblility Transferability Flexibility Rank
Model Independent Dataset Independent Model Independent

InsTag ✘ ✔ ✔ 1
AlpaGasus ✘ ✔ ✔ 1
Nuggets ✔ ✔ ✘ 2
Instruction-Mining ✔ ✔ ✘ 2
DEITA ✘ ✘ ✔ 3
LESS ✔ ✘ ✘ 4
Superfiltering ✔ ✘ ✘ 4
IFD ✔ ✘ ✘ 4
InstructionGPT-4 ✘ ✘ ✘ 5

Table 5: The feaibility rank and the corresponding considerations. In the real practicing, the indicator under
Extensibility and Transferability has different priority. Therefore, we consider they contributes differently to the rank
of feasibility, if the work has the same number of ✔. The priority from the highest to lowest is: Model Independent
in Transferability, Dataset Independent, Model Independent in Extensibility.
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