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ABSTRACT

Contrastive learning has recently achieved remarkable success in many domains
including graphs. However contrastive loss, especially for graphs, requires a large
number of negative samples which is unscalable and computationally prohibitive
with a quadratic time complexity. Sub-sampling is not optimal. Incorrect neg-
ative sampling leads to sampling bias. In this work, we propose a meta-node
based approximation technique that can (a) proxy all negative combinations (b)
in quadratic cluster size time complexity, (c) at graph level, not node level, and
(d) exploit graph sparsity. By replacing node-pairs with additive cluster-pairs,
we compute the negatives in cluster-time at graph level. The resulting Proxy ap-
proximated meta-node Contrastive (PamC) loss, based on simple optimized GPU
operations, captures the full set of negatives, yet is efficient with a linear time
complexity. By avoiding sampling, we effectively eliminate sample bias. We meet
the criterion for larger number of samples, thus achieving block-contrastiveness,
which is proven to outperform pair-wise losses. We use learnt soft cluster assign-
ments for the meta-node construction, and avoid possible heterophily and noise
added during edge creation. Theoretically, we show that real world graphs easily
satisfy conditions necessary for our approximation. Empirically, we show promis-
ing accuracy gains over state-of-the-art graph clustering on 6 benchmarks. Impor-
tantly, we gain substantially in efficiency; up to 2x in training time and over 5x in
GPU memory reduction. The code is publicly available.

1 INTRODUCTION

Discriminative approaches based on contrastive learning has been outstandingly successful in prac-
tice (Guo et al., 2017; Wang & Isola, 2020), achieving state-of-the-art results (Chen et al., 2020a)
or at times outperforming even supervised learning (Logeswaran & Lee, 2018; Chen et al., 2020b).
Specifically in graph clustering, contrastive learning can outperform traditional convolution and
attention-based Graph Neural Networks (GNN) on speed and accuracy (Kulatilleke et al., 2022).

While traditional objective functions encourage similar nodes to be closer in embedding space, their
penalties do not guarantee separation of unrelated graph nodes (Zhu et al., 2021a). Differently, many
modern graph embedding models (Hamilton et al., 2017; Kulatilleke et al., 2022), use contrastive
objectives. These encourage representation of positive pairs to be similar, while making features
of the negatives apart in embedding space (Wang & Isola, 2020). A typical deep model consists
of a trainable encoder that generates positive and negative node embedding for the contrastive loss
(Zhu et al., 2021a). It has been shown that convolution is computationally expensive and may not be
necessary for representation learning (Chen et al., 2020a). As the requirement for contrastive loss
is simply an encoder, recently researchers have been able to produce state-of-the-art results using
simpler and more efficient MLP based contrastive loss implementations (Hu et al., 2021; Kulatilleke
et al., 2022). Thus, there is a rapidly expanding interest and scope for contrastive loss based models.

We consider the following specific but popular (Hu et al., 2021; Kulatilleke et al., 2022) form of
contrastive loss where τ is the temperature parameter, γij is the relationship between nodes i, j and
the loss for the ith node is:

ℓi = − log

∑B
j=1 1[j ̸=i]γij · exp (sim (zi, zj) · τ)∑B

k=1 1[k ̸=i] exp (sim (zi, zk) · τ)
, (1)
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When no labels are present, sampling of positive and negative nodes plays a crucial role (Kipf &
Welling, 2016) and is a key implementation detail in contrastive methods (Velickovic et al., 2019).
Positive samples in graphs are typically connected by edges (Kulatilleke et al., 2021), similar to
words in a sentence in language modelling (Logeswaran & Lee, 2018). Often data augmentation is
used to generate positive samples; Chen et al. (2020b) used crop, coloring, blurring. However, it is
harder to obtain negative samples. With no access to labels, negative counterparts are typically ob-
tained via uniform sampling (Park et al., 2022), via synthesizing/augmenting (Chen et al., 2020b) or
adding noise. Also, in graphs, adjacency information can be exploited to derive negatives (Hu et al.,
2021; Kulatilleke et al., 2022) for feature contrastion. However, while graphs particularly suited for
contrastive learning, to be effective, a large number of negative samples must be used (Wang & Isola,
2020) (e.g., 65536 in He et al. (2020)), along with larger batch sizes and longer training compared to
its supervised counterparts (Chen et al., 2020b). Prior work has used data augmentation-based con-
trastive methods Zhu et al. (2020; 2021b), negative samples using asymmetric structures Thakoor
et al. (2021) or avoided negative samples altogether via feature-level decorrelation Zhang et al.
(2021b). While Thakoor et al. (2021); Zhang et al. (2021b) address complexity and scalability, as
seen in Appendix Table 4, their performance can be further improved.

Unlike other domains, such as vision, negative sample generation brings only limited benefits to
graphs (Chuang et al., 2020; Zhu et al., 2021a). To understand this phenomenon, observe the raw
embedding of USPS image dataset, in the top row of Figure 7 which looks already clustered. A direct
consequence of this is that graphs are more susceptible to sampling bias (Chuang et al., 2020; Zhu
et al., 2021a). Thus, graph contrastive learning approaches suffer from insufficient negatives and the
complex task of sample generation in addition to O(N2) time complexity required to contrast every
negative node.

However, what contrastive loss exactly does remain largely a mystery (Wang & Isola, 2020). For
example, Arora et al. (2019)’s analysis based on the assumption of latent classes provides good
theoretical insights, yet their explanation on representation quality dropping with large number of
negatives is inconsistent with experimental findings (Chen et al., 2020b). Contrastive loss is seen as
maximizing mutual information (MI) between two views. Yet, contradictorily, tighter bound on MI
can lead to poor representations (Wang & Isola, 2020).

Motivation: Prior work has approximated the task in order to approximate the loss. SwAV (Caron
et al., 2020) learns to predict a node prototype code of an augmented view from the other view.
GRCCA (Zhang et al., 2021a) maps augmented graphs to prototypes using k-means for alignment.
PCL (Li et al., 2020) assigns several prototypes of different granularity to an image enforcing its
representation to be more similar to its corresponding prototype. However, all these works use some
form of data augmentation which assumes that the task-relevant information is not significantly
altered and require computationally expensive operations.

Wang & Isola (2020) identifies alignment and uniformity as key properties of contrastive loss: align-
ment encourages encoders to assign similar features to similar samples; uniformity encourages a
feature distribution that preserves maximal information. It is fair to assume that latent clusters are
dissimilar. Even with the rare possibility of two identical cluster centers initially, one will usually
change or drift apart. It is intuitive that cluster centers should be uniformly distributed in the hyper-
space, similar to nodes, in order to preserve as much information of the data as possible. Uniformly
distributing points on a hyperspace is defined as minimizing the total pairwise potential w.r.t. a
certain kernel function and is well-studied (Wang & Isola, 2020).

Thus, we are naturally motivated to use the cluster centers as meta-nodes for negative contrastion.
By aggregation, all its constituent nodes cab be affected. Thus, we avoid sampling, effectively
eliminate sample bias, and also meet the criterion of larger number of samples. Learned soft cluster
assignments can avoid possible heterophily and add robustness to noise in edge construction.

In this work, we propose a novel contrastive loss, PamC, which uses paramaterless proxy meta-
nods to approximate negative samples. Our approach indirectly uses the full set of negative samples
and yet is efficient with a time complexity of O(N). Not only does PamCGC, based on PamC,
outperform or match previous work, but it is also simpler than any prior negative sample generation
approach, faster and uses relatively less GPU memory. It can be incorporated to any contrastive
learning-based clustering model with minimal modifications, and works with diverse data, as we
demonstrate using benchmark datasets from image, text and graph modalities.
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Figure 1: PamCGC jointly learns structure and clustering via probabilistic soft assignment which
is used to derive the real cluster centers µ̂, used as proxy for negative samples. Grey dotted sec-
tion outlines the training components. Cluster centroids µ are obtained by pre-training an AE for
reconstruction. Red dotted section is our core contribution: we use µ̂ as an efficient approximation,
computing centroid-pairs instead of node-pairs, achieve block-contrastivness and do so at graph
level, not instance level.

To summarize, our main contributions are:

• We introduce an efficient novel parameter-free proxy, PamC, for negative sample approxi-
mation that is scalable, computationally efficient and able to include all samples. It works
with diverse data, including graphs. We claim PamC is the first to implicitly use the whole
graph with O(N) time complexity, in addition to further 3-fold gains.

• We provide theoretical proof and show that real world graphs always satisfies the necessary
conditions, and that PamCGC is block-contrastive, known to outperform pair-wise losses.

• Extensive experiments on 6 benchmark datasets show PamCGC, using proposed PamC,
is on par with or better than state-of-the-art graph clustering methods in accuracy while
achieving 2x training time and 5x GPU memory efficiency.

2 IMPLEMENTATION

First we describe PamC, which is our parameter-free proxy to efficiently approximate the negative
samples, as shown in Figure 1. Next, we introduce PamCGC, a self-supervised model based on
PamC to simultaneously learn discriminative embeddings and clusters.

2.1 NEGATIVE SAMPLE APPROXIMATION BY META-NODE PROXIES

Contrastive loss makes positive or connected nodes closer and negative or unconnected nodes further
away in the feature space (Kulatilleke et al., 2022). However, in order to be effective, all negative
nodes need to be contrasted with xi which is computationally expensive. A cluster center is formed
by combining all member nodes, and can be seen as an aggregated representation, or a proxy, of
its compositional elements. Motivated by this, we use the cluster centers to enforce negative con-
trastion. Specifically, we contrast every cluster center µ̂i with every cluster center µ̂j where i ̸= j.
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Following Arora et al. (2019); Chuang et al. (2020), we assume an underlying set of discrete latent
classes C which represents semantic content, i.e., similar nodes xi, xj are in the same latent class µ̂.
Thus, we derive our proxy for negative samples as:

ℓproxy = log

C∑
a=1

C∑
b=1

1[a ̸=b] exp (sim (µ̂a, µ̂b) · τ), (2)

Note that, ℓproxy contains no i or j terms! resulting in three fold gains. Firstly, we replace
∑N

i=1,
with a more efficient

∑C
a=1 where N ≫ C, typically many magnitudes, in almost all datasets, as

evident from Table 1. Secondly, the ℓproxy is at graph level with time complexity of O(N) rather
than an instance level O(N2). Finally, given real world graphs (especially larger graphs,) are sparse,
a sparse implantation for the positives, using edge-lists, will result in a third efficiency gain, which
is only possible by not having to operate on the negatives explicitly.

Note that a prerequisite of the proxy approximation is the availability of labels to construct the
learned cluster centers µ̂, which we explain in the next section. Thus, the complete graph level
contrastive loss can be expressed as:

ℓPcontrast = − 1

N

N∑
i=1

log

N∑
j=1

1[j ̸=i]γij exp (sim (zi, zj) · τ) + ℓproxy, (3)

Theoretical explanation. The standard contrastive loss uses Jensen-Shannon divergence, which
yields log 2 constant and vanishing gradients for disjoint distributions of positive and negative sam-
pled pairs (Zhu et al., 2021a). However, in the proposed method, positive pairs are necessarily
edge-linked (either explicitly or via influence (Kulatilleke et al., 2022)), and unlikely to be disjoint.
Using meta-nodes for negatives, which are compositions of multiple nodes, lowers the possibility
of disjointness. An algorithm using the average of the positive and negative samples in blocks as a
proxy instead of just one point has a strictly better bound due to Jensen’s inequality getting tighter
and is superior compared to their equivalent of element-wise contrastive counterparts (Arora et al.,
2019). The computational and time cost is a direct consequence of node level contrastion. Given,
N ≫ clusters, we circumvent the problem of large N by proposing a proxy-ed negative contrastive
objective that operates directly at the cluster level.

Establishing mathematical guarantee: Assume node embeddings Z = {z1, z2, z3 . . . zN}, clusters
µ = {µ1, µ2 . . . µC}, a label assignment operator label(zi) such that µa =

∑N
i=1 1[i∈label(zi)=a] ·zi,

a temperature hyperparameter τ and,

similarity(i, j, zi, zj) = sim(zi, zj)

{
0, i = j

zi·zj
∥zi∥∥zj∥ , i ̸= j

(4)

Using sim(zi, zj) as the shorthand notation for similarity(i, j, zi, zj), the classic contrastive loss is:

lossNN =
1

N

N∑
i=1

log

 N∑
j=1

exp(sim(i, j, zi, zj)τ)

 , (5)

Similarly, we can express the cluster based contrastive loss as:

lossCC =
1

C

C∑
a=1

log

[
M∑
b=1

exp(sim(a, b, µa, µb)τ)

]
(6)

As 0 ≤ sim ≤ 1.0, we establish the condition for our inequality as;

lossNN

lossCC
>

log(N)

log [1 + (C − 1)eτ ]
(7)

We provide the full derivation in Appendix A.1.
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Figure 2: Nodes N vs Clusters C with different τ temperature values. Grey surface shows the
ratio = 1.0 inequality boundary. Generally, real world graphs satisfy the condition ratio > 1.0
easily. Best viewed in color.

As C > 1 (minimum 2 are needed for a cluster), and log(x) : x > 0 is strictly increasing, N >
1 + (C − 1)eτ is the necessary condition, which is easily satisfied for nearly all real world datasets
and as seen in Figure 2 for multiple τ temperatures.

Thus, as lossNN > lossCC , lossNN upper bounds lossCC , the more efficient variant. Additionally
lossCC benefits from block-contrastiveness (Arora et al., 2019), achieves a lower minima and uses
the fullest possible negative information. We also show, experimentally, that minimizing lossCC

results in effective, and sometimes better, representations for downstream tasks.

2.2 CONSTRUCTING THE META-NODE CLUSTER CENTERS (µ̂)

In order to derive the real cluster centers µ̂, which is distinct from the learnt cluster centers µ, we
simply aggregate all the node embedding z of a cluster using its label. Even with unlabeled data,
label() can be accomplished using predicted soft labels. The intuition here is that, during back-
propagation, the optimization process will update the constituent node embeddings, z, to incorporate
negative distancing. Thus,

µ̂c =
1

N

N∑
i=1

1[i∈label(c)]zi, (8)

where label(c) is either the ground-truth or learnt soft labels. Accordingly, our proxy can equally
be used in supervised and unsupervised scenarios and has a wider general applicability as an im-
provement of the contrastive loss at large. Finlay, Equation 8 can be realized with softmax() and
mean() operations, which are well optimized GPU primitives in any machine learning framework.
We provide a reference pytorch implementation.

2.3 OBTAINING THE SOFT LABELS

Graph clustering is essentially unsupervised. To this end, following Xie et al. (2016); Guo et al.
(2017); Wang et al. (2019); Kulatilleke et al. (2022), we use probability distribution derived soft-
labels and a self-supervision mechanism for cluster enhancement. Specifically, we obtain soft cluster
assignments probabilities qiu for embedding zi and cluster center µu. In order to handle differ-
ently scaled clusters and be computationally convenient (Wang et al., 2019), we use the student’s
t-distribution (Maaten & Hinton, 2008) as a kernel for the similarity measurement between the em-
bedding and centroid:

qiu =
(1 + ∥zi − µu∥2 /η)−

η+1
2∑

u′(1 + ∥zi − µu′∥2 /η)− η+1
2

, (9)

where, η is the Student’s t-distribution’s degree of freedom. Cluster centers µ are initialized by
K-means on embeddings from the pre-trained AE. We use Q = [qiu] as the distribution of the
cluster assignments of all samples, and η=1 for all experiments following Bo et al. (2020); Peng
et al. (2021); Kulatilleke et al. (2022)
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Table 1: Statistics of the datasets (left) and PamCGC hyperparameters (right).

Dataset Type Nodes Classes dimension α β K τ LR

USPS Image 9298 10 256 2 2 4 0.5 10−3

HHAR Record 10299 6 561 0.5 12.5 2 1.5 10−3

REUT Text 10000 4 2000 1 0.2 1 0.25 10−4

ACM Graph 3025 3 1870 0.5 0.5 1 0.5 10−3

CITE Graph 3327 6 3703 2 2 1 1 10−3

DBLP Graph 4057 4 334 2 2.5 3 0.5 10−3

Nodes closer in embedding space to a cluster center has higher soft assignment probabilities in
Q. A target distribution P that emphasizes the confident assignments is obtained by squaring and
normalizing Q, given by :

piu =
q2iu/

∑
i qiu∑

k (q
2
ik/

∑
i qik)

, (10)

where
∑

i qiu is the soft cluster frequency of centroid u.

Following Kulatilleke et al. (2022), we minimize the KL divergence between Q and P distributions,
which forces the current distribution Q to approach the more confident target distribution P . KL
divergence updates models more gently and lessens severe disturbances on the embeddings (Bo
et al., 2020). Further, it can accommodate both the structural and feature optimization targets of
PamCGC. We self-supervise cluster assignments 1 by using distribution Q to target distribution P ,
which then supervises the distribution Q in turn by minimizing the KL divergence as:

losscluster = KL(P ||Q) =
∑
i

∑
u

piulog
piu
qiu

, (11)

The final proposed model, after incorporating PamC contrastive objective with self-supervised
clustering, where α > 0 controls structure incorporation and β > 0 controls cluster optimization is:

PamCGC : Lfinal = αℓPcontrast(K, τ) + βlosscluster, (12)

2.4 COMPLEXITY ANALYSIS

Given input data dimension d and AE layer dimensions of d1, d2, · · · , dL, following Kulatilleke
et al. (2022), OAE = O(Nd2d21...d

2
L/2) for PamCGC-AE. Assuming K clusters, from Equation 9,

the time complexity is Ocluster = O(NK +N logN) following Xie et al. (2016).

For PamC, we only compute ∥z∥22 and zi · zj for the actual positive edges E using sparse matrix
resulting in a time complexity O+ = O(NEdz), linear with the number of edges E, with dz
embedding dimension. For the negatives, we use the meta-node based negatives O− = O(CC)
where C is the meta-node. Note that, for real graphs, N ≫ C in many magnitudes. Thus, the
overall time complexity is linearly related to the number of samples and edges.

3 EXPERIMENTS

We evaluate PamCGC on transductive node clustering comparing to state-of-the-art self-supervised,
contrastive and (semi-)supervised methods.

Datasets. Following Bo et al. (2020); Peng et al. (2021); Kulatilleke et al. (2022), experiments are
conducted on six common clustering benchmarks, which includes one image dataset (USPS (Le Cun
et al., 1990)), one sensor data dataset (HHAR (Stisen et al., 2015)), one text dataset (REUT (Lewis
et al., 2004)) and three citation graphs (ACM2, CITE4, and DBLP3). For the non-graph data, we use

1We follow Bo et al. (2020) use of the term ’self-supervised’ to be consistent with the GCN training method.
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undirected k-nearest neighbour (KNN (Altman, 1992)) to generate adjacency matrix A following
Bo et al. (2020); Peng et al. (2021). Table 1 summarizes the datasets.

Baseline Methods. We compare with multiple models. K-means (Hartigan & Wong, 1979) is a
classical clustering method using raw data. AE (Hinton & Salakhutdinov, 2006) applies K-means
to deep representations learned by an auto-encoder. DEC (Xie et al., 2016) clusters data in a jointly
optimized feature space. IDEC (Guo et al., 2017) enhances DEC by adding KL divergence-based
reconstruction loss. Following models exploit graph structures during clustering: SVD (Golub &
Reinsch, 1971) applies singular value decomposition to the adjacency matrix. DGI (Velickovic
et al., 2019) learns embeddings by maximizing node MI with the graph. GAE (Kipf & Welling,
2016) combines convolution with the AE. ARGA (Pan et al., 2018) uses an adversarial regularizer
to guide the embeddings learning. Following deep graph clustering jointly optimize embeddings
and graph clustering: DAEGC (Wang et al., 2019), uses an attentional neighbor-wise strategy and
clustering loss. SDCN (Bo et al., 2020), couples DEC and GCN via a fixed delivery operator and
uses feature reconstruction. AGCN (Peng et al., 2021), extends SDCN by adding an attention-based
delivery operator and uses multi scale information for cluster prediction. CGC (Park et al., 2022)
uses a multi-level, hierarchy based contrastive loss. SCGC and SCGC* (Kulatilleke et al., 2022)
uses block contrastive loss with an AE and MLP respectively. The only difference between SCGC*
and PamCGC is the novel PamC loss, Also as SCGC* is the current state-of-the-art. Thus, it is used
as the benchmark.

Evaluation Metrics. Following Bo et al. (2020); Peng et al. (2021), we use Accuracy (ACC),
Normalized Mutual Information (NMI), Average Rand Index (ARI), and macro F1-score (F1) for
evaluation. For each, larger values imply better clustering.

3.1 IMPLEMENTATION

The positive component of our loss only requires the actual connections and can be efficiently rep-
resented by sparse matrices. Further, the negative component of the loss is graph-based, and not
instance based, thus needs to be computed only once per epoch. Thus, by decoupling the negatives,
our loss is inherently capable of batching and is trivially parallelizable. Computation of the negative
proxy, which is only C · C does not even require a GPU!

For fair comparison, we use the same 500−500−2000−10 AE dimensions as in Guo et al. (2017);
Bo et al. (2020); Peng et al. (2021); Kulatilleke et al. (2022) and the same pre-training procedure, i.e.
30 epochs; learning rate of 10−3 for USPS, HHAR, ACM, DBLP and 10−4 for REUT and CITE;
batch size of 256. We made use of the publicly available pre-trained AE from Bo et al. (2020). We
use a once computed edge-list for training, which is not needed during inference. For training, for
each dataset, we initialize the cluster centers from K-means and repeat the experiments 10 times
with 200 epochs to prevent extreme cases. We cite published accuracy results from Bo et al. (2020);
Peng et al. (2021); Kulatilleke et al. (2022) for other models.

For all timing and memory experiments, we replicate the exact same training loops, including in-
ternal evaluation metric calls, when measuring performance for fair comparison. Our code will be
made publicly available.

3.2 RESULTS

We show our hyperparameters in Table 1. Comparison of results with state-of-the-art graph and
non-graph datasets are in Table 2 and Table 3, respectively. For the graph data, PamCGC is state-
of-the-art for DBLP. A paired-t test shows ACM and CITE results to be best for both SCGC* and
PamCGC. In non-graph results, PamCGC comes second best in USPS image data. While results for
HHAR are somewhat lagging, PamCGC is the best for REUT. Generally we achieve better results
on the natural graph datasets; ACM, DBLP and CITE, while being competitive on other modalities.
We present the qualitative results in Appendix A.4.

2http://dl.acm.org/
3https://dblp.uni-trier.de
4http://citeseerx.ist.psu.edu/index
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Table 2: Clustering performance the three graph datasets (mean±std). Best results are bold. Results
reproduced from Bo et al. (2020); Peng et al. (2021); Kulatilleke et al. (2022); Park et al. (2022).
SCGC (Kulatilleke et al., 2022) uses neighbor based contrastive loss with AE while SCGC* variant
uses r-hop cumulative Influence contrastive loss with MLP, same as our PamCGC

.

Method DBLP ACM CITE

ACC NMI ARI F1 ACC NMI ARI F1 ACC NMI ARI F1

K-means 38.7±0.7 11.5±0.4 7.0±0.4 31.9±0.3 67.3±0.7 32.4±0.5 30.6±0.7 67.6±0.7 39.3±3.2 16.9±3.2 13.4±3.0 36.1±3.5
AE 51.4±0.4 25.4±0.2 12.2±0.4 52.5±0.4 81.8±0.1 49.3±0.2 54.6±0.2 82.0±0.1 57.1±0.1 27.6±0.1 29.3±0.1 53.8±0.1
DEC 58.2±0.6 29.5±0.3 23.9±0.4 59.4±0.5 84.3±0.8 54.5±1.5 60.6±1.9 84.5±0.7 55.9±0.2 28.3±0.3 28.1±0.4 52.6±0.2
IDEC 60.3±0.6 31.2±0.5 25.4±0.6 61.3±0.6 85.1±0.5 56.6±1.2 62.2±1.5 85.1±0.5 60.5±1.4 27.2±2.4 25.7±2.7 61.6±1.4
SVD 29.3±0.4 0.1±0.0 0.0±0.1 13.3±2.2 39.9±5.8 3.8±4.3 3.1±4.2 30.1±8.2 24.1±1.2 5.7±1.5 0.1±0.3 11.4±1.7
DGI 32.5±2.4 3.7±1.8 1.7±0.9 29.3±3.3 88.0±1.1 63.0±1.9 67.7±2.5 88.0±1.0 64.1±1.3 38.8±1.2 38.1±1.9 60.4±0.9
GAE 61.2±1.2 30.8±0.9 22.0±1.4 61.4±2.2 84.5±1.4 55.4±1.9 59.5±3.1 84.7±1.3 61.4±0.8 34.6±0.7 33.6±1.2 57.4±0.8
VGAE 58.6±0.1 26.9±0.1 17.9±0.1 58.7±0.1 84.1±0.2 53.2±0.5 57.7±0.7 84.2±0.2 61.0±0.4 32.7±0.3 33.1±0.5 57.7±0.5
ARGA 61.6±1.0 26.8±1.0 22.7±0.3 61.8±0.9 86.1±1.2 55.7±1.4 62.9±2.1 86.1±1.2 56.9±0.7 34.5±0.8 33.4±1.5 54.8±0.8
DAEGC 62.1±0.5 32.5±0.5 21.0±0.5 61.8±0.7 86.9±2.8 56.2±4.2 59.4±3.9 87.1±2.8 64.5±1.4 36.4±0.9 37.8±1.2 62.2±1.3
CGC 77.6±0.5 46.1±0.6 49.7±1.1 77.2±0.4 92.3±0.3 72.9±0.7 78.4±0.6 92.3±0.3 69.6±0.6 44.6±0.6 46.0±0.6 65.5±0.7
SDCN 68.1±1.8 39.5±1.3 39.2±2.0 67.7±1.5 90.5±0.2 68.3±0.3 73.9±0.4 90.4±0.2 66.0±0.3 38.7±0.3 40.2±0.4 63.6±0.2
AGCN 73.3±0.4 39.7±0.4 42.5±0.3 72.8±0.6 90.6±0.2 68.4±0.5 74.2±0.4 90.6±0.2 68.8±0.2 41.5±0.3 43.8±0.3 62.4±0.2
SCGC 77.7±0.1 47.1±0.2 51.2±0.2 77.3±0.1 92.6±0.0 73.3±0.0 79.2±0.0 92.5±0.0 73.2±0.1 46.8±0.1 50.0±0.1 63.3±0.0
SCGC* 77.7±0.1 47.1±0.1 50.2±0.1 77.5±0.1 92.6±0.0 73.7±0.1 79.4±0.1 92.6±0.0 73.3±0.0 46.9±0.0 50.2±0.0 63.4±0.0
PamCGC 79.6±0.0 49.2±0.1 54.7±0.1 79.0±0.1 92.5±0.0 73.7±0.1 79.2±0.1 92.5±0.0 73.3±0.2 47.3±0.3 50.1±0.4 63.4±0.2

Table 3: Clustering performance the three non-graph datasets (mean±std). Best results are bold;
second best is underlined. Results reproduced from Bo et al. (2020); Peng et al. (2021); Kulatilleke
et al. (2022). SCGC (Kulatilleke et al., 2022) uses neighbour based contrastive loss with AE while
SCGC* variant uses r-hop cumulative Influence contrastive loss with MLP, same as our PamCGC

.
Dataset Metric K-means GAE VGAE DAEGC SDCN AGCN SCGC SCGC* PamCGC

USPS

ACC 66.82±0.04 63.10±0.33 56.19±0.72 73.55±0.40 78.08±0.19 80.98±0.28 82.90±0.08 84.91±0.06 84.20±0.24
NMI 62.63±0.05 60.69±0.58 51.08±0.37 71.12±0.24 79.51±0.27 79.64±0.32 82.51±0.07 84.16±0.10 80.32±0.38
ARI 54.55±0.06 50.30±0.55 40.96±0.59 63.33±0.34 71.84±0.24 73.61±0.43 76.48±0.11 79.50±0.06 77.75±0.56
F1 64.78±0.03 61.84±0.43 53.63±1.05 72.45±0.49 76.98±0.18 77.61±0.38 80.06±0.05 81.54±0.06 78.82±0.17

HHAR

ACC 59.98±0.02 62.33±1.01 71.30±0.36 76.51±2.19 84.26±0.17 88.11±0.43 89.49±0.22 89.36±0.16 84.94±1.09
NMI 58.86±0.01 55.06±1.39 62.95±0.36 69.10±2.28 79.90±0.09 82.44±0.62 84.24±0.29 84.50±0.41 79.54±0.65
ARI 46.09±0.02 42.63±1.63 51.47±0.73 60.38±2.15 72.84±0.09 77.07±0.66 79.28±0.28 79.11±0.18 72.57±1.20
F1 58.33±0.03 62.64±0.97 71.55±0.29 76.89±2.18 82.58±0.08 88.00±0.53 89.59±0.23 89.48±0.17 84.13±1.30

REUT

ACC 54.04±0.01 54.40±0.27 60.85±0.23 65.50±0.13 79.30±0.11 79.30±1.07 80.32±0.04 79.35±0.00 81.78±0.01
NMI 41.54±0.51 25.92±0.41 25.51±0.22 30.55±0.29 56.89±0.27 57.83±1.01 55.63±0.05 55.16±0.01 59.13±0.00
ARI 27.95±0.38 19.61±0.22 26.18±0.36 31.12±0.18 59.58±0.32 60.55±1.78 59.67±0.11 57.80±0.01 63.51±0.03
F1 41.28±2.43 43.53±0.42 57.14±0.17 61.82±0.13 66.15±0.15 66.16±0.64 63.66±0.03 66.54±0.01 69.48±0.03

3.3 PERFORMANCE

In Figure 3 we compare the GPU based training time and GPU memory. Our model times also
include the time taken for the cumulative influence computation. For all the datasets, PamCGC is
superior by 2.2x training time and 5.3x GPU memory savings. Especially, for larger datasets USPS,
HHAR and REUT, PamCGC uses 5.2,7.7,8.7x less GPU memory.

Additionally, we used CITE dataset (3327 nodes) to create synthetics nodes. For a scale factor n, as
contact nodes n times, along with edge-lists. Figure 3(right) shows the scaled edges and nodes for
scale factors 5, 10, 15 · · · 45 and the GPU memory and training time for 1 epoch on Google colab
T4 GPU with 16GB memory. Without PamC, scales over 5 is not possible due to running out of
memory. With PamC over x45 (150,000 nodes) is possible. GPU and memory increase is liner
confirming the theoretical time complexity. We used CITE as it is a very common dataset. We used
synthetic node creation to capture variation over node size. Appendix A.8 shows GPU time breakup.
Appendix A.6 shows the CITE dataset results with PamC when scaled from 1 . . . 20 in steps of 1.

3.4 ABLATION STUDY

To investigate PamCs ability to generalize to other models, we incorporate it to SDCN and AGCN
models, modified for contrastive loss. Figure 4 shows the GPU training time and accuracy. As
PamC is a loss function, there is no difference in the inference times. As expected, training times
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Figure 3: GPU performance from the pytorch profiler on Google Colab with T4 16Gb GPU.
left:training time for 200 epochs. center:memory utilization per epoch. right:graph size vs time
and memory on synthetic CITE data per epoch; W/o PamC, model runs out of memory after 17,000
nodes. With PamC, 150,000 nodes and over 18 million edges can be handled on the T4’s 16GB.
Note that SCGC* only differs from PamCGC by its use of the novel proxy-ed PamC to which we
solely attribute the time and memory savings.
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For dblp, usps, reut accuracy is actually better.

are significantly shorter, with (often better) training accuracy due to block contrastiveness. Note that
PamC only improves loss computation efficiency. Majority of the SDCN and AGCN computation
time is spent in their GNNs convolution operations.

We also carry out extensive experimentation to assess the behavior of hyperparameters. PamC is
robust to changes in hyperparameter values and performs best with a learning rate of 0.001, as shown
in Appendix A.2. Further, PamC accuracy against all hyperparameter combinations is generally
equal or better than the less efficient non proxy-ed contrastive loss variant, as seen in Appendix A.3.

3.5 FUTURE WORK

Our parameter-free proxy-ed contrastive loss uses the full positive edge information which, as some
of our experiments has shown, is redundant. For example, USPS gives similar results with 40%
positive edges removed. An algorithm to drop un-informative edges may result in further efficiency
improvements, which we leave for future work. While theoretically possible, it would be interesting
to see how our proxy-ed contrastive loss works with semi or fully supervised data. Further study is
needed to explore how hard cluster centers effect the optimization process.

4 CONCLUSION

In this work, we present an efficient parameter-free proxy approximation to incorporate negative
samples in contrastive loss for joint clustering and representation learning. We eliminate sample
bias, achieve block contrastiveness and 0(N). Our work is supported by theoretical proof and em-
pirical results. We improve considerably over previous methods accuracy, speed and memory usage.
Our approach differs from prior self-supervised clustering by the proxy mechanism we use to incor-
porate all negative samples efficiently. The strength of this simple approach indicates that, despite
the increased interest in graphs, effective contrastive learning remains relatively unexplored.
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A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS - DERIVATION OF EQUATION 7

Assume node embeddings Z = {z1, z2, z3 . . . zN}, clusters µ = {µ1, µ2 . . . µC}, a label assignment
operator label(zi) such that µa =

∑N
i=1 1[i∈label(zi)=a] · zi, a hyperparameter τ related to the

temperature in contrastive loss and

similarity(i, j, zi, zj) = sim(zi, zj)

{
0, i = j

zi·zj
∥zi∥∥zj∥ , i ̸= j

(13)

We use sim(zi, zj) as the shorthand notation for similarity(i, j, zi, zj) interchangeably for brevity.

We begin with Equation 1, which is the popular form of contrastive loss (Hu et al., 2021; Kulatilleke
et al., 2022). With τ as the temperature parameter, γij the relationship between nodes i, j, the loss
for the ith can be expanded as:

ℓi = + log

B∑
j=1

1[j ̸=i] exp (sim (zi, zj) τ)− log

B∑
j=1

1[j ̸=i]γij exp (sim (zi, zj) τ), (14)

where, the first part on the right corresponds to the negative node contrasting portion and the second
portion contrasts the positives for node i. From Equation 14, for all nodes N , we take to negative
node contrasting portion, by averaging over N nodes to obtain:

lossNN =
1

N

N∑
i=1

log

 N∑
j=1

esim(i,j,zi,zj)τ

 , (15)

Note our use of the more concise sim() and the compact e notation over exp() interchangeably for
compactness reasons.

We expand Equation 15, together with e0 = 1 in cases where i = j, as:

lossNN =
1

N

[
log

(
1 + esim(z1,z2)τ + esim(z1,z3)τ + esim(z1,z4)τ . . .+ esim(z1,zN )τ

)
+

log
(
esim(z2,z1)τ + 1 + esim(z2,z3)τ + esim(z2,z4)τ . . .+ esim(z2,zN )τ

)
+

log
(
esim(z3,z1)τ + esim(z3,z2)τ + 1 + esim(z3,z4)τ . . .+ esim(z3,zN )τ

)
+

· · ·

log
(
esim(zN ,z1)τ + esim(zN ,z2)τ + esim(zN ,z3)τ + esim(zN ,z4)τ . . .+ 1

)]
(16)

Similarly, we can express the cluster based contrastive loss as:

lossCC =
1

C

C∑
a=1

log

[
M∑
b=1

esim(a,b,µa,µb)τ

]
(17)
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with the following expansion:

lossCC =
1

C

[
log

(
1 + esim(µ1,µ2)τ + esim(µ1,µ3)τ + esim(µ1,µ4)τ . . .+ esim(µ1,µC)τ

)
+

log
(
esim(µ2,µ1)τ + 1 + esim(µ2,µ3)τ + esim(µ2,µ4)τ . . .+ esim(µ2,µC)τ

)
+

log
(
esim(µ3,µ1)τ + esim(µ3,µ2)τ + 1 + esim(µ3,µ4)τ . . .+ esim(µ3,µC)τ

)
+

· · ·

log
(
esim(µC ,µ1)τ + esim(µC ,µ2)τ + esim(µC ,µ3)τ + esim(µC ,µ4)τ . . .+ 1

)]
(18)

If, lossmin
NN > lossmax

CC , we have lossNN

lossCC
> 1. Next we show the conditions necessary for establish-

ing this inequality.

As 0 ≤ sim ≤ 1.0, we obtain the min using simmin = 0:

lossmin
NN =

1

N

[
log

(
1 + e0 + e0 + . . .+ e0

)
+ · · ·+ log

(
1 + e0 + e0 + . . .+ e0

) ]
= log

[
1 + (N − 1)e0

]
= log(N) (19)

Similarly, we can obtain the max, using simmax = 1.0:

lossmax
CC =

1

C

[
log

(
1 + e1.τ + e1.τ + . . .+ e1.τ

)
+ · · ·+ log

(
1 + e1.τ + e1.τ + . . .+ e1.τ

) ]
= log [1 + (C − 1)eτ ] (20)

Combining Equation 19 and Equation 20, we establish the necessary condition for our inequality,
Equation 7 as;

lossNN

lossCC
>

log(N)

log [1 + (C − 1)eτ ]

This derivation is used in Section 2.1, where we show how the condition is almost always satisfied
in real graphs. As a result, lossNN upper bounds lossCC . Note that a lower loss is better.
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A.2 HYPERPARAMETERS VS ACCURACY
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Figure 5: Ablation study on the hyperparameters. TAU=τ , ALPHA=α, ORDER=R and LR denotes
learning rate. A hyperparameter with higher and more condensed distribution represents its superi-
ority over its counterpart. PamCGC is robust to τ, α,R and best with a learning rate 0f 0.001. Best
viewed in color.

A.3 HYPERPARAMETER BEHAVIOUR WITH AND WITHOUT PAMC
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Figure 6: Comparison of hyperparameters with and without PamC. TAU=τ , ALPHA=α, ORDER=R
and LR denotes learning rate. A hyperparameter with higher and more condensed distribution rep-
resents its superiority over its counterpart. PamC is generally better in accuracy for majority of the
hyperparameter combinations. Best viewed in color.
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A.4 QUALITATIVE RESULTS

usps hhar reut acm dblp cite

Figure 7: Visual comparison of embeddings; top: raw data, second row: after AE pre-training,
third-row: from SCGC*, and last-row: from PamCGC*. Colors represent ground truth groups.
Black squares, µ̂, are the approximated meta-nodes. Red dots, µ, are the cluster centroids.

We use UMAP (McInnes et al., 2018), in Figure 7, to get a visual understanding of the raw and learnt
embedding spaces. Except for USPS, which is a distinct set of 0 · · · 9 handwritten digits (raw 1), we
see that all other datasets produce quite indistinguishable clusters. Clustering is nearly non-existent
in the (last 3) graph datasets. This clearly shows a characteristic difference in graph data, which can
lead to high samplings bias. Note that µ̂ ̸= µ for any meta-node.

A.5 DATASET SIZE VS GPU MEMORY AND TIME, WITH AND WITHOUT PAMC
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Figure 8: Graph size vs GPU memory and training time with and without PamC. Using PamC is
generally better and is more effective with larger graph sizes. Best viewed in color.
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A.6 IMPROVED GPU MEMORY AND TRAINING TIME ON SYNTHETIC CITE DATASET
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Figure 9: Graph size vs GPU memory and training time with and w/o PamC for synthetic CITE
dataset scaled from 1 to 20. Scaled edge and node sizes are indicated in the x-axis. PamC achieves
linear time and memory and is more effective with larger graph sizes. W/o PamC, model runs out of
memory on Google Colab T4 (16GB GPU memory). Best viewed in color.

A.7 RESULTS FROM SELECTED WORKS ON THE CITE DATASET

Table 4: Results for CITE dataset shows PamC is competitiveness in terms of accuracy. ‡Results
reproduced from Zheng et al. (2022)

Model Accuracy – CITE dataset

GRACE Zhu et al. (2020) 71.7 ± 0.6 ‡
GCA Zhu et al. (2021b) 71.2 ± 0.2 ‡
BGRL Thakoor et al. (2021) 71.6 ± 0.4 ‡
CCA-SSG Zhang et al. (2021b) 73.1 ± 0.3
PamC(Ours) 73.3 ± 0.2

A.8 GPU WORKLOAD BREAKDOWN WITH AND WITHOUT PAMC.

Table 5: The GPU time breakdown for USPS dataset for 200 epochs on Colab T4 (16GB). The
model forward figures (1.272 and 2.257) are different because the GPU is caching the results in the
case of no PamC. During inference, these figures are identical.

Description of task w/o PamC With PamC

Forward pass 24.378s 6.670s
Model forward (computation of z) 1.272s 2.257s
KL (self-supervision loss) 7.200ms 13.448ms
Pseudo label and negative computation 18.947s 28.970ms = 0.02897s
Contrastive loss (once the pairs are computed) 2.548s 1.914s
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