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Abstract

Large language models (LLMs) have achieved unprecedented performance by
leveraging vast pretraining corpora, yet their performance remains suboptimal in
knowledge-intensive domains such as medicine and scientific research, where high
factual precision is required. While synthetic data provides a promising avenue for
augmenting domain knowledge, existing methods frequently generate redundant
samples that do not align with the model’s true knowledge gaps. To overcome this
limitation, we propose a novel Structural Entropy-guided Knowledge Navigator
(SENATOR) framework that addresses the intrinsic knowledge deficiencies of
LLMs. Our approach employs the Structure Entropy (SE) metric to quantify un-
certainty along knowledge graph paths and leverages Monte Carlo Tree Search
(MCTS) to selectively explore regions where the model lacks domain-specific
knowledge. Guided by these insights, the framework generates targeted synthetic
data for supervised fine-tuning, enabling continuous self-improvement. Experimen-
tal results on LLaMA-3 and Qwen?2 across multiple domain-specific benchmarks
show that SENATOR effectively detects and repairs knowledge deficiencies, achiev-
ing notable performance improvements. The code and data for our methods and
experiments are available at https://github.com/weiyifan1023/senator,

1 Introduction

With the pretraining process on massive-scale corpora, Large Language Models (LLMs) capture
abundant knowledge and demonstrate impressive performance on various downstream tasks (Chen
et al., 2015} |Liu et al.l [2021). However, their performance may still be unsatisfactory in certain
knowledge-intensive domains such as medicine and scientific research. This is primarily due to the
difficulty in acquiring and scaling up high-quality domain-specific corpora (Lu et al., [2024; Wang
et al.,[2024), which hinders the ability of the models to handle tasks that require high factual precision.

The development of data synthesis technology (Wang et al.l 2023 [Zhao et al.| 2024) offers an
alternative way to address these limitations in remedying the knowledge deficiency of LLMs. While
promising, the efficiency of data synthesis remains a significant challenge. This is because current
data synthesis methods may not consider the model’s knowledge boundaries (Jiang et al., 2021}
Mallen et al.l 2023; [Yue et al.l [2025), resulting in substantial efforts spent in generating data that
the model may already be familiar with. In fact, even with advanced prompt engineering (Wei et al.,
2022; Liu et al., [2025), generated outputs tend to skew toward high-frequency distributions seen in
pretraining data, leading to severe redundancy. Therefore, efficient data synthesis should be tightly
coupled with mechanisms for effectively detecting knowledge deficiencies (Xiong et al., [2024; |Song
et al.| 2025) within LLMs, so that the synthesized data can repair the knowledge deficiencies.
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However, the knowledge boundaries of large models can be quite complex. Although these models
are trained on massive amounts of data, their knowledge is implicitly encoded in model parameters
(Geva et al.| 20215 [Wei et al.| |2025)) rather than being explicitly stored, leading to unclear distinctions
between known and unknown information. In specialized domains, this challenge is compounded by
the generation of unreliable or contradictory content (Yang et al.,|2024c), which produces flawed
synthetic samples that hinder the effective expansion of high-quality, domain-specific corpora.

To overcome the aforementioned challenges, we propose SENATOR, a Structural Entropy-guided
Knowledge Navigator framework, which achieves knowledge deficiency remediation through a
closed loop of structured knowledge probing and targeted synthetic data generation. The framework
comprises two key components: 1) Knowledge Deficiency Detection: Human-annotated knowledge
graph (KG) systematically describes the underlying complexities and intricacies of the domain. How-
ever, the combinatorial explosion of possible paths makes enumeration computationally infeasible.
To efficiently detect the knowledge paths, we drive the LLM as an agent to explore upon the KG in a
Monte Carlo Tree Search (MCTS) manner (Metropolis and Ulam, |1949)), with the structure entropy
as reward. The Structure Entropy (SE) (Li and Pan| 2016} L1, |2024) metric quantifies the structural
information contained within a graph by capturing its topological organization and the interactions
among nodes. This provides insight into the model’s uncertainty along knowledge paths in the KG.
By employing MCTS within the knowledge space, our framework uses SE values as intrinsic rewards
to decide whether to expand specific entity nodes, effectively prioritizing the exploration of paths with
high uncertainty and detecting critical knowledge deficiencies. 2) Knowledge Synthesis and Repair:
Leveraging the critical knowledge paths identified via MCTS, our framework generates synthetic
data by employing prompt templates to structure the content. The KG serves as a trusted source to
ensure both the data inputs and the synthesized outputs are credible and contextually relevant. This
synthetic data is then used to fine-tune the model through supervised learning, enabling continuous
self-improvement and effective remediation of knowledge deficiencies.

Our experiments demonstrate that the SENATOR framework effectively detects knowledge defi-
ciencies in large language models and efficiently repairs them, leading to significant performance
improvements across multiple domain-specific benchmarks. Data distribution analyses confirm
that our synthetic data incorporates knowledge deficiencies from the pretraining corpus. Moreover,
supervised fine-tuning (SFT) of LLMs like Llama-3 (Grattafiori et al.||2024)) and Qwen2 (Yang et al.,
2024b) using this data led to significant performance improvements, demonstrating that targeted
injection of missing knowledge can substantially enhance overall model performance.

2 Related Work

Knowledge Deficiency Detection of LLMs Though LLMs possess extensive knowledge, they
often struggle to accurately delineate what they know from what they do not (Yin et al.} 2023} Ren
et al.}2023). Several approaches (Jiang et al.,|2020; Mallen et al., [2023} Wei et al., 2024)construct
knowledge probability distributions based on existing annotated data, using metrics such as answer
correctness or confidence scores to assess a model’s knowledge proficiency. One line of work (Wei
et al.,[2022; |Li et al., |2023a; [Tian et al., 2024a) directly toward enhancing a model’s ability to fully
leverage its existing knowledge, thereby reducing the proportion of “Unknown Knows”. Another
line of work pay attention to enabling models to explicitly acknowledge their knowledge gaps,
thus minimizing the occurrence of “Unknown Unknowns”. Approaches such as R-tuning (Zhang
et al., 2023) utilize labeled data with supervised fine-tuning to judge response correctness, while
reinforcement learning based strategies have also been explored (Yang et al.,|[2023b; Kang et al.,
2024)). In contrast, our approach for deficiency detection is designed not to rely on pre-existing
labeled data, but instead to actively explore the KG to detect intrinsic model uncertainty.

Model Self-Improvement Self-improvement methods of LLM focus on leveraging internal knowl-
edge and feedback to iteratively enhance the performance of LLMs (Zelikman et al.| 2022 2024)).
A pivotal challenge is generating a reliable critique signal to discern high-quality responses from
suboptimal ones. Previous methods (Bai et al.| 2022 |Wang et al.,|2023) involve prompting the LLM
to generate diverse task-specific queries and corresponding outputs, followed by the application of
manually crafted heuristic rules, such as filtering based on query length to remove redundant or
low-quality data pairs. Given the complexity of devising effective heuristics, subsequent research
(Sun et al., 2023} |Li et al.l [2023b; |Guo et al., 2024) proposes a few general principles or judging
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Figure 1: The SENATOR framework operates as follows: An entity state in the knowledge graph is
(a) selected, (b) expanded, and (c) simulated using the LLM agent until a terminal node is reached.
Specifically, we employ a random policy 7 during the expansion phase. (d) Subsequently, signals
from the value function V() are backpropagated. This process is iterated multiple times, with the
MCTS algorithm searching for (f) better trajectories guided by (e) signals from structural entropy to
(g) generate data addressing knowledge deficiencies, (h) and repair model knowledge.

criteria and ask the LLM itself to assess the quality its responses according to these guidelines.
However, this approach demands that LLMs possess a robust capability to apply these principles to
each specific instance and render accurate judgments. Recently, reinforcement learning-based model
show impressive reasoning ability by learning the experiences obtained from explorations in the
solution space (Tian et al.l 2024b; Goldie et al., [2025). While the probability of obtained plausible
solution space of knowledge intensive tasks would be rather limited as the LLM may not possess the
necessary knowledge, which would severely restrict the efficiency of exploration and data generation.
In this paper, we choose to guide the exploration process in knowledge space using KGs, in a MCTS
manner, so as to enable targeted synthetic data generation for high efficiency LLM self-improvement.

3 Methodology

Given a knowledge graph, the number of possible knowledge paths P (i.e., Figure increases
in a combinatorial speed along with the size of KG, making enumerating all possible paths and
detecting the uncertainty of LLM on these paths computationally infeasible. To tackle this challenge,
as shown in Figure [[, SENATOR employs MCTS to navigate the LLM-based agent to search on
the KG for seeking out the most informative paths. To steer the agent to search toward regions with
high uncertainty, we introduce a structural entropy based reward function. Based on the identified
high-uncertainty paths, data are synthesized to remediate the identified knowledge deficiencies.

3.1 Structural Entropy Guided Knowledge Deficiency Detection

The structural entropy based reward function combines the uncertainty of LLM on individual KG
triplets with the topological structure information of the KG, guiding the LLM-based agent to perform
MCTS over the KG and discover knowledge paths with critical deficiencies.

Self-Information for Measuring Triplet-Level Uncertainty Self-Information (Shannon) 1948))
quantifies the amount of information conveyed by a “fact” given its probability distribution. In KGs,
a “fact” is represented as a triplet 7 =< subject u, relation p, object v >. To measure the LLM’s
uncertainty of such “facts”, we transform 7 into a cloze statement form. The cloze context is formed
by combining the subject v and the relation p, creating a prompt to predict the missing object v. The



self-information of a fact 7 is defined as:

I(u,p,v) = _10g2 P(U | uvp)v (D

where P(v | w,p) is the probability of the output v conditioned on the cloze context. Since the
relation p in KGs is directional, the self-information calculated in this manner serves as a measure of
the factual knowledge confidence for the entire triplet.

Structural Entropy of Modeling Knowledge Path-Level Uncertainty To integrate the uncertainty
of all triplets along a knowledge path while considering their structural importance, we adopt
structural entropy (SE) as a more comprehensive measure of an LLM’s knowledge confidence, as
shown in Figure[Te] Structural importance reflects the topological significance of a triplet 7 within
the knowledge graph. Triplets involving highly connected entities are considered more central,
as these entities participate in more relational paths and exert broader influence across the graph.
Unlike self-information or Shannon entropy, structural entropy accounts for the knowledge graph’s
topological structure and the interdependencies among its elements. This is crucial because each
triplet is not an isolated piece of information but part of a structured network. The relationships
among entities contribute to the overall representation of knowledge. Given a knowledge graph
G = (V, E), each edge p € E is assigned a weight derived from the self-confidence in Equation
The weighted degree of an entity node u € V' is defined as:

du = Z I(’U/7p,’U), (2)
vEN (u)

where A (u) denotes the set of neighbors of entity v and d,, represents the overall uncertainty
contained within the node. To quantify the average information content of the graph G, we define the
one-dimensional structural entropy of the weighted, connected graph G as:

T dy dy
HG) = l;/ vol(G) log, vol(G)’ )

where vol(G) represents the total weighted degree of G. A higher 7! (G) indicates a more complex
and less confidently represented region within the knowledge graph. By formulating SE as the
exploration reward in MCTS, we enable the search algorithm to prioritize paths traversing maximally
uncertain knowledge structures, thereby efficiently exposing the model’s systemic weaknesses.

3.2 MCTS for Knowledge Deficiency Detection

Given the SE-based reward function, we employ MCTS to explore the KG and identify potential
knowledge deficiency paths in the model. We define the initial state sg as the starting node for
traversing the KG, where a set of seed entities from (Soman et al., 2024) is selected. KG triplets
are incrementally incorporated into the knowledge paths until the maximum search depth T is
reached. This process enhances the LLM’s awareness of its knowledge deficiencies by maximizing
the expected reward, which emphasizes the uncertainty associated with these deficiencies.

Node Selection. The objective of this stage is to identify and prioritize KG entities that are likely to
expose the LLM’s knowledge deficiencies, as shown in Figure [Ta] Formally, at state s;, the LLM
agent reaches entity node u; of the KG, and the MCTS process choose from A = {a1,as,...,am},
representing the relation edges p;y1 that connect the current entity u; to its neighbors A (u;). It
is guided by two key variables: Q(s;,a), the cuamulative value of taking action « in state s;, and
N (s¢), the visitation frequency of state s;. Heuristically, Q(s;, a) guides exploitation by favoring
actions with historically high rewards, while N (s;) encourages exploration of under-visited states.
We integrate these complementary objectives using the PUCT algorithm (Rosin} 201 1)), which selects
the next state as:

s )

5{,1 = arg max Q(s¢,a) + cpuct - P (a | s¢)
t

where P(a|s;) denotes the prior probability of selecting action a given state s;. In this way, an
additional triplet 7 is incorporated into the knowledge path P.



Path Expansion. Expansion occurs when a leaf node is reached during the selection phase, enabling
the integration of new states and the assessment of immediate rewards. Upon reaching a leaf node, it
is expanded by selecting all possible relation action from leaf node, where each action a represents
a transition from the current entity state s; to a new entity state s;11 in N'(s;), as shown in Figure
These unexplored entities A/ (s;) are then added as leaf nodes to the search tree. The immediate
reward function r(s¢, a) quantifies the advantage of each action a € A available at state s;.

ds,
riv1 =1(s¢,a) = I(s¢,a,8i41) = — log, vol(é)’

T—k—1 &)
V(s)) =rera +9V(se41) = D 7 revnrn,
k=0

where 7 is the discount factor for future state values V (-) and T is the depth of the MCTS search
space. To accommodate scenarios with limited decision steps and stable reward distributions, we
eliminate the discount factor and instead compute the average of future immediate reward values, as
formalized in Equation [6]

Reward Estimation. A simulation shown in Figure [Ic|is run from the new expanded node s;
by making random relation actions until a terminal state is reached. The newly expanded nodes
are evaluated using an evaluation function integrating future rewards, state relevance, and actual
outcomes. In this paper, we propose a novel intrinsic reward mechanism to address the limitation of
Shannon entropy in handling structured data. To overcome this challenge, we define one-dimensional
structural entropy as an intrinsic reward for effective exploration:

T—k—1
E Tt4+k+1| St

V(si) = H(P) =E

k=0 p i (6)
1 St St
~ = — 1
H (g) Z VO](g) 089 VOl(g)7
st€P
where P = {s¢, S¢11, -+, s7} denote the selection trajectory of ¢-th iteration, which ends at the

terminal state s after one complete simulation. For simplicity, the notation omits the relationships .4
between states. Specifically, G is a subgraph of the knowledge graph G, representing a given search
space, and we utilize the structural entropy on this subgraph to approximate the state value.

Backpropagation. We update the statistics of each state in the tree that was traversed during the
selection stage. Specifically, the back propagation process updates the value estimates and visit counts
of all ancestor nodes along the trajectory P as shown in Figure [Id] ensuring leaf node evaluation
informs higher-level decision-making. The updated rules are as follows:

N(St) — N(St) + 1a
1 N(s¢)
m Z ]Ii(St,a)‘/;’(st)v

i=1

Q(st,a) ?

where N (s, a) is the number of times relation action a has been selected from state s;, N(s;) is the
number of times a simulation has been run from state s;, and I;(s, a) is 1 if relation action a was
selected from state s; on the ¢-th simulation run from state s;, or 0 otherwise.

3.3 Deficiency Knowledge Synthesis and Repair

As shown in Figure[If]to [Th] our framework leverages the trajectories with the highest SE values
obtained via MCTS to guide synthetic data generation. Specifically, we prompt the LLM agent to
synthesize a set of QA pairs based on the identified knowledge path on which the LLM shows high
uncertainty, so that the knowledge deficiency of the LLM can be remedied by training on these
QA pairs. Formally, as shown in Figures [5| and @ given a trajectory P = {s1,82,...,87}, the
prompt instructs the LLM to generate a question that focuses on P and an answer that logically
explains on the relationship p;;1 between s; and its neighboring entities A (s;) in P. So that the
synthesized QA pair can adhere to the underlying knowledge about the knowledge path and remedy



the knowledge deficiency of the LLM. Furthermore, to maintain high data quality, we implement
a multi-tiered evaluation mechanism that includes both heuristic rules and LLM-based judgments.
Our quality standards encompass: Format Consistency: The generated QA pairs must strictly adhere
to the predefined prompt template, ensuring that the structure, punctuation, and length conform
to our specifications. This guarantees that the synthesized data maintains a uniform format that
facilitates downstream processing. Logical Coherence: The QA pairs must exhibit clear and rational
reasoning. The answer should provide a logically consistent explanation that reflects the relationships
and context derived from the knowledge trajectory, ensuring that the data effectively captures and
addresses the identified knowledge deficiencies. Hallucination Avoidance: The generated content
must be grounded in the input trajectory. Specifically, all entities and facts mentioned in the QA
pair must originate exclusively from the given trajectory, preventing the introduction of extraneous
or unsupported information that could undermine the model’s reliability. Data samples that do not
meet these criteria are filtered out through our evaluation mechanism[A.T] thereby ensuring that only
high-quality synthetic data is used to remediate the LLM’s knowledge gaps.

The training process can be divided into two stages: First, a knowledge injection stage, that aims to
enrich the LLMs with deficiency medical knowledge D . Second, a medical instruction tuning stage,
that tailors the model to align with the medical QA domain. (see Appendix [A.3]for details).

4 Experiments

We conduct experiments on the knowledge-intensive medical domain to investigate the following
research questions (RQs): RQ1: Can the proposed SENATOR framework effectively repair the
knowledge deficiencies of existing LLMs? RQ2: How do different components of our proposed
framework impact the performance of LLMs? RQ3: Does the synthetic data successfully incorporate
knowledge that lies beyond the distribution of the pretraining corpus? RQ4: What is the scaling
regularity of synthetic data on model performance?

4.1 Experimental Settings

Language Models We evaluate our methodology on two categories of LLMs: 1) General LLMs: We
employ Llama-3-8B and Qwen2-7B as base models to examine the effectiveness of our approach
and include Baichuan2 and Llama-2 for comparison. 2) Medical LLMs: Med-Alpaca (Han et al.,
2023): Fine-tuned on LLaMA-13B with medical instruction data from Alpaca (Han et al., [2023]),
specifically designed for medical dialogues and question-answering tasks. PMC-LLaMA (Wu et al.}
2024): Enhanced with biomedical knowledge from 4.8 million academic papers and 30,000 medical
books, followed by medical-specific instruction tuning on LLaMA-13B. HuatuoGPT-1I (Chen et al.,
2023a): Built on Baichuan (Yang et al.|[2023a), fine-tuned with distilled ChatGPT data and real-world
medical data from doctors.

Datasets Our instruction tuning data Dy, which contains 514k samples, is derived from |[Wu et al.
(2024) to align with the medical domain. It’s widely used in the medical field for its large scale and
comprehensive coverage of medical knowledge. We evaluate our approach on five standard medical
benchmarks: 1) MedQA (Jin et al.,|2021)): Multiple-choice questions from the USMLE assessing
medical understanding and reasoning. 2) MedMCQA (Pal et al., [2022): Over 194K questions
from AIIMS exams covering 2,400 topics across 21 subjects. 3) PubMedQA (Jin et al.,2019): A
biomedical QA dataset from PubMed abstracts with 1K expert-annotated and 211K generated QA
instances, designed to test comprehension and reasoning in biomedical research. 4) GPQA (Rein
et al.| 2023): A high-difficulty multiple-choice dataset validated by experts in biology, physics, and
chemistry, focusing on interdisciplinary knowledge and reasoning. 5) MMLU (Hendrycks et al.,
2020): A comprehensive benchmark covering 57 tasks for evaluating large language models.

Knowledge Graph We conduct experiments based on the SPOKE knowledge graph (Morris et al.,
2023) due to its comprehensiveness on biological and medical knowledge, which contains over 42
million nodes of 28 different types and 160 million edges of 91 types, constructed by integrating
information from 41 different biomedical databases. In this paper, the initial seed entities for MCTS
are common disease entities in SPOKE, sourced from |Soman et al.|(2024).



Table 1: Main Results on Medical Benchmarks in the Zero-shot Setting. A represents the relative
change in performance when using our synthetic data generated by SENATOR compared to the
corresponding backbone model. "w/" denote "with" and IT represents instruciton tuning data.

Model MedQA  MedMCQA  PubMedQA GPQA Avg.
. Molecular
Genetics .
Biology
Human (pass) 50.0 - 60.0 43.2 -
Human (expert) 87.0 90.0 78.0 66.7 80.43
Medical LLMs
Chat-Doctor (7B) 33.93 31.10 54.3 - - -
Med-Alpaca (13B) 30.85 31.13 53.2 10.0 15.43 28.12
HuatuoGPT-II (7B) 41.13 41.87 54.2 22.5 21.60 36.26
HuatuoGPT-II (13B) 45.72 38.75 51.6 20.0 27.78 36.77
PMC-LLaMA (13B) 50.67 50.18 59.8 15.0 27.16 40.56
General LLMs

Baichuan2-7B 34.56 35.12 60.2 20.0 20.99 34.17
Baichuan2-13B 43.60 39.25 50.7 27.5 30.86 38.38
Llama-2-7B 30.95 28.85 60.8 25.0 17.28 32.58
Llama-2-13B 31.26 29.00 62.2 35.0 20.99 35.69
Llama-3-8B 55.54 52.21 54.8 20.0 29.01 42.31
w/ instruction tuning 54.36 50.08 56.6 25.0 25.93 42.39
w/ synthetic data + IT 58.29 53.60 64.8 27.5 32.72 47.38
A promotion +4.95% +2.66% +18.25% +37.50%  +12.79%  +11.98%
Qwen2-7B 54.67 53.41 64.6 32.5 36.42 48.32
w/ instruction tuning 59.07 59.77 61.2 22.5 35.80 47.67
w/ synthetic data + IT 59.70 60.70 63.2 40.0 40.12 52.74
A promotion +9.20% +13.65% -2.17% +26.08%  +10.16% +9.15%

4.2 Main Results (RQ1)

Table [T] presents the performance of our approach and baseline models across four medical bench-
marks. From this, we observe that (1) Through continuous pretraining on medical corpora, previous
medical domain LLMs such as PMC-LLaMA could achieve ordinary-human-level performance on
certain benchmarks. For example, PMC-LLaMA employs approximately 514k samples, 79 billion
tokens of medical data to achieve performances close to such as MedQA and PubMedQA. However,
its performance on genetics-related subset of GPQA still shows a substantial gap with human-level,
indicating significant knowledge deficiency. (2) In contrast, our proposed SENATOR framework
demonstrates its effectiveness in finding knowledge deficiencies to efficiently adapt LLMs to the
medical domain. When applied to Llama-3-8B and Qwen2-7B, the SENATOR framework uses a
much smaller amount of synthetic data (26k samples, 0.8 million tokens and 128k samples, 3.6
million tokens, respectively) to remedy the targeted knowledge areas, and improve the performance
on corresponding benchmarks. For instance, the SENATOR optimizes the Qwen2 model attains an
accuracy of 40% on the Genetics component of GPQA, demonstrating that supplementing missing
domain-specific data can substantially enhance performance. Overall, on the four medical domain-
related benchmarks, on average, the SENATOR framework improves the performance of Llama-3-8B
and Qwen2-7B for 11.98% and 9.15%, respectively. This shows the effectiveness and generality
of our approach in comprehensively detecting and remedying the domain-related knowledge for
different LLMs. In the following paragraphs (RQ2 and RQ3), we demonstrate that the improvement
stems from SENATOR’s ability to effectively detect the knowledge deficiencies by synthesizing data
beyond the original pretraining corpus, expanding its coverage, and optimizing its distribution.

4.3 Ablation Study (RQ2)

To validate the efficacy of SENATOR, we conduct ablation studies comparing three configurations:
(1) base models, (2) models fine-tuned solely with general domain instruction data Dy, and (3) models
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Figure 2: Distribution of Pretraining Corpus vs. Synthetic Data. In (a)-(d), blue regions represent
the medical pretraining corpus (PubMedQA, MedQA, MedMCQA, and their hybrid), red regions
show synthetic data generated by Llama-3. In (e)-(h), red regions indicate synthetic data produced by
Qwen?2. Darker areas reflect higher concentrations of data points, lighter areas vice versa.

trained with both instructions and synthesized data. As shown in Table[T} SFT on general domain
instructions alone yields marginal improvements or even performance degradation (Llama-3-8B:
42.31 — 42.39; Qwen2-7B: 48.32 — 47.67). This suggests that the general domain instructions
struggle to alleviate the intrinsic knowledge gaps in general-domain LLMs for the specialized medical
domain, and constructing more general domain instructions would inevitably be inefficient. In
contrast, incorporating synthetic data leads to a significant improvement. For Llama-3-8B, additional
synthesized data make average performance improvements of 5.07, with particularly significant gains
in underrepresented domains: +7.5 points in GPQA Genetics and +3.71 points in Molecular Biology.
Similarly, Qwen2-7B attains 40.0% accuracy in GPQA Genetics (7.5-point increase) and 40.12% in
Molecular Biology (3.7-point gain). These results indicate that performance improvement is brought
by synthesizing data from detecting the deficiency of LLMs instead of simply enlarging the size of
existing instruction data, and a deficiency-oriented synthetic data generation strategy would be
a more efficient method for expanding knowledge of LLMs, suggesting a way towards “new fuel”
(PwC Australial 2023) for enriching the existing corpus and empowering future LLMs.

4.4 Analysis for Distribution of Synthesized Data (RQ3)

To examine if our approach can generate synthetic data
beyond the original pretraining distribution and address 20
the knowledge deficiency of LLMs, we visualize the dis-
tribution of both the original pretraining data, which is
sourced from the training sets of PubMedQA, MedQA,
and MedMCQA, and the synthetic data. This visualization
is achieved by first projecting data into a unified semantic
space using 2D UMAP (Mclnnes et al.l 2018) and ob-
taining their distribution using kernel density estimation
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indicating that the synthetic data effectively broadens the Fj gure 3: Distribution of Data Generated
coverage of the pretraining data. Additionally, Figure@ by Llama-3 (red) and Qwen2 (blue).
and [2f] display smaller blue regions, indicating that the

distribution of synthesized data is much broader than the

pretraining data available for MedQA. 2) Distribution Overlap: In Figure 2d] the synthetic data
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Figure 4: Performance differences for various data compositions.

shows a high degree of overlap with the overall pretraining data. We hypothesize that this may be
due to Llama-3’s relatively weaker grasp of pretraining knowledge compared to Qwen2, causing
SENATOR to collect information that Llama-3 did not consolidate well during pretraining. 3) Topic-
Specific Differences: Compared to Figure [2a Figure [2e|exhibits an opposite trend. Accordingly,
as indicated in Table [T, Qwen2 demonstrates a higher performance on PubMedQA. This is likely
because Qwen2 demonstrated a stronger mastery of PubMedQA during pretraining (Yang et al.,
20244a)), leading SENATOR to explore that topic distribution to a lesser extent during the defect
detection phase. 4) Global Trends and Localized Discrepancies: The analysis of synthetic data
distributions generated by Llama-3 and Qwen2 (Figure 3)) shows substantial overlap in high-density
areas, indicating that both models have a roughly similar pattern (may also share with more LLMs) in
knowledge deficiency about the medical domain. This is because of the similarity in the distribution
of the pretraining corpus (Lee et al.||[2022} Yauney et al.,[2023)). Such similarity indicates the necessity
of systematically reviewing the deficiencies of present LLMs to find common knowledge blind spots
in the pretraining corpus, and synthesizing data to complement them. However, there still exist
differences in certain locations, suggesting model-specific knowledge deficiencies. This suggests the
effectiveness of our approach in targeting model-specific knowledge deficiencies.

4.5 Analysis of Synthetic Data Scaling (RQ4)

To explore how the amount of synthetic data affects model repair, we integrate different proportions
of synthetic data into the SFT stage, as depicted in Figure[4a] We observe an upward trend in overall
performance, calculated as a weighted average based on dataset sizes, with increasing synthetic data
proportions. This indicates that, when the instruction-aligned data Dy is fixed, expanding the synthetic
data enhances model performance. As more synthetic data is used, more LLM knowledge deficiencies
can be identified and addressed, thereby improving the model’s performance. This highlights the
potential of our method to effectively boost model performance by targeting and synthesizing data to
fill specific knowledge gaps. Due to the limitation in computation resources, in this paper, for the
two base LLMs, Llama and Qwen, we synthesize 26k and 128k data entries, respectively. In future
work, we will explore integrating diverse knowledge across more domains to further enhance model
performance. Additionally, we compare two settings: the default setting (SENATOR), where each
model is fine-tuned using data synthesized using its own detected deficiencies, and the swap setting,
where a model is trained with data synthesized using deficiencies of another model, for example,
synthetic data produced by Llama-3 is used for SFT of Qwen2, and vice versa. As shown in Figure
Ab]and fc] SENATOR demonstrates effective deficiency correction even under the swap setting. This
could be brought by the similarities between the pretraining corpus of different LLMs, which can
lead to similar knowledge deficiencies. This finding not only reinforces the potential of our synthetic
data as a valuable supplement to human-written corpora, but also highlights the pressing need for
efficient and comprehensive strategies to detect and repair knowledge deficiencies in LLMs.

5 Conclusion

In this paper, we introduce SENATOR, an innovative framework that utilizes structural entropy
and knowledge graphs to detect and repair knowledge deficiencies in LLMs. By employing MCTS
within the knowledge space, SENATOR effectively identifies areas where the model’s understanding
is deficient. Leveraging the SENATOR agent, we direct the synthetic data generation process to



specifically target these deficiencies. Our experiments on medical benchmarks reveal significant
performance improvements when models like Llama-3 and Qwen?2 are fine-tuned with the synthetic
dataset. These results highlight that a deficiency-oriented synthetic data generation strategy represents
a highly efficient and sustainable method for expanding knowledge, positioning it as the "new fuel"
of modern Al
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run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have understood the NeurIPS Code of Ethics in detail and promise that it
has not been violated.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Section[C]
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of data or models with a high risk for
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: All models, data, or codes used in our work are free and open sourced.
Guidelines:

» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide documentation for the use of the code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work do not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work do not involve this question.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our work do not involve this question.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Prompts for Synthetic Data Generation Stage

This section introduces the prompts (Figure[5and[7) defined in our synthetic data generation phase,
including the question-answer paris generation prompt, and the evaluation prompt. And Figure [6]
shows a specific example generated by SENATOR using the generation prompt.

4 N\
L Synthetic Data Generator (Step 1) y

For given facts, generate a question and its corresponding answer. The question should be designed to inquire about the
relationship or classification described in the triples, and the answer should be an entity mentioned in the provided facts.
Facts:

Disease <Thyroid Gland Mucoepidermoid Carcinoma> is a type of disease <thyroid gland carcinoma>.

Compound <Liothyronine> treats disease <thyroid gland carcinoma>.

Question: What compound can be used to treat Thyroid Gland Mucoepidermoid Carcinoma?

Answer: Liothyronine.

Facts:

Disease <thyroid gland carcinoma> resembles disease <ganglioneuroma>

Disease <ganglioneuroma> presents Symptom <Diarrhea>

Question: What symptom is associated with the disease that resembles thyroid gland carcinoma?
Answer: Diarrhea.

Facts:

Disease <head and neck cancer> resembles <thyroid gland carcinoma>.

Disease <head and neck cancer> presents Symptom <Dysphonia>.

Disease <head and neck cancer> presents Symptom <Neck Pain>.

Disease <thyroid gland carcinoma> presents Symptom <Dysphonia>.

Disease <thyroid gland carcinoma> presents Symptom <Neck Pain>.

Compound <Paclitaxel> treats disease <head and neck cancer>.

Question: What disease is similar to thyroid gland carcinoma, with Symptom Dysphonia and Neck Pain.
Answer: Head and neck cancer.

- J

Figure 5: Example prompt for the synthetic data generation stage of SENATOR.

A Smaple Generated by SENATOR

{generation prompt}

# Input: Maximum Structual Entropy Trajectory by SENATOR

Disease <hyperphosphatemia> contraindicates the use of compound <Retinol>,
Compound <Retinol> is contained in food <hickory nut>,

Food <hickory nut> contains compound <Tryptophan>,

Compound <Tryptophan> is contained in food <cow milk (liquid)>

# Output: QA Samples generated by the LLMs

Question: Which compound, present in both hickory nut and cow milk (liquid), is safe for consumption by an individual
with hyperphosphatemia?

Answer: Tryptophan.

Figure 6: A specific example generated by SENATOR.

A.2 Prompts for the SFT Evaluation Stage

This section introduces the evaluation prompt (Figure 8] used after model knowledge repair, as shown
in Figure designed to align the model’s output answers with the desired format in the medical
domain. Specifically, we employ a zero-shot setting in our evaluation to reduce the model’s sensitivity
bias to few-shot examples.
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Sample Evaluation Scorer (Step 2)

Your task is to evaluate the given QA Pairs with Evidences based on the following criteria.
The criteria should include three parts:

Format: Verify the question is complete (i.e., not truncated) and can be answered with a single, clear answer. Check the
answer is complete (i.e., not truncated) and is presented in a single entity or a concise subject-predicate-object statement.

Logic: Confirm that there is a clear, derivable logical connection between the question and the answer based on the
provided Evidences.

Hallucination: This examines whether the entities involved in the question and answer exist within the provided

Evidences. It determines if additional information beyond the given Evidences was used to construct the samples.

For each QA sample, analyze whether it meets the above criteria. If the sample satisfies all criteria, output "Correct".
Otherwise, output one of the error types that best describes the issue with the sample: Format, Logic, or Hallucination.

\\ J
Figure 7: Example prompt for the sample filtering stage of SENATOR.
( ™\
[ Eval Prompt for Medical Datasets )
# Instruction:
Directly answer the best option or Directly answer yes/no/maybe:
# Example (PubMedQA):
# Abstract: Electrical neurostimulation has traditionally been limited to the use of charge-balanced waveforms.
Charge-imbalanced and monophasic waveforms are not used to deliver clinical therapy, because it is believed that
these stimulation paradigms may generate noxious electrochemical species that cause tissue damage. In this study, we
investigated the dissolution of platinum as one of such irreversible reactions over a range of charge densities up to 160
pnC cm. We observed that platinum dissolution decreased during charge-imbalanced and monophasic stimulation when
compared to charge-balanced waveforms
# Question: Does electrical neurostimulation with imbalanced waveform mitigate dissolution of platinum electrodes?
# Example (MedQA)
# A 3-month-old baby died suddenly at night while asleep. His mother noticed that he had died only after she awoke in
the morning. No cause of death was determined based on the autopsy. Which of the following precautions could have
prevented the death of the baby?
# A. Placing the infant in a supine position on a firm mattress while sleeping.
# B. Keeping the infant covered and maintaining a high room temperature.
# C. Application of a device to maintain the sleeping position.
# D. Avoiding pacifier use during sleep.
# Example (MedMCQA):
# Which vitamin is supplied from only animal source:
#A. Vitamin C B. Vitamin B7 C. Vitamin B12 D. Vitamin D
o _/

Figure 8: Example prompt for the evaluation on medical datasets, where the “#” symbol denotes
comments illustrating how a specific data sample is combined with an instruction for zero-shot
prompting.

A.3 Supervised fine-tuning hyperparameters

We use cross-entropy for supervised fine-tuning. Table 2] presents the hyperparameters utilized
for SFT of LLMs within the SENATOR framework. As shown in Table |2 the settings applied to
Llama-3-8B are identical to those of Qwen2-7B. Moreover, all experiments conducted in this paper
have been performed using the same hyperparameter configuration.
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Table 2: Model Training Parameters in SENATOR

Model Learning Rate  Weight Decay = Warmup Step Batch Size Epoch Maximum Sequence Length
Llama-3-8B 9.65e-6 -1 -1 1 3 1024
Qwen2-7B 9.65e-6 -1 -1 1 3 1024

A.4 Data Filtering

While our framework demonstrates significant improvements over baseline methods, we acknowledge
that the system remains imperfect. To systematically evaluate its limitations, we conduct a manual
examination of 501 randomly sampled QA pairs from SENATOR outputs. The analysis revealed that
311 samples (62.08%) met our quality criteria for valid question-answer pairs. The remaining 190
error-containing samples (37.92%) exhibited the following error distribution: Formulaic errors (84
samples; 16.77%): Questions or answers with truncations, formatting inconsistencies, or multi-answer
requirements. Logical errors (98 samples; 19.56%): Answers lacking evidential support from the
provided knowledge triples. Hallucination errors (8 samples; 1.59%): Answers referencing entities
absent in the supporting evidence. Notably, while our approach effectively mitigates hallucination
errors through evidence grounding, generating logically consistent QA pairs remains challenging.
This primarily stems from the base model’s inherent limitations in performing multi-hop reasoning
across knowledge path. Appendix [A.7]illustrates representative examples of these error categories,
demonstrating both the framework’s capabilities and its current limitations. In order to improve data
quality, we set up an additional data filtering module. For format problems, we use regularization to
remove samples that do not meet specifications. For logical error types, we use LLMs to judge the
logical consistency of QA pairs and evidences, and filter out unsatisfied samples.

A.5 TImpact of synthetic data on different medical subfields

Similar phenomena as shown in 4] can also be observed
in different medical-related subdomains in the MMLU B 68.0
dataset, as shown in Figure[9] Our analysis on Qwen2

shows that without sythetic data generated by SENATOR
(ratio = 0), performance is lowest. As synthetic data in-
creases, sub-domain performance improves but with fluc-

College Medicine
Medical Genetics

Anotomy 61.0

tuations. We attribute this to SENATOR’s lack of entity otieas Bioloay s
type consideration during KG exploration, causing ran- roession! Medeine '
dom data domains and non-uniform categories. Future Average 510
work will focus on adding entity type constraints in MCTS R
search to explore domain specific knowledge deficiencies )
more precisely. Figure 9: Performance across Different

Ratios in MMLU Medical Aspects.
A.6 Comparison with Latest Medical LLM Baselines
To provide a more comprehensive evaluation against recent
state-of-the-art medical LLMs, we have added new baselines including BioMistral-7B (Labrak et al.,

2024), Meditron-7B (Chen et al.l [2023b), Llama-3-8B-UltraMedical (Zhang et al., [2024), and
Qwen2-7B w/ SENATOR. The results are presented in Table [3]below.

Table 3: Model Performance on Medical QA Benchmarks

Model MedQA MedMCQA PubMedQA
BioMistral-7B 44.93 42.17 56.4
Meditron-7B 30.40 31.22 61.6
Llama-3-8B-UltraMedical 56.75 53.75 52.12
Llama-3-8B w/ SENATOR 58.29 53.60 64.8
Qwen2-7B w/ SENATOR 59.70 60.70 63.2
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A.7 Case Stduy

Our framework SENATOR generates <evidence, question, answer> examples based on the SPOKE
knowledge graph. These examples are categorized into four types: Correct, Formulaic errors, Logical
errors, and Hallucination errors. Specific examples are illustrated in Figures [I0]to[T3]

Evidence:

Disease <hyperphosphatemia> contraindicates the use of compound <Retinol>,
Compound <Retinol> is contained in food <hickory nut>,

Food <hickory nut> contains compound <Tryptophan>,

Compound <Tryptophan> is contained in food <cow milk (liquid)>

Question:
What food contains the compound that is contraindicated in hyperphosphatemia?

Answer: Hickory nut

Comment: Correct

Figure 10: Correct Case.

Evidence:

Disease <primary ciliary dyskinesia 25> is a type of disease <primary ciliary
dyskinesia>,

In genetics, disease <primary ciliary dyskinesia> associates with gene
<MCIDAS>,

Gene <MCIDAS> downregulated in tissue <ectocervix>

Question:
In which tissue is gene MCIDAS upregulated?

Answer: Endometrium

Comment: Hallucination error

Figure 11: Hallucination Error Case.

A.8 Details of the Instruction Tuning Dataset

Medical Conversation Data: the dataset includes approximately 100k instances from the ChatDoctor
corpus, which contains diverse doctor-patient dialogues collected from real-world scenarios. To
enhance instruction diversity and robustness, each prompt is expanded into multiple semantically
equivalent forms using GPT-4.

Medical Rationale Question Answering: the dataset incorporates three major multiple-choice
QA benchmarks: MedQA (10.2K examples), MedMCQA (183K), and PubMedQA (211K). These
datasets evaluate the model’s ability to reason over professional medical knowledge. Since many of
these resources originally lacked detailed rationales, additional causal explanations were obtained
by prompting ChatGPT, allowing the model to learn both the correct answer and the underlying
reasoning.

24



Evidence:

Disease <acute necrotizing encephalitis™> resembles disease <encephalomyelitis>,
Disease <encephalomyelitis> presents symptom <Myalgia>,

Symptom <Myalgia> can be caused by the side effect of compound <Diazepam>

Question:
What disease has a similar presentation to acute necrotizing encephalitis, with a
symptom that can be treated by Diazepam?

Answer: Encephalomyelitis

Comment: Logical error

Figure 12: Logical Error Case.

Evidence:

Disease <otulipenia> is a type of disease <autosomal recessive disease>,
Disease <autosomal recessive disease> includes disease <spondyloepiphyseal
dysplasia Kondo-Fu type>,

Disease <spondyloepiphyseal dysplasia Kondo-Fu type> presents symptom
<Cataract>,

Symptom <Cataract> can be caused by the side effect of compound <Imatinib>

Question:
What is the type of disease that presents symptom Cataract, and what is the side

effect of Imatinib?

Answer: Spondyloepiphyseal dysplasia Kondo-Fu type, Cataract

Comment: Formulaic error

Figure 13: Formulaic Error Case.

Knowledge Graph-Driven Prompting: Furthermore, two smaller datasets—LiveQA (635 examples)
and MedicationQA (690 examples)—are included to provide real-world clinical questions and drug-
related knowledge, respectively. Finally, the dataset includes 99K samples derived from the UMLS
medical knowledge graph, covering both entity descriptions and inter-entity relationships. This
component is particularly useful for aligning the model with structured biomedical ontologies.

Together, these seven resources offer a diverse and comprehensive instruction set D;, enabling the
model to generalize across conversational, inferential, and knowledge-based medical tasks. More
detailed information can be found in the (Wu et al.| [2024)

B Limitations

While SENATOR demonstrates promising results in identifying and repairing knowledge deficiencies
within LLMs, several limitations remain. First, our framework relies on an external human-curated
knowledge graph (KG) to simulate a realistic environment in which the model can perform structured
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exploration. This setup enables the LLM to iteratively discover and repair its knowledge gaps through
self-improvement. However, such reliance on a high-quality, domain-specific KG may limit the
framework’s applicability in settings where such structured resources are incomplete or unavailable. In
future work, we plan to explore ways to relax this dependency, such as constructing approximate KGs
automatically from textual corpora or using retrieval-augmented methods to complement structural
guidance.

Second, while the structural entropy-guided exploration effectively identifies knowledge deficiencies,
the process of synthesizing data to repair these deficiencies can be further improved. The quality of
synthetic data plays a crucial role in downstream model performance. However, this paper places
greater emphasis on detecting and targeting knowledge gaps rather than exhaustively optimizing the
data generation process. In our current implementation, we adopt prompt-based synthesis strategies
for simplicity and reliability. In future work, we aim to incorporate more advanced techniques—such
as instruction-tuned generation, controllable sampling to enhance the relevance, diversity, and
factuality of the synthesized data.

C Broader Impacts

Our work on the SENATOR framework for detecting and repairing knowledge deficiencies in large
language models through targeted synthetic data generation has both promising benefits and potential
risks for society.

Positive Impacts

* Improved Reliability in High-Stakes Domains: By systematically identifying and closing
knowledge gaps, SENATOR can make LLMs more accurate and trustworthy in domains
such as medicine, law, and scientific research, where factual precision is critical for patient
care, legal reasoning, and scientific discovery.

* Democratization of Domain-Adapted Models: Synthetic data alleviates the dependence
on expensive, expert-annotated corpora, enabling smaller organizations, research labs,
and underserved communities to fine-tune powerful LLMs for specialized tasks without
prohibitive annotation costs.

* Rapid Adaptation to Emerging Knowledge: In fast-moving fields (e.g., novel pathogens,
new regulations), synthetic data guided by up-to-date knowledge graphs can help models
stay current, supporting timely decision-making and dissemination of accurate information.

Negative Impacts

» Bias Amplification and Inaccuracy: If the underlying knowledge graph or pretraining data
contain biases or errors, synthetic data may inadvertently reinforce these issues. Models
improved on such data could perpetuate harmful stereotypes or spread misinformation.

* Misuse for Misinformation: High-quality synthetic data generation techniques could be
exploited to create convincingly false or misleading domain-specific content (e.g., fraudulent
medical advice or fabricated legal precedents), posing risks to public trust and safety.

* Overreliance on Synthetic Data: An overconfidence in models fine-tuned primarily on
synthetic data might obscure residual blind spots, leading users to place undue trust in
automated systems without appropriate human oversight.

* Privacy and Intellectual Property Concerns: If knowledge graphs incorporate sensitive
or proprietary information, there is potential for synthetic data to leak or replicate protected
content, raising ethical and legal implications.

D Resource Requirement

We use 8 NVIDIA A100-40G GPUs to SFT Llama-3-8B and Qwen2-7B, and leverage 1-2 NVIDIA
A100-40G GPUs for all the inference experiments.

Taking Qwen2-7B as an example, when using synthetic data to SFT Qwen2-7B for knowledge repair,
the training time is about 30h on 8§ NVIDIA A100-40G GPUs, and a total of 3 epochs are performed.
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The inference time such as synthetic data generation stage and evaluation stage, measured in seconds
per sample, is calculated on an NVIDIA A100 GPU with vllm acceleration (e.g. Qwen2-7B model,
which demands at least two A100 GPUs for deployment)
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