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Abstract

Collaborative filtering (CF) based recommenda-
tion has been significantly enhanced by Graph
Neural Networks (GNNs) and Graph Con-
trastive Learning (GCL), yet two persistent
challenges remain: (i) random edge pertur-
bations often destroy vital structural signals,
degrading semantic consistency across aug-
mented views; and (ii) data sparsity under-
mines generalization by limiting the propaga-
tion of collaborative signals. To address these
issues, we propose Relation-aware Diffusion-
Asymmetric Graph Contrastive Learning for
Recommendation (RaDAR), a novel con-
trastive framework that integrates two comple-
mentary view generation strategies: a graph
generative model and a relation-aware graph
denoising model. RaDAR introduces three key
innovations: (1) asymmetric contrastive learn-
ing with global negative sampling to preserve
semantic consistency while reducing noise;
(2) diffusion-guided augmentation, which im-
proves robustness through progressive noise
injection and denoising; and (3) relation-aware
edge refinement, which dynamically adjusts
edge weights based on latent node semantics.
Extensive experiments on three public bench-
marks show that RaDAR consistently outper-
forms state-of-the-art recommendation meth-
ods, especially under noisy and sparse settings.
The code of our method is available at our
repository!.

1 Introduction

Recommender systems(Wu et al., 2022) play a
vital role in alleviating information overload by
learning personalized preferences from sparse user-
item interactions. A prevailing approach to recom-
mendation is collaborative filtering (CF)(Schafer
et al., 2007), which infers user interests based on
historical behavioral patterns. To capture high-
order connectivity and structural semantics, recent
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methods have leveraged Graph Neural Networks
(GNNSs) (Scarselli et al., 2008), which model user-
item interactions through message passing on bi-
partite graphs. These advances have significantly
improved recommendation accuracy, particularly
in sparse settings.

To further enhance representation learning,
Graph Contrastive Learning (GCL)(You et al.,
2020) has emerged as a self-supervised paradigm
that encourages consistency across multiple aug-
mented views of the interaction graph. By integrat-
ing GCL with GNNs, recent models aim to improve
robustness against data sparsity and noise. Typical
implementations, such as SGL (Wu et al., 2021),
generate graph augmentations through node or
edge dropout, while methods like GraphACL (Xiao
et al., 2024) introduce asymmetric contrastive ob-
jectives to capture multi-hop patterns. In parallel,
diffusion-based models (Ho et al., 2020; Li et al.,
2022) have shown promise in improving denois-
ing capacity through iterative noise injection and
reconstruction.

Despite these advancements, two fundamental
challenges limit current GCL-based recommenda-
tion models: Challenge 1 (C1): Structural Se-
mantics Degradation. Standard graph augmen-
tations (e.g., random node/edge dropout) often
corrupt essential topological structures, degrad-
ing collaborative signals and destabilizing con-
trastive learning. This structural perturbation com-
promises semantic consistency between augmented
views, hindering effective representation learning.
Challenge 2 (C2): Limited Relational Expres-
siveness. Existing methods predominantly as-
sume homophily, emphasizing one-hop neighbor-
hood alignment. However, real-world user inter-
actions frequently exhibit heterophily or distant
homophily—where similar users connect through
multi-hop paths with weak direct links. Current
models inadequately capture these higher-order
relational patterns. While diffusion models en-
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Figure 1: Illustration of the ACL mechanism and diffu-
sion model for User-Item interaction graph: highlight-
ing how conventional diffusion processes fail to capture
crucial two-hop monophily patterns, where indirectly
connected users (ul-u2) share similar preferences that
are not reflected in simple user-item interaction diffu-
sion.

hance noise robustness, they sacrifice fine-grained
relational semantics beyond immediate neighbor-
hoods. As illustrated in Fig 1, two-hop neighbors
often share implicit preferences despite weak direct
connections, which cannot be adequately modeled
through conventional approaches.

To address recommendation challenges in sparse
and noisy scenarios, we propose RaDAR (Relation-
aware Diffusion-Asymmetric Graph Contrastive
Learning for Recommendation), a contrastive learn-
ing framework with two core objectives: preserv-
ing structural semantics and enhancing relational
expressiveness.

For C1 (structural semantics degradation),
RaDAR introduces a diffusion-guided augmenta-
tion strategy applying Gaussian noise to node repre-
sentations with learned denoising. This maintains
semantic integrity while generating robust graph
views for contrastive learning, reducing overfitting
to spurious patterns.

For C2 (limited relational expressiveness),
RaDAR employs a dual-view generation archi-
tecture combining: (i) a graph generative mod-
ule based on variational autoencoders, capturing
global structural semantics beyond one-hop con-
nections; and (ii) a relation-aware graph denois-
ing module that adaptively reweights edge contri-
butions, preserving fine-grained relational signals.
Additionally, RaDAR’s asymmetric contrastive ob-
Jjective decouples node identity from structural con-
text, enabling alignment of semantically similar
nodes even in heterogeneous neighborhoods. Ex-
periments on Last.FM, Yelp, and BeerAdvocate
benchmarks show that RaDAR consistently out-
performs 16 state-of-the-art baselines, especially
under high sparsity and noise conditions.

In summary, our contributions are summarized

as follows:

* We propose a novel dual-view graph contrastive
framework that integrates diffusion-based aug-
mentation and relation-aware graph denoising;

* We introduce a unified optimization scheme
combining asymmetric contrastive learning with
noise-resilient diffusion to preserve multi-hop
semantics;

* We achieve new state-of-the-art results on mul-
tiple recommendation benchmarks, with consis-
tent gains under both clean and noisy interaction
scenarios.

2 Preliminaries and Related Work

2.1 Collaborative Filtering Paradigm

Let U and V denote user and item sets, with interac-
tions encoded in a binary matrix. Graph-based col-
laborative filtering extracts representations by prop-
agating information across the interaction graph
under the homophily principle: users with similar
interaction patterns share preferences. Implemen-
tations typically employ dual-tower architectures
to map users and items into a shared latent space,
enabling relevance estimation through similarity
matching. This approach captures transitive depen-
dencies in interaction graphs to infer unobserved
user-item affinities.

2.2 Self-Supervised Graph Learning

Recent advances in graph neural networks (GNNs)
have revolutionized recommendation systems
through structured modeling of user-item interac-
tions. Core architectures including PinSage(Ying
et al., 2018), NGCF(Wang et al., 2019), and
LightGCN(He et al., 2020) employ graph convo-
lution operations to encode multi-hop relational
patterns, with LightGCN achieving computational
efficiency through neighbor aggregation simplifi-
cation. Subsequent refinements integrate multi-
intent disentanglement (DGCF(Wang et al., 2020a),
DCCF(Ren et al., 2023)) and adaptive relation
discovery (DRAN(Wang et al., 2022b)) to en-
hance representation learning. Temporal dynam-
ics are further captured through graph-enhanced
sequence modeling (DGSR(Zhang et al., 2022),
GCE-GNN(Wang et al., 2020b)) that bridges his-
torical interactions with evolving preferences.

The integration of self-supervised learning (SSL)
with graph techniques has emerged as a paradigm
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Figure 2: RaDAR framework architecture: The left section shows two view generators extracting complementary
graph representations. The right section demonstrates the contrastive learning process with diffusion model-based
graph generation and joint optimization through InfoNCE, IB, and BPR losses.

for data-efficient representation learning. Con-
trastive frameworks like SGL(Wu et al., 2021)
and GFormer(Li et al., 2023) construct augmented
graph views to improve user-item embeddings
through invariance learning, while reconstruction-
based methods (S3-Rec(Zhou et al., 2020)) exploit
masked interaction prediction. SSL has demon-
strated cross-domain effectiveness through cross-
view contrastive alignment (C2DSR(Cao et al.,
2022)) and multi-modal pattern discovery (SLM-
Rec(Tao et al., 2022)), establishing its versatility
in addressing diverse recommendation challenges
through auxiliary self-supervision signals.

3 Methodology

In this section, we present the comprehensive ar-
chitecture of RaDAR, which consists of four in-
terconnected components. The first component
employs a graph message passing encoder to ef-
fectively capture local collaborative relationships
between users and items. The second component
implements a sophisticated user-item graph diffu-
sion model. The third component integrates an
adaptive framework featuring two distinct trainable
view generators: one leveraging a graph variational
model and another utilizing relation-aware denois-
ing graph models. The fourth component focuses
on model optimization through a multi-faceted loss
function that incorporates ACL to boost perfor-
mance, complemented by diffusion model-based
Graph Contrastive Learning. The overall architec-
ture of the RaDAR model is illustrated in Figure
2.

3.1 User-item Embedding Propagation

We project users and items into a d-dimensional
latent space through learnable embeddings, de-
noted as E(") e RN*4 and E(") ¢ RM*d for
N users and M items. To capture collaborative
signals, we employ a normalized adjacency matrix
derived from the interaction matrix (see Eq. 9 in
Appendix B.1).

The embedding propagation process utilizes a
multi-layer graph neural network where user and
item representations are iteratively refined through
message passing (Eq. 10 in Appendix B.1). The
final embeddings integrate information across all
L layers through summation (Eq. 11). We compute
the preference score between user u; and item v;
via inner product of their respective embeddings.

3.2 GCL Paradigm

3.2.1 Graph Generative Model as View
Generator

We adopt Variational Graph Auto-Encoder (VGAE)
(Kipf and Welling, 2016) for view generation, in-
tegrating variational inference with graph recon-
struction. The encoder employs multi-layer GCN
for node embeddings, while the decoder recon-
structs graph structures using Gaussian-sampled
embeddings. The VGAE framework optimizes
a multi-component loss function comprising KL-
divergence regularization (Eq. 13), discriminative
loss for reconstructing graph structure (Eq. 14), and
Bayesian Personalized Ranking loss (Eq. 15). The
complete formulation of the VGAE objective is
provided in Appendix B.2 (Eq. 16).



3.2.2 Relation-Aware Graph Denoising for
View Generation

Our denoising framework employs layer-wise edge
masking with sparsity constraints (Eq. 17). We
model edge retention through reparameterized
Bernoulli distributions with parameters learned via
relation-aware denoising layers that employ adap-
tive gating (Eq. 18). The framework utilizes a GRU-
inspired mechanism (Cho, 2014) for relational fil-
tering and employs concrete distribution for dif-
ferentiable edge sampling. The training objective
combines concrete distribution regularization with
recommendation loss (Eq. 21). The complete math-
ematical details are provided in AppendixB.3.

3.3 Diffusion with User-Item Graph

Building on diffusion models’ noise-to-data gen-
eration capabilities(Wang et al., 2023; Ho et al.,
2020; Sohl-Dickstein et al., 2015), we propose
a graph diffusion framework that transforms the
original user-item graph G,; into recommendation-
optimized subgraphs G/ .. We design a forward-
inverse diffusion mechanism: forward noise in-
jection gradually degrades node embeddings via
Gaussian perturbations, while inverse denoising
recovers semantic patterns through learned transi-
tions. This process enhances robustness against in-
teraction noise while learning complex embedding
distributions. The restored embeddings produce
probability distributions for subgraph reconstruc-
tion, establishing an effective diffusion paradigm
for high-fidelity recommendation graph generation.

3.3.1 Noise Diffusion Process

Our framework introduces a latent diffusion
paradigm for graph representation learning, operat-
ing on GCN-derived embeddings rather than graph
structures. Let h” denote the item embedding from
the final GCN layer. We construct a 7-step Markov
chain . with initial state xg = h(()L).

The forward process progressively adds Gaus-
sian noise to embeddings, transforming them to-
wards a standard normal distribution. Through
reparameterization techniques (detailed in Ap-
pendix A.1), we can directly compute any inter-
mediate state from the initial embedding:

Xt = Varxo + V1 — ae,e ~ N(0,1) (1)

To precisely control noise injection, we implement
a linear noise scheduler with hyperparameters s,
Qow and o, Appendix B.4.

The reverse process employs neural networks
parameterized by 6 to progressively denoise rep-
resentations, recovering the original embeddings
through learned Gaussian transitions. This de-
noising procedure enables our model to capture
complex patterns in the graph-derived embeddings
while maintaining their structural properties.

3.3.2 Diffusion Process Optimization for
User-Item Interaction.

The optimization objective is formulated to max-
imize the Evidence Lower Bound (ELBO) of the
item embedding likelihood x. Following the dif-
fusion framework in (Jiang et al., 2024), we derive
the training objective as:

Lewo = Eirq(1,1)Lt- (2

where £; denotes the loss at diffusion step ¢,
computed by uniformly sampling timesteps
during training. The ELBO comprises
two components:(1)A  reconstruction term
Egixlxo) LIXo(X1:1) — xol[3] that evaluates the
model’s denoising capability at ¢ = 1, and (2)KL
regularization terms governing the reverse process
transitions. Following (Jiang et al., 2024), we
minimize the KL divergence between the learned
reverse distribution pg(x;—1|x:) and the tractable
posterior q(xt—1|x: The neural network xy(-),
implemented as a Multi-Layer Perceptron (MLP),
predicts the original embedding x from noisy
embeddings x; and timestep encodings. This
formulation preserves the theoretical guarantees of
ELBO maximization.

3.4 Contrastive Learning paradigms

3.4.1 Diffusion-Enhanced Graph Contrastive

Learning
We propose a diffusion-augmented con-
trastive  framework leveraging intra-node

self-discrimination for self-supervised learning.
Given node embeddings E' and E” from two
augmented views, we consider augmented views of
the same node as positive pairs (e}, e), and views
of different nodes as negative pairs (e}, e/,) where

u; # uy. The formulation of the loss function is:

ISL;@ler _ Z —log exp(s(e;7 67,,’,)/7—) ,
B auexps(el e /T)
3
where s(-) denotes cosine similarity and 7 repre-
sents the temperature parameter. The item-side




contrastive loss Elst;lm follows an analogous for-
mulation. The complete self-supervised objective
combines both components:

Essl _ puser +£item (4)

ssl ssl

Our diffusion-enhanced augmentation generates
denoised views (V{", V¢") via Markov chains
that preserve interaction patterns while suppressing
high-frequency noise. The framework implements:
(1) Intra-View Alignment (Lipy, ), which measures
the contrastive loss between original view V; and
its denoised counterpart Vl-den. (i1) Inter-View Regu-
larization (Liper), which computes the contrastive
loss between different denoised views V" and
Ven,

The composite loss integrates these mechanisms:

Lifi-ss1 = Lgs1 + M Lintra + A2 Lineer ~ (5)

where A\; and Ay balance view consistency and
information diversity. This design enables simul-
taneous noise suppression and multi-perspective
representation learning.

3.4.2 Asymmetric Graph Contrastive
Learning

Conventional contrastive frameworks are limited
by homophily assumptions (Lim et al., 2021; Chin
et al., 2019). We adopt an asymmetric paradigm
(Xiao et al., 2024) for monophily-structural con-
texts using dual encoders fp and f; that gen-
erate identity and context representations. An
asymmetric predictor reconstructs neighborhood
contexts from node identities (Eq. 27 in Ap-
pendix B.5). This preserves node semantics while
encoding structural patterns, naturally accommo-
dating monophily through shared central nodes.
Our dual-representation framework uses view-
specific encoders fy and f¢ to generate identity
representations v = fp(G)[v] and context repre-
sentations u = f¢(G)[u]. An asymmetric predictor
ge reconstructs neighborhood contexts from node
identities, optimizing a contrastive objective (see
Eq. 27 in Appendix B.5).

This formulation achieves two key properties:
(1) identity representations preserve node-specific
semantics, and (2) context representations encode
structural neighborhood patterns. The asymmetric
objective naturally accommodates monophily by
enabling two-hop neighbors to reconstruct similar
contexts through their shared central nodes.

Table 1: Training phases in our framework.

Phase | Objective Params

1 Lipr, Litt-ssl» H®||2F User-item embeds

2 L5 (Info. bottleneck) | User-item embeds

3 Lgen + Lien View generators

Table 2: Statistics of the experimental datasets.

Dataset | Users | Items | Interactions | Density |
Last FM 1,892 | 17,632 92,834 2.8 x1073
Yelp 42,712 | 26,822 182,357 1.6 x107*
BeerAdvocate | 10,456 | 13,845 | 1,381,094 9.5 x10~7 |

3.5 Model Training

Our framework adopts a hierarchical optimization
approach with three coupled stages, as summarized
in Table 1.

Phase 1: Unified Multi-Task Learning We ini-
tiate joint optimization:

Ly = Lopr + A3 Laitesst + Ml|OfF (6)

where Lgifr.ss1 1S the diffusion-based self-supervised
loss from Eq. 5, and ||©||% is L2 regularization.

Phase 2: Representation Distillation We im-
pose an information bottleneck constraint:

£IB = LA(G7 g(b(v)v v, U)

7
:LA(G79¢(y*)7y*7y)v ( )

where y* represents historical representations and
L 4 is the ACL loss.

Phase 3: View Generator Optimization We
finalize training by optimizing view generators:

ﬁgenerators = Egen + Eden (8)

where L ¢, is the VGAE graph generation loss(see
Eq. 16) and L4.,,(see Eq. 21) is the relation-aware
denoising loss.

3.5.1 Evaluation Datasets

We evaluate our method on three publicly available
datasets:

* Last.FM(Celma, 2010): Music listening behav-
iors and social interactions from Last.fm users.

* Yelp (Yelp, 2018): A benchmark dataset of user-
business ratings from Yelp, widely utilized in
location-based recommendation studies.

* BeerAdvocate (McAuley and Leskovec, 2013):
Beer reviews from BeerAdvocate, preprocessed
with 10-core filtering to ensure data density.



Table 3: Performance Metrics for Various Models

Model Last.FM Yelp BeerAdvocate
Recall@20 | NDCG@20 | Recall@40 | NDCG@40 | Recall@20 | NDCG@20 | Recall@40 | NDCG@40 | Recall@20 | NDCG@20 | Recall@40 | NDCG@40

BiasMF 0.1879 0.1362 0.2660 0.1653 0.0532 0.0264 0.0802 0.0321 0.0996 0.0856 0.1602 0.1016
NCF 0.1130 0.0795 0.1693 0.0952 0.0304 0.0143 0.0487 0.0187 0.0729 0.0654 0.1203 0.0754
AutoR 0.1518 0.1114 0.2174 0.1336 0.0491 0.0222 0.0692 0.0268 0.0816 0.0650 0.1325 0.0794
PinSage 0.1690 0.1228 0.2402 0.1472 0.0510 0.0245 0.0743 0.0315 0.0930 0.0816 0.1553 0.0980
STGCN 0.2067 0.1558 0.2940 0.1821 0.0562 0.0282 0.0856 0.0355 0.1003 0.0852 0.1650 0.1031
GCMC 0.2218 0.1714 0.3149 0.1897 0.0584 0.0280 0.0891 0.0360 0.1082 0.0901 0.1766 0.1085
NGCF 0.2081 0.1474 0.2944 0.1829 0.0681 0.0336 0.1019 0.0419 0.1033 0.0873 0.1653 0.1032
GCCF 0.2222 0.1642 0.3083 0.1931 0.0724 0.0365 0.1151 0.0466 0.1035 0.0901 0.1662 0.1062
LightGCN | 0.2349 0.1704 0.3220 0.2022 0.0761 0.0373 0.1175 0.0474 0.1102 0.0943 0.1757 0.1113
SLRec 0.1957 0.1442 0.2792 0.1737 0.0665 0.0327 0.1032 0.0418 0.1048 0.0881 0.1723 0.1068
NCL 0.2353 0.1715 0.3252 0.2033 0.0806 0.0402 0.1230 0.0505 0.1131 0.0971 0.1819 0.1150
SGL 0.2427 0.1761 0.3405 0.2104 0.0803 0.0398 0.1226 0.0502 0.1138 0.0959 0.1776 0.1122
HCCF 0.2410 0.1773 0.3232 0.2051 0.0789 0.0391 0.1210 0.0492 0.1156 0.0990 0.1847 0.1176
SHT 0.2420 0.1770 0.3235 0.2055 0.0794 0.0395 0.1217 0.0497 0.1150 0.0977 0.1799 0.1156
DirectAU 0.2422 0.1727 0.3356 0.2042 0.0818 0.0424 0.1226 0.0524 0.1182 0.0981 0.1797 0.1139
AdaGCL 0.2603 0.1911 0.3531 0.2204 0.0873 0.0439 0.1315 0.0548 0.1216 0.1015 0.1867 0.1182
Ours 0.2724 0.1992 0.3664 0.2309 0.0914 0.0464 0.1355 0.0571 0.1273 0.1061 0.1942 0.1375
Improv 4.65% 4.24% 3.77% 4.76% 4.70% 5.69% 3.04% 4.20% 4.69% 4.53% 4.02% 16.33%
p-val 2.4¢70 5.8¢70 4.9¢79 6.4¢70 1.3¢7 1 8.8¢7 7.6e 2.2¢7 1.2¢71 7.9¢1 1.4e71 2.9¢0

4 Experimental Evaluation

To rigorously evaluate the proposed model, we de-
sign experiments to investigate four critical aspects:

* RQ1: How does RaDAR perform against state-of-
the-art recommendation baselines in benchmark
comparisons?

* RQ2: What is the individual contribution of key
components to the model’s effectiveness across
diverse datasets? (Ablation Analysis)

* RQ3: How robust is RaDAR in handling data
sparsity and noise compared to conventional ap-
proaches?

* RQ4: How do critical hyperparameters influence
the model’s performance characteristics?

4.1 Experimental Settings
4.1.1 Evaluation Protocols

Following standard evaluation protocols for rec-
ommendation systems, we partition datasets into
training/validation/test sets (7:2:1). Adopting the
all-ranking strategy, we evaluate each user by rank-
ing all non-interacted items alongside test positives.
Performance is measured using Recall@20 and
NDCG @20 metrics, with N=20 as the default rank-
ing cutoff. This setup ensures comprehensive as-
sessment of model capabilities in real-world sparse
interaction scenarios.

4.1.2 Compared Baseline Methods

We evaluate RaDAR against 16 representative base-
lines spanning four research streams: 1) Tradi-
tional CF models: BiasMF (Koren et al., 2009),
NCF (He et al., 2017); 2) GNN-based methods:
LightGCN (He et al., 2020), NGCF (Wang et al.,
2019); 3) Self-supervised frameworks: SGL (Wu

Table 4: Ablation study on key components of RaDAR.

Model VarianF Last.FM Yelp Beer
Description | Recall NDCG | Recall NDCG | Recall NDCG
Baseline | SOTA SSL | 0.2603 0.1911 | 0.0873 0.0439 | 0.1216 0.1015
RaDAR Gen+Gen | 0.2665 0.1936 | 0.0900 0.0456 | 0.1226 0.1027
Gen+Linear | 0.2698 0.1986 | 0.0910 0.0461 | 0.1247 0.1050
w/o D-ACL | 0.2652 0.1934 | 0.0904 0.0458 | 0.1250 0.1036
RaDAR(full) 0.2724  0.1992 | 0.0914 0.0464 | 0.1273  0.1061

et al., 2021), SLRec (Yao et al., 2021); 4) Con-
trastive learning: DirectAU (Wang et al., 2022a),
AdaGCL (Jiang et al., 2023). Full baseline de-
scriptions and implementation details are provided
in Appendix A. This taxonomy ensures coverage
of both foundational approaches and cutting-edge
paradigms, enabling rigorous evaluation across
methodological dimensions.

4.2 Overall Performance Comparison (RQ1)

Table 3 demonstrates RaDAR’s superior perfor-
mance across three benchmarks, outperforming
existing methods in top-20/40 recommendations.
This advantage derives from three key innova-
tions: (1) relation-aware graph denoising that elim-
inates spurious correlations, (2) asymmetric con-
trastive learning preserving collaborative signals,
and (3) diffusion-based iterative noise reduction.
Unlike conventional approaches that compromise
structural integrity through random augmentation,
RaDAR’s structural-preserving dual-view frame-
work integrates noise-suppressed distribution mod-
eling with relation-aware signal enhancement, ef-
fectively mitigating degradation in noisy interac-
tion graphs.

4.3 Model Ablation Test (RQ2)

To evaluate RaDAR’s architectural components,
we conducted systematic ablation studies against
the state-of-the-art baseline. We examined four



configurations across three datasets (Last.FM, Yelp,
and Beer):

* RaDAR (Gen+Gen): Dual VGAE-based gener-
ators without denoising model

* RaDAR (Gen+Linear): Linear attention replac-
ing relation-aware denoising model

* RaDAR (w/o D-ACL): Conventional graph con-
trastive loss without diffusion-asymmetric con-
trastive learning optimization

* RaDAR (full): Complete proposed framework

Table 4 reveals critical performance differentials,
demonstrating three key insights:

Relation-Aware Denoising Superiority: Our
relation-aware denoiser demonstrates superior per-
formance over alternatives. Substituting it with
linear attention reduces Recall@20 by 0.95%
(0.2724—0.2698), while VGAE generators yield a
2.17% decrease (0.2724—0.2665). This confirms
enhanced noise-handling through explicit relation
modeling compared to standard linear layers and
VGAE architectures.

Diffusion-Asymmetric Contrastive Learning
Synergy: While diffusion-based graph contrastive
learning improves embedding robustness, asym-
metric contrastive optimization captures multi-hop
relationships through its loss formulation. Their
synergistic integration enables noise-resilient em-
beddings while preserving relational patterns. Ab-
lation studies confirm D-ACL’s criticality, as its
removal causes a 2.64% performance drop (Re-
call@20: 0.2724—0.2652), exceeding the impact
of relation-aware denoising ablation (-2.17%).

Component Complementarity: The perfor-
mance hierarchy (full > Gen+Linear > Gen+Gen >
w/o D-ACL) reveals complementary mechanisms:
relation-aware denoising eliminates noise through
adaptive graph rewiring, while diffusion-ACL en-
hances contrastive effectiveness.

4.4 Model Robustness Test (RQ3)

In this section, our extensive experimental evalu-
ation demonstrates the efficacy of our proposed
RaDAR framework. The results indicate that
RaDAR exhibits remarkable resilience against data
noise and significantly outperforms existing meth-
ods in handling sparse user-item interaction data.
Specifically, our approach maintains high perfor-
mance even in the presence of substantial noise,
showcasing its robust nature.
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Figure 3: Impact of Noise Ratio (5%—25%) on Perfor-
mance Degradation

4.4.1 Performance w.r.t. Data Noise Degrees.

We systematically evaluate RaDAR’s resilience to
data corruption through controlled noise injection
experiments, where spurious edges replace gen-
uine interactions at incremental ratios (5%-25%).
A comparative analysis with AdaGCL and SGL
across datasets of varying density (Fig. 3) reveals
two key patterns:

On moderate-density datasets (Last.FM: 2.8 x
1073, Beer: 9.5 x 1073), RaDAR demonstrates a
modest improvement over AdaGCL on the Beer
dataset, while the relative Recall/ NDCG robustness
performance among RaDAR, AdaGCL, and GCL
shows less significant variation on the Last.FM
dataset. This suggests that the benefits of our pro-
posed approach may be less pronounced when data
sparsity is moderate, as the existing methods al-
ready capture sufficient structural information un-
der these conditions.

In extreme sparsity conditions (Yelp: 1.6 x
10~%), RaDAR demonstrates pronounced advan-
tage higher relative improvement margins, confirm-
ing superior noise resilience in data-scarce scenar-
ios.

Our empirical analysis demonstrates RaDAR’s
effectiveness in cold-start scenarios through its
density-aware denoising framework. The widening
performance gap under increasing sparsity high-
lights the model’s ability to extract critical signals



from sparse interactions - a pivotal requirement for
practical recommendation systems.
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Figure 4: Performance analysis across five user and item
interaction sparsity levels on Yelp dataset.

4.4.2 Performance w.r.t. Data Sparsity.

We analyze recommendation performance under
varying interaction sparsity from dual user-item per-
spectives. As shown in Fig. 4(a), RaDAR exhibits
marked superiority over AdaGCL across all user in-
teraction groups, particularly in cold-start scenarios
(0-10 interactions). This demonstrates its robust-
ness in learning from sparse user behavior through
adaptive graph augmentation. Contrastingly, the
item-centric analysis (Fig. 4(b)) reveals an inverse
trend: RaDAR’s performance gap widens as item
interaction density increases. This divergence high-
lights distinct sparsity-response items—user met-
rics generally degrade with sparsity (except minor
recovery at 20-25 interactions), while item perfor-
mance positively correlates with interaction fre-
quency.

These results validate RaDAR’s dual mecha-
nisms: (1) Sparse user modeling via adaptive aug-
mentation ensures stability in cold-start scenarios,
and (2) Density-aware regularization captures item-
side collaborative signals effectively. The opposing
trends underscore RaDAR’s balanced capability in
addressing both user and item sparsity challenges.

4.5 Hyperparameter Analysis (RQ4)

We investigate the impact of the adjustable con-
trastive learning (ACL) ratio A, which balances
Information Bottleneck (IB) losses between the
VAGE-base and relation-aware graph denoising
view generators. The total IB loss is formulated as
Lip= L?B —i—)\LIpB where LIGB and L?B represent
the IB losses from the VAGE-base view generator
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Figure 5: Performance variation with ACL ratio A. Last.FM
peaks Recall@20 at A = 5.5, NDCG@20 at A = 3.5. Yelp
peaks Recall@20 at A = 1.5, NDCG@20 at A = 1.0. Higher
A values enhance relation-aware denoising for Last.FM, while
Yelp requires balanced contributions due to interaction spar-
sity.

and the relation-aware graph denoising view gener-
ator, and A > 1 prioritizes relation-aware structural
preservation, while A < 1 emphasizes generated
graph views.

Fig. 5 reveals distinct A preferences across
datasets. Last.FM achieves optimal performance
with A > 1(Fig. 5(a)), indicating its structural com-
plexity benefits from enhanced relation-aware de-
noising. Conversely, Yelp attains peak metrics at
lower A values (Fig. 5(b)), suggesting its sparse
interaction patterns require balanced information
preservation from both view generators to pre-
vent overfitting. This empirical evidence confirms
RaDAR’s adaptability through our symmetric con-
trastive learning design, demonstrating robust per-
formance across diverse graph recommendation
scenarios.

5 Conclusion

We propose RaDAR, a contrastive recommenda-
tion framework with three key innovations: (1) a
dual-view architecture combining generative recon-
struction and relation-aware denoising, (2) asym-
metric contrastive learning for pattern discrimina-
tion, and (3) diffusion-based stabilization for robust
feature learning. Experimental results demonstrate
RaDAR’s superior noise resilience compared with
state-of-the-art baselines, with ablation studies val-
idating the effectiveness of its graph purification
and contrastive components. By explicitly sepa-
rating collaborative signals from spurious corre-
lations, our framework establishes principled de-
sign guidelines for contrastive recommenders. The
methodology provides foundational insights for
noise-resistant system development while maintain-
ing interaction semantics, offering natural exten-
sions to dynamic and multi-modal recommendation
scenarios.



Limitations

This work has two key limitations: First, the cur-
rent framework is restricted to homogeneous user-
item graphs and lacks modality-specific compo-
nents for cross-modal alignment and noise model-
ing in multi-modal scenarios. Second, its relational
modeling capacity is constrained by single-relation
bipartite graph assumptions, with limited capabil-
ity to capture complex relational structures (e.g.,
multi-relational knowledge graphs) and relation-
specific propagation patterns. Future work should
explore modality-aware alignment mechanisms and
relation-aware graph architectures to address these
challenges.
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A Baseline Methods Details

This appendix provides comprehensive descrip-
tions of the baseline methods compared in our ex-
perimental evaluation. All implementations strictly
followed the original authors’ specifications.

A.0.1 Compared Baseline Methods

In this study, we assess our proposed method,
RaDAR, by conducting a comparative analysis
against several baseline approaches to ensure a thor-
ough evaluation. The specifics of these baseline
methods are detailed below.

* BiasMF(Koren et al., 2009): This is a matrix
factorization technique designed to improve per-
sonalized recommendations by integrating bias
vectors for both users and items, thereby captur-
ing individual user preferences more effectively.

* NCF(He et al., 2017): This approach employs a
neural network architecture that substitutes the
conventional dot-product operation in matrix fac-
torization with multi-layered neural networks.
This modification enables the model to learn in-
tricate user-item interactions, thereby enhancing
the quality of recommendations. For the purpose
of our comparison, we implement the NeuMF
variant of NCF.

* AutoR(Sedhain et al., 2015): This approach
enhances the representation of users and items
through a three-layer autoencoder trained with
the objective of reconstructing interaction data.

* GCMC(Berg et al., 2017): This method utilizes
graph convolutional networks (GCNs) for the
task of completing interaction matrices.

* PinSage(Ying et al., 2018): This technique em-
ploys a graph convolutional framework aug-
mented with random sampling to enhance perfor-
mance in collaborative filtering tasks.

* NGCF(Wang et al., 2019): This model imple-
ments a multi-layer graph convolutional network
that facilitates the propagation of information
throughout the user-item interaction graph while
learning latent representations for both users and
items.

* STGCN(Zhang et al., 2019): This approach com-
bines graph convolutional encoders with graph
autoencoders to bolster the model’s resilience
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against issues such as sparsity and cold-start sce-
narios in collaborative filtering applications.

LightGCN(He et al., 2020): This model capi-
talizes on neighborhood information in the user-
item interaction graph by employing a layer-wise
propagation method that relies solely on linear
transformations and element-wise summation.

GCCF(Chen et al., 2020): This method presents
a novel framework for collaborative filtering rec-
ommender systems by re-examining the appli-
cation of graph convolutional networks. It ad-
dresses the over-smoothing issue by discarding
non-linear activations and incorporating a resid-
ual network architecture.

HCCF(Xia et al., 2022a): The authors introduce
a self-supervised recommendation framework
that adeptly captures both local and global col-
laborative interactions through the deployment
of a hypergraph neural network augmented by a
cross-view contrastive learning mechanism.

SHT(Xia et al., 2022b): This approach syner-
gistically combines hypergraph neural networks
with transformers under a self-supervised learn-
ing paradigm, focusing on data augmentation to
effectively reduce noise in user-item interaction
data within recommendation systems.

SLRec(Yao et al., 2021): The proposed model
employs contrastive learning among node fea-
tures as regularization techniques, thereby en-
hancing the efficacy of state-of-the-art collabora-
tive filtering recommender systems.

SGL(Wu et al., 2021): This model enhances
LightGCN by integrating self-supervised con-
trastive learning, utilizing data augmentation
strategies such as random walk and node/edge
dropout to perturb graph structures.

NCL(Lin et al., 2022): The neighborhood-
enriched contrastive learning (NCL) approach
enhances graph-based collaborative filtering by
integrating potential neighbors into the formation
of contrastive pairs. NCL delineates both struc-
tural and semantic neighbors for users or items,
which facilitates the establishment of a structure-
contrastive objective as well as a prototype-
contrastive objective.

* DirectAU(Wang et al., 2022a): This novel tech-



nique presents a new learning objective specifi-
cally designed for collaborative filtering method-
ologies. It evaluates representation quality
through alignment and uniformity on the hyper-
sphere, thereby directly optimizing two essen-
tial properties to boost recommendation perfor-
mance.

AdaGCL(Jiang et al., 2023): This pioneering
framework introduces an adaptive graph con-
trastive learning (AdaGCL) paradigm for col-
laborative filtering approaches. It utilizes two
trainable view generators to produce contrastive
views, enabling an adaptive mechanism for gen-
erating views tailored for contrastive learning
within the collaborative filtering context.

B Mathematical Details

B.1 Embedding Propagation Details

The normalized adjacency matrix is computed as:

- 1 _1
A=D,?AD,? ©)]
where D,, and D, are diagonal degree matrices for
users and items.

At the [-th layer, the embeddings are updated

through:

( ) _ A
Y= AEl(v)l + El(U)1
( ) _ AT (v) (10)
=A E, " +E
The final embeddings are computed as:
L L
=Y ", EV=YE" 1
1=0 =0
The preference score is calculated as:
Gij = (e)Tel” (12)

B.2 Variational Graph Auto-Encoder Details

In this section, we provide the detailed mathemati-
cal formulations of the VGAE framework used in
our view generation approach. The KL-divergence
regularization term for the latent distributions is
defined as:

D

Z(l—i—Z log(xs) —x

d=1

1
Ly =—=

5 xia) (13)

me an~

For graph structure reconstruction, we employ a
discriminative loss Ly that evaluates both positive
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and negative interactions:

Lpos = BCE(o (f (Xuser[t] © Xitem[i])), 1)
— log (o (f (Xuser[u] © Xitemli])))
Lueg = BCE(0 (f (Xuser[u] © Xiteml3])), 0)
—log(1 — o(f (Xuser[t] ® Xitem[J])))
Ldis = Lpos + Lneg
(14)

The Bayesian Personalized Ranking (BPR) loss is
incorporated to enhance recommendation perfor-
mance:

['bpr = Z - 10g U(Quz - guj)>
(u,i,5)€O

5)

The total VGAE optimization objective combines
these components with weight regularization:

rgen

£gen = £kl + ﬁdls bpr

+ X0l (16)

B.3 Relation-Aware Graph Denoising Details

This section provides the mathematical details
of our relation-aware graph denoising framework.
The layer-wise edge masking with sparsity con-
straints is formulated as:

Al=Ao M,
L

> 1Mo = Z > L0my, #0)

=1 1 (u,v)€e

a7

The denoising layer employs adaptive gating to
preserve essential user-item relationships:

g = a(Wyle;;ej] +b)
oy j = fa (Glei; €5) © Glej, €;) @ [e; e5])
(18)
The adaptive feature composition G|[-] is defined
as:

G’(ei, ej) = gQT(Wembed[ei; ar,i]) + (1 _g) ©e;

(19)
The edge sampling employs a concrete distribution
with hard sigmoid rectification:

E-Z 3 ( — Po( ”\0’)) (20)

=1 (u;,vj)€e

The final training objective combines concrete dis-
tribution regularization with recommendation loss:

ﬁden = £c+£§;rrl+)\2”®”%' (21)



B.4 Detailed Diffusion Process Formulation
B.4.1 Forward Diffusion Process

Our diffusion process begins with the forward
phase, where Gaussian noise is progressively added
according to:

q(xtlxi—1) = N(xe; V1 = Bexe—1, BeI) (22)

with 5; controlling the noise scale at step .
The intermediate state x; can be efficiently com-
puted directly from the initial state o through:

q(xtlxo0) = N (xe; vVarxo, (1 — a)l),

_ (23)
Qp = H (1 - 5{)
t'=1
This allows for the reparameterization:
Xt = Vaxo +V1—ae, e~ N(0,I) (24)

B.4.2 Linear Noise Scheduler

To control the injection of noise in x1.7, we employ
a linear noise scheduler that parameterizes 1 — &
using three hyperparameters:

t—1

l—a;=s- alow+ﬁ(aup_alow) ,
te T}

(25)

Here, s € [0, 1] regulates the overall noise scale,
while ajp < ayp € (0,1) determine the lower
and upper bounds for the injected noise.

B.4.3 Reverse Denoising Process

The reverse process aims to recover the original
representations by progressively denoising x; to
reconstruct x;—1 through a neural network:

po(xt-11xt) = N (xt-1; o (Xt 1), Zo (X1, 1))
(26)
where neural networks parameterized by 6 generate
the mean and covariance of the denoising distribu-
tion.

B.5 Asymmetric Contrastive Loss

The asymmetric contrastive learning loss function
is defined as:

ueN (v)
exp(pu/7)

exp(p'u/7) + >, cpexp(vTvT /)’
27

1 1
L4 =—— -
T ZV W ()]

lo
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where N\ (v) represents the one-hop neighbors of
node v, and 7 controls the softmax temperature.
The predictor output p = gg(v) transforms the
identity representation into a prediction of its neigh-
borhood context.
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