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Abstract001

Collaborative filtering (CF) based recommenda-002
tion has been significantly enhanced by Graph003
Neural Networks (GNNs) and Graph Con-004
trastive Learning (GCL), yet two persistent005
challenges remain: (i) random edge pertur-006
bations often destroy vital structural signals,007
degrading semantic consistency across aug-008
mented views; and (ii) data sparsity under-009
mines generalization by limiting the propaga-010
tion of collaborative signals. To address these011
issues, we propose Relation-aware Diffusion-012
Asymmetric Graph Contrastive Learning for013
Recommendation (RaDAR), a novel con-014
trastive framework that integrates two comple-015
mentary view generation strategies: a graph016
generative model and a relation-aware graph017
denoising model. RaDAR introduces three key018
innovations: (1) asymmetric contrastive learn-019
ing with global negative sampling to preserve020
semantic consistency while reducing noise;021
(2) diffusion-guided augmentation, which im-022
proves robustness through progressive noise023
injection and denoising; and (3) relation-aware024
edge refinement, which dynamically adjusts025
edge weights based on latent node semantics.026
Extensive experiments on three public bench-027
marks show that RaDAR consistently outper-028
forms state-of-the-art recommendation meth-029
ods, especially under noisy and sparse settings.030
The code of our method is available at our031
repository1.032

1 Introduction033

Recommender systems(Wu et al., 2022) play a034

vital role in alleviating information overload by035

learning personalized preferences from sparse user-036

item interactions. A prevailing approach to recom-037

mendation is collaborative filtering (CF)(Schafer038

et al., 2007), which infers user interests based on039

historical behavioral patterns. To capture high-040

order connectivity and structural semantics, recent041

1https://anonymous.4open.science/r/
RadarGCL-DB7B

methods have leveraged Graph Neural Networks 042

(GNNs) (Scarselli et al., 2008), which model user- 043

item interactions through message passing on bi- 044

partite graphs. These advances have significantly 045

improved recommendation accuracy, particularly 046

in sparse settings. 047

To further enhance representation learning, 048

Graph Contrastive Learning (GCL)(You et al., 049

2020) has emerged as a self-supervised paradigm 050

that encourages consistency across multiple aug- 051

mented views of the interaction graph. By integrat- 052

ing GCL with GNNs, recent models aim to improve 053

robustness against data sparsity and noise. Typical 054

implementations, such as SGL (Wu et al., 2021), 055

generate graph augmentations through node or 056

edge dropout, while methods like GraphACL (Xiao 057

et al., 2024) introduce asymmetric contrastive ob- 058

jectives to capture multi-hop patterns. In parallel, 059

diffusion-based models (Ho et al., 2020; Li et al., 060

2022) have shown promise in improving denois- 061

ing capacity through iterative noise injection and 062

reconstruction. 063

Despite these advancements, two fundamental 064

challenges limit current GCL-based recommenda- 065

tion models: Challenge 1 (C1): Structural Se- 066

mantics Degradation. Standard graph augmen- 067

tations (e.g., random node/edge dropout) often 068

corrupt essential topological structures, degrad- 069

ing collaborative signals and destabilizing con- 070

trastive learning. This structural perturbation com- 071

promises semantic consistency between augmented 072

views, hindering effective representation learning. 073

Challenge 2 (C2): Limited Relational Expres- 074

siveness. Existing methods predominantly as- 075

sume homophily, emphasizing one-hop neighbor- 076

hood alignment. However, real-world user inter- 077

actions frequently exhibit heterophily or distant 078

homophily—where similar users connect through 079

multi-hop paths with weak direct links. Current 080

models inadequately capture these higher-order 081

relational patterns. While diffusion models en- 082
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Figure 1: Illustration of the ACL mechanism and diffu-
sion model for User-Item interaction graph: highlight-
ing how conventional diffusion processes fail to capture
crucial two-hop monophily patterns, where indirectly
connected users (u1-u2) share similar preferences that
are not reflected in simple user-item interaction diffu-
sion.

hance noise robustness, they sacrifice fine-grained083

relational semantics beyond immediate neighbor-084

hoods. As illustrated in Fig 1, two-hop neighbors085

often share implicit preferences despite weak direct086

connections, which cannot be adequately modeled087

through conventional approaches.088

To address recommendation challenges in sparse089

and noisy scenarios, we propose RaDAR (Relation-090

aware Diffusion-Asymmetric Graph Contrastive091

Learning for Recommendation), a contrastive learn-092

ing framework with two core objectives: preserv-093

ing structural semantics and enhancing relational094

expressiveness.095

For C1 (structural semantics degradation),096

RaDAR introduces a diffusion-guided augmenta-097

tion strategy applying Gaussian noise to node repre-098

sentations with learned denoising. This maintains099

semantic integrity while generating robust graph100

views for contrastive learning, reducing overfitting101

to spurious patterns.102

For C2 (limited relational expressiveness),103

RaDAR employs a dual-view generation archi-104

tecture combining: (i) a graph generative mod-105

ule based on variational autoencoders, capturing106

global structural semantics beyond one-hop con-107

nections; and (ii) a relation-aware graph denois-108

ing module that adaptively reweights edge contri-109

butions, preserving fine-grained relational signals.110

Additionally, RaDAR’s asymmetric contrastive ob-111

jective decouples node identity from structural con-112

text, enabling alignment of semantically similar113

nodes even in heterogeneous neighborhoods. Ex-114

periments on Last.FM, Yelp, and BeerAdvocate115

benchmarks show that RaDAR consistently out-116

performs 16 state-of-the-art baselines, especially117

under high sparsity and noise conditions.118

In summary, our contributions are summarized119

as follows: 120

• We propose a novel dual-view graph contrastive 121

framework that integrates diffusion-based aug- 122

mentation and relation-aware graph denoising; 123

• We introduce a unified optimization scheme 124

combining asymmetric contrastive learning with 125

noise-resilient diffusion to preserve multi-hop 126

semantics; 127

• We achieve new state-of-the-art results on mul- 128

tiple recommendation benchmarks, with consis- 129

tent gains under both clean and noisy interaction 130

scenarios. 131

2 Preliminaries and Related Work 132

2.1 Collaborative Filtering Paradigm 133

Let U and V denote user and item sets, with interac- 134

tions encoded in a binary matrix. Graph-based col- 135

laborative filtering extracts representations by prop- 136

agating information across the interaction graph 137

under the homophily principle: users with similar 138

interaction patterns share preferences. Implemen- 139

tations typically employ dual-tower architectures 140

to map users and items into a shared latent space, 141

enabling relevance estimation through similarity 142

matching. This approach captures transitive depen- 143

dencies in interaction graphs to infer unobserved 144

user-item affinities. 145

2.2 Self-Supervised Graph Learning 146

Recent advances in graph neural networks (GNNs) 147

have revolutionized recommendation systems 148

through structured modeling of user-item interac- 149

tions. Core architectures including PinSage(Ying 150

et al., 2018), NGCF(Wang et al., 2019), and 151

LightGCN(He et al., 2020) employ graph convo- 152

lution operations to encode multi-hop relational 153

patterns, with LightGCN achieving computational 154

efficiency through neighbor aggregation simplifi- 155

cation. Subsequent refinements integrate multi- 156

intent disentanglement (DGCF(Wang et al., 2020a), 157

DCCF(Ren et al., 2023)) and adaptive relation 158

discovery (DRAN(Wang et al., 2022b)) to en- 159

hance representation learning. Temporal dynam- 160

ics are further captured through graph-enhanced 161

sequence modeling (DGSR(Zhang et al., 2022), 162

GCE-GNN(Wang et al., 2020b)) that bridges his- 163

torical interactions with evolving preferences. 164

The integration of self-supervised learning (SSL) 165

with graph techniques has emerged as a paradigm 166
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Figure 2: RaDAR framework architecture: The left section shows two view generators extracting complementary
graph representations. The right section demonstrates the contrastive learning process with diffusion model-based
graph generation and joint optimization through InfoNCE, IB, and BPR losses.

for data-efficient representation learning. Con-167

trastive frameworks like SGL(Wu et al., 2021)168

and GFormer(Li et al., 2023) construct augmented169

graph views to improve user-item embeddings170

through invariance learning, while reconstruction-171

based methods (S3-Rec(Zhou et al., 2020)) exploit172

masked interaction prediction. SSL has demon-173

strated cross-domain effectiveness through cross-174

view contrastive alignment (C2DSR(Cao et al.,175

2022)) and multi-modal pattern discovery (SLM-176

Rec(Tao et al., 2022)), establishing its versatility177

in addressing diverse recommendation challenges178

through auxiliary self-supervision signals.179

3 Methodology180

In this section, we present the comprehensive ar-181

chitecture of RaDAR, which consists of four in-182

terconnected components. The first component183

employs a graph message passing encoder to ef-184

fectively capture local collaborative relationships185

between users and items. The second component186

implements a sophisticated user-item graph diffu-187

sion model. The third component integrates an188

adaptive framework featuring two distinct trainable189

view generators: one leveraging a graph variational190

model and another utilizing relation-aware denois-191

ing graph models. The fourth component focuses192

on model optimization through a multi-faceted loss193

function that incorporates ACL to boost perfor-194

mance, complemented by diffusion model-based195

Graph Contrastive Learning. The overall architec-196

ture of the RaDAR model is illustrated in Figure197

2.198

3.1 User-item Embedding Propagation 199

We project users and items into a d-dimensional 200

latent space through learnable embeddings, de- 201

noted as E(u) ∈ RN×d and E(v) ∈ RM×d for 202

N users and M items. To capture collaborative 203

signals, we employ a normalized adjacency matrix 204

derived from the interaction matrix (see Eq. 9 in 205

Appendix B.1). 206

The embedding propagation process utilizes a 207

multi-layer graph neural network where user and 208

item representations are iteratively refined through 209

message passing (Eq. 10 in Appendix B.1). The 210

final embeddings integrate information across all 211

L layers through summation (Eq. 11). We compute 212

the preference score between user ui and item vj 213

via inner product of their respective embeddings. 214

3.2 GCL Paradigm 215

3.2.1 Graph Generative Model as View 216

Generator 217

We adopt Variational Graph Auto-Encoder (VGAE) 218

(Kipf and Welling, 2016) for view generation, in- 219

tegrating variational inference with graph recon- 220

struction. The encoder employs multi-layer GCN 221

for node embeddings, while the decoder recon- 222

structs graph structures using Gaussian-sampled 223

embeddings. The VGAE framework optimizes 224

a multi-component loss function comprising KL- 225

divergence regularization (Eq. 13), discriminative 226

loss for reconstructing graph structure (Eq. 14), and 227

Bayesian Personalized Ranking loss (Eq. 15). The 228

complete formulation of the VGAE objective is 229

provided in Appendix B.2 (Eq. 16). 230

3



3.2.2 Relation-Aware Graph Denoising for231

View Generation232

Our denoising framework employs layer-wise edge233

masking with sparsity constraints (Eq. 17). We234

model edge retention through reparameterized235

Bernoulli distributions with parameters learned via236

relation-aware denoising layers that employ adap-237

tive gating (Eq. 18). The framework utilizes a GRU-238

inspired mechanism (Cho, 2014) for relational fil-239

tering and employs concrete distribution for dif-240

ferentiable edge sampling. The training objective241

combines concrete distribution regularization with242

recommendation loss (Eq. 21). The complete math-243

ematical details are provided in AppendixB.3.244

3.3 Diffusion with User-Item Graph245

Building on diffusion models’ noise-to-data gen-246

eration capabilities(Wang et al., 2023; Ho et al.,247

2020; Sohl-Dickstein et al., 2015), we propose248

a graph diffusion framework that transforms the249

original user-item graph Gui into recommendation-250

optimized subgraphs G′
ui. We design a forward-251

inverse diffusion mechanism: forward noise in-252

jection gradually degrades node embeddings via253

Gaussian perturbations, while inverse denoising254

recovers semantic patterns through learned transi-255

tions. This process enhances robustness against in-256

teraction noise while learning complex embedding257

distributions. The restored embeddings produce258

probability distributions for subgraph reconstruc-259

tion, establishing an effective diffusion paradigm260

for high-fidelity recommendation graph generation.261

3.3.1 Noise Diffusion Process262

Our framework introduces a latent diffusion263

paradigm for graph representation learning, operat-264

ing on GCN-derived embeddings rather than graph265

structures. Let hL denote the item embedding from266

the final GCN layer. We construct a T -step Markov267

chain χ0:T with initial state χ0 = h
(L)
0 .268

The forward process progressively adds Gaus-269

sian noise to embeddings, transforming them to-270

wards a standard normal distribution. Through271

reparameterization techniques (detailed in Ap-272

pendix A.1), we can directly compute any inter-273

mediate state from the initial embedding:274

χt =
√
ᾱtχ0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (1)275

To precisely control noise injection, we implement276

a linear noise scheduler with hyperparameters s,277

αlow, and αup Appendix B.4.278

The reverse process employs neural networks 279

parameterized by θ to progressively denoise rep- 280

resentations, recovering the original embeddings 281

through learned Gaussian transitions. This de- 282

noising procedure enables our model to capture 283

complex patterns in the graph-derived embeddings 284

while maintaining their structural properties. 285

3.3.2 Diffusion Process Optimization for 286

User-Item Interaction. 287

The optimization objective is formulated to max- 288

imize the Evidence Lower Bound (ELBO) of the 289

item embedding likelihood χ0. Following the dif- 290

fusion framework in (Jiang et al., 2024), we derive 291

the training objective as: 292

Lelbo = Et∼U(1,T)Lt. (2) 293

where Lt denotes the loss at diffusion step t, 294

computed by uniformly sampling timesteps 295

during training. The ELBO comprises 296

two components:(1)A reconstruction term 297

Eq(χ1|χ0)

[
||χ̂θ(χ1, 1)− χ0||22

]
that evaluates the 298

model’s denoising capability at t = 1, and (2)KL 299

regularization terms governing the reverse process 300

transitions. Following (Jiang et al., 2024), we 301

minimize the KL divergence between the learned 302

reverse distribution pθ(χt−1|χt) and the tractable 303

posterior q(χt−1|χt The neural network χ̂θ(·), 304

implemented as a Multi-Layer Perceptron (MLP), 305

predicts the original embedding χ0 from noisy 306

embeddings χt and timestep encodings. This 307

formulation preserves the theoretical guarantees of 308

ELBO maximization. 309

3.4 Contrastive Learning paradigms 310

3.4.1 Diffusion-Enhanced Graph Contrastive 311

Learning 312

We propose a diffusion-augmented con- 313

trastive framework leveraging intra-node 314

self-discrimination for self-supervised learning. 315

Given node embeddings E
′

and E
′′

from two 316

augmented views, we consider augmented views of 317

the same node as positive pairs (e′i, e
′′
i ), and views 318

of different nodes as negative pairs (e′i, e
′′
i′) where 319

ui ̸= ui′ . The formulation of the loss function is: 320

Luser
ssl =

∑
ui∈U

− log
exp(s(e′i, e

′′
i )/τ)∑

uj∈U exp(s(e′i, e
′′
j )/τ)

,

(3) 321

where s(·) denotes cosine similarity and τ repre- 322

sents the temperature parameter. The item-side 323
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contrastive loss Litem
ssl follows an analogous for-324

mulation. The complete self-supervised objective325

combines both components:326

Lssl = Luser
ssl + Litem

ssl (4)327

Our diffusion-enhanced augmentation generates328

denoised views (Vden
1 , Vden

2 ) via Markov chains329

that preserve interaction patterns while suppressing330

high-frequency noise. The framework implements:331

(i) Intra-View Alignment (Lintra), which measures332

the contrastive loss between original view Vi and333

its denoised counterpart Vden
i . (ii) Inter-View Regu-334

larization (Linter), which computes the contrastive335

loss between different denoised views Vden
1 and336

Vden
2 .337

The composite loss integrates these mechanisms:338

339

Ldiff-ssl = Lssl + λ1Lintra + λ2Linter (5)340

where λ1 and λ2 balance view consistency and341

information diversity. This design enables simul-342

taneous noise suppression and multi-perspective343

representation learning.344

3.4.2 Asymmetric Graph Contrastive345

Learning346

Conventional contrastive frameworks are limited347

by homophily assumptions (Lim et al., 2021; Chin348

et al., 2019). We adopt an asymmetric paradigm349

(Xiao et al., 2024) for monophily-structural con-350

texts using dual encoders fθ and fξ that gen-351

erate identity and context representations. An352

asymmetric predictor reconstructs neighborhood353

contexts from node identities (Eq. 27 in Ap-354

pendix B.5). This preserves node semantics while355

encoding structural patterns, naturally accommo-356

dating monophily through shared central nodes.357

Our dual-representation framework uses view-358

specific encoders fθ and fξ to generate identity359

representations v = fθ(G)[v] and context repre-360

sentations u = fξ(G)[u]. An asymmetric predictor361

gϕ reconstructs neighborhood contexts from node362

identities, optimizing a contrastive objective (see363

Eq. 27 in Appendix B.5).364

This formulation achieves two key properties:365

(1) identity representations preserve node-specific366

semantics, and (2) context representations encode367

structural neighborhood patterns. The asymmetric368

objective naturally accommodates monophily by369

enabling two-hop neighbors to reconstruct similar370

contexts through their shared central nodes.371

Table 1: Training phases in our framework.

Phase Objective Params
1 Lbpr, Ldiff-ssl, ∥Θ∥2F User-item embeds
2 LIB (Info. bottleneck) User-item embeds
3 Lgen + Lden View generators

Table 2: Statistics of the experimental datasets.

Dataset Users Items Interactions Density

Last.FM 1,892 17,632 92,834 2.8 ×10−3

Yelp 42,712 26,822 182,357 1.6 ×10−4

BeerAdvocate 10,456 13,845 1,381,094 9.5 ×10−3

3.5 Model Training 372

Our framework adopts a hierarchical optimization 373

approach with three coupled stages, as summarized 374

in Table 1. 375

Phase 1: Unified Multi-Task Learning We ini- 376

tiate joint optimization: 377

L1 = Lbpr + λ3Ldiff-ssl + λ4∥Θ∥2F (6) 378

where Ldiff-ssl is the diffusion-based self-supervised 379

loss from Eq. 5, and ∥Θ∥2F is L2 regularization. 380

Phase 2: Representation Distillation We im- 381

pose an information bottleneck constraint: 382

LIB = LA(G, gϕ(v),v,u)

= LA(G, gϕ(y
∗),y∗, ŷ),

(7) 383

where y∗ represents historical representations and 384

LA is the ACL loss. 385

Phase 3: View Generator Optimization We 386

finalize training by optimizing view generators: 387

Lgenerators = Lgen + Lden (8) 388

where Lgen is the VGAE graph generation loss(see 389

Eq. 16) and Lden(see Eq. 21) is the relation-aware 390

denoising loss. 391

3.5.1 Evaluation Datasets 392

We evaluate our method on three publicly available 393

datasets: 394

• Last.FM(Celma, 2010): Music listening behav- 395

iors and social interactions from Last.fm users. 396

• Yelp (Yelp, 2018): A benchmark dataset of user- 397

business ratings from Yelp, widely utilized in 398

location-based recommendation studies. 399

• BeerAdvocate (McAuley and Leskovec, 2013): 400

Beer reviews from BeerAdvocate, preprocessed 401

with 10-core filtering to ensure data density. 402
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Table 3: Performance Metrics for Various Models

Model
Last.FM Yelp BeerAdvocate

Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@20 NDCG@20 Recall@40 NDCG@40
BiasMF 0.1879 0.1362 0.2660 0.1653 0.0532 0.0264 0.0802 0.0321 0.0996 0.0856 0.1602 0.1016
NCF 0.1130 0.0795 0.1693 0.0952 0.0304 0.0143 0.0487 0.0187 0.0729 0.0654 0.1203 0.0754
AutoR 0.1518 0.1114 0.2174 0.1336 0.0491 0.0222 0.0692 0.0268 0.0816 0.0650 0.1325 0.0794
PinSage 0.1690 0.1228 0.2402 0.1472 0.0510 0.0245 0.0743 0.0315 0.0930 0.0816 0.1553 0.0980
STGCN 0.2067 0.1558 0.2940 0.1821 0.0562 0.0282 0.0856 0.0355 0.1003 0.0852 0.1650 0.1031
GCMC 0.2218 0.1714 0.3149 0.1897 0.0584 0.0280 0.0891 0.0360 0.1082 0.0901 0.1766 0.1085
NGCF 0.2081 0.1474 0.2944 0.1829 0.0681 0.0336 0.1019 0.0419 0.1033 0.0873 0.1653 0.1032
GCCF 0.2222 0.1642 0.3083 0.1931 0.0724 0.0365 0.1151 0.0466 0.1035 0.0901 0.1662 0.1062
LightGCN 0.2349 0.1704 0.3220 0.2022 0.0761 0.0373 0.1175 0.0474 0.1102 0.0943 0.1757 0.1113
SLRec 0.1957 0.1442 0.2792 0.1737 0.0665 0.0327 0.1032 0.0418 0.1048 0.0881 0.1723 0.1068
NCL 0.2353 0.1715 0.3252 0.2033 0.0806 0.0402 0.1230 0.0505 0.1131 0.0971 0.1819 0.1150
SGL 0.2427 0.1761 0.3405 0.2104 0.0803 0.0398 0.1226 0.0502 0.1138 0.0959 0.1776 0.1122
HCCF 0.2410 0.1773 0.3232 0.2051 0.0789 0.0391 0.1210 0.0492 0.1156 0.0990 0.1847 0.1176
SHT 0.2420 0.1770 0.3235 0.2055 0.0794 0.0395 0.1217 0.0497 0.1150 0.0977 0.1799 0.1156
DirectAU 0.2422 0.1727 0.3356 0.2042 0.0818 0.0424 0.1226 0.0524 0.1182 0.0981 0.1797 0.1139
AdaGCL 0.2603 0.1911 0.3531 0.2204 0.0873 0.0439 0.1315 0.0548 0.1216 0.1015 0.1867 0.1182
Ours 0.2724 0.1992 0.3664 0.2309 0.0914 0.0464 0.1355 0.0571 0.1273 0.1061 0.1942 0.1375
Improv 4.65% 4.24% 3.77% 4.76% 4.70% 5.69% 3.04% 4.20% 4.69% 4.53% 4.02% 16.33%
p-val 2.4e−6 5.8e−5 4.9e−9 6.4e−5 1.3e−4 8.8e−4 7.6e−3 2.2e−3 1.2e−4 7.9e−4 1.4e−4 2.9e−6

4 Experimental Evaluation403

To rigorously evaluate the proposed model, we de-404

sign experiments to investigate four critical aspects:405

• RQ1: How does RaDAR perform against state-of-406

the-art recommendation baselines in benchmark407

comparisons?408

• RQ2: What is the individual contribution of key409

components to the model’s effectiveness across410

diverse datasets? (Ablation Analysis)411

• RQ3: How robust is RaDAR in handling data412

sparsity and noise compared to conventional ap-413

proaches?414

• RQ4: How do critical hyperparameters influence415

the model’s performance characteristics?416

4.1 Experimental Settings417

4.1.1 Evaluation Protocols418

Following standard evaluation protocols for rec-419

ommendation systems, we partition datasets into420

training/validation/test sets (7:2:1). Adopting the421

all-ranking strategy, we evaluate each user by rank-422

ing all non-interacted items alongside test positives.423

Performance is measured using Recall@20 and424

NDCG@20 metrics, with N=20 as the default rank-425

ing cutoff. This setup ensures comprehensive as-426

sessment of model capabilities in real-world sparse427

interaction scenarios.428

4.1.2 Compared Baseline Methods429

We evaluate RaDAR against 16 representative base-430

lines spanning four research streams: 1) Tradi-431

tional CF models: BiasMF (Koren et al., 2009),432

NCF (He et al., 2017); 2) GNN-based methods:433

LightGCN (He et al., 2020), NGCF (Wang et al.,434

2019); 3) Self-supervised frameworks: SGL (Wu435

Table 4: Ablation study on key components of RaDAR.

Model
Variant Last.FM Yelp Beer

Description Recall NDCG Recall NDCG Recall NDCG
Baseline SOTA SSL 0.2603 0.1911 0.0873 0.0439 0.1216 0.1015

RaDAR
Gen+Gen 0.2665 0.1936 0.0900 0.0456 0.1226 0.1027

Gen+Linear 0.2698 0.1986 0.0910 0.0461 0.1247 0.1050
w/o D-ACL 0.2652 0.1934 0.0904 0.0458 0.1250 0.1036

RaDAR(full) 0.2724 0.1992 0.0914 0.0464 0.1273 0.1061

et al., 2021), SLRec (Yao et al., 2021); 4) Con- 436

trastive learning: DirectAU (Wang et al., 2022a), 437

AdaGCL (Jiang et al., 2023). Full baseline de- 438

scriptions and implementation details are provided 439

in Appendix A. This taxonomy ensures coverage 440

of both foundational approaches and cutting-edge 441

paradigms, enabling rigorous evaluation across 442

methodological dimensions. 443

4.2 Overall Performance Comparison (RQ1) 444

Table 3 demonstrates RaDAR’s superior perfor- 445

mance across three benchmarks, outperforming 446

existing methods in top-20/40 recommendations. 447

This advantage derives from three key innova- 448

tions: (1) relation-aware graph denoising that elim- 449

inates spurious correlations, (2) asymmetric con- 450

trastive learning preserving collaborative signals, 451

and (3) diffusion-based iterative noise reduction. 452

Unlike conventional approaches that compromise 453

structural integrity through random augmentation, 454

RaDAR’s structural-preserving dual-view frame- 455

work integrates noise-suppressed distribution mod- 456

eling with relation-aware signal enhancement, ef- 457

fectively mitigating degradation in noisy interac- 458

tion graphs. 459

4.3 Model Ablation Test (RQ2) 460

To evaluate RaDAR’s architectural components, 461

we conducted systematic ablation studies against 462

the state-of-the-art baseline. We examined four 463
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configurations across three datasets (Last.FM, Yelp,464

and Beer):465

• RaDAR (Gen+Gen): Dual VGAE-based gener-466

ators without denoising model467

• RaDAR (Gen+Linear): Linear attention replac-468

ing relation-aware denoising model469

• RaDAR (w/o D-ACL): Conventional graph con-470

trastive loss without diffusion-asymmetric con-471

trastive learning optimization472

• RaDAR (full): Complete proposed framework473

Table 4 reveals critical performance differentials,474

demonstrating three key insights:475

Relation-Aware Denoising Superiority: Our476

relation-aware denoiser demonstrates superior per-477

formance over alternatives. Substituting it with478

linear attention reduces Recall@20 by 0.95%479

(0.2724→0.2698), while VGAE generators yield a480

2.17% decrease (0.2724→0.2665). This confirms481

enhanced noise-handling through explicit relation482

modeling compared to standard linear layers and483

VGAE architectures.484

Diffusion-Asymmetric Contrastive Learning485

Synergy: While diffusion-based graph contrastive486

learning improves embedding robustness, asym-487

metric contrastive optimization captures multi-hop488

relationships through its loss formulation. Their489

synergistic integration enables noise-resilient em-490

beddings while preserving relational patterns. Ab-491

lation studies confirm D-ACL’s criticality, as its492

removal causes a 2.64% performance drop (Re-493

call@20: 0.2724→0.2652), exceeding the impact494

of relation-aware denoising ablation (-2.17%).495

Component Complementarity: The perfor-496

mance hierarchy (full > Gen+Linear > Gen+Gen >497

w/o D-ACL) reveals complementary mechanisms:498

relation-aware denoising eliminates noise through499

adaptive graph rewiring, while diffusion-ACL en-500

hances contrastive effectiveness.501

4.4 Model Robustness Test (RQ3)502

In this section, our extensive experimental evalu-503

ation demonstrates the efficacy of our proposed504

RaDAR framework. The results indicate that505

RaDAR exhibits remarkable resilience against data506

noise and significantly outperforms existing meth-507

ods in handling sparse user-item interaction data.508

Specifically, our approach maintains high perfor-509

mance even in the presence of substantial noise,510

showcasing its robust nature.511
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(c) BeerAdvocate data
Figure 3: Impact of Noise Ratio (5%–25%) on Perfor-
mance Degradation

4.4.1 Performance w.r.t. Data Noise Degrees. 512

We systematically evaluate RaDAR’s resilience to 513

data corruption through controlled noise injection 514

experiments, where spurious edges replace gen- 515

uine interactions at incremental ratios (5%-25%). 516

A comparative analysis with AdaGCL and SGL 517

across datasets of varying density (Fig. 3) reveals 518

two key patterns: 519

On moderate-density datasets (Last.FM: 2.8× 520

10−3, Beer: 9.5× 10−3), RaDAR demonstrates a 521

modest improvement over AdaGCL on the Beer 522

dataset, while the relative Recall/NDCG robustness 523

performance among RaDAR, AdaGCL, and GCL 524

shows less significant variation on the Last.FM 525

dataset. This suggests that the benefits of our pro- 526

posed approach may be less pronounced when data 527

sparsity is moderate, as the existing methods al- 528

ready capture sufficient structural information un- 529

der these conditions. 530

In extreme sparsity conditions (Yelp: 1.6 × 531

10−4), RaDAR demonstrates pronounced advan- 532

tage higher relative improvement margins, confirm- 533

ing superior noise resilience in data-scarce scenar- 534

ios. 535

Our empirical analysis demonstrates RaDAR’s 536

effectiveness in cold-start scenarios through its 537

density-aware denoising framework. The widening 538

performance gap under increasing sparsity high- 539

lights the model’s ability to extract critical signals 540
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from sparse interactions - a pivotal requirement for541

practical recommendation systems.
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Figure 4: Performance analysis across five user and item
interaction sparsity levels on Yelp dataset.

542

4.4.2 Performance w.r.t. Data Sparsity.543

We analyze recommendation performance under544

varying interaction sparsity from dual user-item per-545

spectives. As shown in Fig. 4(a), RaDAR exhibits546

marked superiority over AdaGCL across all user in-547

teraction groups, particularly in cold-start scenarios548

(0-10 interactions). This demonstrates its robust-549

ness in learning from sparse user behavior through550

adaptive graph augmentation. Contrastingly, the551

item-centric analysis (Fig. 4(b)) reveals an inverse552

trend: RaDAR’s performance gap widens as item553

interaction density increases. This divergence high-554

lights distinct sparsity-response items—user met-555

rics generally degrade with sparsity (except minor556

recovery at 20-25 interactions), while item perfor-557

mance positively correlates with interaction fre-558

quency.559

These results validate RaDAR’s dual mecha-560

nisms: (1) Sparse user modeling via adaptive aug-561

mentation ensures stability in cold-start scenarios,562

and (2) Density-aware regularization captures item-563

side collaborative signals effectively. The opposing564

trends underscore RaDAR’s balanced capability in565

addressing both user and item sparsity challenges.566

4.5 Hyperparameter Analysis (RQ4)567

We investigate the impact of the adjustable con-568

trastive learning (ACL) ratio λ, which balances569

Information Bottleneck (IB) losses between the570

VAGE-base and relation-aware graph denoising571

view generators. The total IB loss is formulated as572

LIB = LG
IB+λLD

IB where LG
IB and LD

IB represent573

the IB losses from the VAGE-base view generator574
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Figure 5: Performance variation with ACL ratio λ. Last.FM
peaks Recall@20 at λ = 5.5, NDCG@20 at λ = 3.5. Yelp
peaks Recall@20 at λ = 1.5, NDCG@20 at λ = 1.0. Higher
λ values enhance relation-aware denoising for Last.FM, while
Yelp requires balanced contributions due to interaction spar-
sity.

and the relation-aware graph denoising view gener- 575

ator, and λ > 1 prioritizes relation-aware structural 576

preservation, while λ < 1 emphasizes generated 577

graph views. 578

Fig. 5 reveals distinct λ preferences across 579

datasets. Last.FM achieves optimal performance 580

with λ > 1(Fig. 5(a)), indicating its structural com- 581

plexity benefits from enhanced relation-aware de- 582

noising. Conversely, Yelp attains peak metrics at 583

lower λ values (Fig. 5(b)), suggesting its sparse 584

interaction patterns require balanced information 585

preservation from both view generators to pre- 586

vent overfitting. This empirical evidence confirms 587

RaDAR’s adaptability through our symmetric con- 588

trastive learning design, demonstrating robust per- 589

formance across diverse graph recommendation 590

scenarios. 591

5 Conclusion 592

We propose RaDAR, a contrastive recommenda- 593

tion framework with three key innovations: (1) a 594

dual-view architecture combining generative recon- 595

struction and relation-aware denoising, (2) asym- 596

metric contrastive learning for pattern discrimina- 597

tion, and (3) diffusion-based stabilization for robust 598

feature learning. Experimental results demonstrate 599

RaDAR’s superior noise resilience compared with 600

state-of-the-art baselines, with ablation studies val- 601

idating the effectiveness of its graph purification 602

and contrastive components. By explicitly sepa- 603

rating collaborative signals from spurious corre- 604

lations, our framework establishes principled de- 605

sign guidelines for contrastive recommenders. The 606

methodology provides foundational insights for 607

noise-resistant system development while maintain- 608

ing interaction semantics, offering natural exten- 609

sions to dynamic and multi-modal recommendation 610

scenarios. 611
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Limitations612

This work has two key limitations: First, the cur-613

rent framework is restricted to homogeneous user-614

item graphs and lacks modality-specific compo-615

nents for cross-modal alignment and noise model-616

ing in multi-modal scenarios. Second, its relational617

modeling capacity is constrained by single-relation618

bipartite graph assumptions, with limited capabil-619

ity to capture complex relational structures (e.g.,620

multi-relational knowledge graphs) and relation-621

specific propagation patterns. Future work should622

explore modality-aware alignment mechanisms and623

relation-aware graph architectures to address these624

challenges.625
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A Baseline Methods Details828

This appendix provides comprehensive descrip-829

tions of the baseline methods compared in our ex-830

perimental evaluation. All implementations strictly831

followed the original authors’ specifications.832

A.0.1 Compared Baseline Methods833

In this study, we assess our proposed method,834

RaDAR, by conducting a comparative analysis835

against several baseline approaches to ensure a thor-836

ough evaluation. The specifics of these baseline837

methods are detailed below.838

• BiasMF(Koren et al., 2009): This is a matrix839

factorization technique designed to improve per-840

sonalized recommendations by integrating bias841

vectors for both users and items, thereby captur-842

ing individual user preferences more effectively.843

• NCF(He et al., 2017): This approach employs a844

neural network architecture that substitutes the845

conventional dot-product operation in matrix fac-846

torization with multi-layered neural networks.847

This modification enables the model to learn in-848

tricate user-item interactions, thereby enhancing849

the quality of recommendations. For the purpose850

of our comparison, we implement the NeuMF851

variant of NCF.852

• AutoR(Sedhain et al., 2015): This approach853

enhances the representation of users and items854

through a three-layer autoencoder trained with855

the objective of reconstructing interaction data.856

• GCMC(Berg et al., 2017): This method utilizes857

graph convolutional networks (GCNs) for the858

task of completing interaction matrices.859

• PinSage(Ying et al., 2018): This technique em-860

ploys a graph convolutional framework aug-861

mented with random sampling to enhance perfor-862

mance in collaborative filtering tasks.863

• NGCF(Wang et al., 2019): This model imple-864

ments a multi-layer graph convolutional network865

that facilitates the propagation of information866

throughout the user-item interaction graph while867

learning latent representations for both users and868

items.869

• STGCN(Zhang et al., 2019): This approach com-870

bines graph convolutional encoders with graph871

autoencoders to bolster the model’s resilience872

against issues such as sparsity and cold-start sce- 873

narios in collaborative filtering applications. 874

• LightGCN(He et al., 2020): This model capi- 875

talizes on neighborhood information in the user- 876

item interaction graph by employing a layer-wise 877

propagation method that relies solely on linear 878

transformations and element-wise summation. 879

• GCCF(Chen et al., 2020): This method presents 880

a novel framework for collaborative filtering rec- 881

ommender systems by re-examining the appli- 882

cation of graph convolutional networks. It ad- 883

dresses the over-smoothing issue by discarding 884

non-linear activations and incorporating a resid- 885

ual network architecture. 886

• HCCF(Xia et al., 2022a): The authors introduce 887

a self-supervised recommendation framework 888

that adeptly captures both local and global col- 889

laborative interactions through the deployment 890

of a hypergraph neural network augmented by a 891

cross-view contrastive learning mechanism. 892

• SHT(Xia et al., 2022b): This approach syner- 893

gistically combines hypergraph neural networks 894

with transformers under a self-supervised learn- 895

ing paradigm, focusing on data augmentation to 896

effectively reduce noise in user-item interaction 897

data within recommendation systems. 898

• SLRec(Yao et al., 2021): The proposed model 899

employs contrastive learning among node fea- 900

tures as regularization techniques, thereby en- 901

hancing the efficacy of state-of-the-art collabora- 902

tive filtering recommender systems. 903

• SGL(Wu et al., 2021): This model enhances 904

LightGCN by integrating self-supervised con- 905

trastive learning, utilizing data augmentation 906

strategies such as random walk and node/edge 907

dropout to perturb graph structures. 908

• NCL(Lin et al., 2022): The neighborhood- 909

enriched contrastive learning (NCL) approach 910

enhances graph-based collaborative filtering by 911

integrating potential neighbors into the formation 912

of contrastive pairs. NCL delineates both struc- 913

tural and semantic neighbors for users or items, 914

which facilitates the establishment of a structure- 915

contrastive objective as well as a prototype- 916

contrastive objective. 917

• DirectAU(Wang et al., 2022a): This novel tech- 918
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nique presents a new learning objective specifi-919

cally designed for collaborative filtering method-920

ologies. It evaluates representation quality921

through alignment and uniformity on the hyper-922

sphere, thereby directly optimizing two essen-923

tial properties to boost recommendation perfor-924

mance.925

• AdaGCL(Jiang et al., 2023): This pioneering926

framework introduces an adaptive graph con-927

trastive learning (AdaGCL) paradigm for col-928

laborative filtering approaches. It utilizes two929

trainable view generators to produce contrastive930

views, enabling an adaptive mechanism for gen-931

erating views tailored for contrastive learning932

within the collaborative filtering context.933

B Mathematical Details934

B.1 Embedding Propagation Details935

The normalized adjacency matrix is computed as:936

Ã = D
− 1

2
u AD

− 1
2

v (9)937

where Du and Dv are diagonal degree matrices for938

users and items.939

At the l-th layer, the embeddings are updated940

through:941

E
(u)
l = ÃE

(v)
l−1 +E

(u)
l−1

E
(v)
l = Ã⊤E

(u)
l−1 +E

(v)
l−1

(10)942

The final embeddings are computed as:943

E(u) =

L∑
l=0

E
(u)
l , E(v) =

L∑
l=0

E
(v)
l (11)944

The preference score is calculated as:945

ŷi,j = (e
(u)
i )⊤e

(v)
j (12)946

B.2 Variational Graph Auto-Encoder Details947

In this section, we provide the detailed mathemati-948

cal formulations of the VGAE framework used in949

our view generation approach. The KL-divergence950

regularization term for the latent distributions is951

defined as:952

Lkl = −1

2

D∑
d=1

(1+2 log(xstd)−x2
mean−x2

std) (13)953

For graph structure reconstruction, we employ a954

discriminative loss Lkl that evaluates both positive955

and negative interactions: 956

Lpos = BCE(σ(f(xuser[u]⊙ xitem[i])),1)

= − log(σ(f(xuser[u]⊙ xitem[i])))

Lneg = BCE(σ(f(xuser[u]⊙ xitem[j])),0)

= − log(1− σ(f(xuser[u]⊙ xitem[j])))

Ldis = Lpos + Lneg

(14)

957

The Bayesian Personalized Ranking (BPR) loss is 958

incorporated to enhance recommendation perfor- 959

mance: 960

Lbpr =
∑

(u,i,j)∈O

− log σ(ŷui − ŷuj), (15) 961

The total VGAE optimization objective combines 962

these components with weight regularization: 963

Lgen = Lkl + Ldis + Lgen
bpr + λ2∥Θ∥2F , (16) 964

B.3 Relation-Aware Graph Denoising Details 965

This section provides the mathematical details 966

of our relation-aware graph denoising framework. 967

The layer-wise edge masking with sparsity con- 968

straints is formulated as: 969

Al = A⊙M l,

L∑
l=1

|M l|0 =
L∑
l=1

∑
(u,v)∈ϵ

I(ml
u,v ̸= 0)

(17) 970

The denoising layer employs adaptive gating to 971

preserve essential user-item relationships: 972

g = σ(Wg[ei; ej ] + b)

αl
i,j = fatt (G(ei, ej)⊕G(ej , ei)⊕ [ei; ej ])

(18) 973

The adaptive feature composition G[·] is defined 974

as: 975

G(ei, ej) = g⊙τ(Wembed[ei;ar,i])+(1−g)⊙ei
(19) 976

The edge sampling employs a concrete distribution 977

with hard sigmoid rectification: 978

Lc =

L∑
l=1

∑
(ui,vj)∈ϵ

(
1− Pσ(sli,j | θl)

)
(20) 979

The final training objective combines concrete dis- 980

tribution regularization with recommendation loss: 981

982

Lden = Lc + Lgen
bpr + λ2∥Θ∥2F (21) 983
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B.4 Detailed Diffusion Process Formulation984

B.4.1 Forward Diffusion Process985

Our diffusion process begins with the forward986

phase, where Gaussian noise is progressively added987

according to:988

q(χt|χt−1) = N (χt;
√
1− βtχt−1, βtI) (22)989

with βt controlling the noise scale at step t.990

The intermediate state χt can be efficiently com-991

puted directly from the initial state χ0 through:992

q(χt|χ0) = N (χt;
√
ᾱtχ0, (1− ᾱt)I),

ᾱt =
t∏

t′=1

(1− βt′ )
(23)993

This allows for the reparameterization:994

χt =
√
ᾱtχ0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (24)995

B.4.2 Linear Noise Scheduler996

To control the injection of noise in χ1:T , we employ997

a linear noise scheduler that parameterizes 1− ᾱt998

using three hyperparameters:999

1− ᾱt = s ·
[
αlow +

t− 1

T − 1
(αup − αlow)

]
,

t ∈ {1, · · · ,T}
(25)

1000

Here, s ∈ [0, 1] regulates the overall noise scale,1001

while αlow < αup ∈ (0, 1) determine the lower1002

and upper bounds for the injected noise.1003

B.4.3 Reverse Denoising Process1004

The reverse process aims to recover the original1005

representations by progressively denoising χt to1006

reconstruct χt−1 through a neural network:1007

pθ(χt−1|χt) = N (χt−1;µθ(χt, t),Σθ(χt, t))
(26)1008

where neural networks parameterized by θ generate1009

the mean and covariance of the denoising distribu-1010

tion.1011

B.5 Asymmetric Contrastive Loss1012

The asymmetric contrastive learning loss function1013

is defined as:1014

LA = − 1

|V|
∑
v∈V

1

|N (v)|
∑

u∈N (v)

log
exp(p⊤u/τ)

exp(p⊤u/τ) +
∑

v−∈V exp(v⊤v−/τ)
,

(27)

1015

where N (v) represents the one-hop neighbors of 1016

node v, and τ controls the softmax temperature. 1017

The predictor output p = gϕ(v) transforms the 1018

identity representation into a prediction of its neigh- 1019

borhood context. 1020
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