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Abstract

Current semi-supervised graph anomaly detection (GAD) methods utilizes a small
set of labeled normal nodes to identify abnormal nodes from a large set of unlabeled
nodes in a graph. These methods posit that 1) normal nodes share a similar level of
homophily and 2) the labeled normal nodes can well represent the homophily pat-
terns in the entire normal class. However, this assumption often does not hold well
since normal nodes in a graph can exhibit diverse homophily in real-world GAD
datasets. In this paper, we propose RHO, namely Robust Homophily Learning, to
adaptively learn such homophily patterns. RHO consists of two novel modules,
adaptive frequency response filters (AdaFreq) and graph normality alignment
(GNA). AdaFreq learns a set of adaptive spectral filters that capture different
frequency components of the labeled normal nodes with varying homophily in
the channel-wise and cross-channel views of node attributes. GNA is introduced
to enforce consistency between the channel-wise and cross-channel homophily
representations to robustify the normality learned by the filters in the two views.
Experiments on eight real-world GAD datasets show that RHO can effectively
learn varying, often under-represented, homophily in the small labeled node set and
substantially outperforms state-of-the-art competing methods. Code is available at
https://github.com/mala-lab/RHO.

1 Introduction

Graph anomaly detection (GAD) has received increasing attention in recent years due to its wide
range of applications, such as fraud detection in finance, review spam detection, and abusive user
detection [1,20,27,37]. Semi-supervised GAD, which aims to leverage a small set of labeled normal
nodes to identify abnormal nodes from a large set of unlabeled nodes in a graph, is among the most
realistic problem settings in real-life applications [33,37,38]. This is because GAD datasets are
typically dominated by normal nodes, which can greatly facilitate the annotation of a few normal
nodes, e.g., if we randomly sample a few nodes from a large graph, most nodes would be normal.
Current semi-supervised GAD methods are generally built upon two key assumptions: (1) all normal
nodes exhibit a similar level of homophily, and (2) the labeled normal nodes can well represent the
overall homophily pattern of the entire graph [6,7, 12,38,42]. However, these two assumptions often
do not hold well in the real-world GAD datasets. This is because although normal nodes generally
exhibit high homophily, there can be large variations of homophily across the normal nodes, some of
which can possess relatively low homophily (see Fig. 1a for visualization of this observation on the
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Amazon [10] and Elliptic [43]. Additional visualizations can be found in App. D.1). As a result, the
GAD methods that rely on the aforementioned assumptions learn inaccurate homophily patterns of
the normal class, leading to the misclassificaiton of low-homophily normal nodes as abnormal. This
is particularly true when they use the popular neighborhood aggregation mechanisms that are prone
to produce oversmooth homophily representations [37].

To address this issue, we propose RHO, namely Robust Homophily Learning, to adaptively
learn heterogeneous normal patterns from the small set of normal nodes with diverse homophily.
RHO consists of two novel modules, including
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The set of filters learned in AdaFreq can dif- cases are normal nodes sampled from the sets of
fer from each other substantially. To obtain ro- (low-homophily, high-homophily) normal nodes,
bust yet consistent representations of the nor- where nodes with homophily greater than 0.9 for
mal nodes, the GNA module is introduced to Amazon and 0.7 for Elliptic are considered as high
enforce consistency of homophily representa- homophily. The datasets in the three cases are
tions learned across the filters. To this end, sampled using a ratio of (80%, 20%), (50%, 50%),
GNA constructs positive pairs using the repre- and (20%, 80%) to the two node sets, respectively.
sentations from the respective channel-wise and

cross-channel views at the corresponding nodes, and then maximizes the similarity between the
representations learned from these two views while minimizing the similarity of negative pairs
composed by representations from different nodes.

In doing so, RHO learns heterogeneous normal representations of normal nodes with varying degrees
of homophily via AdaFreq, while ensuring the consistency of the learned normality via GNA. In
summary, this work makes the following three main contributions.

* We reveal the failure of fitting existing graph filters to a subset of normal nodes with varying
levels of homophily and introduce RHO to mitigate this issue. RHO is a novel approach for
the semi-supervised GAD that can learn robust and consistent normal patterns for a given
set of labeled normal nodes with diverse levels of homophily.

* We further introduce two novel modules, AdaFreq and GNA, to implement RHO. AdaFreq
learns a set of complementary adaptive filters over channel-wise and cross-channel repre-
sentations to effectively capture heterogeneous normal patterns from the labeled normal
nodes of different levels of homophily. GNA robustifies these representations by aligning
the normality representations learned by the filters in channel-wise and cross-channel views.

» Extensive experiments on eight real-world GAD datasets indicate that RHO performs
significantly better than the state-of-the-art (SotA) semi-supervised GAD methods.



2 Related Work

2.1 Graph Anomaly Detection (GAD)

Non-spectral GAD Methods. Many non-sepctral GAD methods apply traditional anomaly detection
techniques on a GNN backbone, such as reconstruction [7, 12], adversarial learning [5, 6], one-class
classification [2,42,48]. Other methods are based on measures designed for GAD, such as the
recently proposed affinity-based methods [30-32,36]. These methods are typically designed for
the unsupervised setting, where no labeled nodes are available. They can be easily adapted to the
semi-supervised setting by refining their objective to the labeled normal nodes. GGAD [38] is the
first method specifically designed for the semi-supervised setting by generating the outliers and
training a discriminative one-class classifier with the given labeled normal nodes. These methods
failed to consider the homophily discrepancy among the normal nodes. Our proposed RHO addresses
this by employing an adaptive filter that learns normal representations from both cross-channel and
channel-wise views through a one-class optimization objective.

Spectral GAD Methods. The spectral GAD methods focus on the filter design in GNNs to have a
more effective learning the representations of nodes [3, 13,40]. Among them, AMNet [3], BWGNN
[40], and GHRN [13] aim to utilize the frequency signal using different spectral-based GNNs to
distinguish between normal and abnormal nodes. Although these spectral-based GAD methods have
achieved remarkable success [9, 24], they are typically designed for fully supervised setting where
both labeled normal and abnormal nodes are available during training. On the other hand, the filters
they utilize learn only predefined frequency information, making them difficult to learn expressive
representations for normal nodes of different frequency components. RHO leverages AdaFreq to
assign learnable parameters on different feature channels to effectively learn heterogeneous normal
representations from the set of normal nodes of varying homophily.

2.2 Graph Homophily Modeling for GAD

Graph homophily modeling methods aim to address the homophily discrepancy in graphs, where
target nodes often connect to nodes from different classes [14,26,45]. This inter-class connectivity
negatively affects the quality of node representations within each class. The problem becomes more
pronounced in GAD, where the homophily gap is typically large due to the inherent imbalance
in GAD datasets [25,37,45]. Existing studies on Graph homophily modeling for GAD primarily
focus on neighbor selection during message propagation by adding or cutting edges, or by assigning
different weights to each edge [10,21,36]. In addition, several methods employ advanced strategies
to address the homophily discrepancy in message passing, such as gradient-based filtering [13],
meta-learning [8, 39], and data augmentation [4,29,47]. These methods overlook the homophily
differences among the labeled normal nodes in semi-supervised settings. our proposed RHO is the
first work to reveal this issue and address it by a robust homophily learning approach.

3 Problem Statement

Notations. Given an attributed graph § = (V, €, X), where V denotes the node set with v; € V and
|V| = N, & denotes the edge set, and X = [x1,X2,...,XN] € RNXM jq a set of node attributes.
Each node v; has a M-dimensional feature representation x;. The topological structure of G is
represented by an adjacency matrix A. D denotes a degree matrix which is a diagonal matrix with
D, =5 j A;;. Normalized Laplacian matrix L is defined by L = Iy — D*%AD’%, where
Iny € RV*N denotes an identity matrix. A is the normalized adjacency matrix. The corresponding
degree matrix D and Laplacian matrix L are definedas D = D+ Iy and L = Iy — D~ Y/2AD~1/2,
respectively. The node homophily [34] for a node v defined as H,, = M, where d,, is
the number of neighbors of node v, N, is the set of adjacent nodes of v, and y:, represents the label
of node v.

Semi-supervised GAD. Let V,, V,, be two disjoint subsets of V, where V,, represents abnormal node
set and V,, represents normal node set, and typically the number of normal nodes is significantly
greater than the abnormal nodes, i.e., |V,,| > |V,], then the goal of semi-supervised GAD is to learn
the mapping function ¢ — R, such that ¢(v) < ¢(v'), where Vv € V,,,v" € V, , given a set of
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Figure 2: Overview of the proposed RHO framework. The input graph consists of labeled normal
nodes and unlabeled normal/abnormal nodes, where nodes v;,v; € V; represent normal nodes with
high and low homophily, respectively. (a) AdaFreq learns adaptive filters on both cross-channel and
channel-wise representations with learnable parameters to different feature channels. (b) GNA aligns
the heterogeneous normal patterns learned from the adaptive filters in the two views. (¢) The normal
nodes with diverse homophily are enforced to project closer to the center of a hypersphere via a
widely-used one-class loss, while anomaly nodes being distant from the center.

labeled normal nodes V; C V,, and no access to any labels of the abnormal nodes. V,, = V/V, is the
set of the unlabeled nodes and used as test data.

Graph Filter. The Laplacian matrix L can be decomposed as L = UAUT, where U =
(ug,ug,...,uy) is a complete set of orthonormal eigenvectors known as graph Fourier modes

and A = diag ({)\Z}f\il) is a diagonal matrix of the eigenvalues of L, where \; < Ay < -+ < Ay

and \; € [0,1.5] [44]. Taking the eigenvectors of normalized Laplacian matrix as a set of bases,
graph Fourier transform of a signal x € RY on graph G is defined as X = {#1,--- ,2x} = UTx,
and the inverse graph Fourier transform is x = Ux. The convolution between the signal x and
convolution kernel f is as follows:

f+x=U((U"f) ® (U'x)) = UgyU'x, (1

where © is an element-wise product and gy is a diagonal matrix representing the convolution kernel
in the spectral domain, serving as a substitute of U’ f.

4 Methodology

4.1 Opverview of the Proposed Approach RHO

As shown in Fig. 2, RHO consists of three main components: (1) Adaptive frequency response
(AdaFreq) filters for heterogeneous normal pattern learning, which is simultaneously applies to
both cross-channel and channel-wise view; (2) Graph normality alignment (GNA) for aligning the
learned normality from two views using a contrastive learning objective; and (3) the model is lastly
optimized with a widely-used one-class objective, along with a contrastive loss in GNA, to learn
robust homophily patterns on GAD datasets with diverse levels of homophily. We also summarize
the workflow of RHO and provide a detailed algorithmic description in App. E.

4.2 AdaFreq: Adaptive Frequency-response Filters

The conventional graph filter used in existing GAD methods is typically fixed, which fails to capture
the diverse homophily relations of normal nodes. To this end, we are dedicated to learning adaptive
frequency response filters that dynamically adjusts the response strength of different frequency
components, effectively preserving the consistent frequency components of labeled normal nodes
with diverse homophily. A straightforward strategy to control the varying effects of different frequency



components is to allocate a learnable parameter for each frequency component. However, this solution
requires explicit eigen-decomposition which is too expensive. To avoid eigen-decomposition of the
graph Laplacian, we propose a simple yet effective filter by introducing a trainable parameter k to
adjust the frequency response, as follows:

gA) =1 -k, )

where the learnable parameter k governs the degree and type of frequency response imposed by the
filter at each layer of GNNs. We show theoretically below that this design allows our filter g()) to
adaptively capture the consistent frequency patterns of normal nodes, regardless of having low- or
high-homophily in the normal nodes.

Theorem 1 Let {\,,} and {u,,} be the graph frequencies and frequency components respectively,
Bm is the projection coefficient of signal x onto the m-th eigenvector ,,, then we have g (\,,) =

% Sor the filter g (X\), indicating that frequencies where normal nodes show coherent
m 2 iev, Um

spectral behavior (i.e., u,,(i) values agree in sign/magnitude) are amplified, while inconsistent
frequency components are suppressed.

The proof can be found in App. A. According to Theorem 1, the designed adaptive filter g (A) can
preserve the frequency components with consistent spectral behavior of labeled normal nodes by
training the parameter k. When & > 0, g(\) decreases with respect to A, meaning that frequency
components associated with larger eigenvalues (i.e., high-frequency components) are suppressed,
while low-frequency components are preserved. Conversely, when k& < 0, g(\) emphasizes high-
frequency components. The magnitude of k controls the strength of frequency responses. When
k = 0, the filter g(A\) = 1 acts as an all-pass filter preserving the raw graph signal. When K layers

are stacked, g(\) = HiKzl(l — k;)\), a set of trainable parameters {k1, k2, - - - , ki } can produce
more complex frequency responses. Therefore, g(A) can dynamically learn the parameter k to
capturing the consistent frequency components of normal nodes with diverse homophily, enabling

robust homophily representation learning for GAD.

Motivated by the intuition that heteroge-
neous homophily information is embedded
in different feature channels, we leverage
this adaptive frequency response function
to learn heterogeneous patterns of the nor-
mal nodes in the cross-channel and channel-
wise views as follows.
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t-th layer, can be defined as: alizations of node embeddings generated by the cross-
. _ channel view ((a) and (d)), the channel-wise view ((b)
Hgtv)r =o((I- kL)Hgir I)ng)r)’ 3 and (e)), and the full RHO model ((c¢) and (f)) on Ama-
where o(+) is a non-linear activation func- zon [10].

tion, HEfgl = fo(X) with fy be a two-layer MLP, and WEZL is the learnable weight matrix.

To focus our filter on normal patterns, we map the representations of the normal nodes, H&Z} , close
to a one-class hypersphere center c..,- in the embedding space. To achieve this, the training objective
minimizes the average squared distance between the embeddings and the center:

1
Leor = 75— ‘
Vil iezvl
(1)

where hgr)(z) denotes the representation of i-th node, i.e., i-th row of Hee/, and ceor =

h(D) (i) — ceer

ccr

T
2
+ IWIIE, (4)
t=1

% > hgr) (7). Optimizing L. enables the filter to learn the heterogeneous normal patterns
v, €V



from the cross-channel perspective, encouraging normal nodes of different homophily to cluster
around the center c..., while anomalous nodes are distant from the center, as illustrated in Fig.
3a and the t-SNE visualization in Fig. 3d. However, relying solely on £.., may result in some
anomalous nodes being located near the center, likely because they are camouflaged anomalies
exhibiting distribution patterns similar to those of normal nodes in the cross-channel view.

Homophily Learning in Individual Channels. To capture normal patterns complementary to those

in Hgtc),«, we utilize AdaFreq in individual feature channels that can contain complementary homophily
to the cross-channel view. To this end, we learn d adaptive filters with each equipped with a learnable
frequency response parameter, K = [k, ko, ..kq] € R1*?, where d is the number of channels in the

feature layer of the MLP network in fy, to learn the channel-wise representations Hg,}r:

HO) = KI - klﬁ) h{Y, (I - kzt) h Y, (I - k;dt) hg—ﬂ w) (5)

where [h{"™" hi™V .. YTV = HYLY € RV and HY), = £5(X).

These d learnable frequency parameters allow the model to capture various homophily variations
in our homophily pattern learning in individual channels. Alternatively, the filtering process can be
compactly expressed using the Hadamard product as:

H{), = o((I-L)HLY 0o K)W),). ©)
The same one-class objective is applied to the channel-wise view, with its loss £, defined as
T
1 2

Lewr = Wi Z ‘ hgu)r(z) — Cewr|| + Z ||WC(LJ)TH%'7 )
| l| i€V t=1

where hg)r(z) is the i-th row of ng)r T is the number of layers, and ¢, = % > hg)r (7). By

v, EV

optimizing L., the model captures normal representation patterns that differ from those in the
cross-channel view, as exemplified in Fig. 3b and Fig. 3e. However, placing too much emphasis on
channel-wise features may cause certain normal nodes to drift away from the center, leading to some
false positive detections.

Inspired by the complementary homophily information, AdaFreq learns the adaptive filters in both
the cross-channel and channel-wise views to model the heterogeneous normal patterns. As shown
in Fig. 3¢ and Fig. 3f, when we jointly leverage the two complementary views, normal nodes are
more effectively clustered, and misclassified anomalies in Fig. 3d are successfully detected. Note
that there are two centers since we apply AdaFreq to both views, and the GNA module we introduce
in the next section is designed to align the heterogeneous normality represented by the two centers.

4.3 GNA: Graph Normality Alignment

There can be heterogeneous homophily representations learned in the two views above. We thus
introduce GNA to mitigate this issue in AdaFreq. Specifically, for each node, we consider the
representations generated by the adaptive filters as a positive pair, while representations from other
nodes within the same batch are treated as negative pairs. GNA then promotes the normality alignment
by maximizing the similarity of positive pairs and minimizing the similarity of negative pairs. Let
Zeer (1), Zewr (1) € R? be the representations of node v; under the two views, which can be obtained
using Zeer (1) = @eer (Neer (1)) and zewr (1) = Pewr (Newr (7)), Where pee-(+) and @er-(+) are two
MLP functions, then given the positive pair (Zecr (), Zewr (7)), the alignment is formulated as
e(Sim(zccr(i):zcwr(i))/"')

El#] e(Sin](zccr(i)azcwr(j))/T) + ZZ#] e(sim(zccr(i)vzccr(j))/T) ’

L(chr(i)a Zewr (Z)) = - IOg (8)

where sim(-,-) denotes cosine similarity, and 7 is a temperature hyperparameter.

To better learn similarity of two views, we further designed an auxiliary loss module
L(Zewr (1), Zeer (1)) treating channel-wise view as anchor, contrasting to the £(Zey:(7), Zeer (7))
that treats the cross-channel view as the anchor. Therefore, the overall objective of L 4 is defined
as v
1 . . . .
LGNA - T Z([J (chr(z)a Zowr (Z)) + L(chr(l), chr(z)))~ (9)

2N ¢
i=1



By minimizing £y 4, the model is encouraged to capture consistent normality patterns across the
cross-channel and channel-wise views, achieving robustness homophily representation learning, with
better ability to detect the abnormal nodes, e.g., the hard anomalies in Fig. 3¢ and 3f.

4.4 Training and Inference

Training. During training, RHO is guided by the one-class loss to learn heterogeneous normal
patterns through the filters in AdaFreq and the alignment in GNA. To be specific, the total loss
function L;,:4; is formulated as a combination of the one-class classification loss, applied to the two
views in AdaFreq, and the alignment loss L x4 in GNA.

1
Ltotal = 5(’6007‘ + Lcwr) + OCLGNA> (10)

where « € [0, 1] is a hyper-parameter to adjust the influence of Ly 4 in the overall optimization.

Inference. During inference, the anomaly score of a node v; € V,, is defined as the squared Euclidean
distance between the learned representations of a given node and the one-class center. In RHO, we
compute the average distances of each node to both the cross-channel and channel-wise centers. The
anomaly score S; for node v; is thus defined as

2

1
_! ) (11)

1

The abnormal nodes are located farther from the centers compared to the normal nodes and are
therefore expected to have higher anomaly scores than the normal nodes.

S’i ccr hga; (7’) — Ccuwr

2
h(T)(i) _ CccrH + ‘

4.5 Complexity Analysis

The computational complexity of RHO consists of three parts: (1) The two-layer MLP used for
initial feature transformation has a complexity of O(Nd(M + d)), where N denotes the number of
nodes, M is the input feature dimension, and d represents the hidden dimension. (2) RHO employs
two independent views, including the cross-channel and channel-wise views. Each view incurs a
computational cost of O(|€|d + Nd?), where |€| is the number of edges. The overall complexity
of this component remains O(2 * (|€|d + Nd?)) in practice. (3) In GNA, the projection head has a
complexity of O(Nd?), and the alignment loss computation has a complexity of O(Nbd), where b
denotes the batch size. Therefore, the overall time complexity is O(NMd + 2|€|d + 4Nd* + Nbd)).
Empirical results for running time can be found in App. D.4.

5 Experiments

Datasets. We evaluate RHO on eight real-world GAD datasets of diverse size from different
domains, including social networks Reddit [18] and Questions [35], co-review network Amazon [10],
co-purchase network Photo [28], collaboration network Tolokers [28], financial networks T-Finance
[41], Elliptic [43], and DGraph [15]. See App. B for more details about the datasets.

Competing Methods. The competing methods can be categorized into reconstruction methods (in-
cluding DOMINANT [7] and AnomalyDAE [12]), one-class classification OCGNN [42], adversarial
learning (including AEGIS [6] and GAAN [5]), affinity maximization method TAM [36], generative
method GGAD [38], partitioning message passing method (PMP) [49], and data augmentation method
CONSISGAD [4]. Except for GGAD that is specifically designed for the semi-supervised setting, the
other methods are originally unsupervised or fully supervised GAD approaches, which are adapted to
the semi-supervised scenario by refining the training set to the labeled normal nodes, following [38].
We also compare RHO against a conventional GCN filter and an advanced spectral-based filter used in
BWGNN [41]. Note that for the fully supervised methods, we utilize only their proposed filter as the
encoder and apply it within our semi-supervised setting by optimizing the encoder using the one-class
loss. See App. C for more details about the competing methods. Note that some unsupervised
methods, such as CoLA [23], SL-GAD [46], and GRADATE [1 1], are designed with proxy tasks and
cannot be adapted to our setting, which are excluded from our comparison.



Table 1: AUROC and AUPRC on eight GAD datasets. The best performance is boldfaced, with the
second-best underlined. */’ indicates that the model cannot handle DGraph.

Datasets
Reddit Tolokers Photo Amazon Elliptic Question T-Finance DGraph

Metric Methods

DOMINANT | 0.5194 0.5121 0.5314 0.8867 0.3256  0.5454 0.6167 0.5851
AnomalyDAE | 0.5280 0.6074 0.5272 09171 0.5409  0.5347 0.6027 0.5866

OCGNN 0.5622 0.4803 0.6461 0.8810 0.2881  0.5578 0.5742 /
AEGIS 0.5605 0.4451 05936 0.7593 0.5132  0.5344 0.6728 0.4450
GAAN 0.5349 0.3578 0.4355 0.6531 0.2724  0.4840 0.3636 /
AUROC TAM 0.5829 0.4847 0.6013 0.8405 0.4150 0.5222 0.5923 /
GGAD 0.6354 0.5340 0.6476 09443 0.7290 0.5122 0.8228 0.5943
GCN 0.5523 04954 05727 0.7345 0.6463  0.4556 0.7262 0.5112
BWGNN 0.5580 0.5821 0.6861 0.8312 0.7241  0.5740 0.7683 0.4958
PMP 0.5472  0.5815 0.5844 0.8329 0.5617  0.5790 0.8321 0.5376
CONSISGAD | 0.5347 0.5974 0.5859 0.8715 0.7354  0.5737 0.8277 0.5735
RHO 0.6207 0.6255 0.7129 0.9302 0.8509  0.5833 0.8623 0.6033

DOMINANT | 0.0414 0.2217 0.1238 0.7289 0.0652  0.0314 0.0542 0.0076
AnomalyDAE | 0.0362 0.2697 0.1177 0.7748  0.0949  0.0317 0.0538 0.0071

OCGNN 0.0400 0.2138 0.1501 0.7538 0.0640  0.0354 0.0492 /
AEGIS 0.0441 0.1943 0.1110 0.2616 0.0912  0.0313 0.0685 0.0058
GAAN 0.0362 0.1693 0.0768 0.0856 0.0611  0.0359 0.0324 /
AUPRC TAM 0.0446 0.2178 0.1087 0.5183 0.0552  0.0391 0.0551 /
GGAD 0.0610 0.2502 0.1442 0.7922 0.2425 0.0349 0.1825 0.0082
GCN 0.0420 0.2351 0.1257 0.1617 0.1176  0.0405 0.1387 0.0040
BWGNN 0.0360 0.2687 0.2202 0.3797 0.1869  0.0410 0.1436 0.0041
PMP 0.0388  0.2939 0.1254 0.3582 0.1006  0.0383 0.4084 0.0046
CONSISGAD | 0.0360  0.3059 0.1319 0.6523  0.1765  0.0424 0.4152 0.0050
RHO 0.0616  0.3256 0.2337 0.7879  0.5095  0.0430 0.4893 0.0059

Evaluation Metrics. Following previous studies [19,22,38], we evaluate the detectors using two
popular metrics: AUROC (Area Under the Receiver Operating Characteristic curve) and AUPRC
(Area Under the Precision-Recall Curve). AUROC assesses the model’s overall ability to distinguish
between normal and anomalous nodes across varying thresholds. AUPRC measures the precision-
recall tradeoff. For each method, we report the average results over five independent runs.

Implementation Details. The RHO model is implemented in PyTorch 2.0.0 with Python 3.8 and
executed on GeForce RTX 3090 GPU (24 GB). RHO is trained using the Adam optimizer [16] with a
weight decay of 5e~>. We set the default learning rate to 5e 3. Nevertheless, owing to the variations
in edge density across different graphs, we find that models trained on sparser graphs are generally
more sensitive to large learning rates and thus benefit from smaller ones to ensure stable convergence.
Therefore, we use a learning rate of 5e~* for the Elliptic and Question datasets, and further decreased
to 5e ¢ for the extremely sparse dataset, DGraph. The hyperparameter « is set to 1.0 for all datasets
except the small datasets Reddit and Photo, which require less regularization. It is set to 0.1 in
these two datasets. A detailed analysis of this hyperparameter is presented in Sec. 5.4. Following
previous work [38], we randomly sample R% of the normal nodes as labeled data for training, where
R € {5,10,15,20}. To ensure a fair comparison, we obtain the publicly-available official source
code of all competitors and execute these models using the parameter settings suggested by their
authors.

5.1 Main Comparison Results

The main comparison results are shown in Table 1, where all models use 15% labeled normal nodes
during training. RHO outperforms the semi-supervised methods on six datasets having maximally
12.19% AUROC and 30.68% AUPRC improvement over the best competing method GGAD. GGAD
achieves the highest AUROC on Amazon and Reddit; however, it underperforms RHO on the other
datasets. This suggests that generative approaches may not generalize well across different datasets
where normal nodes have varying levels of homophily. In contrast, RHO achieves SotA performance
on a variety of graph datasets without relying on any generated anomalies, by learning the varying
normal patterns from different datasets. The fully supervised methods PMP and CONSISGAD



perform less effectively when applied in the semi-supervised setting, since the lack of labeled
anomalies prevents them from leveraging crucial abnormality information. The reconstruction-based
method, AnomalyDAE, yields good performance on Tolokers and Amazon, but it still underperforms
RHO on most datasets. The main reason is that reconstruction-based methods are prone to overfitting
part of the prevalent homophily patterns (e.g., low-frequency nodes) and struggle to handle hard
normal samples (e.g., those that have high homophily). In contrast, RHO leverages AdaFreq to
effectively learn robust normal patterns from the normal nodes with diverse homophily, leading to
substantially improved performance. As for one-class methods, OCGNN is based on non-adaptive
filters in learning the normal patterns; it underperforms RHO across all datasets. Moreover, RHO also
consistently outperforms GCN and BWGNN under the semi-supervised setting due to its superior
capability in learning heterogeneous frequency components.

5.2 Analysis of Adaptive Filters in AdaFreq

We perform a filter analysis to examine the

contribution of different frequency compo- ”
nents in RHO. In Fig. 4, we provide a 12
qualitative comparison between the filter in 1.0

GCN and the d + 1 adaptive filters learned %3?

by RHO in the two views. We observe that: (%

(i) AdaFreq in cross-channel view flexi- 0.0

bly retains varying levels of low-frequency A
signals across two datasets with diverse (a) Amazon (b) T-Finance

homophily patterns in the normal nodes,
thereby enabling more effective learning of
the heterogeneous normal representations.
(i1) The channel-wise learnable filters, on
the other hand, retain or enhance the dis-
criminability of the frequency components
at different levels, allowing RHO to capture
important homophily patterns specific to each feature channel. These two capabilities sharply contrast
to the simple, fixed frequency pattern in GCN and its uniform treatment of all feature channels.

Figure 4: The filter curves learned by RHO on Amazon
and T-Finance, where the black dashed line represents
the baseline filter response from GCN, the black solid
line indicates the cross-channel response, and the col-
ored solid lines are the channel-wise responses.

5.3 Ablation Study

In this section, we perform ablation study to evaluate the contribution of each component in RHO.

Table 2: AUROC and AUPRC results of our ablation study.

Metric Component Datasets

Leer Lewr Lana | Reddit Tolokers Photo Amazon Elliptic Question T-Finance DGraph

v 0.5756  0.5712 0.6322 0.7436 0.7371  0.5704 0.7682 0.5542

AUROC v 0.6095 0.5878 0.6144 0.8905 0.7718 0.5811 0.8123 0.5215
v v 0.6117 0.5727 0.6361 0.8692 0.7954 0.5774 0.7756 0.5637

v v v 0.6207 0.6255 0.7129 0.9302 0.8509  0.5833 0.8623 0.6033

v 0.0431 0.3052 0.1390 0.2423 0.1862  0.0424 0.3282 0.0049

AUPRC v 0.0481 0.2923 0.1451 0.5895 0.2287  0.0420 0.5061 0.0043
v v 0.0556 0.3024 0.1398 0.5443  0.2657 0.0426 0.3365 0.0051

v v v 0.0616 0.3256 0.2337 0.7879 0.5095  0.0430 0.4893 0.0059

Effectiveness of GNA. To evaluate the effectiveness of GNA in RHO, we assess the variant of RHO
with £ n 4 removed and train the model using only L., and L.,,,. As shown in Table 2, removing
LN a consistently decreases performance in terms of both AUROC and AUPRC. This indicates that
Lana is crucial for bridging the gaps among the heterogeneous normal representations learned by
the channel-wise and cross-channel views.

Effectiveness of AdaFreq. To verify the effectiveness of the proposed AdaFreq, we present the
results of using AdaFreq in only one of the two views (i.e., using solely L., or L.,.). Table 2 shows
that AdaFreq applied to both views consistently outperforms the variant that applies AdaFreq in only
one of these views. This performance improvement is primarily attributed to the complementary
nature of the two views. The homophily patterns captured in the channel-wise view contain distinct



information that cannot be fully learned from the cross-channel view alone, as exemplified in Fig. 4.
The full model of RHO effectively integrates both views, resulting in improved performance across
the datasets.

5.4 Hyperparameter Sensitivity Analysis

We evaluate the sensitivity of RHO w.r.t. the hyperparameter o and the training size R. Detailed
results on more datasets can be found in App. D.

Performance w.r.t. Hyperparameter o.

—e— Reddit —&— Photo —— Elliptic —<— T-Finance

As shown in Fig. 5, with increasing «, the perfor- )
Tolokers —a— Amazon —e— Question

mance on Elliptic, Tolokers, Amazon, Question .

and T-Finance has different degrees of improve- — oof | 3 "
ment, suggesting that a stronger consistency con- 08 | s

. . 307 / gos
straint between cross-channel and channel-wise £ ' ‘§< « Eoq /———,
representations is beneficial. In contrast, on Red- <5 \:::,: - by L
dit and Photo, the performance slightly declines 04 N e— e
as « increases. This is primarily because these > ox o7 10 o1 _0s o7 10

. . . Parameter (@) Value Parameter (@) Value

are small datasets with high average feature sim- @ ®)

ilarity among the nodes. The representations
learned from the two views are already highly Figure 5: AUROC and AUPRC results of RHO
similar, and imposing excessive regularization ~W.r.t. hyperparamer a.

through the normality alignment may lead to

overly smoothing features, which may lead to

negative effects.

Performance w.r.t. Training Size R.

To explore the impact of training size R, we . 3;5)

compare RHO with GGAD, OCGNN, and o7 setem—tme | 07

BWGNN, using varying numbers of training §g(5’ e gann §0m -

normal nodes, with the results reported in Fig. =04 RIO 2 055] o ooap

6. As the number of the labeled normal nodes 22 . N Srne 0501 ¥ OCONN

increases, RHO generally improves across the To0s 00 o015 om0 045005 010 045 020
datasets, which is consistent with other semi- Training Size (R) Training Size (R)
supervised methods. Notably, RHO demon- (a) Elliptic (b) Photo
strates a stable and remarkable improvement Figure 6: AUROC wi.r.t. data size R.

trend on the Elliptic dataset, even when the

amount of labeled data is limited. This observa-

tion indicates that our model can effectively exploit the normality patterns under sparse supervision.
Under different label rates, our RHO consistently maintains the best performance, showing the
superiority of our method.

6 Conclusion and Future Work

In this paper, we propose RHO, the very first GAD approach designed to learn heterogeneous normal
patterns on a set of labeled normal nodes. RHO is implemented by two novel modules, AdaFreq and
GNA. AdaFreq learns a set of adaptive spectral filters in both the cross-channel and channel-wise
view of node attribute to capture the heterogeneous normal patterns from the given limited labeled
normal nodes, while GNA is designed to enforce the consistency of the learned normal patterns,
thereby facilitating the learning of robust normal representations on datasets with different levels of
homophily in the normal nodes. This robustness is comprehensively verified by results on eight GAD
datasets. A potential limitation of RHO is that it is a transductive method and thus cannot be directly
applied in inductive settings. This limitation is shared with most existing GAD methods and is left
for future exploration.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state our contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of our work in Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions and complete proofs are in Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Sec. 5 details implementation hyperparameters, dataset splits.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code/data are available at https://github.com/mala-1lab/RHO.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details, e.g., Optimization (Adam), learning rate, are presented
in Sec. 5.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Table 1 reports mean AUROC/AUPRC over 5 runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

16


https://github.com/mala-lab/RHO
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our model is implemented in PyTorch 2.0.0 with Python 3.8 and executed on
GeForce RTX 3090 GPU (24 GB).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our use of public datasets complies with NeurIPS Ethics Guidelines.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our model is not high-risk.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cited the data sources.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Not applicable (no new assets introduced in the paper).
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects or crowdsourcing was used.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable (no human subjects research).
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: LLMs were only used for grammar checks (Grammarly). No impact on
methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Analysis

A graph filter operation on a graph signal x € R can be defined as z = Ug(A)U"x, where
U = (up,uy,...,uy—_1) is a complete set of orthonormal eigenvectors of the Laplacian matrix,
g(A) is an adaptive filter with a diagonal matrix and g(Ag), g(A1),- -, g(An—1) is its main diagonal.
In graph signal processing (GSP), {\;} and {u;} are called frequencies and frequency components
of graph G. Let V; be the labeled normal nodes in our training data and ¢ be a center of a one-class
classifier, then the objective function of the one-class classification under semi-supervised graph
anomaly detection (GAD) can be defined as:

Definition A.1 (Spectral One-class Loss) Let 3 = U T x, then in the one-class classification scenario,
the loss of filter g(A) on a graph can be formulated as follows:

L= l(Ug(A)B)i —cl* =D ||z — cll, (12)
1€V 1€V
where 8 = (5o, 81, , BN— 1) with S,,, be the projection coefficient of x on the m-th eigenvector

u,, (e, x = N Bmum) and the adaptive filter g(A) operates on each spectral component,

ie., g(A)ﬁ (g ()\0)50, (M)B1, - ,9(ANn—1)Bn—1). Then, through the inverse transformation,
we obtain the node representation z = Zﬁi;é (9(Min) B )0, With z; = Eg;é(g()\m)ﬁm)um (i),
where ., (¢) is the value of the eigenvector u,, at node i.

Theorem 2 Let {)\,,} and {u,,} be the graph frequencies and frequency components respec-
tively, B, is the projection coefficient of signal x onto the m-th eigenvector W,,, then g (\;,) =

% holds for the filter g ()\), indicating that frequencies where normal nodes show co-
m 2 iev, Um

herent spectral behavior (i.e., u., (i) values agree in sign/magnitude) are amplified, while inconsistent
frequency components are suppressed.

Proof 1 Starting from the one-class classification loss over the labeled normal nodes 'V, :
2

N—1
L= Z Z 9(Am) Bmum (i) — ¢
1€V [Im=0

we compute the gradient of L with respect to g(A\p,):

N-1
8L —22 Zg ) Bu; (i) < B (7).

i€V \ j=0

Setting the derivative to zero for optimality and assuming orthogonality between eigenvectors (i.e.,
dropping cross terms for m # j), we obtain:

eV, i€V,
Solving for g( A\, ) vields the closed-form by assuming the center ¢ = 1:
Zievl U (7)
Bm Zz‘ev, Uy (7)2

9(Am) =

In the theorem, the denominator §,, >, ev, Um (i)? represents the weighted total energy of the m-th
frequency component distributed over the normal nodes. It serves as a normalization factor, reflecting
how uniformly the m-th frequency component is distributed across the normal nodes. When the
m-th frequency components exhibit high consistency across the labeled normal nodes, e.g., ,, (7)

have the same sign (all positive or all negative) and similar amplitude for ¢ € V;, then the ratio

% will be either much greater than 0 (case 1: /3,,, > 0 and M > 0, case

2: Bm < 0 and M < 0) or much less than O (case 1: 3, > 0 and M < 0,
Zi, um( ) Zigvl U, ()
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case 2: 3, < 0 and % > 0), resulting in a frequency positively or negatively enhancing
icv, Um

response g(A,) > 0 or g(A;,) < 0. Only when the frequency components are highly inconsistent,
e.g., un, (1) exhibits opposite signs across the labeled normal nodes, these inconsistent components
will cancel each other out (i.e., > iev, Um (i) — 0), resulting in a frequency suppressing response
g(Am) — 0. To summarize, minimizing the one-class loss enables an adaptive filtering mechanism
to automatically enhance frequency components that are consistent across normal nodes while
suppressing the inconsistent components.

Table 3: Key statistics of GAD datasets.

Datasets | Reddit Tolokers Photo  Amazon Elliptic Question T-Finance DGraph
#Nodes 10,984 11,758 7,484 11,944 203,769 48,921 39,357 3,700,550
#Edges | 168,016 519,000 119,043 4,398,392 234,355 153,540 21,222,543 4,300,999
#Attributes 64 10 745 25 166 301 10 17
Anomaly 3.3% 21.8% 4.9% 9.5% 9.8% 2.98% 4.6% 1.3%

B Detailed Description of Datasets

The key statistics of the datasets are presented in Table 3. A detailed introduction of these datasets is
given as follows.

» Reddit [18]: It is a user-subreddit graph which captures one month’s worth of posts shared
across various subreddits at Reddit. The node represents the users, and the text of each post
is transformed into a feature vector and the features of the user and subreddits are the feature
summation of the post they have posted. The anomalies are the used who have been banned
by the platform.

 Tolokers [28]: It is obtained from the Toloka crowdsourcing platform, where the node
represents the person who has participated in the selected project, and the edge represents
two workers work on the same task. The attributes of the node are the profile and task
performance statistics of workers.

* Photo [28]: It is obtained from an Amazon co-purchase network where the node repre-
sents the product and the edge represents the co-purchase relationship. The bag-of-words
representation of the user’s comments is used as the attribute of the node.

* Amazon [10]: It is a co-review network obtained from the Musical Instrument category
on Amazon.com. There are also three relations: U-P-U (users reviewing at least one same
product), U-S-U (users having at least one same star rating within one week), and U-V-U
(users with top-5% mutual review similarities).

* Elliptic [43]: It is a Bitcoin transaction network in which each node represents a transaction
and an edge indicates a flow of Bitcoin currency. The Bitcoin transaction is mapped to
real-world entities associated with licit categories in this dataset.

* Question [35]: It is a question answering network which is collected from the website
Yandex Q where the node represents the user and the edge connecting the node represents
the user who has answered other’s questions during a one-year period. The attribute of nodes
is the mean of FastText embeddings for words in the description of the user. For the user
without a description, the additional binary features are employed as the feature of the user.

* T-Finance [41]: It is a financial transaction network where the node represents an anonymous
account and the edge represents two accounts that have transaction records. Some attributes
of logging like registration days, logging activities, and interaction frequency, etc, are used
as the features of each account. Users are labeled as anomalies if they fall into categories
such as fraud, money laundering, or online gambling.

* DGraph [15]: It is a large-scale attributed graph with millions of nodes and edges where
the node represents a user account in a financial company and the edge represents that the
user was added to another account as an emergency contact. The feature of each node
represents the user’s profile information, including age, gender, and other demographic
attributes. Users with a history of overdue payments are labeled as anomalies.
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C Description of Baselines

A more detailed introduction of the nine competing GAD models is given as follows.

* DOMINANT [7] applied the conventional autoencoder on a graph for GAD. It consists of
an encoder layer and a decoder layer, which are designed to reconstruct the features and
structure of the graph. The reconstruction errors from the features and the structural modules
are combined as an anomaly score.

* AnomalyDAE [12] leverages the advanced autoencoder and an attribute autoencoder to learn
both node embeddings and attribute embeddings jointly in a latent space by assigning the
corresponding weight in the loss function. In addition, an attention mechanism is employed
in the structure encoder to capture normal structural patterns more effectively.

* OCGNN [42] combines one-class SVM and GNNs, aiming at leveraging one-class classifiers
and the powerful representation of GNNs. A one-class hypersphere learning objective is
used to drive the training of the GNN. The samples that fall outside the hypersphere, meaning
they deviate from the normal pattern, are defined as anomaly.

» AEGIS [6] designs a new graph neural layer to learn anomaly-aware node representations
and further employ generative adversarial networks to detect anomalies among new data.The
generator takes noise sampled from a prior distribution as input and aims to produce
informative pseudo-anomalies. Meanwhile, the discriminator seeks to determine whether a
given input is the representation of a normal node or a generated anomaly.

* GAAN [5] is based on a generative adversarial network where fake graph nodes are generated
by a generator. To encode the nodes, they compute the sample covariance matrix for real
nodes and fake nodes, and a discriminator is trained to recognize whether two connected
nodes are from a real or fake node.

* TAM [36] adopts the local affinity-based approach as an anomaly measure. It learns tailored
node representations for a new anomaly measure by maximizing the local affinity of nodes
to their neighbors. TAM is optimized on truncated graphs where non-homophily edges
are removed iteratively. The learned representations result in a significantly stronger local
affinity for normal nodes than abnormal nodes.

* GGAD [38] generates pseudo anomaly nodes based on two important priors, including
asymmetric local affinity and egocentric closeness, and trains a discriminative one-class
classifier for semi-supervised GAD.

* GCN [17] obtains the node representations by aggregating information from neighbors,
which can be seen as a special form of low-pass filter. The low-pass filter primarily preserves
the similarity of node features during graph representation learning.

* BWGNN [41] reveals the ‘right shift’ phenomenon that the spectral energy distribution con-
centrates more on the node with high frequencies and less on the node with low frequencies,
and proposes a band-pass filter to learn the effective node representation for supervised
GAD.

* PMP [49] introduces a partitioning message passing scheme that separately aggregates
information from homophilic and heterophilic neighbors using node-specific functions.
This design enables the adaptive adjustment of information flow from different neighbor
types, thereby effectively capturing structural heterogeneity and enhancing robustness to
heterophily in graph-based fraud detection.

* CONSISGAD [4] introduces a consistency-based framework for GAD under limited su-
pervision. It leverages unlabeled data through a learnable data augmentation mechanism
that injects controlled noise for consistency training. Additionally, by exploiting the vari-
ance in homophily distributions between normal and anomalous nodes, CONSISGAD
employs a simplified GNN backbone to enhance discriminability and robustness against
class imbalance.
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Figure 7: Homophily distributions of normal nodes in five datasets.

D Additional Experimental Results

D.1 Homophily Distribution Results for the Remaining Datasets

In Fig. 7, we visualize the homophily distributions of normal nodes on the rest of five datasets.
As shown in Fig. 1, the observation is consistent with the distributions on Amazon and Elliptic,
i.e., although most normal nodes exhibit high homophily, some normal nodes show relatively low
homophily, resulting in significant variations in homophily levels among the normal nodes. This
further indicates that this phenomenon is commonly observed in the GAD datasets, and existing
models based on the aforementioned assumptions may learn inaccurate homophily patterns of the
normal class on these datasets, while RHO adaptively learning heterogeneous normal patterns from
the small set of normal nodes with diverse homophily can well address this challenge.
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Figure 9: AUPRC w.r.t. training data size R

D.2 Performance w.r.t. Different Training Size

The AUROC and AUPRC results under varying proportions of training normal nodes are shown
in Fig. 8 and Fig. 9, respectively. The results further demonstrate that as the number of labeled
normal nodes increases, the performance of RHO generally improves across the datasets, which is
consistent with the behavior observed in other semi-supervised methods. Besides, RHO consistently
outperforms the competing methods across different numbers of training normal nodes on Tolokers,
Question, and T-Finance in terms of AUROC. RHO also achieves the best AUPRC performance
across all datasets under varying training data sizes, further demonstrating its effectiveness in varying
homophily pattern learning in the small normal node set.
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Figure 11: AUPRC results w.r.t. different anomaly contamination rates.

D.3 Performance w.r.t. Anomaly Contamination

In real applications, labeled normal nodes are often susceptible to contamination by anomalies due to
factors such as annotation errors. To address this issue, we introduce a controlled ratio of anomaly
contamination into the training set of labeled normal nodes. Specifically, we randomly sample
abnormal nodes from the unlabeled nodes in the test set and incorporate them as normal nodes into
the training set of normal node set. All sampled abnormal nodes are excluded from the test set.

As shown in Fig. 10 and Fig. 11, the performance of all models declines as the level of contamination
increases, particularly on the AUPRC. RHO achieves the best performance among all competing
methods and maintains consistent results across varying contamination rates, demonstrating its
robustness in representation learning for semi-supervised GAD.

D.4 Runtime Results

The running time, including both
training and inference time, of

. 4 Table 4: Runtimes (in seconds) on the six datasets on CPU.
RHO and six competing meth-

ods are shown in Table 4. Al- Datasets
Methods - - -

though our method can run on Reddit Photo Amazon Question T-Finance
all datasets using an RTX 3090 DoMINANT | 125 437 1592 740 10721
GPU, some baseline methods OCGNN 162 125 765 973 5717
may encounter out-of-memory AEGIS 166 417 1121 660 15258
(OOM) issues on the same GPU TAM 432 165 4516 29280 17360
due to their different compu- GGAD 368 136 1020 1125 9345
tational mechanisms, highlight- CONSISGAD | 483 681 3259 483 20172
ing that RHO is more memory- RHO 308 201 3358 675 5184

efficient. To ensure a fair com-
parison, we report the runtime
performance on the CPU for all methods. The runtime results demonstrate that RHO remains efficient
even on the large-scale graph T-Finance, primarily due to the use of mini-batch processing in the
GNA module. By adopting a mini-batch strategy, the complexity of GNA reduces to O(b?d) for
a batch size of b, and the total per-epoch complexity becomes O(/Nbd) when averaged across all
batches, which significantly reduces memory usage and computational overhead, thereby improving
the scalability. In contrast, methods such as DOMINANT, TAM, and GGAD involve reconstruction
or affinity calculations across all nodes, which typically incur a time complexity of O(N?), causing
significant computational overhead on large-scale graphs.
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Algorithm 1 RHO: Semi-supervised Graph Anomaly Detection via Robust Homophily Learning

Input: Graph § = (V, £), node features X, labeled normal nodes V;, unlabeled nodes V,,, number
of training epochs F, temperature 7, trade-off weight «, batch size b, propagation depth T'
Output: Anomaly scores S; for each v; € V,,

1: Initialize parameters 6, {WE?,, Wg},,.}le, frequency coefficients k (shared in cross-channel),
K = [kq,. .., kq] (channel-wise)
2: Set initial features: Hﬁgl — fo(X), Hég))r — fo(X); €eer =0, Cepr =0
3: fort =1to1 do R
4:  Update cross-channel view: ch)r —0 ((I — kL)Hg;l)WgtCU
Update channel-wise view: Hg},r —0 ((I -1 )(Hg,}l) ® K)ngr)
: Compute centers: Cee — ﬁ Y iev hgr) (), Cowr Wll > icv hewr(7)

: Compute projections: Zec, %w(h&fr)), Zewr %m(hﬁf{;l)

9: for epoch = 1to F do
10:  Compute one-class losses Lcr, Lewr I v; € vy
11:  if b > 0 then

5
6: end for
8

12: Sample a batch B C 'V of size b

13:  else

14: Set B +V

15:  endif

16:  for each v; € B do

17: LGNA — ﬁ Zi (L (chr (Z)7 chr(i)) + 'C'(chr (Z)7 chr(i)))
18:  end for

19: Ltotal — %(Lccr + Lcwr) + QLGNA
T, . T .
20: Ceor le‘ diev h(6), cowr Wll Yicv b (i)
21:  Update all parameters via backpropagation
22: end for
23: for each v; € V,, do
24:  Anomaly scoring: S; = %(thr)(?) — ceer|I? + |05 () = e |?)
25: end for
26: return Anomaly scores S1,..., Sy,

E Algorithm

The algorithm of RHO is summarized in Algorithm 1.
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