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Abstract

In this paper we present a Reinforcement Learning environment that leverages
agent cooperation and communication, aimed at detection, learning and ultimately
penalizing betrayal patterns that emerge in the behavior of self-interested agents.
We provide a description of game rules, along with interesting cases of betrayal and
trade-offs that arise. Preliminary experimental investigations illustrate a) betrayal
emergence, b) deceptive agents outperforming honest baselines and c) betrayal de-
tection based on classification of behavioral features, which surpasses probabilistic
detection baselines. Finally, we propose approaches for penalizing betrayal, list
enhancements and directions for future work and suggest interesting extensions of
the environment towards capturing and exploring increasingly complex patterns of
social interactions.

1 Introduction

Establishing truthfulness in AI is a critical open problem in Safety and Alignment efforts [10]. A
powerful AI system that adopts strategies of deception and betrayal, i.e. manipulation of beliefs
and prior assumptions of humans, may be a quick one-way ticket to a treacherous turn. Detection
and diagnosis of betrayal patterns is challenging; poor explainability of black-box agents make it
difficult to deduce intent, goals and beliefs by inspecting internal model workings and/or operational
outputs [20, 26]. To make matters worse, intelligent agents capable of long-term strategizing would
render human interpretation and recognition of suspicious patterns in action sequences very difficult.
At the same time, instrumentally convergent attributes such as self-preservation and resistance to
corrigibility could result in AI systems that deliberately utilize obfuscation or exhibit deceptive
alignment [1], placing further obstacles in understanding their objectives.

In these settings, Anomaly Detection countermeasures [18] aim to identify, prevent, correct or mitigate
adverse outcomes prior to system deployment. For instance, betrayal detection and quantification can
serve as tripwires and honeypots to avoid future harms, catching systems that exhibit problematic
behavior early on [1]. Additionally, betrayal penalization approaches aim to regularize agents
away from undesirable actions during training. Ideally, this resolution should be interpretable to
human evaluators and generalize well to different problems, agent architectures and domains, having
efficiently internalized concepts of betrayal and deception.

Reinforcement Learning (RL) can provide a tractable avenue for investigating such scenarios [9],
using environments where reliable reward accumulation heavily depends upon cooperation between
agents and complex social interactions occur [17, 7]. In this work, we adopt such an approach,
focused on detecting and penalizing undesirable behaviors of deception and betrayal in a custom,
communication-based navigation task.
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2 Related Work

Previous studies have explored agent communication in a multiagent RL setting; Kajic et al. [13]
investigate message-based navigation similar to the proposed work, while Cao et al. [6] study
communication grounding with respect to game rules in agents of varying degrees of self-interest. In
the work of Kim et al. [14], agents use a world model to predict future agent intents and environment
dynamics to generate, compress and transmit imagined trajectories. Other works explore topological
configurations different from fully-connected communication, such as the learnable hierarchical
approach in Sheng et. al [23], while communication via noisy channels has been investigated in Tung
et. al [24].

Agent deception, betrayal, truthfulness and trustworthiness has been previously investigated in
multiple settings [7]; for instance, Christiano et al. [8] present a challenge of discovering latent
knowledge in an agent that may produce false / unreliable reports, while Usui et al. [25] evaluate
analytic solutions of different strategies in iterated Prisoner’s Dilemmas.

Social dilemmas that gauge cooperation versus self-interest are explored in Leibo et al. [16],
applied via games like “Gather” and “Wolfpack”. “Hidden Agenda” is a team-based game offering
a complex action set including 2D navigation, agent / environment interaction, deception and
trustworthiness estimation via voting, and is investigated by Kopparapu et al. [15]. Asgharnia [3] use
a hierarchical fuzzy, situation-aware learning scheme to learn and utilize deception against one or
multiple adversaries in a custom environment.

Mitigation approaches include the work in Hughes et al. [11], where reward regularization is
approached by adding an inequity penalty in games with short-term versus long-term dilemmas,
like “Cleanup” and “Harvest”. Jaques et al. [12] use the same setting with a mutual information-
based mechanism that favors influential communication between agents, adopting a correlation
assumption of influence to cooperation. Blumenkamp et al. [4] utilize cooperative policy learning via
shared differentiable communication channel in three custom environments, investigating adaptation
dynamics when a self-interested adversary is introduced. Finally, Scmid et al. [21] explore using
agents that can explicitly impose penalties in a zero-sum setting, applied in N-player Prisoner’s
Dilemma games with large agent populations.

Given this body of work, the contributions of this work are as follows:

• A betrayal-oriented environment: we design a simple, limited ruleset that can result in the
emergence complex betrayal behaviors, consolidated in a single-agent RL environment.

• Interpretable betrayal detection: we build a classification-based detector from explainable
behavioral / observational evidence generated during agent play.

• Experimental validation: we provide preliminary empirical findings showcasing emergence
and successful detection of betrayal behaviors in the proposed environment.

• Proposals for penalization and future work: we propose a method to penalize detected
betrayal during learning, list resulting challenges in its application and suggest enhancements.
Finally, we offer multiple pathways for utilizing the rich potential of the environment via
interesting and diverse directions for future work.

3 Proposed Environment

The proposed environment is built with a focus on betrayal detection and penalization goals expressed
in the literature [2], extending previous work on agent communication in RL settings [13].

It implements an episodic game that consists of a collection of N ≥ 2 gridworlds [G1 . . . Gn],
each paired with a single agent Ai. All worlds are associated with a pool of k ≥ N food items
F = [f1, . . . , fk] that provide variable reward and nutrition to agents upon consumption. The
environment advances in a single-agent, turn-based fashion, using the following rules and mechanics:

• The game is played in rounds, wherein all agents act once in a randomly generated order.
• At the start of each round, food items are randomly allocated and positioned in each world.
• The objective of each agent Ai is to obtain food, which yields reward. Agent Ai may harvest

food by probing a location within their world Gi, but other worlds are inaccessible.
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• Agents cannot observe their own gridworld. Instead, they may observe all other (“opponent”)
worlds and communicate with their respective opponent agents, conveying information of
food locations within them – i.e, agent Ai sends N − 1 messages mij |j ∈ [1, . . . N ], j ̸= i,
where mij ∈ Rd is some encoding that carries information on where food is located in
gridworld Gj , according to agent Ai.

• Agents utilize incoming messages from other agents to decide where to probe / navigate for
food within their world. If a food item is discovered in the destination and consumed, the
agent obtains the reward amount it contains.

• If an agent fails to consume food in a turn, they gain hunger. Hunger affects an agent’s
communication capabilities, distorting outgoing messages by a magnitude proportional to
its value. The final transmitted message is m̂ij = H(mij), where H(·) is a noise function.

• At the end of each round (i.e., once all agents have acted), if the food pool is empty, the
episode ends. Otherwise, the procedure restarts with a new round.

This setting defines an social contract, where well-meaning agents are expected to truthfully relay
food item coordinates for mutual benefit. However, interesting cases of betrayal also arise. Namely, a
deceptive agent Ad may choose to transmit dishonest location coordinates: any food item in opponent
worlds has a chance to be randomly relocated within Gd in future rounds. At the same time, Ad has
to selectively regularize, cycle and/or distribute deception among their adversaries to avoid resorting
to blind navigation: any systematically starved opponent agent will become unreliable in providing
directions. Example illustrations of game mechanics and cases of betrayal / hunger trade-offs are
available in the appendix, in figures 3 and 2 respectively.

4 Preliminary Experiments

4.1 Betrayal Emergence

In order to empirically test the potential of the proposed environment to produce cases of betrayal
behaviors, we perform a set of preliminary experiments. We train a configuration with N =
2 girdworlds: the first agent (Alice) is trained from scratch, using the popular Proximal Policy
Optimization (PPO) [22] algorithm with an MLP policy model. Alice learns by training against an
opponent (Bob) fixed to truthful behavior. Food nutrition and reward are equalized for simplicity and
sampled from distinct values in [0, 1], while food items are distributed to uniformly sampled positions.
Bob is set to transmit one-hot encodings of food locations that provide the highest reward in the
observed opponent world. This configuration biases Alice towards adopting a similar, interpretable
messaging protocol, i.e. the encoding scheme that Bob transmits, expects and can use to gain
(by navigating) and provide (by limiting hunger) reward. We apply hunger distortion of outgoing
messages via additive uniform noise sampled from [−h, h], where h ≤ 1.0 is the agent’s hunger.

To determine whether an action from the i-th agent constitutes betrayal, we compare their intended
message mij (prior to any hunger-induced degradation) with true food locations in the observed
world Gj . For l = argmax(mij), betrayal occurs when no food can be found in the l-th grid position
(Gj(l) = 0). Regarding implementation, we used python, gym [5] and stable-baselines3 [19]. The
environment codebase will be publicly available shortly, upon reaching a polished version. 1.

Figure 1 illustrates experimental results after training for 1e5 timesteps, with a hunger increase delta of
0.15 and a gridworld size of 5 tiles. “Honesty” scores denote cases where incoming messages match
true food locations (i.e. neither indented nor hunger-induced misdirection), and are progressively
dominated by betrayal, given hunger and hunger-induced distortion results (see appendix Figure 4).
Alice outperforms the honest baseline in terms of gained reward per step, with respective betrayal
and honesty measurements rising and dropping as training progresses, respectively. In other words,
Alice learns to adopt instrumentally useful actions of betrayal to obtain increased reward. Bob’s
reward increases at a slower rate as Alice is learning, while betrayal is zero and honesty scores stay
high, affected only by hunger (presumably reflecting Alice’s increasing grasp on the communication
protocol). We believe that these findings provide evidence for the potential of the environment for
generating betrayal patterns; subsequent empirical work of larger scale and additional investigation
axes should result in further useful results.

1https://github.com/npit/sog
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Figure 1: Comparison between learner and honest agent rewards (red, blue), along with exhibited
behavior of betrayal (orange) and honesty (dotted green, pink) for Alice and Bob respectively. Bob’s
betrayal score is 0 and is omitted. Values are illustrated with exponential moving average smoothing.

4.2 Betrayal Detection and Penalization

In order to facilitate betrayal detection and penalization, we apply a simple but intuitive approach. We
run the trained agent for 500 episodes to collect interpretable run metadata, e.g. current / cumulative
values for hungers, rewards, sent messages, etc. We use the resulting 4982× 33 feature matrix and
generated ground truth betrayal values to train a feedforward neural network to predict the betrayal
label. After hyperparameter tuning and 3-fold cross validation, we obtain a macro F1 mean scores of
68.35% (stdev 1.18%), compared to a probabilistic-based baseline of 49.36%. This illustrates that
betrayal detection in the proposed setting is possible, using explainable, interpretable features.

For disincentivization of deceptive behaviors, we are investigating utilizing classifier probability
outputs as betrayal penalty modifiers applied during training in the agent’s reward (current) or the
policy learning loss (future). This has proved to be challenging, as agents appear to game the classifier
to near-zero betrayal scores, suggesting that the utilized feature set potentially fails to encapsulate
deceptive behavior precisely. To this end, we are in the process of augmenting our penalization
investigation with interpretable features sequences (e.g. metadata recent history), increased dataset
sizes, and scaling up classifier models (e.g. attention-based networks). Additionally, we will employ
feature selection to discard irrelevant features in an effort to remove degrees of freedom that the agent
may use to hack / game penalization penalties during training.

5 Conclusions and Future Work

In this work we presented an RL environment leveraging a communication-based cooperative naviga-
tion task, geared towards detecting and penalizing betrayal. Preliminary experimental results provide
evidence for successful betrayal emergence and detection, while multiple avenues for classification-
based betrayal penalization with interpretable features are proposed and currently pursued.

We believe that the proposed environment presents rich potential for generating interesting social
interactions patterns, which could be valuable research topics in future studies. Such work includes
exploration of different betrayal dynamics (e.g. utilizing passive reward penalties, learning versus
a dishonest opponent, opponents with different capability / penalization attributes) and tracking
of onset and evolution of betrayal patterns like reciprocity, defection and retribution. Higher-level
patterns may include tactically play and long-term strategizing, e.g. prioritizing reward-rich food
for self consumption while reserving high-nutrition food for adversaries, limiting opponent hunger
under a certain threshold, ramping up betrayal when food becomes scarce, etc. Other avenues include
measuring the effect of different environmental properties and axes (e.g. world dimensionality, food
abundance, food distribution during relocation, etc.) to observed dynamics.

Moreover, interesting extensions to this work are examining emergent behaviors under more sophisti-
cated opponent modeling (e.g. as in related work [14]) or focusing on different dishonesty patterns
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(e.g. “accidental” deception derived from hunger or under/overfitted opponent). Finally, a natural
extension of the proposed work involves exploring the effect of consensus and trustworthiness on
betrayal dynamics when dealing with multiple rather than a single adversary (e.g. cycling betrayal
victims, prioritizing deception to unreliable communicators, etc.), or adopting a multiagent approach
to the environment for simultaneous rather than turn-based play.
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[13] KAJIĆ, I., AYGÜN, E., AND PRECUP, D. Learning to cooperate: Emergent communication in
multi-agent navigation. arXiv preprint arXiv:2004.01097 (2020).

[14] KIM, W., PARK, J., AND SUNG, Y. Communication in multi-agent reinforcement learning:
Intention sharing. In International Conference on Learning Representations (2020).

[15] KOPPARAPU, K., DUÉÑEZ-GUZMÁN, E. A., MATYAS, J., VEZHNEVETS, A. S., AGA-
PIOU, J. P., MCKEE, K. R., EVERETT, R., MARECKI, J., LEIBO, J. Z., AND GRAEPEL,
T. Hidden agenda: a social deduction game with diverse learned equilibria. arXiv preprint
arXiv:2201.01816 (2022).

[16] LEIBO, J. Z., ZAMBALDI, V., LANCTOT, M., MARECKI, J., AND GRAEPEL, T. Multi-agent
reinforcement learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037 (2017).

[17] OROOJLOOYJADID, A., AND HAJINEZHAD, D. A review of cooperative multi-agent deep
reinforcement learning. arXiv preprint arXiv:1908.03963 (2019).

[18] PANG, G., SHEN, C., CAO, L., AND HENGEL, A. V. D. Deep learning for anomaly detection:
A review. ACM Computing Surveys (CSUR) 54, 2 (2021), 1–38.

[19] RAFFIN, A., HILL, A., GLEAVE, A., KANERVISTO, A., ERNESTUS, M., AND DORMANN,
N. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research 22, 268 (2021), 1–8.

[20] SAMEK, W., AND MÜLLER, K.-R. Towards explainable artificial intelligence. In Explainable
AI: interpreting, explaining and visualizing deep learning. Springer, 2019, pp. 5–22.

[21] SCHMID, K., BELZNER, L., AND LINNHOFF-POPIEN, C. Learning to penalize other learning
agents. In ALIFE (2021).

[22] SCHULMAN, J., WOLSKI, F., DHARIWAL, P., RADFORD, A., AND KLIMOV, O. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

[23] SHENG, J., WANG, X., JIN, B., YAN, J., LI, W., CHANG, T.-H., WANG, J., AND ZHA,
H. Learning structured communication for multi-agent reinforcement learning. Autonomous
Agents and Multi-Agent Systems 36, 2 (2022), 1–31.

[24] TUNG, T.-Y., KOBUS, S., ROIG, J. P., AND GÜNDÜZ, D. Effective communications: A
joint learning and communication framework for multi-agent reinforcement learning over noisy
channels. IEEE Journal on Selected Areas in Communications 39, 8 (2021), 2590–2603.

[25] USUI, Y., AND UEDA, M. Symmetric equilibrium of multi-agent reinforcement learning in
repeated prisoner’s dilemma. Applied Mathematics and Computation 409 (2021), 126370.

[26] YAMPOLSKIY, R. V. Unexplainability and incomprehensibility of AI. Journal of Artificial
Intelligence and Consciousness 7, 02 (2020), 277–291.

6



Appendix: Figures

Figure 2: An overview of the proposed environment for investigating betrayal for the example case
of two agents, Alice (left, solid lines) and Bob (right, dashed lines). An agent’s turn consists of a
composite observation space of opponent worlds (blue) and incoming messages (cyan). The action
space involves composing a message to other agents (red) and navigating the owned gridworld to
obtain food (orange).

Figure 3: Top: Bob engages in honest communication, enabling Alice to consume food #1, obtain
reward and lose hunger. Alice betrays by transmiting false coordinates to food item #2 in Bob’s
world, which remains intact and survives to the next round. Botttom: In the next round, the preserved
food item #2 randomly relocates to Alice’s world, providing them an opportunity to capitalize on
their betrayal. However, Bob has been betrayed too many times to reliably communicate, resulting in
their message being corrupted and Alice suffering hunger penalties in turn.
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Figure 4: Hunger scores (red, blue) and hunger-induced message distortion (brown, cyan) per time
step during training, for Alice and Bob respectively. Decreasing scores for hunger and hunger-based
distortion indicate that opponents improve in transmitting messages with true food locations, for both
agents.

8


	Introduction
	Related Work
	Proposed Environment
	Preliminary Experiments
	Betrayal Emergence
	Betrayal Detection and Penalization

	Conclusions and Future Work

