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ABSTRACT

3D object detection is essential for autonomous driving but remains limited by
the long-tail distribution of real-world data. Instance-level augmentation methods,
whether copy-paste or asset rendering, are typically restricted to LiDAR and
offer only modest variation with limited scene context. We introduce MAPLE, a
training-free pipeline for multimodal augmentation that generates synchronized
RGB–LiDAR pairs. Objects are inserted through context-aware inpainting in the
image domain, and paired pseudo-LiDAR is reconstructed via depth estimation.
To ensure cross-modal plausibility, MAPLE incorporates semantic and geometric
verification modules that filter inconsistent generations. We further propose a
success-rate evaluation that quantifies error reduction across verification stages,
providing a principled measure of pipeline reliability. On the nuScenes benchmark,
MAPLE consistently improves both detection and segmentation in multimodal and
LiDAR-only settings. We will release code to support reproducibility

1 INTRODUCTION

Reliable 3D perception (Chen et al., 2023; Yin et al., 2021; Lang et al., 2019; Yan et al., 2018; Zhou
& Tuzel, 2018; Wang et al., 2023) is critical for autonomous driving (Caesar et al., 2020; Geiger
et al., 2012) and robotics (Cadena et al., 2016; Zhang et al., 2014), yet progress is limited by the
long-tail distribution of real-world data. As shown in Table 1, rare but safety-critical categories such
as construction vehicles, bicycles, and motorcycles account for less than one percent of large-scale
benchmarks, leading to degraded recognition (Zhu et al., 2019; Yaman et al., 2023). Instance-level
augmentation has been proposed to mitigate this imbalance without additional data (Yan et al.,
2018). While these methods provide measurable gains, copy-paste or curated-asset rendering still
yield limited variation (Yan et al., 2018; Chang et al., 2024). The emergence of foundation models
offers a promising alternative, as vision-language models (VLMs) and diffusion models can generate
diverse content. Text3DAug (Reichardt et al., 2024) follows this direction, using lightweight textual
descriptions (e.g., red sports car) to guide 3D asset generation (Jun & Nichol, 2023). Despite improved
diversity, these pipelines remain LiDAR-only and offer limited scene context in placement.

Table 1: Imbalanced classes in nuScenes.
Class Ratio (%) Class Ratio (%)

Car 42.30 Trailer 2.13
Pedestrian 17.86 Bus 1.40
Barrier 13.04 Constr. veh. 1.26
Traf. cone 8.40 Motorcycle 1.08
Truck 7.59 Bicycle 1.02

We introduce MAPLE, a training-free foundation
pipeline that generates synchronized RGB-LiDAR pairs.
Unlike unimodal approaches, MAPLE inserts objects
through context-guided image inpainting, without rely-
ing on external map annotations such as semantic labels.
VLMs provide diverse object descriptions (Fig. 3), and
diffusion models generate them into varied visual and
geometric forms (Fig. 4), together expanding intra-class variation for rare categories. These image-
level generations are then paired with LiDAR through a depth estimator, producing geometrically
consistent point clouds. Achieving plausibility and structural fidelity across modalities is challenging;
MAPLE addresses this with semantic and geometric verification, which filter misaligned or artifact-
heavy generations and preserve scale consistency. As illustrated in Fig. 1, our generated samples
(red) align with surrounding landmarks (green), whereas the existing LiDAR-only method (Chang
et al., 2024) uses road-semantics-based placement. Finally, we propose a success-rate evaluation
to measure the reliability of generative augmentation. By showing how semantic and geometric
verification reduce implausible generations, our protocol quantifies improvements in the effective
yield of usable samples under the same generation budget. Beyond MAPLE, this reliability analysis
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Figure 1: We present MAPLE, a multimodal instance augmentation pipeline for safety-critical
long-tail classes. Objects are first inserted into the image via context-aware inpainting and then
projected into LiDAR as geometrically plausible counterparts. In the middle example, the generated
object (red box 1) is integrated between two original objects (green boxes 1-2) in the image, and its
paired LiDAR instance appears at a consistent location. In contrast, existing LiDAR-only instance
augmentation uses road-semantics-based placement, which limits scene awareness. Green boxes (1-4)
indicate original objects (landmarks), while red boxes (1-2) indicate MAPLE-generated samples.

provides a principled tool for evaluating generative augmentation pipelines, supporting the reliable
use of synthesized data.

Our contributions are threefold:

• We present MAPLE, the first training-free framework for multimodal instance augmentation to
address long-tail imbalance, and introduce a success-rate evaluation for assessing the reliability of
its synthesized data.

• We design verification modules that promote semantic alignment and geometric plausibility in the
synthesized RGB-LiDAR pairs.

• We demonstrate on the nuScenes benchmark that MAPLE consistently improves 3D object
detection and semantic segmentation in both multimodal and LiDAR-only settings.

2 RELATED WORK

Instance-Level Augmentation for Long-tail Problem. Existing driving datasets (Geiger et al., 2012;
Caesar et al., 2020; Sun et al., 2020) remain limited in scale, leading to generalization difficulties and
long-tail imbalance. Scene-level augmentation approaches address this by oversampling scenes that
contain rare classes (Zhu et al., 2019; Yaman et al., 2023; Gupta et al., 2019), whereas instance-level
augmentation directly increases the frequency of rare-class objects (Yan et al., 2018; Zhan et al.,
2023; Šebek et al., 2022; Chang et al., 2024). A central challenge in instance-level augmentation
lies in placement: determining where and how to insert objects so that they appear natural within the
scene. Prior work has adopted different strategies, including random insertion, learned placeability
maps, and semantic-label-based rules. However, these pipelines remain unimodal, operating only on
LiDAR and relying on semantic-label-driven placement, which makes limited use of scene context.
In contrast, our multimodal augmentation pipeline inserts objects with visual context-aware guidance,
enabling realistic placement without requiring external annotation maps.
Automated Augmentation Pipelines for Perception Tasks. Recent advances in foundation models–
diffusion models, vision-language models (VLMs), and large language models (LLMs)–have enabled
more diverse and higher-quality data generation (Rombach et al., 2022; OpenAI, 2023). Leveraging
these models, recent work has proposed training-free augmentation pipelines that compose foundation
models into automated systems for increasing data diversity (Kupyn & Rupprecht, 2024). In 2D per-
ception, combining diffusion with VLMs has shown that such modular pipelines can enrich training
distributions and improve downstream performance (Wu et al., 2023; Wang et al., 2024a). Similar
ideas have been explored in 3D perception, where generative models synthesize novel LiDAR objects
or replace head classes with rare classes (Reichardt et al., 2024; Yurt et al., 2025). However, these
efforts remain unimodal and thus unexplore the importance of cross-modal consistency. Building on
this trajectory, we introduce MAPLE, a training-free pipeline for multimodal augmentation that gen-
erates paired RGB-LiDAR samples through context-aware inpainting and depth-based pairing, while
ensuring reliability via semantic and geometric verification. Beyond this, we present a success-rate
evaluation that provides a general framework for assessing the robustness of generative augmentation.
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Figure 2: Overview of MAPLE. (a) Visual context-aware RGB generation. An LLM suggests
subclass descriptions with appearance, size, and motion cues, while projected 3D boxes define
inpainting regions. Diffusion then synthesizes objects directly into the scene, followed by semantic
verification to discard invalid results. (b) Pseudo-LiDAR generation. The verified images are converted
into depth and projected to form scaled pseudo-LiDAR objects. A virtual sweep simulator can further
expand them into multi-sweep sequences. Geometric verification filters out implausible structures,
yielding paired RGB-LiDAR augmentations that are both visually coherent and physically consistent.

3 METHOD

Our goal is to design a training-free generative augmentation pipeline that increases both the fre-
quency and diversity of rare classes, while maintaining visual-context awareness and geometric
plausibility between RGB images and LiDAR point clouds. Beyond generating new objects, it is
essential to evaluate the pipeline’s effective yield–that is, the proportion of synthesized samples that
remain usable after verification. To address this, we introduce a success-rate evaluation protocol (Sec-
tion 4) that quantifies yield improvements and demonstrates how semantic and geometric verification
progressively reduce errors and preserve reliable samples throughout the pipeline.

Fig. 2 provides an overview of our framework, MAPLE. In Section 3.1, we describe rare-class object
generation in the RGB domain through inpainting guided by vision-language and diffusion models,
followed by semantic verification to ensure contextual plausibility. In Section 3.2, we explain how
paired LiDAR samples are reconstructed from depth estimation, augmented with a virtual sweep
simulator, and filtered through geometric verification to enhance structural plausibility.

3.1 RGB GENERATION WITH SEMANTIC VERIFICATION

The first stage of MAPLE operates in the image domain, synthesizing rare-class objects as the basis
for multimodal augmentation. Its objectives are twofold: to expand intra-class diversity and to ensure
context-aware placement so that inserted objects blend naturally with the surrounding scene. This
is achieved by the VLM proposing candidate appearances and approximate sizes, subsequently
realized through diffusion-based generation. Finally, semantic verification filters out samples that lack
semantic consistency or contextual plausibility. Implementation details are provided in Section E.2.

LLM-based object description. We query a VLM OpenAI (2023) to provide a plausible subclass
of the target label, a short visual description, its typical physical size, and an estimated velocity range.

• A single bulldozer with a large flat blade 
and thick tracks. (6.50, 3.50, 3.50)

• One bulldozer with armored plating and 
front blade attachment. (7.15, 4.15, 3.85)

• A compact bulldozer with thick fenders 
and track rollers. (4.88, 2.62, 2.10)

Construction Vehicle Bicycle Motorcycle
Bulldozer

• A commuter bicycle with a rider carrying 
a small backpack. (1.81, 0.83, 1.62)

• A commuter bike with slim tires and rear 
rack. (1.85, 0.65, 1.12)

• A commuter bike with operator wearing 
helmet and gloves. (1.80, 0.90, 1.70)

Commuter bike

• A touring motorcycle with rider in all outfit 
and helmet. (2.49, 0.94, 2.01)

• A touring motorcycle with wind deflectors 
and full dashboard. (2.46, 0.92, 1.54)

• A person wearing a scarf and jacket on 
touring motorcycle. (2.50, 0.97, 2.05)

Touring motorcycle

Figure 3: Examples of LLM-generated object descriptions. Even within a single target category,
the LLM outputs diverse descriptions varying in subclass identity and appearance. The first row
shows the target class, the second row representative subclasses, and each entry specifies traits with
estimated average size (sx, sy, sz), which guide inpainting and provide priors for geometric checks.
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(a) (b)

(a) (b)

Figure 4: Diffusion-based inpainting with visual context-aware placement. (a) Inpainted objects
are placed with plausible heading and scale, blending with nearby structures and exhibiting varied
shapes, appearances, and realistic occlusions. (b) By contrast, naive 2D box placement often yields
implausible results, such as construction vehicles larger than traffic lights or buildings.

Provide one subclass of {TARGET_LABEL} commonly found in urban environments. Include

a short visual description (e.g., shape, notable features), its typical physical size

(length, width, and height), and the expected velocity range in m/s based on real-world

usage. For the size, identify a specific real-world product model from the web and use

its official specifications. If the target label is “bicycle” or “motorcycle,” generate

two separate descriptions: (1) without a rider, reporting the vehicle’s dimensions

only, and (2) with a rider seated, reporting the bounding box dimensions that include

both the vehicle and the person.

As illustrated in Fig. 3, the resulting descriptions Tc expand intra-class variation beyond the dataset
and guide subsequent stages: they condition the inpainting process, serve as references for semantic
and geometric verification, and provide motion priors for virtual sweep simulation.

Diffusion-based inpainting with 3D-to-2D projection. We first sample candidate 3D bounding
boxes b3D = (cx, cy, cz, sx, sy, sz, θ), where poses (cx, cy, cz, θ) are drawn uniformly and sizes
(sx, sy, sz) follow priors from Tc. Each box is projected into the image plane using camera intrinsics
K and extrinsics [R | t], yielding a 2D mask M. A candidate is retained only if the projected
region does not overlap excessively with existing objects, enforced by requiring its intersection-over-
union (IoU) with any annotated instance to remain below a threshold. To maintain visual context
awareness, we extract an image patch centered on the inpainting region Rinpaint while preserving
the surrounding context. When the resolution of this patch is insufficient, we upsample it with a
super-resolution model fSR (Yue et al., 2024). A diffusion-based inpainting model fin (Zhuang et al.,
2024; Ju et al., 2024), conditioned on the textual description T c and mask M, synthesizes the object
as Î = fin (fSR(Ipatch), Tc,M). When the inpainted object fully occupies Rinpaint, its dimensions
align with the intended 3D scale specified by Tc. Although θ is sampled uniformly, the inpainting
process is influenced by the surrounding context when determining the orientation and details.

Semantic verification. Each inpainted image Î is evaluated through semantic verification to ensure
that only valid generations proceed to the multimodal pipeline. The process uses the conditioning
description Tc and the inpainting region Rinpaint coordinates, and applies two checks:

Given the inpainted image {IMG_TOKEN}, the intended description {PROMPT}, and the

inpainting region coordinates {REGION}, answer the following:

(1) Does the object correspond to the intended subclass?

(2) Within the region, is there exactly one instance, and does it fully occupy it?

Answer format: [Yes, Yes] / [No, Yes] / [Yes, No] / [No, No]

Because inpainting attempts are not always successful, we generate multiple candidates and retain
only those that satisfy both conditions. Our iterative sampling-and-filtering strategy follows the spirit
of RANSAC (Derpanis, 2010), where inconsistent hypotheses are progressively discarded until stable
inliers remain. As a result, mislabeled, undersized, or cluttered augmentations are removed before
pseudo-LiDAR reconstruction, and the retained samples provide semantically reliable instances for
downstream alignment. Examples of the resulting context-aware generations are shown in Fig. 4.

3.2 PSEUDO-LIDAR GENERATION WITH GEOMETRIC VERIFICATION

We then construct paired LiDAR samples from depth estimation. Given the projected box and
the estimated object height, we apply depth scaling to align the pseudo-LiDAR with the intended

4
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Figure 5: RGB-LiDAR instance composition. We show augmented RGB images with their 1-sweep
pseudo-LiDAR reconstructions, which closely resemble real sensor measurements. For comparison,
nuScenes instances confirm that scale-normalized reconstruction yields pseudo-LiDAR objects
consistent with both images and ground-truth point clouds.

(b) Data distribution across 10 LiDAR sweeps
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(a) Results of virtual object sweeps

Staticsweep 1 sweep 2 sweep 3 sweep 4 sweep 5 sweep 6 sweep 7 sweep 8 sweep 9 sweep 10Inpainted image

Figure 6: Results of virtual object sweeps with 10-sweep pseudo-LiDAR. In the static setting,
only ego-motion is applied, while the dynamic setting simulates both ego- and object motion to yield
realistic trajectories. The bottom row shows real 10-sweep nuScenes point clouds, confirming that
our generated data preserves geometric consistency with real LiDAR.

physical size provided by the VLM description. To further support modern benchmarks, which
rely on multi-sweep LiDAR accumulation to mitigate sparsity, we optionally introduce a virtual
sweep simulator that extends the reconstructed pseudo-LiDAR across multiple temporal sweeps with
visual-context awareness. After this step, geometric verification ensures structural plausibility by
rejecting objects with inconsistent scales or structures. This process constrains that augmented objects
not only appear realistic in the RGB domain but also remain physically consistent in the LiDAR
domain. Implementation details are provided in the Section E.3.

Depth-based reconstruction. Given an inpainted image Î, our goal is to recover a 3D object
representation consistent with the intended physical size. We begin by applying a semantic seg-
mentator (Ren et al., 2024) to isolate the generated object region Robj ⊂ Î. A monocular depth
estimator (Wang et al., 2024b) then predicts a dense depth map, which is unprojected with the
camera intrinsics K to form a raw point cloud. Finally, the cloud is rescaled to match the prior
height sz specified by the VLM description: P̂ = { sz

ŝz
· D̂(u, v)K−1[u, v, 1]T | (u, v) ∈ Robj},

where ŝz is the predicted object height before scaling. While the prior box specifies (sx, sy, sz, θ), in
practice, only the vertical extent sz serves as a reliable anchor for metric scaling, as the 3D-to-2D
projection enforces that the inpainted object fully occupies the designated region along the vertical
axis. The remaining dimensions and orientation are left flexible so that the inpainting process can
adapt width, length, and heading to the surrounding scene, preserving geometric consistency in height
while maintaining visual plausibility in the horizontal layout. To match real LiDAR sampling, P̂ is
transformed into spherical coordinates (r, θ, ϕ), discretized to the angular resolution of the target
sensor, and clipped to its field of view. The range image P̂lidar is then unprojected back to 3D, yielding
a pseudo-LiDAR object that matches the beam and scanline density of the real sensor.

Virtual sweep simulation. To align with multi-sweep benchmarks (Caesar et al., 2020; Li et al.,
2023a), we extend each pseudo-LiDAR object P̂lidar into a temporally consistent sequence. nstead of
replicating point clouds with random headings and velocities (Chang et al., 2024; Yan et al., 2018),
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Figure 7: Multi-sweep generation. Our method generates
temporally coherent pseudo-LiDAR across multiple sweeps.

we generate motion seeds that re-
spect both the inpainted image Î and
the scaled pseudo-LiDAR P̂ . Class-
specific velocity priors from Tc define
coarse displacements δt applied to the
point cloud, i.e., P̂t = P̂ + t · v,
where u

(k)
t = π(x

(k)
t ) for each point

x
(k)
t ∈ P̂t. The image-to-video diffu-

sion model (Niu et al., 2024) conditions
on Î and {u(k)

t } to synthesize temporally coherent RGB sequences, which are then converted into per-
sweep pseudo-LiDAR P̂t

lidar (Chen et al., 2025; Ravi et al., 2024). As illustrated in Fig. 6 and Fig. 7,
this step extends single-frame generations into multi-sweep trajectories, maintaining consistency with
benchmark protocols and adding realism such as animal legs or bicycle pedaling.

Geometric verification. Although depth-based reconstruction provides scale normalization, monoc-
ular estimators introduce boundary noise. To improve plausibility, we apply two filters. First, spa-
tial filtering retains the densest region of points around the centroid in the XY plane. The re-
tained fraction D is determined empirically: experiments reveal that larger D improves fidelity for
smaller objects, whereas smaller D is adequate for larger ones, reflecting the tendency of depth
estimators to produce less precise boundaries for thin objects. Second, a size-prior check enforces
λminsi ≤ ŝi ≤ λmaxsi, i = x, y, z, ensuring consistency between the reconstructed dimensions ŝi
and the priors si from Tc. Together, these filters suppress depth artifacts and unrealistic reconstructions,
ensuring that only reliable pseudo-LiDAR objects are used for downstream training.

4 SUCCESS-RATE EVALUATION OF GENERATIVE PIPELINES

We introduce a reliability evaluation to assess the robustness of our generative pipeline. This evaluation
provides a metric for the production efficiency of the pipeline, establishing MAPLE as the first
training-free framework for reliable multimodal augmentation in long-tail 3D perception.

We first define the naive failure rate without verification as

P(Fnaive) = P(Finpaint) + P(Fdepth)(1− P(Finpaint)), (1)

where P(Finpaint) and P(Fdepth) denote failure rates of the inpainting stage and depth estimation stage.

After adding verification modules, the verified failure rate becomes

P(Fverified) = P(F after filtered
inpaint ) + P(F after filtered

depth )
(
1− P(F after filtered

inpaint )
)

(2)

= P(Finpaint)(1− αsem) + P(Fdepth)(1− αgeo)
[
1− P(Finpaint)(1− αsem)

]
, (3)

where αsem and αgeo denote the removal rates of semantic and geometric verification, respectively.
Here, P(F after filtered

depth ) denotes the failure rate of the size-prior check after spatial filtering, ensuring
that only structurally consistent reconstructions are tested against category-specific priors.

As shown in Table 2, this two-stage verification protocol substantially reduces total failure rates,
ensuring that only reliable samples are passed to downstream perception. In practice, αsem is estimated
from 1,000 human-annotated images, while αgeo is computed as 1−

[
P(F after filtered

depth )/P(Fdepth)
]
.

Table 2: Sequential failure analysis. For each category, we report the number of rejected objects
out of all synthesized objects (# Rej. / Total). The overall failure rates P(Fnaive) and P(Fverified)
highlight how semantic and geometric verification substantially reduce error propagation. All values
are reported with 95% confidence intervals.

Category # of Rej. / Total P(Finpaint) P(Fdepth) P(F after filtered
depth ) P(Fnaive) P(Fverified)

Constr. Veh. 62,941 / 262,584 19.34% ± 0.12 41.23% ± 0.27 0.83% ± 0.02 52.6% 10.4%
Bicycle 24,399 / 490,453 4.74% ± 0.06 37.05% ± 0.21 1.66% ± 0.03 39.7% 2.4%
Motorcycle 13,235 / 583,553 2.22% ± 0.04 34.15% ± 0.20 0.90% ± 0.02 35.6% 1.1%
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5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS
Table 3: Module-wise computational
cost. Parameter counts (M) and runtime
per sample measured on A100 GPUs.

Module Params (M) Time (s)

Inpainter 2075.4 5.08
GPT(description) – 0.01
GPT(verification) – 0.65
ImageSAM 224.5 0.14
Grounding Model 172.8 –
Image Depth 314.2 0.59

Total (1-sweep) 2811.9 6.47

Image-to-Video 2948.8 11.13
VideoSAM 224.5 1.90
Video Depth 384.4 2.09

Total (10-sweep) 6378.3 21.59

Our pipeline leverages pretrained 2D foundation models.
Module-wise costs are reported in Table 3, with model
details in Section E. We augment three rare categories–
construction vehicle, motorcycle, and bicycle–on the
nuScenes benchmark (Caesar et al., 2020), inserting up
to seven construction vehicles and five motorcycles or
bicycles per scene, while common classes follow stan-
dard GT-Aug (Yan et al., 2018). To ensure plausibility,
candidate regions Rinpaint are discarded if overlapping
with previously inserted instances beyond a fixed IoU
threshold. For LiDAR-only settings, augmented data
are merged with the nuScenes ground-truth database,
comparable to Text3DAug (Reichardt et al., 2024) and
PGT-Aug (Chang et al., 2024). Training configurations
are given in Section F.

5.2 MULTIMODAL 3D PERCEPTION

We first assess the downstream impact of MAPLE in multimodal settings. For 3D object detection
we adopt BEVFusion (Liang et al., 2022), and for 3D semantic segmentation we use 2DPASS (Yan
et al., 2022). To our knowledge, MAPLE is among the first augmentation frameworks that synthesize
paired RGB-LiDAR samples for rare categories, allowing multimodal training data to be expanded in
a cross-consistent manner. As shown in Table 4, MAPLE improves performance on rare categories
while maintaining accuracy on frequent ones. The effect is particularly pronounced for construction
vehicles, where both detection and segmentation benefit from the increased intra-class diversity. We
also investigate more challenging scenarios, including zero-shot detection and extended rare-class
evaluation (Section B and Section C). These settings are rarely covered in prior work due to the small
number of evaluation samples. Although the absolute performance remains modest, MAPLE provides
initial evidence that multimodal augmentation can generalize beyond standard benchmarks.

5.3 UNIMODAL 3D PERCEPTION

Since the final output of MAPLE is pseudo-LiDAR, we also evaluate its effectiveness in LiDAR-only
settings. For detection we use CenterPoint (Yin et al., 2021) and PointPillar (Lang et al., 2019),
and for segmentation we use MinkowskiNet (Choy et al., 2019) and SPVCNN (Tang et al., 2020).
As summarized in Table 5, MAPLE performs on par with GT-Aug, Text3DAug, and PGT-Aug for
detection, and achieves the strongest mIoU across segmentation backbones. Unlike these LiDAR-
specific baselines, MAPLE originates from a multimodal pipeline yet remains competitive in the
unimodal domain. We attribute the segmentation gains to context-aware placement and verification,
which improve boundary labeling where networks rely heavily on surrounding cues (Vora et al.,
2020; Qiu et al., 2025). These results confirm that MAPLE’s pseudo-LiDAR preserves geometric
plausibility and supports both detection and segmentation.

5.4 MULTIMODAL QUALITY EVALUATION

To compare with prior LiDAR-only augmentation methods, we evaluate pseudo-LiDAR quality under
the 1-sweep setting. Qualitative examples are shown in Section D. We adopt two metrics in the
embedding space of an SE(3)-Transformer (Fuchs et al., 2020) trained on nuScenes: (i) FID between
real and synthesized instance embeddings (Chang et al., 2024) and (ii) feature entropy, measuring
intra-class diversity. We report results per category, restricting to instances with at least 64 points.

Table 4: Multimodal 3D perception results. We report mAP for detection and mIoU for segmenta-
tion, including per-class results for three rare categories MAPLE enhances rare-class performance in
both detection and segmentation without degrading overall accuracy.

Detection mAP Constr. Veh. Bicycle MC

BEVFusion 64.27 27.99 56.63 71.32
+ Ours 65.37 29.31 58.88 71.82

Segmentation mIoU Constr. Veh. Bicycle MC

2DPASS 77.65 56.83 47.78 85.72
+ Ours 78.15 59.77 48.74 86.44
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Table 5: LiDAR-only 3D perception results. Evaluated with LiDAR-only detectors and segmenters,
MAPLE demonstrates effective transfer of pseudo-LiDAR augmentation, yielding consistent segmen-
tation improvements and competitive detection accuracy relative to LiDAR-only baselines.

Detection mAP Constr. Veh. Bicycle MC

CenterPoint
+ GT-Aug 62.57 22.62 57.52 68.25
+ Text3DAug 62.81 24.23 57.65 69.86
+ PGT-Aug 62.68 23.41 59.07 68.69
+ Ours 62.95 23.99 59.20 68.77

PointPillar
+ GT-Aug 50.93 19.11 19.34 51.98
+ Text3DAug 50.85 20.12 21.95 47.67
+ PGT-Aug 50.96 21.94 20.04 49.85
+ Ours 50.83 20.41 22.12 51.41

Segmentation mIoU Constr. Veh. Bicycle MC

MinkowskiNet
+ GT-Aug 72.01 25.29 28.45 73.33
+ Text3DAug 73.27 43.00 24.93 81.98
+ PGT-Aug 73.50 38.03 36.90 80.47
+ Ours 74.31 45.48 39.05 82.58
SPVCNN
+ GT-Aug 73.85 37.64 40.69 75.59
+ Text3DAug 73.80 41.87 34.74 81.01
+ PGT-Aug 73.80 42.01 37.56 82.08
+ Ours 75.02 50.02 41.51 83.17

Table 7: Ablation on semantic and geometric verification. FID of pseudo-LiDAR for three rare
classes under different module settings. Applying both checks yields the lowest FID, with clear gains
for slender objects such as bicycles and motorcycles.

Constr. Veh. Bicycle Motorcycle

Semantic Verification – ✓ – ✓ – ✓ – ✓ – ✓ – ✓
Geometric Verification – – ✓ ✓ – – ✓ ✓ – – ✓ ✓

FID 7.44 7.44 6.61 6.61 2.93 2.77 0.91 0.86 9.14 9.10 5.15 5.10

Construction Vehicle

Motorcycle

Bicycle

Ours

PGT-Aug / Text3DAug

Data Distribution

(a) UMAP (b) Spatial Distribution

Data Distribution

PGT / Text3D Aug

Ours
(a) UMAP Embedding (b) Spatial Distribution

Figure 8: (a) UMAP of LiDAR instance
features. Convex hulls show synthesized
coverage; dots denote real data. (b)
BEV distributions within [−25.6, 25.6]
m. Densities normalized: GT by its own
distribution; others by the maximum
across methods.

Fidelity. As shown in Table 6 and Fig. 9, MAPLE achieves
lower FID scores than mesh-based baselines (PGT-Aug,
Text3DAug), reflecting greater similarity to the structural
patterns of real objects. This trend holds across both large
categories such as construction vehicles and smaller ones,
with bicycles showing the most notable improvements and
motorcycles performing slightly below PGT-Aug but still
stronger than Text3DAug.

Diversity. UMAP embeddings (Fig. 8a) show that MAPLE
samples overlap with real instances, reflecting both diver-
sity and semantic coherence. Our method achieves higher
entropy than PGT-Aug across categories, indicating that
our RGB generation framework enriches intra-class diver-
sity by producing broader object appearances than man-
ually collected datasets with limited examples. For con-
struction vehicles and motorcycles, however, entropy is
slightly lower than Text3DAug. As illustrated in (Fig. 8b),
Text3DAug and PGT-Aug insert objects without scene con-
text, resulting in grid-like patterns in the bird’s-eye view.
By contrast, MAPLE places objects in a visually context-
aware manner, often closer to the ego-vehicle where they
are visible in the image domain–a distribution consistent
with LiDAR’s distance-dependent characteristics. Despite
these differences, our synthesized data achieves competi-
tive downstream performance in 3D perception tasks. This
suggests that even with slightly lower entropy, MAPLE’s
context-aware placement offers clear benefits for scene-
centric applications, such as semantic segmentation.

Table 8: Effect of semantic verification on 3D object detection. Training with semantic verifica-
tion(Sem. Verif.) improves both multimodal (BEVFusion) and unimodal (CenterPoint) performance.

Multimodal mAP Constr. Veh. Bicycle MC

Ours 65.37 29.31 58.88 71.82
- Sem. Verif. 64.81 27.89 56.07 70.98

Unimodal mIoU Constr. Veh. Bicycle MC

Ours 62.95 23.99 59.20 68.77
- Sem. Verif. 62.94 23.50 57.58 68.07
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Table 6: 1-sweep RGB–LiDAR quality.
LiDAR FID and UMAP feature entropy
per category.

Class Method FID (↓) Entropy (↑)

Constr.
Veh.

Text3DAug 6.84 6.12
PGT-Aug 7.60 5.93

Ours 6.61 6.00

Bicycle
Text3DAug 12.07 5.66
PGT-Aug 2.10 5.72

Ours 0.86 5.98

MC
Text3DAug 9.21 6.04
PGT-Aug 3.70 5.59

Ours 5.10 5.96

Figure 9: Qualitative 1-sweep
pseudo-LiDAR. MAPLE is com-
parable to mesh-based baselines.

C
on

st
. V

eh
.

Bi
cy

cl
e

M
ot

or
cy

cl
e

OursPGT-AugText3DAug

Figure 10: Rejected
examples during se-
mantic verification.

MotorcycleBicycleConstruction Vehicle

Motorcycle

Bicycle

Const. Veh.

5.5 THE EFFECT OF VERIFICATION MODULES

Verification ensures that generated samples are both diverse and reliable for downstream perception,
as shown by ablation studies highlighting the complementary roles of semantic and geometric checks.

Semantic verification. This step addresses category mismatch, incomplete or undersized inpaintings
that fail to cover the designated region, and multi-instance artifacts that can be produced by diffusion
models (Fig. 10). As shown in Table 8, semantic verification improves detection in both multimodal
and LiDAR-only settings, with more pronounced gains for multimodal detectors sensitive to visual
noise. It thus serves as a quality control stage that removes inconsistent hypotheses, preserves diverse
yet valid samples, and improves the pipeline’s effective yield, as shown by our success-rate evaluation.

Geometric verification. After semantic filtering, depth-based reconstruction can still cause scale
distortion, boundary noise, or implausible shapes. This is critical for slender categories such as
bicycles and motorcycles, where small depth errors lead to large distortions. By applying spatial
filtering and size priors, geometric verification removes unrealistic structures and keeps objects within
plausible bounds. As seen in Table 7, this step improves fidelity for thin objects and further boosts
usable–sample rates in success-rate evaluation.

Discussion. The two modules are complementary: semantic verification ensures category alignment
and enables context-aware insertion, while geometric verification corrects depth artifacts and provides
a bridge to the LiDAR domain by maintaining structural consistency. Our sequential failure analysis
confirms these roles, showing that errors are progressively reduced and usable sample rates increase
across stages. Limitations remain, such as VLM hallucinations (Li et al., 2023b) and the sim-to-real
gap in LiDAR intensity (Viswanath et al., 2024; Marcus et al., 2025). Nevertheless, our results
indicate that the pipeline offers a practical step toward training-free generative augmentation for
multimodal long-tail perception. Looking ahead, MAPLE’s modular design allows components to be
replaced as foundation models advance, while success-rate evaluation offers a way to measure how
such improvements translate into higher yields of reliable samples.

6 CONCLUSION

We presented MAPLE, a training-free, verification-aware framework that synthesizes paired RGB–
LiDAR instances for long-tail 3D perception. Unlike unimodal augmentation methods, MAPLE
enables visual context-aware insertion, producing objects that blend naturally with their surroundings
while remaining geometrically consistent across modalities. The central idea is to couple such context-
aware generation with semantic and geometric verification, ensuring that augmentation not only
increases the occurrence of rare classes but also enhances their diversity and reliability. We further
propose a success-rate evaluation that quantifies effective yield and tracks error reduction across
stages, enabling systematic measurement of independent modules within the pipeline. Its modular
design also allows components to be updated as foundation models advance, with success-rate
evaluation offering a principled means to assess how such upgrades translate into improved yield.
Finally, experiments on nuScenes confirm that MAPLE improves detection and segmentation in both
multimodal and LiDAR-only settings.
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A APPENDIX

In this appendix, we provide extended experiments, qualitative results, and implementation details
of MAPLE. Section B reports a challenging zero-shot experiment on the bicycle class, designed
to stress-test the framework’s ability to recover recognition ability for categories entirely absent
from training. Section C presents extended results on rare but safety-critical categories—such as
animal and police vehicle—that are not evaluated under the standard 10-class nuScenes protocol.
Section D provides additional qualitative examples illustrating how MAPLE synthesizes diverse and
contextually consistent instances. Finally, Section E and Section F include implementation details of
the pipeline and training configurations for the 3D perception tasks.

B ZERO-SHOPT EXPERIMENTAL RESULTS

Table 9: Zero-shot detection results for the bicycle category (0.5 m threshold). All bicycle
instances were removed from the training set. GT-Aug, despite reusing 8,185 real bicycles 1.69M
times, completely fails. In contrast, MAPLE is trained without access to a single real bicycle instance,
yet achieves the first successful detections, demonstrating its ability to recover previously unseen
categories purely through generative augmentation.

Method AP P@R=0.1 P@R=0.2 P@R=0.3 P@R=0.5 P@R=0.7

GT-Aug 0.000 0.000 0.000 0.000 0.000 0.000
Ours 8.021 0.399 0.118 0.000 0.000 0.000

We design an adversarial zero-shot setting to stress-test MAPLE’s ability to recover categories that are
entirely absent from training. Specifically, all bicycle instances—the rarest class in nuScenes—were
removed from the training set. The GT-Aug baseline, despite reusing 8,185 real bicycle objects and
inserting them 1.69M times across 22,461 scenes, collapses to 0 mAP. In contrast, MAPLE, without
access to a single real bicycle instance, generates 514,852 synthetic bicycles and achieves the first
non-trivial recognition ability on this category (8.0 mAP, 0.4 precision at 10% recall).

While the absolute AP is understandably modest under such an adversarial condition, the key result is
that MAPLE transforms a complete failure case into a detectable signal. Even a small but consistent
set of true positives is practically valuable: it provides a bootstrap for downstream active learning
and annotation pipelines, and demonstrates that generative augmentation can go beyond database
sampling by introducing novel, diverse instances. This highlights MAPLE’s unique potential to inject
recognition capability in extreme scarcity regimes where conventional augmentation entirely fails.

C EXTENDED EXPERIMENTAL RESULTS

Table 10: Class distribution of nuScenes annotations. Each column group shows the number of
cuboids and their ratio for a given class.

Category # Cuboids Ratio (%) Category # Cuboids Ratio (%) Category # Cuboids Ratio (%)

animal 787 0.07 personal mobility 395 0.03 barrier 152,087 13.04
adult 208,240 17.86 police officer 727 0.06 debris 3,016 0.26
child 2,066 0.18 stroller 1,072 0.09 pushable 24,605 2.11

construction worker 9,161 0.79 wheelchair 503 0.04 traffic cone 97,959 8.40
bike rack 2,713 0.23 bicycle 11,859 1.02 bus.bendy 1,820 0.16
bus.rigid 14,501 1.24 car 493,322 42.30 construction 14,671 1.26

ambulance 49 0.00 police 638 0.05 motorcycle 12,617 1.08
trailer 24,860 2.13 truck 88,519 7.59

The nuScenes dataset (Caesar et al., 2020) defines 23 object categories for 3D bounding box an-
notations, covering a broad spectrum of urban traffic objects. However, as shown in Table 10, the
distribution of annotated cuboids is highly imbalanced. To mitigate this long-tail skew, the official
benchmark consolidates 23 categories into 10 major classes for 3D detection. While this improves
label balance, it also prevents explicit evaluation of rare but safety-critical categories. To address
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Table 12: Per-class detection performance on extended rare categories under multimodal
training (0.5 m threshold). MAPLE substantially improves recognition across all rare categories,
including animal and police vehicle, which are excluded from the official nuScenes protocol. Whereas
baselines often fail to detect such ultra-rare classes, MAPLE introduces meaningful recognition ability
by injecting diverse synthetic instances, directly increasing true positives (TPs) and demonstrating
scalability beyond the standard benchmark taxonomy.

Category Method mAP Prec@r=0.5 Prec@r=0.7

Motorcycle BEVFusion 0.819 0.953 0.864
+ Ours 0.871 0.973 0.942

Bicycle BEVFusion 0.723 0.915 0.587
+ Ours 0.826 0.964 0.897

Constr. Veh. BEVFusion 0.671 0.435 0.000
+ Ours 0.815 0.815 0.000

Police BEVFusion 0.809 0.928 0.828
+ Ours 0.937 0.987 0.987

Animal BEVFusion 0.416 0.296 0.135
+ Ours 0.612 0.666 0.411

this gap, we extend the evaluation set to include two underrepresented classes—animal and police
vehicle—that are excluded from the standard protocol.

Table 11: Multimodal 3D object detection performance on the extended train/val splits. We
report class-wise AP with a minimum precision and recall threshold of 0. Our method augments
objects to address class imbalance and supports arbitrary categories without manual annotations.
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Val Set
BEVFusion 0.890 0.602 0.380 0.724 0.450 0.759 0.739 0.560 0.883 0.806 0.0003 0.016 0.567

+ Ours 0.897 0.627 0.371 0.752 0.461 0.754 0.751 0.635 0.895 0.814 0.0014 0.071 0.586

Train Set
BEVFusion 0.912 0.703 0.671 0.832 0.670 0.884 0.819 0.723 0.920 0.893 0.416 0.809 0.771

+ Ours 0.932 0.821 0.815 0.904 0.777 0.925 0.871 0.826 0.949 0.924 0.612 0.937 0.868

We further evaluate MAPLE on an extended nuScenes benchmark that explicitly includes rare but
safety-critical categories—animal and police vehicle—which are excluded from the official protocol.
As shown in Table 10, these categories account for only 0.07% and 0.05% of annotations, respectively,
making standard validation metrics unstable. To mitigate this, we additionally report class-wise results
on the training set, where such categories appear more frequently. While training-set performance may
partly reflect memorization, it still reveals whether models can recognize novel categories introduced
by augmentation.

As summarized in Table 12, MAPLE consistently improves recognition across all long-tail categories,
including construction vehicles, bicycles, motorcycles, animals, and police vehicles. Notably, even
for ultra-rare categories, MAPLE substantially increases both precision and mAP, with gains reflected
directly in the number of true positives (TPs) recovered. Whereas baselines often yield zero detections
under extreme scarcity, MAPLE introduces meaningful recognition ability by injecting diverse
synthetic instances with varied shapes, scales, and poses. This demonstrates that our framework
scales beyond the official taxonomy and promotes more robust decision boundaries even in severely
low-annotation regimes.
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D ADDITIONAL QUALITATIVE RESULTS

This section presents additional qualitative results generated by MAPLE across underrepresented
object categories. MAPLE easily supports new categories because it can flexibly extend to arbitrary
target classes without requiring additional manual annotations. Here, we showcase examples involving
animals (Fig. 11) and police vehicles (Fig. 12), extending construction vehicles (Fig. 13), motorcycles
(Fig. 14), and bicycles (Fig. 15). Our visualizations highlight the effectiveness of context-aware
instance placement, which ensures that synthesized objects are seamlessly integrated into the scene
with realistic scale and spatial alignment.

We show: (a) the inpainted RGB image, where the inserted object is synthesized at a context-
aware scale and position, ensuring visual and geometric consistency with the surrounding scene. (b) a
sequence of video frames synthesized for 10-sweep simulation, providing temporally coherent motion.
(c) per-frame depth estimation and semantic segmentation results, used to construct pseudo-LiDAR
point clouds and verify object identity and boundaries. (d) the resulting 1-sweep pseudo-LiDAR,
showing the point cloud of the inserted instance from a single frame. (e) the accumulated 10-sweep
pseudo-LiDAR, capturing temporally propagated objects via our motion simulation module.

Specifically, in (e), we visualize pseudo-LiDARs under static and dynamic settings. The static setting
assumes the object remains fixed at its t = 0 location, with only ego-motion applied. The dynamic
setting simulates both ego and object motion, resulting in a realistic object trajectory across frames.
Note that for motorcycle and bicycle instances without riders, our motion simulation module is not
applied. In these cases, we generate multi-sweep pseudo-LiDARs only under the static setting.

E IMPLEMENTATION DETAILS

E.1 PRETRAINED FOUNDATION MODELS USED IN OUR PIPELINE

Our pipeline leverages a set of pretrained 2D foundation models, each specialized for a different
sub-task in the multimodal data generation process.

Models for One-Sweep Generation. We utilize several foundation models to generate high-quality
multimodal data in a single-frame setting:

• ChatGPT-4 (OpenAI, 2023): We use the GPT-4 model via the ChatGPT API to generate
natural language descriptions for synthesized objects.

• PowerPaint (Zhuang et al., 2024): PowerPaint V2 is used for context-aware inpainting.
It is based on a UNet-like architecture with multi-resolution feature blending and supports
both geometric and text-prompted editing. In particular, we adopt the BrushNet (Ju et al.,
2024) pipeline from the official PowerPaint implementation, incorporating structure-aware
refinement for improved object boundary reconstruction.

• MoGE (Wang et al., 2024b): MoGE uses a ViT-L backbone to infer 3D structure from
single RGB images. It is pretrained on large-scale image-depth pairs and is used to lift
inpainted RGB objects into 3D point cloud space.

• Grounded-SAM (Ren et al., 2024): This model integrates Grounding DINO (Swin-T
variant) for open-vocabulary object detection and SAM for pixel-accurate segmentation.
The combination enables text-driven, high-quality instance mask extraction.

• InvSR (Yue et al., 2024): InvSR is a diffusion-inversion-based super-resolution model.
It leverages backward sampling from pretrained latent diffusion models to reconstruct
high-resolution images from low-resolution observations.

Models for Multi-Sweep Generation. To simulate temporally coherent sequences resembling
multi-frame LiDAR scans, we employ additional models:

• MOFA (Niu et al., 2024): MOFA animates static object images into temporally coherent
video sequences. It uses user-defined 2D tracking points to control motion generation.
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t = 0              t = 2             t = 4           t = 6        t = 8

t = 0              t = 2             t = 4           t = 6        t = 8

(d) (e) 

(a) Context-aware instance placement

A compact tricolor beagle with floppy ears. [0.55, 0.30, 0.40] m

(b)

(c)

(d) (e) 

(a) Context-aware instance placement

A fox, with a narrow snout, bushy tail, and upright ears, standing in a natural pose. [0.34, 0.55, 0.33] m

(b)

(c)

(d) (e) 

t = 0              t = 2             t = 4           t = 6        t = 8(a) Context-aware instance placement

A deer, slender with long legs and upright head, possibly with small antlers. [2.10,0.80, 1.21] m

(b)

(c)

Figure 11: Examples of animals.
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t = 0               t = 2        t = 4     t = 6          t = 8

(d) (e) 

(a) Context-aware instance placement

A police van, a large boxy vehicle used for transporting officers or detainees, 
with side windows and rear double doors. [4.00, 2.29, 3.00] m

(b)

(c)

t = 0               t = 2      t = 4            t = 6        t = 8

(d) (e) 

(a) Context-aware instance placement

A police SUV, a mid-sized sport utility vehicle with police insignia and rooftop emergency lights.
[4.70, 2.00, 1.90] m

(b)

(c)

t = 0               t = 2        t = 4     t = 6         t = 8

(d) (e) 

(a) Context-aware instance placement

A police sedan, a standard four-door patrol car with police markings, rooftop light bar, and grille lights 
[2.10, 1.80, 1.70] m

(b)

(c)

Figure 12: Examples of police vehicle.
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t = 0             t = 2           t = 4          t = 6        t = 8

(d) (e) 

(a) Context-aware instance placement

A compact cherry picker construction lift, a wheeled vehicle with a folded arm used for elevating workers 
to building heights. [4.30, 3.00, 4.10] m 

(b)

(c)

t = 0             t = 2           t = 4          t = 6        t = 8

(d) (e) 

(a) Context-aware instance placement

A compactor, a road construction vehicle with a heavy front drum used for compacting soil and asphalt.
[3.30, 1.80, 2.70] m 

(b)

(c)

t = 0             t = 2           t = 4          t = 6        t = 8

(d) (e) 

(a) Context-aware instance placement

A compact bulldozer, with a large flat blade at the front, mounted on thick tracks..
[3.08, 1.95, 3.51] m 

(b)

(c)

Figure 13: Examples of construction vehicle.
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t = 0              t = 2     t = 4    t = 6        t = 8

(d) (e) 

(a) Context-aware instance placement

An adventure motorcycle without a rider, built with a tall frame, dual-purpose tires, and a windscreen.
[1.00, 0.70, 1.40] m

(b)

(c)

t = 0              t = 2     t = 4    t = 6        t = 8

(d) (e) 

(a) Context-aware instance placement

A sport motorcycle with a rider, wearing a black full-face helmet and fitted riding gear, 
leaning forward in an aggressive posture. [2.10, 1.30, 1.90] m

(b)

(c)

t = 0              t = 2     t = 4    t = 6        t = 8

(d) (e) 

(a) Context-aware instance placement

A sport bike with a rider, wearing a full-face helmet, black jacket, 
leaning slightly forward in a typical sport riding posture . [1.70, 0.90, 1.60] m

(b)

(c)

Figure 14: Examples of motorcycle.
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t = 0              t = 2             t = 4           t = 6         t = 8

t = 0              t = 2             t = 4           t = 6         t = 8

(d) (e) 

(a) Context-aware instance placement

A road bike with a rider, wearing a cycling helmet and fitted sportswear. [1.50, 0.50, 1.90] m

(b)

(c)

(d) (e) 

(a) Context-aware instance placement

A compact BMX bike without a rider, featuring a small sturdy frame, high-rise handlebars, and a low seat.
[1.50, 0.60, 0.80] m

(b)

(c)

(d) (e) 

(a) Context-aware instance placement

A touring bike with a rider, wearing a black cycling outfit and a helmet, 
leaning forward in an aerodynamic posture. [1.30, 0.56, 1.60] m

(b)

(c)

t = 0              t = 2             t = 4           t = 6         t = 8

Figure 15: Examples of bicycle.
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• Video Depth Anything (Chen et al., 2025): This model extends Depth Anything V2
to videos, providing temporally consistent monocular depth estimation. We use the ViT-
L variant trained on long-sequence consistency objectives. It enables the generation of
pseudo-LiDAR sequences from synthetic videos.

• SAM2 (Ravi et al., 2024) HQ (Ke et al., 2023): We adopt sam2.1-hiera-large, a
hierarchical high-resolution segmentation model from Meta AI. We use this model for image
and video segmentation to obtain consistent instance masks across frames.

Computational Cost. To estimate the cost of semantic verification, we consider the full nuScenes
training set comprising 168,780 images. Each cropped region yields approximately 85 visual tokens,
concatenated with a prompt of ∼30 tokens and an expected output of ∼10 tokens. Assuming GPT-4o
pricing, the total verification cost is estimated at $48.52. Although MAPLE integrates multiple
foundation models, the entire pipeline remains cost-effective, requiring less than $50 for semantic
verification of the entire nuScenes dataset. This demonstrates the practicality of scaling multimodal
augmentation to millions of samples without additional training.

E.2 RGB GENERATION WITH SEMANTIC VERIFICATION

Object Description Generation To generate realistic subclass-level object descriptions, we employ
a large language model (LLM) with carefully designed prompts. Each description contains three
key attributes: subclass identity, visual appearance, and approximate physical size (sx, sy, sz). For
each target label (e.g., construction vehicle, bicycle, motorcycle), the LLM is instructed to produce
one subclass commonly observed in urban environments, together with its visual traits and typical
dimensions. Whenever possible, physical sizes are grounded in official manufacturer specifications of
a real-world product model. If no exact specification is available, a closely related model is used with
the approximate flag set to true, accompanied by a web search query for traceability. These
descriptions not only serve as conditioning for diffusion-based inpainting but also provide priors for
subsequent geometric verification.

For bicycles and motorcycles, we explicitly request two sets of bounding box dimensions: one
excluding the rider (vehicle only) and one including a seated rider, which significantly changes
the aspect ratio and bounding box height. This distinction is crucial for realistic pseudo-LiDAR
reconstruction and for training detectors that must handle both rider-free and rider-occupied instances.

The following script shows the exact instruction given to the LLM. The output is required to be valid
JSON conforming.

LLM Prompt: Subclass Description Generator

You are generating ONE subclass description for data augmentation.

GOAL
- Provide one concrete subclass of {TARGET_LABEL} commonly found in urban

environments.↪→
- Output MUST be valid JSON matching the schema below.
- Use meters for all sizes.

INSTRUCTIONS
1) Choose a realistic subclass (e.g., "bulldozer", "box truck", "commuter

bicycle", "naked motorcycle").↪→
2) Give a concise visual description (colors, shape, notable parts; 1--2

sentences).↪→
3) For size, identify a specific real-world product model from the web

(official/manufacturer spec preferred).↪→
- Normalize length/width/height to meters.
- If exact spec is unavailable, pick a close model, set "approximate": true,

and include a "web_search_query".↪→
4) If TARGET_LABEL ấĹL {bicycle, motorcycle}, ALSO provide a second bounding

box that includes a seated rider↪→
with typical posture. Keep it realistic (do NOT under/over-estimate).

OUTPUT SCHEMA (JSON only, no extra text):
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{
"target_label": "string",
"subclass_identity": "string",
"product_model": "string",
"visual_description": "string",
"size_m": { "length": float, "width": float, "height": float },
"with_rider_bbox_m": { "length": float, "width": float, "height": float } |

null,↪→
"approximate": boolean,
"source_note": "string",
"web_search_query": "string"

}

CONSTRAINTS
- JSON must parse. No comments, no trailing commas, no units in numbers.
- Keep "visual_description" factual; avoid brand slogans.
- If bicycle/motorcycle: "with_rider_bbox_m" MUST NOT be null. Else: set null.

Begin now for TARGET_LABEL = {TARGET_LABEL}.

Representative outputs are shown in Fig. 3, which illustrate how the LLM generates diverse subclasses
within the same category, each grounded by explicit product dimensions.

Object Inpainting After obtaining textual descriptions Tc and spatial masks M from projected
3D bounding boxes, we perform diffusion-based inpainting to insert novel objects into the RGB
image. To preserve scene fidelity, we first extract a local image crop Icrop centered on the inpainting
region Rinpaint. A common challenge is that small or distant objects yield low-resolution crops, which
degrade generation quality. To address this, we employ a super-resolution model fSR (Yue et al.,
2024) whenever the shorter side of the crop is below a resolution threshold R. This ensures that the
subsequent diffusion model operates on high-quality inputs regardless of the native crop size.

Formally, the inpainting process is defined as:

Î = fin(Isr, Tc,M), Isr =

{
fSR(Icrop), if Res(Icrop) < R,

Icrop, otherwise,
(4)

where Res(Icrop) denotes the shorter side of the crop. The diffusion inpainting model fin is condi-
tioned on both the description Tc and the binary mask M, which specifies the exact region to be
synthesized. The result is a high-fidelity augmented image Î where the inserted object is visually
diverse, consistent with the surrounding context, and aligned with the size priors from the description
stage. Examples of inpainted results are shown in Fig. 4, demonstrating how MAPLE produces
context-aware augmentations with plausible scale, heading, and occlusions.

E.3 PSEUDO-LIDAR GENERATION WITH GEOMETRIC VERIFICATION

LiDAR Intensity Simulation To simulate reflectance, we compute a per-point intensity map
Iintensity based on the grayscale inpainted image Igray, modulated by surface normal and range-based
attenuation (Viswanath et al., 2024; Marcus et al., 2025):

Iintensity = clip
(
Igray · |n|γ · e−α|p|, 0, 255

)
, (5)

where n is the surface normal aligned with the sensor axis, γ controls orientation influence, |p| is the
range to point p, and α is the attenuation coefficient. As shown in Fig. 5, the final pseudo-LiDAR is
obtained by back-projecting the scaled depth map and semantic mask into 3D space, incorporating
both geometry and synthesized intensity.

Motion Simulation Module for Virtual Object Sweeps From the initial object point cloud P ,
we uniformly sample K anchor points using voxel-wise binning along the x, y, and z axes. These
anchor points are temporally propagated according to the object’s simulated motion, which models
plausible 3D trajectories informed by class-specific velocities. Here, object-specific velocity statistics
is sampled from the training set.
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1. For bicycle and motorcycle, if the description does not include a rider, we set (vx, vy) = 0.
2. For animals and police, we query an LLM for typical urban speeds.

For each sweep, we compute the displacement vector δt and apply it uniformly to all sampled anchor
points:

δt = ct − c0, Pt = P + δt, (6)
resulting in a set of temporally displaced point clouds {Pt}Tt=0, where c0 denote the initial center of
the object and ct be its center at sweep t obtained from motion simulation. These propagated points
define coarse motion trajectories that are projected onto the image plane via the projection matrice π :

u
(k)
t = π(x

(k)
t ), for k = 1, . . . ,K, (7)

producing smooth 2D trajectories {u(k)
t } that condition the generation of temporally coherent video

frames via the image animation diffusion model.

Ego-Motion Compensation and LiDAR Formatting To simulate temporally consistent LiDAR
sequences, we apply ego-motion compensation to each sweep and unify them into a common
coordinate frame.

Let Tt denote the ego-pose at time t, and T−1
t its inverse. For each sweep Pt, we perform the

following steps:

1. Ego-frame alignment. Each point cloud Pt is transformed from the camera coordinate
frame into the ego-centric frame using homogeneous coordinates:

P ref
t =

(
T−1

t · [xt, 1]
T
)T

, (8)

where a homogeneous coordinate 1 is appended to each point xt to support affine transfor-
mation. This yields P ref

t , a point cloud expressed in the unified ego-frame.
2. LiDAR formatting. The points are projected onto a simulated 32-channel LiDAR range-

view, then unprojected back to 3D space.
3. Sweep-specific re-transformation. To simulate the original acquisition conditions, the

formatted points are re-transformed back to the original sweep frame using Tt.

The re-aligned point clouds from all sweeps are concatenated to form a temporally coherent pseudo-
LiDAR sequence. Additionally, we estimate planar velocity by comparing the mean position across
the first and last sweeps for dynamic instances:

v =
E[P(x,y)

T ]− E[P(x,y)
0 ]

∆t
. (9)

This process ensures that our pseudo-LiDAR reflects both temporal motion and ego-vehicle dynamics,
providing realistic training signals for motion-aware 3D perception models.

Bounding Box Refinement. For each accepted instance, we refine the initial estimate b3D

into a tight bounding box around the synthesized point cloud P̂lidar, written as b̂3D =

[ĉx, ĉy, ĉz, ŝx, ŝy, ŝz, θ̂]. Here, the center (ĉx, ĉy, ĉz) is taken from the centroid of P̂lidar, the heading
θ̂ is estimated from the dominant eigenvector of the XY -plane covariance, and the dimensions
(ŝx, ŝy, ŝz) are derived from axis-aligned bounds in the rotated frame and from the vertical extent.

F TRAINING SETTING

F.1 AUGMENTATION STRATEGIES

We consider three instance-level augmentation strategies: GT-Aug (Yan et al., 2018), Text3DAug (Re-
ichardt et al., 2024), and PGT-Aug (Chang et al., 2024). GT-Aug inserts objects sampled from a
ground-truth database into training scenes. Text3DAug and PGT-Aug generate synthetic samples
by rendering 3D meshes at 13 discrete heading angles (from −180◦ to 180◦ in 30◦ increments) and
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distributing them across a 2D spatial grid covering the full perception range ([−50m, 50m] in both
x and y, sampled every 5m). The resulting synthetic instances are stored in a custom database and
inserted into training scenes in a 1:1 ratio with ground-truth instances; that is, for each rare class, half
of the inserted instances are drawn from the ground-truth database, and the other half from generated
samples.

F.2 3D OBJECT DETECTION

Instance Augmentation for LiDAR-only Setting. For the seven frequent object categories (car,
truck, bus, trailer, barrier, pedestrian, traffic cone), we apply GT-Aug (Yan et al., 2018). We insert
7, 6, and 6 instances per scene for the three long-tail categories—construction vehicle, motorcycle,
and bicycle. The synthetic augmentation strategies and sampling configurations follow the protocols
described in Section F.1. We prioritize inserting our synthesized instances via instance composition
to construct each augmented scene. If the number of available synthetic instances for a given category
falls short of the per-scene target, we supplement the remainder with ground-truth objects, maintaining
consistency with the GT-Aug.

Implementation Details. Following the nuScenes 3D detection benchmark (Caesar et al., 2020),
we conduct experiments using the 10-sweep setting. We evaluate our method in the multimodal
setting using BevFusion (Liang et al., 2022), which integrates LiDAR and multi-view camera
features via a Swin Transformer backbone and a voxel-based encoder, followed by ConvFuser
and a TransFusionHead. We follow the original training configuration (Liang et al., 2022), using
an AdamW optimizer with a cosine annealing schedule, a base learning rate of 0.0001, and train
the model for 6 epochs with a batch size of 3 per GPU. To assess the impact of pseudo-LiDAR
augmentation in LiDAR-only scenarios, we additionally report results using CP-Voxel (Yin et al.,
2021) and PointPillar Lang et al. (2019). CP-Voxel is a CenterPoint-based detector configured with
a fine voxel size of [0.075, 0.075, 0.2], while PointPillar adopts a lightweight PillarVFE encoder
with a coarser voxel size of [0.2, 0.2, 8.0]. Both models are trained using a one-cycle learning rate
schedule, with an initial learning rate of 0.001 and a weight decay of 0.01. The total number of
epochs is 20, with a batch size of 8 per GPU. Following common practice in OpenPCDet, we apply a
curriculum-style augmentation strategy by disabling instance sampling during the final five epochs to
mitigate overreliance on synthetic data and improve generalization to real-world distributions.

F.3 3D SEMANTIC SEGMENTATION

Instance Augmentation. For the 14 frequent classes, we do not apply any instance-level augmenta-
tion. To ensure a controlled comparison, we insert the same number of instances per class in GT-Aug
and Text3DAug, PGT-Aug variants as in our method for each training scene, following the sampling
and insertion strategy described in Section F.1.

Implementation Details. We follow the nuScenes 3D semantic segmentation benchmark (Caesar
et al., 2020) and conduct experiments using the 1-sweep setting. We evaluate our method for 3D se-
mantic segmentation using two architectures: MinkowskiNet (Choy et al., 2019) and SPVCNN (Tang
et al., 2020). Both models operate directly on voxelized point clouds with a voxel resolution of
0.05m. The segmentation head is trained to predict 17 semantic classes following the nuScenes
benchmark. MinkowskiNet is a sparse convolutional network based on the MinkowskiEngine frame-
work. SPVCNN follows a similar design but integrates sparse point-voxel convolution layers to
enhance efficiency while maintaining high-resolution feature propagation. Both models are trained for
80 epochs using the SGD optimizer with a learning rate of 0.24, momentum of 0.9, and a weight decay
of 1× 10−4. We use cosine annealing learning rate scheduling and enable standard augmentation
techniques during training, including random rotation, flipping, scaling, transformation, and point
dropout. The batch size is 32, with eight workers per GPU for training and validation.
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