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ABSTRACT

Recent advancements in large language models (LLMs) have highlighted the risk of
misusing them, raising the need for accurate detection of LLM-generated content.
In response, a viable solution is to inject imperceptible identifiers into LLMs,
known as watermarks. Previous work demonstrates that unbiased watermarks
ensure unforgeability and preserve text quality by maintaining the expectation of
the LLM output probability distribution. However, previous unbiased watermarking
methods suffer from one or more of the following issues: (1) requiring access to
white-box LLMs during detection, (2) incurring long detection time, (3) being
not robust against simple watermarking attacks, (4) failing to provide statistical
guarantees for the type II error of watermark detection, and (5) being not statistically
unbiased for low-entropy scenarios, which hinder their deployment in practice. This
study proposes the Sampling One Then Accepting (STA-1) method, a watermark
that can address all of these issues. Moreover, we discuss the tradeoff between
watermark strength and text quality for unbiased watermarks. We show that in
low-entropy scenarios, unbiased watermarks face a tradeoff between watermark
strength and the risk of unsatisfactory outputs. Experimental results on both low-
entropy and high-entropy datasets demonstrate that STA-1 achieves text quality
and watermark strength comparable to existing unbiased watermarks, with a low
risk of unsatisfactory outputs. Implementation codes for this study are available
online (hidden for peer review).

1 INTRODUCTION

Large language models (LLMs) are large-scale deep learning models that can understand and generate
natural languages by learning from a large amount of textual data. Typical generative LLMs, such as
ChatGPT (Ouyang et al., 2022) and LLaMA (Touvron et al., 2023), can answer questions, translate
languages, and create codes with qualities comparable to humans. As LLMs can generate contents
more efficiently at a lower cost compared to humans, the risk of LLMs being employed to generate
biased, fake, or malicious contents is also increasing (Mirsky et al., 2023). For example, LLMs may
exhibit biased information against underrepresented groups of people (Abid et al., 2021; Fang et al.,
2024), create misinformation (Pan et al., 2023), and harm academic integrity (Zhao et al., 2023).
To reduce the harm caused by LLMs, identifying LLM-generated content precisely and efficiently
becomes a crucial issue (Kirchenbauer et al., 2023a).

Watermarks are identifiers imperceptible to humans but detectable by certain models (Liu et al.,
2023b). In the era of LLMs, a watermarking method is a strategy to control the randomness of
token generation by LLMs (Kirchenbauer et al., 2023a; Fernandez et al., 2023), with the random-
ness preserved confidentially by LLM owners. In practice, watermarks should have unforgeability
against deciphering watermarking generation attacks (Liu et al., 2023b). A watermarking method
demonstrates the ability against forgeries if it can hide the distinguishability between the original
unwatermarked text and its watermarked counterpart (Christ et al., 2023; Liu et al., 2023b). Thus,
it is required that a watermarking method adjusts the probability distribution while maintaining the
same expectation as the unwatermarked distribution (Hu et al., 2024; Kuditipudi et al., 2023), defined
as unbiased watermarks.

Existing unbiased watermarks can be categorized according to the stage where watermarks are
injected: distribution reweighting and controlled sampling (Liu et al., 2023b). For distribution
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reweighting, Hu et al. (2024) proposes γ-reweight, which uses the log-likelihood ratio (LLR) test
by comparing the likelihood of the text produced by watermarked and unwatermarked white-box
LLMs. It requires the prompt as input and a white-box LLM in watermark detection (Fernandez
et al., 2023; Hu et al., 2024). Also, the watermark is unstable because changing the first token of the
generated text can lead to huge deviations from the original likelihood value (Fernandez et al., 2023).
In response, Wu et al. (2024) avoid the LLR test and propose Dipmark, an extension of γ-reweight
with more general parameter settings. However, although both γ-reweight and Dipmark ensure the
type I error of watermark detection, they fail to provide statistical guarantees for the type II error (Hu
et al., 2024; Wu et al., 2024). For controlled sampling, Christ et al. (2023) introduce a watermarking
method that uses a sequence of random values to guide the token sampling process. However, their
method is not robust enough against simple removal attacks (Liu et al., 2023b). Kuditipudi et al.
(2023) also use random values to control the sampling and introduce a permutation test on detection
that does not require white-box access to LLMs. However, this permutation test is time-consuming
theoretically and empirically. Fairoze et al. (2023) propose to sample the token sequence generation
until its hash matches a key value. According to their distortion-free definition, the upper bound
of the difference between probabilities before and after watermarking is exp(−a), where a is the
minimal entropy. The difference is not negligible in low-entropy scenarios. Note that using random
values to control sampling can be treated as a special case of distribution reweighting where only
the probability of the sampled token is reweighted to 1 (Kuditipudi et al., 2023). Thus, we build our
analysis framework in Section 2 solely based on distribution reweighting.

We conclude the research gaps in Table 5 in Appendix A. In response to the challenges, we propose
the Sampling One Then Accepting (STA-1) method that can simultaneously overcome the above
gaps. STA-1 traces back to the original watermarking method (denoted as KGW) (Kirchenbauer
et al., 2023a) where the token set is divided into a green and a red list at each generation step. Instead
of raising logits in the green list, STA-1 samples a token from the original probability distribution
and accepts it if it is in the green list. If the sampled token is in the red list, it resamples another
token and accept it. By counting the number of green list tokens, it employs the z-test for watermark
detection, which naturally addresses the issues encountered with the LLR test and eliminates the need
for prompts and white-box LLMs in detection. Simultaneously, the detection of STA-1 is efficient
and only requires O(m) time complexity, where m is the number of tokens. The STA-1 method is
also robust against simple insertion and removal attacks because changing tokens can only affect
the detection score around these tokens. Meanwhile, we prove that STA-1 is unbiased and provides
statistical guarantees for the type II error. More interestingly, the bounds are linked to the Gini
index of the probability distribution, which is a common metric in machine learning (Breiman, 2017)
compared to the proposed Spike entropy in previous work (Kirchenbauer et al., 2023a).

In this study, we also clarify the watermark strength and text quality tradeoff in unbiased watermarks.
The KGW method faces a tradeoff between watermark strength and text quality, which means a higher
detection power results in a lower text quality (Kirchenbauer et al., 2023a). Previous work claims
that unbiased watermarks can avoid this tradeoff given the preserved text quality by maintaining the
expectation of probability distribution (Hu et al., 2024). We challenge this claim by considering a
simple low-entropy scenario, where we show that unbiased watermarks still face a tradeoff between
watermark strength and text quality. However, under the same expectation constraint, the text quality
is related to the risk of unsatisfactory outputs. Specifically, unsatisfactory outputs in low-entropy
scenarios represent that the watermarking method alters probability distribution too much such
that high-probability tokens cannot be sampled at risk. We discuss the risk via the variance of the
probability after altering, which is a common practice of risk-return analysis (Sharpe, 1998). We
prove that STA-1 is less risky than previous unbiased watermarks. Moreover, we propose STA-M,
an extension of STA-1, by setting up a threshold for entropy in generation (Lee et al., 2023; Wang
et al., 2023) and sampling more times for high-entropy steps. Although STA-M is not unbiased
theoretically, it allows higher watermark strength with small performance shifts empirically. Also,
STA-M is robust against various watermarking attacks. We summarize our contributions as follows:

1. We propose STA-1, an unbiased watermarking method that is practical and has statistical guarantees
on type II error of watermark detection. Moreover, we introduce STA-M, an extension of STA-1 that
enhances watermark strength with low text quality shifts.

2. We clarify the watermark strength and text quality tradeoff in unbiased watermarks. In low-entropy
scenarios, the text quality is related to the risk of unsatisfactory outputs. We show that STA-1 has a
lower risk theoretically compared to other unbiased watermarks.
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3. Experimental results on public low-entropy and high-entropy datasets empirically show that
STA-1 achieves comparable performances against other unbiased watermarks and has a low risk of
unsatisfactory outputs. Meanwhile, STA-M demonstrates high watermark strength in the low-entropy
dataset and robustness against different watermarking attacks.

2 PRELIMINARY

Notations. We follow notations in previous work (Kirchenbauer et al., 2023a; Hu et al., 2024) to
represent the generation task of LLMs. Let PM denote a pretrained LLM and V is the overall token
(vocabulary) set. An example token set contains more than 50,000 tokens (|V| > 50000) (Radford
et al., 2019). For simplicity, we use Python-style notation for an ordered token sequence, where
x−m:n = (x−m, x−m+1, · · · , xn), m and n are integers. In a typical LLM generation task, an LLM
receives a sequence of Np+1 tokens x−Np:0, known as a prompt, and outputs a sequence of T tokens
x1:T step by step. At step t, the probability of each token in the token set V is given by the conditional
distribution PM (xt|x−Np:(t−1)). The LLM generation follows an autoregressive fashion, where the
joint probability of the generated tokens are as PM (x1:T |x−Np:0) =

∏T
t=1 PM (xt|x−Np:(t−1)).

When applying watermarking techniques, the LLM employs a private key k to adjust the condi-
tional distribution from PM (xt|x−Np:(t−1)) to PM,w(x

t|x−Np:(t−1); k), where PM,w indicates a
watermarked model and the private key k is randomly selected from a key space K according to a
known distribution PK(k). An unbiased watermark requires that the expectation of the watermarked
distribution equals that of the original distribution (Hu et al., 2024), defined as follows.

Definition 1 (Unbiased watermark). Given a prompt x−Np:0 and a known distribution PK(k) of the
key k, a watermarking method is unbiased towards the original model PM if the watermarked model
PM,w satisfies

Ek∼PK(k)

[
PM,w(x

t|x−Np:(t−1); k)
]
= PM (xt|x−Np:(t−1)), (1)

for any prompt x−Np:0 ∈ VNp+1, any token xt ∈ V , and all generation steps 1 ≤ t ≤ T .

Previous distribution reweighting methods. Since controlled sampling can be viewed as a
special case of distribution reweighting, we build our analysis framework based on distribution
reweighting. Formally, a reweighting function Rk : PV → PV maps from PM (xt|x−Np:(t−1)) to
PM,w(x

t|x−Np:(t−1); k), where PV denotes the probability distribution space over the vocabulary
set V . A reweighting method R : K × PV → PV contains all realized reweighting functions Rk

among the key space k ∈ K. Following Definition 1, R is an unbiased reweighting method if
Ek∼PK(k) [Rk(PM )] = PM . Next, we introduce previous watermarking methods (Kirchenbauer
et al., 2023a; Hu et al., 2024; Wu et al., 2024; Kuditipudi et al., 2023) and refer readers to Appendix B
for more details.

KGW (Kirchenbauer et al., 2023a): The KGW method (Kirchenbauer et al., 2023a) randomly
splits the vocabulary set V into a green list and a red list based on a uniformly distributed key k. The
soft KGW method adds a predefined constant δ to the green list tokens’ logits while keeping the red
list tokens’ logits fixed.

Dipmark (Wu et al., 2024) and γ-reweight (Hu et al., 2024): Wu et al. (2024) propose an unbiased
watermarking method named Dipmark. Dipmark shuffles all probability masses PM (xt|x−Np:(t−1))
over the vocabulary set within the probability interval [0, 1] based on a key k. A hyperparameter
α ∈ [0, 0.5] partitions the interval [0, 1] into three segments: [0, α], (α, 1 − α], and (1 − α, 1].
Probabilities in the first segment are set to 0, those in the second remain constant, and those in the
third are doubled. Dipmark becomes γ-reweight when α = 0.5.

RDW (Kuditipudi et al., 2023): We focus on the RDW method via an inverse transform sampling
scheme. Given a uniformly distributed key k, RDW first shuffles all probability masses within the
interval [0, 1], then it randomly samples a value u ∼ U(0, 1). Here, u is viewed as the cumulative
distribution function value of PM (xt|x−Np:(t−1)) with respect to the permutation; it is subsequently
inverse transformed to generate a token. The probability of the sampled token is reweighted to 1,
while the probabilities of all other tokens are reweighted to 0.
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3 A SIMPLE PROTOCOL FOR A LOW-ENTROPY SCENARIO

The low-entropy text refers to a relatively deterministic sequence in natural language. The entropy
measures the uncertainty of the probability distribution PM (xt|x−Np:(t−1)) at a single generation
step among the token set V , where low entropy means low uncertainty. For example, in code writing,
the structure of a code sequence is regularized where few changes can be made (Lee et al., 2023).
More explicitly, for a typical English pangram such as ‘The quick brown fox jumps over the lazy
dog’ (Kirchenbauer et al., 2023a), both humans and machines should generate similar if not identical
output. For example, when provided with the prompt ‘The quick brown fox jumps over the lazy’, the
trained LLaMA-2-7B (Touvron et al., 2023) outputs an empirical probability above 0.8 for the next
word ‘dog’.

Problem modeling. Low-entropy scenarios exist in text generation tasks of LLMs. We aim to model
a simple problem protocol for the low-entropy generation scenario. For simplicity, we consider the
low-entropy scenario where only one token probability is significantly large. Specifically, denote
pmax as the largest probability of a token in the probability distribution PM (·|x−Np:(t−1)). We make
an intuitive assumption that except pmax, other |V| − 1 probabilities are small enough to uniformly
fill in the remaining 1− pmax probability value.

4 METHOD: SAMPLING THEN ACCEPTING

In this section, we propose the Sampling One Then Accepting (STA-1) method, and discuss detecting
the STA-1 generated text using the z-test. Theoretically, we show that STA-1 is unbiased and its
type II error of the z-test has statistical guarantees. Next, we analyze previous unbiased watermarks
and STA-1 under the low-entropy protocol in Section 3. We finally introduce Sampling M Then
Accepting (STA-M), an extension of STA-1.

4.1 SAMPLING ONE THEN ACCEPTING

We start by proposing the Sampling One Then Accepting (STA-1) method in Algorithm 1, which is
always unbiased and easy to analyze. First, the hash value of the last generated token is computed
and employed as the seed of a random number generator (RNG). We use the RNG to divide the token
set into a green and a red list (Kirchenbauer et al., 2023a). Next, we sample from the original LLM
output distribution (as depicted in Line 4 of Algorithm 1), accept the sampling if the token is in the
green list (as depicted in Line 5 and Line 6 in Algorithm 1), sample again if the token is in the red list
(as depicted in Line 7 and Line 8 in Algorithm 1), and the second sampling is always accepted.

Algorithm 1 STA-1 Text Generation
Input: A pretrained LLM PM , a watermark key k ∈ K, the proportion of the green list γ ∈ (0, 1),
and a prompt x−Np:0

1: for t = 1, 2 . . . , T do
2: Get the probability distribution of tokens pt = PM (·|x−Np:(t−1))
3: Compute the hash of the last token xt−1. Partition the token set V to form the green G and red

R list based on key k, the hash, and the proportion γ
4: Sample the candidate token xt

c with pt

5: if xt
c ∈ G then

6: Accept the sampling, the next generated token xt = xt
c

7: else
8: Deny the sampling, sample xt from the distribution pt

9: end if
10: end for
Output: The generated text x1:T

STA-1 is a simple but effective watermarking method. The properties of STA-1 include: (1) STA-1 is
an unbiased watermark; (2) The number of green list tokens in STA-1 generated texts has a lower
bound on its mean and an upper bound on its variance, which further provides explicit statistical
guarantees for the type II error in the STA-1 detection test; (3) STA-1 has a lower risk for low-entropy
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generation compared to previous work. In deriving theoretical results, we assume that the key k is
randomly sampled from a uniform distribution. Therefore, the random partition of green and red
lists associated with this key is also uniform (Kirchenbauer et al., 2023a). We start by analyzing the
unbiased characteristic of STA-1.

Theorem 1. The STA-1 method (Algorithm 1) is an unbiased watermark.

Proof. See Appendix C.1.

4.1.1 STATISTICAL TEST GUARANTEES OF STA-1

Detecting the STA-1 generated text. The detection of STA-1 compares the empirical proportion
of green list tokens in the given text against the green list proportion γ (Kirchenbauer et al., 2023a).
We employ the z-test where the null hypothesis (H0) is that the text is generated without knowing
the green-red list partition. Denote |S|G as the number of green list tokens in this text. Under H0,
|S|G follows a Bernoulli distribution B(T, γ) with a mean of γT and a variance of γ(1− γ)T . The
z-score is calculated with the empirical |S|G as

z =
|S|G − γT√
γ(1− γ)T

. (2)

The alternative hypothesis (Ha) is that the text is generated with STA-1. Under Ha, |S|G is expected
to be larger than γT . We can detect watermarked texts with a certain confidence level if the z-score
exceeds a z threshold. For example, if z > 2, we are more than 97.7% confident that the text is
watermarked under the one-tail test.

To ensure the effectiveness of the z-test, under Ha, a lower bound on the expectation of |S|G and
an upper bound on the variance of |S|G are required. We establish the necessary lower and upper
bounds in the following theorem. Because both bounds are related to the Gini index of the LLM
output distribution, we define the Gini index first.

Definition 2 (Gini index). Given a discrete probability distribution p = (p1, p2, · · · , pN ), the Gini
index of p is defined as

Gini(p) =

N∑
i=1

pi(1− pi). (3)

A low Gini index implies less uncertainty in the probability distribution, resulting in a low-entropy
scenario. Next, we propose the mean and variance bounds of |S|G.

Theorem 2. For STA-1 generated text sequences with T tokens, let the random green list have a
fixed size of γ|V|, and pti denote the LLM’s raw output probability of the i-th token in V at step t,
i = 1, 2, · · · , |V|, pt = (pt1, p

t
2, · · · , pt|V|). If an STA-1 generated sequence S has an average Gini

index larger than or equal to Gini∗, that is,

1

T

T∑
t=1

Gini(pt) =
1

T

T∑
t=1

|V|∑
i=1

pti(1− pti) ≥ Gini∗.

Then the expectation of |S|G is at least

E(|S|G) ≥ γT + (1− γ)γTGini∗. (4)

With one additional assumption that γ and Gini∗ satisfy γ + (1− γ)γGini∗ ≥ 0.5, the variance of
|S|G is at most

V(|S|G) ≤ T [γ + (1− γ)γGini∗][1− γ − (1− γ)γGini∗]. (5)

Proof. See Appendix C.2.

Remark 1. The additional assumption required for the variance upper bound, γ + (1− γ)γGini∗ ≥
0.5, implies that a larger green list is necessary in low-entropy scenarios to establish an upper bound
on the variance of |S|G. By selecting γ ≥ 0.5, this assumption holds for any Gini∗.
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Remark 2. Compared to the Spike entropy proposed by Kirchenbauer et al. (2023a), the Gini index is
a commonly used metric in machine learning to measure the uncertainty of a probability distribution,
such as CART decision tree (Breiman, 2017).

Example 1. We show an example for a typical γ. Let γ = 0.5, this bound becomes

E(|S|G) ≥
1

2
T +

1

4
TGini∗, (6)

V(|S|G) ≤ T [
1

2
+

1

4
Gini∗][

1

2
− 1

4
Gini∗] = T [

1

4
− 1

16
Gini∗2]. (7)

Note that Gini∗ is the average Gini index. When the generation becomes more uncertain, Gini∗

increases and we can expect a higher number of green list tokens with a lower variance. Practically in
low-entropy scenarios, with probability masses concentrated on one or a few tokens, those tokens are
likely to be generated frequently regardless of the green and red list partition in STA-1. Thus, fewer
tokens in the green list are expected. This weakens the strength of watermarking methods and makes
watermark detection challenging, which is consistent with the theorem.

Having established the mean and variance bounds for |S|G, with an additional condition, we derive
from Theorem 2 a corollary that provides an explicit upper bound on the type II error of the z-test in
detecting STA-1.

Corollary 1. Given that Theorem 2 holds, if Gini∗ > z̃/
√
γ(1− γ)T , we have the type II error

P

(
|S|G − γT√
γ(1− γ)T

≤ z̃

∣∣∣∣Ha

)
≤ V

V+ (E− γT − z̃
√
γ(1− γ)T )2

, (8)

where z̃ is the z threshold value, E and V are the lower bound and upper bound values on E(|S|G)
and V(|S|G) as established in Theorem 2, respectively.

Proof. See Appendix C.3.

The additional condition requires that Gini∗ must not be excessively low given the threshold value z̃.
A higher Gini∗ increases E and decreases V, resulting in a reduced upper bound on the type II error.
Therefore, the test has higher statistical power in high-entropy scenarios.

4.1.2 DISCUSSION ON THE LOW-ENTROPY PROTOCOL

Previous work claims that unbiased watermarks can avoid the tradeoff between watermark strength
and text quality (Hu et al., 2024). We challenge this claim by first considering the following example.

Example 2. Assuming that the token set only includes two tokens V = {A,B}, at a typical step, an
LLM outputs the probability of generating A (pA) and B (pB) as (pA, pB) = (0.8, 0.2). Consider
the following two unbiased watermarks. W1: with a probability of 0.2 always generating B and with
a probability of 0.8 always generating A; W2: with a probability of 0.5, the probability distribution
becomes (pA, pB) = (0.9, 0.1) and with the other probability of 0.5, becomes (pA, pB) = (0.7, 0.3).

In Example 2, one can view the prompt as ‘The quick brown fox jumps over the lazy’, A as the
token ‘dog’, and B as all other tokens. It is easy to show that watermarks W1 and W2 are both
unbiased. However, risk-averse people (Pratt, 1978) will prefer watermark W2 because W2 does not
have a possibility that only B will be sampled. B represents unsatisfactory outputs in low-entropy
scenarios which could significantly harm text quality, and we want the risk of sampling B to be as
low as possible. We refer readers to Appendix D for a conventional example in finance and a better
understanding of the analysis via utility theory. At any generation step, let xmax denote the token
with the maximum probability pmax. We measure the risk by the variance (Sharpe, 1998) of pw,k

max
among watermark keys, where pw,k

max denotes the altered value of pmax with a watermarking method
and a key k. We show that STA-1 has a lower risk compared to previous unbiased watermarks in the
following theorem.

Theorem 3. Assume 1− α ≤ pmax < 1, where α represents the partition hyperparameter used in
Dipmark. For the low-entropy protocol in Section 3, the STA-1 method has a lower variance in the
probability of generating xmax compared to other unbiased methods (including Dipmark, γ-reweight,
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and RDW) (Hu et al., 2024; Wu et al., 2024; Kuditipudi et al., 2023). Formally,

VSTA-1
k∼PK(k)

[
pw,k
max

]
< VDipmark

k∼PK(k)

[
pw,k
max

]
= Vγ-reweight

k∼PK(k)

[
pw,k
max

]
< VRDW

k∼PK(k)

[
pw,k
max

]
, (9)

for any α ∈ [0, 0.5] used in Dipmark, where pw,k
max denotes the adjusted probability of the token xmax

under the respective watermarking method with a key k ∈ K.

Proof. See Appendix C.4.

Example 3. We show a numerical example with pmax = 0.8. For STA-1, based on the proof of the
theorem, if the proportion of the green list is 0.5, VSTA-1

k∼PK(k)

[
pw,k
max

]
= 0.0064. For Dipmark (α ∈

[0.2, 0.5]) and γ-reweight, the variance is VDipmark
k∼PK(k)

[
pw,k
max

]
= Vγ-reweight

k∼PK(k)

[
pw,k
max

]
= 1

75 ≈ 0.013.
For RDW, the variance is VRDW

k∼PK(k)

[
pw,k
max

]
= 0.16.

4.2 SAMPLING M THEN ACCEPTING

A low-entropy scenario indicates a low Gini index which weakens the watermark strength based
on Theorem 2. To enhance the watermark strength, we propose the Sampling M Then Accepting
(STA-M) method, an extension of STA-1. STA-M employs a heuristic threshold τ for entropy at each
generation step. In detail, at generation step t, we first calculate the entropy τ t of the probability
distribution PM (·|x−Np:(t−1)). If it shows low entropy τ t ≤ τ , we apply STA-1 at this generation
step; if it shows high entropy τ t > τ , we repeat sampling if the previously sampled token is in the
red list, and the procedure repeats at most M times.

The detailed algorithm and analysis of STA-M can be found in Appendix E. According to Remark 3
in Appendix E, STA-M is biased. In low-entropy steps where probabilities are concentrated on a few
tokens, actively using STA-M by repeated sampling can skew these probabilities, thereby reducing
text quality. On the contrary, in high-entropy steps, since there are more acceptable tokens, the
impact of repeated sampling on text quality is weakened. Therefore, STA-M only repeats sampling in
high-entropy steps, which could increase watermark strength and largely maintain text quality.

5 EXPERIMENTS

In this section, we conducted computational experiments to evaluate the performance of STA-1 and
STA-M using two public datasets. We benchmarked our methods against various watermarking
baselines on text quality and watermark strength. Moreover, we discussed the variance of generation
in the low-entropy dataset. Finally, we conducted a robustness analysis of STA against different
watermarking attacks.

5.1 EXPERIMENTAL SETUP

Datasets and metrics. We employed two public datasets: C4 subset (Raffel et al., 2020; Kirchenbauer
et al., 2023a) for news-like text generation and HumanEval (Chen et al., 2021) for code generation.
We evaluated the performance of different watermarking methods on text quality and watermark
strength. For watermark strength, we set the z threshold as 2 and 2.5 and report the F1-score and AUC
of watermark detection. For text quality, we measured perplexity (PPL) and coherence (Gao et al.,
2021) for generations on C4; We computed PPL and pass@k scores of code generations (Chen et al.,
2021) for HumanEval. We refer readers to Appendix F.1 for more dataset details and the prompt used
in each dataset.

Baselines. We chose KGW as the biased watermark baseline (Kirchenbauer et al., 2023a), RDW
(Kuditipudi et al., 2023), γ-reweight (Hu et al., 2024), and Dipmark (Wu et al., 2024) as the unbiased
watermark baselines. Specifically, we set KGW with a fixed green list proportion γ = 0.5 and
diverse logit increments δ ∈ {1, 1.5, 2}. We set the watermark key length as 256 in RDW. The
partition parameter of Dipmark was set as α ∈ {0.3, 0.4, 0.5}. When α = 0.5, we report this result
as γ-reweight. Note that γ-reweight (Hu et al., 2024) does not include a z-test. Therefore, we
implemented the z-score in Dipmark (Wu et al., 2024) for γ-reweight by counting the number of
tokens in the latter portion of the token set. We also show results without watermarking techniques.
Also, RDW only contains a permutation test that reports p-values. We set p-value thresholds at 0.05
and 0.01 to approximate two z-tests.
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Table 1: Result Comparison between Our Methods and Baselines on Text Quality and Watermark
Strength for the C4 Dataset. The best results without statistical differences are shown in bold. The
second best results without statistical differences are shown in underline.

Text Quality Watermark Strength Detection
z = 2.0 z = 2.5 Time

Method PPL Coherence F1 AUC F1 AUC

No Watermark 7.474 0.604 0.046 0.500 0.012 0.500 46s
KGW(δ=1) 7.591 0.606 0.961 0.962 0.940 0.944 46s
KGW(δ=1.5) 7.844 0.604 0.985 0.984 0.992 0.992 46s
KGW(δ=2) 8.091 0.599 0.986 0.986 0.995 0.995 46s

RDW 7.650 0.592 0.982 0.982 0.948 0.950 4h
Dipmark(α=0.3) 7.415 0.599 0.933 0.935 0.909 0.915 44s
Dipmark(α=0.4) 7.384 0.601 0.957 0.957 0.954 0.955 44s
γ-reweight 7.436 0.599 0.961 0.961 0.963 0.963 44s

STA-1 7.387 0.600 0.962 0.961 0.963 0.963 46s
STA-4(τ=1.35) 7.711 0.595 0.973 0.972 0.988 0.988 46s
STA-8(τ=1.35) 8.006 0.592 0.975 0.975 0.987 0.987 46s
STA-16(τ=1.35) 8.199 0.588 0.973 0.972 0.988 0.988 46s

Table 2: Result Comparison between Our Methods and Baselines on Text Quality and Watermark
Strength for the HumanEval Dataset. The best results without statistical differences are shown in
bold. The second best results without statistical differences are shown in underline.

Text Quality Watermark Strength
z = 2.0 z = 2.5

Method PPL Pass@1 Pass@5 Pass@10 F1 AUC F1 AUC

No Watermark 3.041 0.138 0.405 0.537 0.114 0.494 0.072 0.497
KGW(δ=1) 3.078 0.135 0.326 0.415 0.471 0.643 0.416 0.627
KGW(δ=1.5) 3.499 0.098 0.308 0.427 0.720 0.770 0.650 0.730
KGW(δ=2) 3.723 0.098 0.254 0.372 0.757 0.795 0.733 0.785
RDW 3.159 0.134 0.362 0.470 0.408 0.628 0.343 0.604
Dipmark(α=0.3) 3.037 0.144 0.392 0.512 0.518 0.665 0.423 0.625
Dipmark(α=0.4) 3.101 0.141 0.393 0.512 0.516 0.668 0.429 0.634
γ-reweight 3.088 0.142 0.371 0.488 0.522 0.671 0.479 0.655

STA-1 3.006 0.147 0.394 0.494 0.526 0.633 0.442 0.611
STA-4(τ=1.95) 3.175 0.135 0.392 0.500 0.633 0.685 0.594 0.679
STA-8(τ=1.95) 2.842 0.146 0.399 0.537 0.652 0.703 0.587 0.675
STA-16(τ=1.95) 3.024 0.140 0.382 0.476 0.725 0.764 0.640 0.717

Implementation details. We utilized different variants of LLaMA-2-7B (Touvron et al., 2023) as our
generative models, and LLaMA-2-13B to compute perplexity. For hyperparameters in STA-M, we
set M ∈ {4, 8, 16} and two entropy thresholds τ for different datasets. We conducted a robustness
check on τ in Appendix F.2 and selected different τs for different datasets in the final experiment.
For each method, we run 10 times to conduct all pair-wise Tukey tests. Results in the following tables
show only average values. We refer readers to Appendix F.1 for more details on implementation.

5.2 RESULTS ON C4

For the C4 dataset, each method generates at least 500 text sequences with at least 200± 5 tokens
(Kirchenbauer et al., 2023a). Table 1 demonstrates each method’s text quality, watermark strength,
and detection time for 500 generations, and we present generated text examples in Appendix F.3. As
depicted in Table 1, the proposed STA-1 method is efficient in detection and achieves comparable
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perplexity and coherence compared to no watermark generation. The text quality results are consistent
with other unbiased watermarks including RDW, Dipmark, and γ-reweight, showing STA-1 is also
unbiased empirically. In terms of watermark strength, STA-M (M ∈ {4, 8, 16}) outperforms all
unbiased watermarks and has comparable watermark strength as biased watermarks KGW (δ ∈
{1.5, 2}). Overall in the high-entropy generation task, the unbiased STA-1 method is comparable to
other unbiased watermarks; The STA-M method can improve the watermark strength by sacrificing
minor text quality.

5.3 RESULTS ON HUMANEVAL

In this section, we compare our methods against baselines on the HumanEval dataset. Table 2 presents
the perplexity, pass@k scores, and watermark strength for all methods. Since it is better not to control
the length of a code during generation, we remove detection time results. First, we focus on the result
analysis for all unbiased watermarks. As reported, our STA-1 method achieves similar perplexity and
pass@k scores compared to no watermarking and other unbiased watermarking methods.

Table 3: Comparison on the Risk of Unsatisfactory Outputs for Unbiased Watermarks. For space
concern, we denote the number of passed problems as PP, the number of passed codes as PC, and the
average number of passed codes per passed problem as PC per PP (PC/PP).

Method PPL Variance PP PC PC per PP

RDW 2.202 77 219 2.844
Dipmark(α=0.3) 1.535 84 233 2.675
Dipmark(α=0.4) 1.853 84 221 2.631
γ-reweight 1.722 80 214 2.774

STA-1 1.461 81 254 3.136

Moreover, we examine the risk of unsatisfactory outputs produced by unbiased watermarks for
low-entropy generations. Specifically, we compare different unbiased watermarks in terms of four
more metrics. We ran 10 times of code generation for each problem using different unbiased
watermarking methods with 10 different keys. Table 3 reports the average variance of perplexity
among each problem, the number of passed problems (if the problem is solved by any one generation
out of 10 runs, it is considered passed), the number of passed codes, and the average number of
passed codes among all passed problems. In particular, the STA-1 method demonstrates the lowest
variance of perplexity compared to RDW, Dipmark(α=0.3), Dipmark(α=0.4), and γ-reweight with
a variance of 1.461 compared to 2.202, 1.535, 1.853, and 1.722, respectively. A lower variance
indicates a lower risk among different text generations under different keys. Additionally, we show
the average number of passed codes among all passed problems. For example, 3.136 in Table 3 means
among all solved problems, an average of 3.136 generated codes are accurate w.r.t. 10 generations
by STA-1. We conclude from Table 3 that although Dipmark solves more problems, it fails to
provide consistent accurate codes among different generations. Instead, our method outperforms
other unbiased watermarks (RDW, Dipmark(α=0.3), Dipmark(α=0.4), γ-reweight) in providing
consistency, with an average number of passed codes of 3.136 compared to 2.844, 2.675, 2.631, and
2.774, respectively. In summary, the STA-1 method has a lower risk when generating low-entropy
texts, as discussed in Theorem 3.

In terms of watermark strength in Table 2, STA-M (M ∈ {4, 8, 16}) yields higher watermark strength
in comparison to all unbiased watermarks while maintaining similar pass scores. The STA-16 method
achieves comparable watermark strength against biased watermark KGW(δ = 2) with an AUC of
0.764 (z = 2) against 0.795. The text quality is maintained with a pass@10 of 0.476, highlighting the
efficacy of the heuristics to enhance watermark strength at high-entropy generation steps.

5.4 ATTACKING STA

We assessed the robustness of different watermarking methods under different attacks consisting of the
copy-paste attack (Kirchenbauer et al., 2023a), paraphrasing using GPT-3.5, and two configurations
of the DIPPER attack (Krishna et al., 2024). Detailed settings of different attacks are described in
Appendix F.4.
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Table 4: Attacking Watermarks for the C4 Dataset.

Attack Setting No Attack Copy-Paste GPT-3.5 DIPPER-1 DIPPER-2

Method F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

KGW(δ = 1) 0.96 0.96 0.68 0.75 0.27 0.57 0.13 0.53 0.15 0.54
KGW(δ = 1.5) 0.99 0 98 0.90 0.90 0.41 0.62 0.22 0.56 0.27 0.57
KGW(δ = 2) 0.99 0.99 0.95 0.95 0.54 0.68 0.30 0.58 0.40 0.62

RDW 0.98 0.98 0.83 0.79 0.73 0.78 0.64 0.73 0.65 0.73
Dipmark(α = 0.3) 0.93 0.94 0.61 0.70 0.29 0.57 0.24 0.55 0.26 0.55
Dipmark(α = 0.4) 0.96 0.96 0.75 0.79 0.38 0.61 0.31 0.58 0.34 0.59
γ-reweight 0.96 0.96 0.74 0.78 0.41 0.61 0.32 0.57 0.36 0.60

STA-1 0.96 0.96 0.78 0.81 0.47 0.63 0.39 0.60 0.46 0.63
STA-4(τ=1.35) 0.97 0.97 0.95 0.95 0.72 0.78 0.65 0.73 0.69 0.75
STA-8(τ=1.35) 0.98 0.98 0.95 0.95 0.78 0.81 0.71 0.77 0.76 0.79
STA-16(τ=1.35) 0.97 0.97 0.95 0.95 0.76 0.80 0.68 0.74 0.78 0.81

Table 4 reports the F1-score and AUC of watermark detection under each attack with z = 2. As
reported, for unbiased watermarks, RDW achieves the best result since its detection framework based
on brute force search is designed to solve the robustness issue (Kuditipudi et al., 2023). In contrast,
STA-M is robust against different attacks with a low detection time. For the copy-paste attack, since
STA-M is based on the green-red list partition and changing a token can only affect the detection score
of itself and the next token, it is naturally robust to simple text insertion and removal (Kirchenbauer
et al., 2023a). Meanwhile, LLM-based attacks, such as GPT-3.5 and DIPPER, are designed to replace
tokens in given texts by sampling from the LLM. STA-M effectively increases the proportion of
green-list tokens by raising their probability in high-entropy scenarios without compromising too
much text quality, making it difficult for LLM-based attacks to replace a substantial number of tokens
in STA-M-generated text and remove the watermark. In conclusion, STA-M can generate text with
high watermark strength against various attacks.

6 CONCLUSIONS AND FUTURE WORK

In this work, we propose a new unbiased watermarking method named STA-1. We clarify the text
quality (regarding the risk of unsatisfactory outputs under the same expectation) and watermark
strength tradeoff of unbiased watermarks in low-entropy scenarios. We also extend STA-1 to STA-
M which can enhance watermark strength with small text quality shifts. Experimental results
on low-entropy datasets prove that STA-1 is comparable to other unbiased watermarks and has
a low risk. Moreover, results from the high-entropy dataset demonstrate the efficiency of STA-1
and the robustness of STA-M. Future work of our study can be conducted in several ways. First,
watermarking low-entropy tasks is still challenging and future work can devise better watermarking
methods. Second, future work could incorporate more datasets and generative LLMs for evaluation of
our method. Third, it is also possible to consider context code history to extend the unbiased results
from the token level to the sequence level.

7 RELATED WORK

With the development of LLMs, the idea of watermarking LLMs has been proposed (Aaronson, 2022;
Kirchenbauer et al., 2023a) and widely explored. Existing white-box watermarking techniques can be
categorized into watermarking during logits and probabilities generation (Kirchenbauer et al., 2023b;
Lee et al., 2023; Hu et al., 2024; Wang et al., 2023; Fernandez et al., 2023; Zhao et al., 2023; Yoo
et al., 2023; Ren et al., 2023; Takezawa et al., 2023), and watermarking by controlling sampling
strategies (Christ et al., 2023; Kuditipudi et al., 2023; Hou et al., 2023; Fairoze et al., 2023). We refer
readers to Appendix G for a detailed discussion on related work.
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A RESEARCH GAP SUMMARY

Table 5: Research Gap Summary. Black-box refers to only black-box LLM needed during detection;
Efficiency refers to efficient detection; Robustness refers to the robustness against simple watermark-
ing attacks. Guarantee refers to the statistical guarantee of type II error; Unbiased refers to the same
expectation requirement in low-entropy scenarios.

Literature Black-box Efficiency Robustness Guarantee Unbiased

Kirchenbauer et al. (2023a) ✓ ✓ ✓ ✓
Hu et al. (2024) ✓ ✓
Wu et al. (2024) ✓ ✓ ✓ ✓
Christ et al. (2023) ✓ ✓ ✓ ✓
Kuditipudi et al. (2023) ✓ ✓ ✓
Fairoze et al. (2023) ✓ ✓ ✓

STA-1 ✓ ✓ ✓ ✓ ✓

B DETAILS OF PREVIOUS METHODS

Distribution reweighting refers to methods that adjust the output distribution PM (xt|x−Np:(t−1)) at
each step t by artificially increasing probabilities for certain tokens while reducing those for others.
The direction and magnitude (increasing or decreasing) of change in probability mass for a token are
determined by the private key k.

KGW (Kirchenbauer et al., 2023a) first randomly splits the vocabulary set V into two non-overlapping
lists based on a uniformly distributed key k: a ‘green’ list and a ‘red’ list. This method has two
versions: the ‘hard’ version completely ignores the red list tokens and only samples tokens from the
green list; The ‘soft’ version adds a predefined constant δ to logits of green list tokens while keeping
logits of red list tokens fixed. The soft KGW reweights distribution as

PM,w(x
t = j|x−Np:(t−1); k) =

exp
(
ltj + 1Green(j)δ

)∑
i∈Red exp(l

t
i) +

∑
i∈Green exp(l

t
i + δ)

,

where j denotes the j-th token within the vocabulary set, ltj is its logit output by the original LLM
at step t, and 1Green(j) is an indicator function having a value of 1 when j is in the green list and 0
otherwise.

Wu et al. (2024) propose an unbiased reweighting method, named Dipmark. Dipmark arranges
all probability masses over the vocabulary set from the original LLM output consecutively within
the interval [0, 1] and then randomly permutes their orders based on a key k. A hyperparameter
α ∈ [0, 0.5] partitions the probability interval [0, 1] into three segments: [0, α], (α, 1 − α], and
(1− α, 1]. Probability masses in the first segment are set to 0, those in the second remain constant,
and those in the third are doubled. Denote the token order after permutation as Ṽ , the adjusted
probability for the j-th token within Ṽ is PM,w(x

t = j|x−Np:(t−1); k) = F (j|Ṽ) − F (j − 1|Ṽ),
with F (j|Ṽ) being defined as

F (j|Ṽ) = max

 ∑
i∈Ṽ:i≤j

PM (xt = i|·)− α, 0

+max

 ∑
i∈Ṽ:i≤j

PM (xt = i|·)− (1− α), 0

 .

Another unbiased reweighting method, RDW (robust distortion-free watermark), is developed by
Kuditipudi et al. (2023). We focus on the RDW method with an inverse transform sampling scheme.
In RDW, the uniformly random key k = (Π, u), where Π represents a random shuffle of all probability
masses PM (xt|x−Np:(t−1)) over the vocabulary set within the interval [0, 1], and u is a random value
following the distribution U(0, 1). RDW first permutes the order of all PM (xt|x−Np:(t−1)) within
the interval [0, 1] according to Π, then it utilizes u as the cumulative distribution function value of
PM (xt|x−Np:(t−1)) with respect to the permutation. Let Π(j) denote the j-th token in the ordered
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vocabulary set under the permutation Π. Following the inverse transform sampling scheme, the value
u is inverse transformed to generate a token through

xs = Π(min{j :
j∑

i=1

PM (xt = Π(i)|x−Np:(t−1)) ≥ u}),

where xs is the sampled token. Therefore, we have PM,w(x
t = xs|x−Np:(t−1); k) = 1, and the

probabilities of all other tokens are reweighted to 0 accordingly.

C PROOFS

C.1 PROOF OF THEOREM 1

To simplify notation, we denote the size of the vocabulary set |V| as N , the size of the green list as
NG, and the size of the red list as NR. Given the proportion of green list γ, we have NG = γN and
NR = (1− γ)N . At a generation step, let p = (p1, p2, · · · , pN ) denote the raw probability output by
the LLM over the vocabulary set. Let j represent a token within the vocabulary set, j ∈ (1, 2, · · · , N).
We denote by pw,k

j the adjusted probability of token j under the STA-1 watermarking method with
key k. The key k is sampled randomly from a uniform distribution PK(k).

To conveniently compute Ek∼PK(k)

[
pw,k
j

]
, we consider the uniformly random partition of green and

red lists associated with the uniformly distributed key k as the following process. Initially, token j is
randomly assigned to the green list with a probability of γ and to the red list with a probability of
1− γ. Subsequently, tokens are randomly sampled from the remaining pool to fill the green list, with
all remaining tokens then placed in the red list. For the adjusted probability, we have

pw,k
j =

{
pj +

(∑
i∈R pi

)
pj j ∈ G(∑

i∈R pi
)
pj j ∈ R

.

Next, we first analyze the scenario where j ∈ G and compute EG,R:j∈G

[
pw,k
j

]
. The expectation is

taken over uniformly random partitions of green/red lists that fulfill j ∈ G. Let

hj(p) = EG,R:j∈G

[
pw,k
j

]
= EG,R:j∈G

[
pj +

(∑
i∈R

pi

)
pj

]
.

Note that hj(p)’s value remains unchanged under permutations in the order of the remaining tokens
{pi, i ̸= j}. Thus, we have the equality that hj(p) = EΠ [hj(Πp−j)], where Π represents a random
permutation of the remaining tokens p−j while preserving the position of pj . Since hj(Πp−j) is a
linear function of p−j , we then get

hj(p) = EΠ [hj(Πp−j)] = hj (EΠ [Πp−j ]) .

The expectation of the probability values at the remaining (N − 1) positions over permutations
of their corresponding tokens EΠ [Πp−j ] yields a probability distribution p̄ where p̄j = pj and
p̄i = (1− pj)/(N − 1) for i ̸= j. With this p̄, we derive that

hj(p) = hj(p̄) = EG,R:j∈G

[
p̄j +

(∑
i∈R

p̄i

)
p̄j

]

= pj +
NR

N − 1
(1− pj)pj .

Then, we analyze the scenario where j ∈ R and compute EG,R:j∈R

[
pw,k
j

]
. Let

fj(p) = EG,R:j∈R

[
pw,k
j

]
= EG,R:j∈R

[(∑
i∈R

pi

)
pj

]
.
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For the same reasons as illustrated above and using the same definition of p̄, we have

fj(p) = fj(p̄) = EG,R:j∈R

[(∑
i∈R

p̄i

)
p̄j

]

=

(
pj +

(NR − 1)(1− pj)

(N − 1)

)
pj

= p2j +
(NR − 1)

N − 1
(1− pj)pj .

Finally, combining the random partition process of green and red lists described at the beginning of
the proof with the derived expressions for hj(p) and fj(p), we obtain that

Ek∼PK(k)

[
pw,k
j

]
= γhj(p) + (1− γ)fj(p)

= γpj + γ
NR

N − 1
(1− pj)pj + (1− γ)p2j + (1− γ)

(NR − 1)

N − 1
(1− pj)pj

=

(
γ +

NR − (1− γ)

N − 1

)
pj +

(
(1− γ)− NR − (1− γ)

N − 1

)
p2j

= pj ,

with NR = (1− γ)N . This concludes the proof.

C.2 PROOF OF THEOREM 2

In this proof, we employ the notations introduced in the proof of Theorem 1 in Section C.1, and we
leverage the results derived from that theorem’s proof.

For a token j within the vocabulary set, j ∈ (1, 2, · · · , N), we consider the identical random partition
process of green and red lists as described at the beginning of the proof of Theorem 1. If j is initially
assigned to the green list, according to the proof of Theorem 1, its expected adjusted probability over
uniformly random green/red list partitions that fulfill j ∈ G satisfies

EG,R:j∈G

[
pw,k
j

]
= pj +

NR

N − 1
(1− pj)pj

= pj

[
N − 1 +NR(1− pj)

N − 1

]
≥ pj

[
N +NR(1− pj)

N

]
= pj + (1− γ)pj(1− pj),

where the inequality holds because the denominator is less than the numerator, and adding 1 to both
leads to a decrease in the value.

Recall that each token within the vocabulary set has a probability of γ being assigned to the green list.
Thus, the overall probability of sampling a token from the green list has the lower bound

P(G) := P(sampling a token ∈ G) =

N∑
j=1

γEG,R:j∈G

[
pw,k
j

]

≥ γ

N∑
j=1

pj + (1− γ)pj(1− pj)

= γ + γ(1− γ)

N∑
j=1

pj(1− pj).

Note that this lower bound applies to every generation step t. Let pt denote the LLM’s original output
probability distribution at step t, and Gt denote the event of sampling a token from the green list at
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step t, we then have

P(Gt) ≥ γ + γ(1− γ)

N∑
j=1

ptj(1− ptj) = γ + γ(1− γ)Gini(pt).

It is important to highlight that this lower bound holds significant meaning, as it strictly exceeds the
naive lower bound for P(Gt), which is γ. This bound serves as a crucial element in the proof of
Theorem 2. For the expectation of the number of green list tokens in the sequence, we can derive that

E(|S|G) = TEt

[
P(Gt)

]
≥ TEt

[
γ + γ(1− γ)Gini(pt)

]
≥ T [γ + γ(1− γ)Gini∗] = γT + (1− γ)γTGini∗,

where the lower bound Gini∗ for the average Gini index is provided as a condition in the theorem.

Next, regarding the variance of |S|G, it is worth noting that the success of sampling a token from
the green list at each step t can be viewed as a Bernoulli random variable with a success probability
of P(Gt). This Bernoulli random variable has a variance of P(Gt)[1 − P(Gt)]. The sum of these
Bernoulli random variables across all T steps gives us |S|G. Because these random variables are
independent of each other, the variance of their sum equals the sum of their variances. Consequently,
we can obtain that

V(|S|G) = TEt

[
P(Gt)[1− P(Gt)]

]
≤ TEt[P(Gt)]

[
1− Et[P(Gt)]

]
≤ T [γ + (1− γ)γGini∗] [1− γ − (1− γ)γGini∗] ,

where the first inequality holds by applying Jensen’s inequality to a concave function of P(Gt), and
the second inequality is valid because 1) Et [P(Gt)] ≥ γ + (1− γ)γGini∗ as shown above; 2) the
function x(1 − x) is decreasing in the range x ∈ [0.5, 1]; and 3) it is assumed in the theorem that
γ + (1− γ)γGini∗ ≥ 0.5. This concludes the proof.

C.3 PROOF OF COROLLARY 1

For the z-test in detecting STA-1, its type II error is defined as P (z ≤ z̃|Ha). Following the definition,
we have that

P (z ≤ z̃|Ha) = P

(
|S|G − γT√
γ(1− γ)T

≤ z̃

∣∣∣∣Ha

)
= P (|S|G − E(|S|G) ≤ γT + z̃

√
γ(1− γ)T − E(|S|G)|Ha)

≤ P (|S|G − E(|S|G) ≤ γT + z̃
√
γ(1− γ)T − E|Ha)

≤ V(|S|G)
V(|S|G) + (E− (γT + z̃

√
γ(1− γ)T ))2

(Cantelli’s inequality)

≤ V
V+ (E− γT − z̃

√
γ(1− γ)T )2

,

where Cantelli’s inequality holds because

E− (γT + z̃
√
γ(1− γ)T ) = γ(1− γ)TGini∗ − z̃

√
γ(1− γ)T > 0

according to the condition assumed in the corollary. This completes the proof.

C.4 PROOF OF THEOREM 3

In this proof, we continue utilizing the notations introduced in the proof of Theorem 1 in Section C.1.

We start with the variance calculation for the STA-1 method. Because STA-1 is an unbiased
watermark by Theorem 1, we have VSTA-1

k∼PK(k)

[
pw,k
max

]
= ESTA-1

k∼PK(k)

[
(pw,k

max − pmax)
2
]
. Considering

the identical uniformly random partition process of green and red lists associated with the uniformly
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distributed key k as in the proof of Theorem 1, depending on whether the token xmax is assigned to
the green list or not initially, pw,k

max have two possible realizations:

pw,k
max =

{
pmax +

(∑
i∈R pi

)
pmax xmax ∈ G(∑

i∈R pi
)
pmax xmax ∈ R

.

Under the assumption that the probabilities of the other N − 1 tokens uniformly fill in the remaining
(1− pmax) probability mass, each pi, i ∈ (1, 2, · · · , N) and i ̸= xmax, equals (1− pmax)/(N − 1).
Therefore, if xmax ∈ G, pw,k

max = pmax +NR(1− pmax)pmax/(N − 1), and this value is fixed for
all partitions of green/red lists that fulfill xmax ∈ G. Then we have

ESTA-1
G,R:xmax∈G

[
(pw,k

max − pmax)
2
]
=

[
NR(1− pmax)pmax

(N − 1)

]2
.

Similarly, if xmax ∈ R, we get

ESTA-1
G,R:xmax∈R

[
(pw,k

max − pmax)
2
]
=

[(
(NR − 1)(1− pmax)

N − 1
+ pmax

)
pmax − pmax

]2
.

With these two expected values, and recalling that xmax has a probability of γ of being assigned to
the green list and a probability of 1− γ of being assigned to the red list, the variance for the STA-1
method is

VSTA-1
k∼PK(k)

[
pw,k
max

]
= ESTA-1

k∼PK(k)

[
(pw,k

max − pmax)
2
]

= γESTA-1
G,R:xmax∈G

[
(pw,k

max − pmax)
2
]
+ (1− γ)ESTA-1

G,R:xmax∈R

[
(pw,k

max − pmax)
2
]

= γ

[
NR(1− pmax)pmax

(N − 1)

]2
+ (1− γ)

[(
(NR − 1)(1− pmax)

N − 1
+ pmax

)
pmax − pmax

]2
= p2max(1− pmax)

2

[
γ

N2
R

(N − 1)2
+ (1− γ)

N2
G

(N − 1)2

]
= p2max(1− pmax)

2γ(1− γ)
N2

(N − 1)2
.

Next, we compute the variance for the Dipmark method with a partition hyperparameter α. Note
that VDipmark

k∼PK(k)

[
pw,k
max

]
= EDipmark

k∼PK(k)

[
(pw,k

max − pmax)
2
]

holds because Dipmark is also unbiased. In
Dipmark, the uniformly distributed key k controls the randomness of permutations. Under the same
assumption that pi = (1− pmax)/(N − 1) for i ̸= xmax, the relative orders among these (N − 1)
tokens become irrelevant in the permutation. Therefore, there are a total of N unique permutations,
each with a probability of 1/N . Specifically, in the first unique permutation, there are 0 tokens i
where i ̸= xmax placed to the left of xmax and (N − 1) tokens i where i ̸= xmax placed to the right
of xmax. In the second one, there is 1 token on the left and (N − 2) tokens on the right, and so forth.
The last permutation has (N − 1) tokens on the left and 0 on the right. If j such tokens are on the left
of xmax, j = 0, 1, · · · , (N − 1), the corresponding pw,k

max is

pw,k
max = 2pmax − 1 + 2j

(1− pmax)

(N − 1)
,

given that 1− α ≤ pmax < 1 as assumed in the condition. Therefore, the variance for the Dipmark
method with a partition hyperparameter α is

VDipmark
k∼PK(k)

[
pw,k
max

]
= EDipmark

k∼PK(k)

[
(pw,k

max − pmax)
2
]

=
1

N

N−1∑
j=0

[
pmax − 1 + 2j

(1− pmax)

(N − 1)

]2

= −(pmax − 1)2 +
1

N

N−1∑
j=0

4j2
(1− pmax)

2

(N − 1)2

= (1− pmax)
2 (N + 1)

3(N − 1)
.
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Note that, this variance value does not depend on α. When α = 0.5, Dipmark becomes γ-reweight.
Therefore, VDipmark

k∼PK(k)

[
pw,k
max

]
= Vγ-reweight

k∼PK(k)

[
pw,k
max

]
.

Finally, we determine the variance for the RDW method with an inverse transform sampling scheme.
In RDW, the uniformly distributed key k = (Π, u), where Π is a uniformly random permutation
of the N tokens and u ∼ U(0, 1). Similar to the previous analysis of Dipmark, the relative orders
among the remaining (N − 1) tokens except xmax are irrelevant to the permutation. Therefore,
we only need to consider the N unique permutations, each with a probability of 1/N , as discussed
above. Conditional on any permutation Π, under the inverse transform sampling scheme, there is a
probability of pmax that xmax will be sampled out. Therefore, the altered value of pmax given Π is

pw,k
max|Π =

{
1 with probability pmax

0 with probability 1− pmax
.

Then, we have that
VRDW

u

[
pw,k
max|Π

]
= pmax(1− pmax).

Because these results hold for any permutation Π, by the law of total variance, we can derive that

VRDW
k∼PK(k)

[
pw,k
max

]
= EΠ

(
VRDW

u

[
pw,k
max|Π

])
+ VΠ

(
ERDW
u

[
pw,k
max|Π

])
= pmax(1− pmax) + 0

= pmax(1− pmax),

which is the variance for the RDW method with an inverse transform sampling scheme.

To compare VSTA-1
k∼PK(k)

[
pw,k
max

]
and VDipmark

k∼PK(k)

[
pw,k
max

]
, consider

VSTA-1
k∼PK(k)

[
pw,k
max

]
= p2max(1− pmax)

2γ(1− γ)
N2

(N − 1)2

<
1

4
(1− pmax)

2 N2

(N − 1)2

= (1− pmax)
2 (N + 1)

3(N − 1)
× 3

4

N2

N2 − 1
,

where N2/(N2 − 1) is a decreasing function on N and N2/(N2 − 1) < 4/3 for N > 2. Therefore,
for a real-world vocabulary set where N ≫ 2, we have

VSTA-1
k∼PK(k)

[
pw,k
max

]
< (1− pmax)

2 (N + 1)

3(N − 1)
= VDipmark

k∼PK(k)

[
pw,k
max

]
.

For the comparison between VDipmark
k∼PK(k)

[
pw,k
max

]
and VRDW

k∼PK(k)

[
pw,k
max

]
, we have that

VDipmark
k∼PK(k)

[
pw,k
max

]
= (1− pmax)

2 (N + 1)

3(N − 1)

< (1− pmax)
2

≤ pmax(1− pmax) = VRDW
k∼PK(k)

[
pw,k
max

]
,

where the first inequality holds because (N + 1) < 3(N − 1) for N > 2, and the second inequality
is valid under the assumption that 1− α ≤ pmax < 1 and α ∈ [0, 0.5].

Putting all the results together, we get

VSTA-1
k∼PK(k)

[
pw,k
max

]
< VDipmark

k∼PK(k)

[
pw,k
max

]
= Vγ-reweight

k∼PK(k)

[
pw,k
max

]
< VRDW

k∼PK(k)

[
pw,k
max

]
,

which concludes the proof.

D EXAMPLE OF RISK-AVERSE

St. Petersburg paradox (Wikipedia, 2024). Assume that one must choose either one lottery from
the following two lotteries. (1) Lottery 1 (L1) has a 0.8 probability of earning nothing and the other
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0.2 probability of losing 1,000 dollars. (2) Lottery 2 (L2) has a 0.5 probability of losing 100 dollars
and the other 0.5 probability of losing 300 dollars.

It is easy to show that L1 and L2 have the same expected outcome that 0.8 × 0 − 0.2 × 1000 =
−0.5× 100− 0.5× 300 = −200. However, risk-averse people will choose L2 as they do not want
to take the risk of losing 1,000 dollars.

Computationally, assume the person has 1,001 dollars in total and the utility function is ln(Y ) (Debreu
et al., 1954), where Y is the wealth. The utility function measures happiness. It is a concave function
(such as ln(Y )) because people are happier if they are wealthier (ln′(Y ) > 0) but the increment of
happiness decreases as the wealth increases (ln′′(Y ) < 0).

The weighted utility of L1 and L2 are as follows

U(L1) = 0.8× ln(1001) + 0.2× ln(1) ≈ 5.53,

U(L2) = 0.5× ln(901) + 0.5× ln(701) ≈ 6.68.

Based on the weighted utility, risk-averse people will choose L2.

Link the lottery example to Example 2 in Section 4.1.2. Because of the low-entropy setting, sampling
B results in a huge loss in text quality. Suppose we treat sampling A as earning nothing and sampling
B as losing 1,000 for text quality. In this case, we should minimize the risk of sampling B. Also in this
case, the two unbiased watermarks in Example 2 can be viewed as L1 and L2 in the lottery example.
Sampling B may not be a big issue in high-entropy scenarios because it should not significantly harm
text quality as much as 1,000.

Algorithm 2 STA-M Text Generation
Input: A pretrained LLM PM , a key k ∈ K, the proportion of green list γ ∈ (0, 1), the number of
maximum samples per step M , a entropy threshold τ , and a prompt x−Np:0

1: for t = 1, 2, . . . , T do
2: Get the probability distribution of tokens pt = PM (·|x−Np:(t−1))
3: Compute the entropy τ t of pt
4: if τ t < τ then
5: M t = 1
6: else
7: M t = M
8: end if
9: Compute the hash of the last token xt−1. Partition the token set V to form the green G and red

R list based on key k, the hash, and the proportion γ
10: Initialize sample number m = 1
11: while m ≤M t and the next token xt not defined do
12: Sample the candidate token xt

c,m with pt

13: if xt
c,m ∈ G then

14: Accept the sampling, the next generated token xt = xt
c,m

15: else
16: m← m+ 1
17: end if
18: end while
19: if the next token xt not defined then
20: Sample xt from the distribution pt

21: end if
22: end for
Output: The generated text x1:T

E STA-M DETAILS

The detailed algorithm of STA-M is shown in Algorithm 2.

Remark 3. STA-M is not unbiased.
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We provide a counterexample to show that STA-M is biased. Assume that the vocabulary set consists
of four tokens {a, b, c, d}, and at a generation step, the raw probabilities output by the LLM for
these tokens are {pa = 1/2, pb = 1/3, pc = pd = 1/12}. The proportion of green list γ equals 0.5.
Therefore, with a key k, two tokens are randomly assigned to the green list, and the red list contains
the other two. For the uniformly distributed key k, there are six possible random partitions of green
and red lists: {a, b ∈ G; c, d ∈ R}, {a, c ∈ G; b, d ∈ R}, {a, d ∈ G; b, c ∈ R}, {b, c ∈ G; a, d ∈ R},
{b, d ∈ G; a, c ∈ R}, and {c, d ∈ G; a, b ∈ R}, each with a probability of 1/6. Next, considering the
token a, its adjusted probability under the STA-M watermarking method for each of the six partitions
is:

pw,k
a =



1
2 + 1

6 ×
1
2 + ( 16 )

2 × 1
2 + · · ·+ ( 16 )

M × 1
2 {a, b ∈ G; c, d ∈ R}

1
2 + 5

12 ×
1
2 + ( 5

12 )
2 × 1

2 + · · ·+ ( 5
12 )

M × 1
2 {a, c ∈ G; b, d ∈ R}

1
2 + 5

12 ×
1
2 + ( 5

12 )
2 × 1

2 + · · ·+ ( 5
12 )

M × 1
2 {a, d ∈ G; b, c ∈ R}

( 7
12 )

M × 1
2 {b, c ∈ G; a, d ∈ R}

( 7
12 )

M × 1
2 {b, d ∈ G; a, c ∈ R}

( 56 )
M × 1

2 {c, d ∈ G; a, b ∈ R}

.

With these adjusted probability values, the expectation of the adjusted probability over the six possible
partitions is easily derived as

Ek∼PK(k)

[
pw,k
a

]
=

1

12

[
6

5

(
1− (

1

6
)M+1

)
+ 2× 12

7

(
1− (

5

12
)M+1

)
+ 2× (

7

12
)M + (

5

6
)M
]

=
27

70
− 1

10
(
1

6
)M+1 − 2

7
(
5

12
)M+1 +

1

6
(
7

12
)M +

1

12
(
5

6
)M ,

which equals pa = 1/2 only when M = 1 and is less than 1/2 for M ≥ 2. Hence, this counterexam-
ple demonstrates that the STA-M method is biased.

F EXPERIMENT

F.1 EXPERIMENTAL SETUP

Datasets and metrics. We employed two public datasets which are C4 subset (Raffel et al., 2020;
Kirchenbauer et al., 2023a) for news-like text generation and HumanEval (Chen et al., 2021) for code
generation. Specifically, C4 represents the high-entropy generation task and HumanEval represents
the low-entropy generation task.

C4: We extracted random text segments from the news-like subset of the C4 dataset (Raffel et al.,
2020) following Kirchenbauer et al. (2023a). For each segment, we removed a fixed number of tokens
from the end and the removed tokens served as a ‘baseline’ completion. The remaining tokens were
used as the prompt.

HumanEval: HumanEval includes 164 Python problems with test cases and solutions written by
humans. We prompted the LLM with these problems. In particular, the prompt was devised as ‘Below
is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction: Complete the following Python code without any tests or explanation [INPUT] ###
Response:’.

We evaluated the performance of different watermarks on text quality and watermark strength. For
watermark strength, we implemented the z-test for all baselines and our methods. We set the z
threshold as 2 and 2.5. With z ≥ 2, we are more than 97.7% confident that the text is watermarked
based on the one-tail test.

For text quality, we employed different metrics for different datasets. For the C4 dataset, we utilized
perplexity (PPL) and coherence (Gao et al., 2021) to measure the text quality. For HumanEval, we
employed PPL and pass@k score of the code (Chen et al., 2021). The pass@k score measures the
normalized percentage of solved problems in HumanEval. Formally, the pass score is calculated as

pass@k = EProblems
[
1−

Ck
n−c

Ck
n

]
,

where c is the number of passed codes among k generations.
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Baselines. We compared against biased and unbiased watermarks in terms of text quality and
watermark strength. For further details of baselines, we refer readers to Appendix B. We implemented
all LLMs with the Hugging Face library (Wolf et al., 2019). All watermark benchmarks including
KGW, RDW, γ-reweight, and Dipmark were implemented using their public codes.

Implementation details. For all baselines and our methods, we utilized multinomial sampling during
text generation. For C4, we employed LLaMA-2-7B as our generative LLM (Touvron et al., 2023).
Following previous work (Kirchenbauer et al., 2023a), we continued to sample prompts from C4
until we had generated at least 500 text sequences, each consisting of T = 200 ± 5 tokens. We
leveraged LLaMA-2-13B to compute the perplexity of the generated texts. For HumanEval, we
applied CodeLLaMA-7B-Instruct (Roziere et al., 2023) as the generative LLM to generate codes for
all Python problems. We also leveraged LLaMA-2-13B to compute the perplexity. All experiments
were conducted on a single Nvidia A100 GPU with 80GB memory.

(a) STA-4 on C4 (b) STA-8 on C4

(c) STA-16 on C4 (d) STA-4 on HumanEval

(e) STA-8 on HumanEval (f) STA-16 on HumanEval

Figure 1: Performance of STA-M w.r.t. τ

F.2 ROBUSTNESS CHECK ON ENTROPY THRESHOLD PARAMETER

In this section, we conducted a robustness check on the parameter τ in STA-M. In particular, we
set the low entropy threshold τ from 0 to 2.1 with an interval of 0.15. At each generation step, we
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Table 6: Examples of STA-generated Texts for C4

Prompt Human-written STA-1 generated STA-16 generated

[. . . ] Single taxpayers who
are eligible to participate in
a workplace retirement plan
are also eligible to make
a tax-deductible contribution
to an IRA if their adjusted
gross income is below $64,000
($103,000 for marrieds) in
2019. This is up from $63,000
(singles) and $101,000 (mar-
rieds) in 2018. This deduction
is phased out when AGI is be-
tween $64,000

and $74,000 (singles) and
$103,000 to $123,000 (mar-
rieds). The income range for
making contributions to a Roth
IRA in 2019 is $122,000 to
$137,00 (singles and heads of
households) and $193,000 to
$203,000 (marrieds). The 2019
income limit for the Savers
Credit (also called the retire-
ment savings contributions tax
credit), which is for low- to
middle-income workers who
contribute to a retirement plan
or IRA, [. . . ]

(PPL:3.09) and $74,000 for sin-
gles ($103,000 and $123,000
for marrieds, respectively).
IRA contributions can be made
until the 2018 tax-return dead-
line, April 15, 2018, for those
that filed an extension. How-
ever, you’ll need to make these
contributions with the 2018 de-
duction in mind. This means
you must make IRA contribu-
tions no later than Dec. 31,
2018, to benefit on your 2018
return. [. . . ]

(PPL:3.11) and $74,000
($103,000 and $123,000 for
marrieds) and fully elimi-
nated when AGI exceeds
$74,000 (marrieds phase out at
$123,000). If you’re not able to
participate in a 401(k) or other
workplace retirement plan, you
may qualify to deduct your
total IRA contributions even if
your income exceeds certain
amount if you meet certain
conditions (a deductible
contributions means you won’t
owe tax on the contributions).
[. . . ]

[. . . ] Thomas will be respon-
sible for overseeing Micron’s
solid state storage business that
ranges from hard disk drive
replacements with solid state
drives (SSDs) to enterprise-
class storage solutions. He
brings more than 30 years of
experience to Micron and most
recently served as the vice pres-
ident of Enterprise Storage for

Micron’s common stock is
traded on the NASDAQ under
the MU symbol. To learn more
about Micron Technology, Inc.,
visit www.micron.com. Mi-
cron and the Micron orbit logo
are trademarks of Micron Tech-
nology, Inc. All other trade-
marks are the property of their
respective owners. [. . . ]

(PPL:3.25) the Americas re-
gion for Seagate Technology.
He is a senior executive level
leader with a proven track
record in defining strategy that
drives revenue, profit and new
technology execution. ”Micron
is thrilled to have Darren as
part of our team,” said Mary
Jane Raymond, . [. . . ]

(PPL:4.45) Fusion I/O, LLC.
Before that, Thomas was at
Western Digital Corporation
where he was a progressive ex-
ecutive, holding various man-
agement roles since 2008, most
recently as its executive vice
president of storage technology.
[. . . ]

[. . . ] Sanabia has benefited
from the two times Miami’s of-
fense has given its starters de-
cent run support, including his
last outing against Washington.
The 24-year-old allowed two
runs and six hits over six in-
nings in Tuesday’s 8-2 victory
over the Nationals. He tossed
six scoreless frames in

his only road start against the
New York Mets, but is allow-
ing left-handed hitters to bat 8-
for-24 against him - a troubling
trend against a Reds team that
features Choo, Votto and Jay
Bruce at the top of the order.
[. . . ]

(PPL:4.30) his prior start at
Colorado. Sanoobia is 3-4 with
a 4.53 ERA in 13 starts for
the Marlins, who are off to the
second-worst start in franchise
history at 5-13. Johnny Cueto
(2-3, 2.63 ERA) was hit around
for five earned runs over 6 2/3
innings in a loss to Colorado
last Saturday. [. . . ]

(PPL:5.30) a 5-1 home loss to
the L.A. Dodgers eight days
earlier. Reds rookie Anthony
DeSclafani produced an excel-
lent performance the last time
he stepped onto Great Ameri-
can Ball Park. The young right-
hander used excellent com-
mand of his off-speed pitches
to strike out eight [. . . ]

sampled at most 4, 8, and 16 times (i.e., STA-4, STA-8, and STA-16) when the entropy was above
the threshold τ . Figure 1 shows text quality and watermark strength of STA-M with different τs.
As depicted, different τs do not affect the watermark strength significantly for C4 because C4 is
a high-entropy dataset. Also, we observe a decrease in PPL when we increase τ in Figure 1a, 1b,
and 1c. The reason is that by setting up a higher entropy threshold, fewer generation steps will
apply the STA-M strategy, making the watermarking method more similar to STA-1. According to
Figure 1d, 1e, and 1f, we observe a general increase of watermark strength if we have a larger τ
because we will have more green list tokens if we sample M times instead of once. However, higher
watermark strength leads to a lower pass@1 score, which is related to the text quality (Kirchenbauer
et al., 2023a). We chose the Pareto optimal of each dataset as our final parameter for each dataset.
Specifically, we selected τ = 1.35 for C4 and τ = 1.95 for HumanEval.

F.3 EXAMPLES OF STA-GENERATED TEXTS

We present examples of STA-generated texts for C4 and HumanEval in Table 6 and Table 7, respec-
tively. Also, we report the PPL of the generated text, and whether the code is passed specifically for
HumanEval.

F.4 ATTACKING WATERMARKS

We introduce the implementation of different attacks as follows. For the copy-paste attack, we
randomly replaced 25% of tokens in the watermarked text with tokens from non-watermarked text
generated from the same prompt (Kirchenbauer et al., 2023a). For the GPT-3.5 attack, we utilized
the prompt ‘Rewrite the following paragraph: [INPUT]’ for GPT-3.5. For DIPPER-1 (Krishna
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Table 7: Examples of STA-generated Texts for HumanEval

Prompt Canonical Solution STA-1 generated STA-16 generated

from typing import List
def filter by prefix (strings:
List[str], prefix: str) ->
List[str]: ””” Filter an
input list of strings only
for ones that start with a
given prefix. >>> fil-
ter by prefix([], ’a’) [] >>>
filter by prefix([’abc’, ’bcd’,
’cde’, ’array’], ’a’) [’abc’,
’array’] ”””

return [x for x in strings if
x.startswith(prefix)]

(Pass, PPL:1.92) from typing
import List
def filter by prefix (strings:
List[str], prefix: str) ->
List[str]: ””” Filter an
input list of strings only
for ones that start with
a given prefix. >>>
filter by prefix([], ’a’) []
>>> filter by prefix([’abc’,
’bcd’, ’cde’, ’array’], ’a’)
[’array’, ’abc’] ””” return
[word for word in strings if
word.startswith(prefix)]

(Pass, PPL:2.18) from typing
import List
def filter by prefix (strings:
List[str], prefix: str) ->
List[str]: ”””* Filter an input
list of strings only for ones that
start with a given prefix. In-
put: ‘strings = [”abc”, ”bcd”,
”cde”, ”array”]‘, ‘prefix = ’a’‘
Output: ‘[”abc”, ”array”]‘ ”””
return [word for word in strings
if word.startswith(prefix)]

from typing import List
def intersperse (numbers:
List[int], delimeter: int) ->
List[int]: ””” Insert a number
’delimeter’ between every
two consecutive elements of
input list ‘numbers’ >>>
intersperse([], 4) [] >>>
intersperse([1, 2, 3], 4) [1, 4, 2,
4, 3] ”””

if not numbers: return []
result = []
for n in numbers[:-
1]: result.append(n) re-
sult.append(delimeter)
result.append(numbers[-1])
return result

(Not pass, PPL:2.45) def inter-
sperse (numbers: List[int], de-
limeter: int) -> List[int]: ”””
Insert a number ’delimeter’ be-
tween every two consecutive el-
ements of input list ‘numbers’
>>> intersperse([], 4) []
>>> intersperse([1, 2, 3], 4)
[1, 4, 2, 4, 3] ””” answer=[] for
i in range(0,len(numbers),1):
answer = answer + [ num-
bers[i] ] answer = answer + [
delimeter ] return answer

(Not pass, PPL:3.38) Maybe
you meant () -> List[int]

def is prime(n): ”””Return true
if a given number is prime, and
false otherwise. ”’

if n ¡ 2: return False for k in
range(2, n - 1): if n % k == 0:
return False return True

(Pass, PPL:1.94) “‘python def
is prime(n):
if n == 1: return False
for i in range(2, n): if n % i ==
0: return False
return True

(Pass, PPL:1.78) def
is prime(n): if n == 1:
return False for i in range(2,
n): if n % i == 0: return False
return True
if name == ’ main ’: im-
port doctest doctest.testmod()

et al., 2024), we set the lexical diversity to 60 without considering order diversity. Additionally, we
increased the order diversity by 20 for DIPPER-2 following previous work (Liu et al., 2023a).

G RELATED WORK

Existing white-box watermarking techniques fall into two categories: watermarking during logits and
probabilities generation, and watermarking by controlling sampling strategies.

Watermarking during logits and probabilities generation. This category of watermarking methods
inserts watermarks into LLMs by artificially adjusting the raw logits or probabilities generated by the
LLM. Among this category, Kirchenbauer et al. (2023a) propose the first watermarking method based
on logits adjustment. Their approach randomly partitions the vocabulary set into a green and a red list
at each generation step, increasing the logits of green list tokens while keeping red list tokens’ logits
fixed. Lee et al. (2023) extend the green and red list-based watermarking method to low-entropy
scenarios. They adjust the logits only during high-entropy generation steps, leaving the raw logits
unchanged for low-entropy steps. Ren et al. (2023) improve the vocabulary set partition process by
determining the green and red lists based on semantic embeddings of preceding tokens rather than
their hash values. Fernandez et al. (2023) propose a multi-bit watermarking method that generates
a multi-dimensional vector at each generation step, which is utilized to modify logits produced by
the original LLM. Their approach allows embedding any bit of watermarking information, up to the
dimension of the vector used in the logits adjustment. Yoo et al. (2023) develop a multi-bit method by
extending the two-list partition idea to multi-list partitions. At each generation step, the vocabulary
set is divided into multiple lists. Based on the message to be inserted, the logits for tokens in a
selected list are increased, while the token logits in all other lists remain unchanged.

Instead of splitting the vocabulary set into different lists, Hu et al. (2024) introduce a method that
randomly shuffles the order of all token probabilities within the interval [0, 1], setting the probabilities
in the first half of the interval to 0 and doubling those in the second half. During the detection phase,
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a likelihood ratio test examines the significance of the likelihood that the given text is generated with
the adjusted probability distribution. Wu et al. (2024) further generalizes this method by introducing
a hyperparameter α ∈ [0, 0.5], which controls the two cutoff points α and 1− α within the interval
[0, 1]. The probability masses for the three resulting sub-intervals are adjusted accordingly.

Watermarking by controlling sampling strategies. This category of watermarking methods inserts
watermarks into the token sampling process by using watermark information to control the sampling
of candidate tokens. For example, Christ et al. (2023) introduce a watermarking method that represents
each token in the vocabulary set as a binary string of 0s and 1s. Next, a sequence of values from 0 to 1
is sampled uniformly. These values guide the token sampling process: if the predicted probability for
a position in the binary string is larger than the corresponding pseudo-random value, that position is
assigned a 1; otherwise, it is assigned a 0. Once all positions are determined, the token corresponding
to the resulting binary string is sampled. Additionally, previous work (Kuditipudi et al., 2023) use
a sequence of values randomly sampled from a uniform distribution between 0 and 1. The value
controls the token sampling process through a decoder function, where the decoder function varies
based on the sampling strategy. Hou et al. (2023) sample new sentences according to the original
LLM until a sentence’s semantic value falls into the acceptance region. The acceptance region is
predefined by randomly splitting the space of semantic embedding according to the context and the
key.
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