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Abstract. In clinical practice, CT scans are frequently employed as the
primary imaging modality for detecting prevalent tumors arising from
the abdominal organs. Hence, the accomplishment of simultaneous or-
gan segmentation and pan-cancer segmentation in abdominal CT scans
holds significant importance in decreasing the workload of clinical prac-
titioners. To maximize the utilization of partially labeled and unlabeled
data, a iterative training strategy through a semi-supervised approach
based on pseudo labels is employed in this work. Furthermore, to re-
duce parameter size of model and increase efficiency of GPU utilization,
the proposed method is built upon the pocket U-Net architecture. The
methodology involves a cascaded network consisting of two parts: ini-
tially, a segmentation network trained on labeled data refines the low-
resolution pocket U-Net to reduce image dimensions; subsequently, the
high-resolution pocket U-Net conducts intricate segmentation to pre-
cisely delineate organ and tumor regions. As demonstrated by the eval-
uation outcomes on the FLARE 2023 validation dataset, the proposed
method achieves an average dice similarity coefficient (DSC) of 88.94%
for organs and 15.92% for tumors, along with normalized surface dice
(NSD) values of 93.31% for organs and 0.0816% for tumors, with minimal
parameter size. Furthermore, the average inference time is 82.61 seconds,
with an average maximum GPU memory usage of 3560M. Codes are
available at https://github.com/wt812549723/FLARE2023_solution.

Keywords: Organ and pan-cancer segmentation · Semi-supervised learn-
ing · Minimal parameter size

1 Introduction

Accurate and fast segmentation of abdominal organs and pan-cancer in ab-
dominal CT scans is crucial to reduce the clinician’s workload and improve
the efficiency of diagnosis and treatment. However, abdominal organ and pan-
cancer segmentation faces several challenges: (1) Obtaining labels is both time-
consuming and labor-intensive. (2) A significant amount of unlabeled and par-
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tially labeled data is available to improve segmentation performance. (3) Bal-
ancing segmentation performance, rapid inference speed, and efficient GPU uti-
lization. (4) The segmentation performance of certain organs and pan-cancers is
limited by the variations in size and morphology among different organs and the
morphological differences and heterogeneity of tumors within various organs.

As a result of the unlabeled and partially labeled data available, the proposed
method adopts a semi-supervised learning framework. Semi-supervised meth-
ods can be categorized into three groups: pseudo-label-based [5,10], consistency-
based [3,11], and hybrid methods [19]. Among these methods, pseudo-label based
methods are often devoid of introducing supplementary parameters and bur-
dens to the model. In consideration of the model size and inference speed, the
proposed method incorporates a pseudo-label based semi-supervised learning
framework. Moreover, many existing medical segmentation models have been
extended upon the foundation of nnU-Net, which has proven to be an excel-
lent solution capable of addressing a variety of medical segmentation tasks [9].
However, the default configuration of nnU-Net employs the traditional U-Net
architecture, often leading to concerns about large model parameter sizes and
slow inference speed. Furthermore, nnU-Net was originally designed for fully su-
pervised segmentation tasks, necessitating extensions to incorporate aspects of
semi-supervised learning.

Therefore, a semi-supervised learning based cascaded pocket U-Net is pro-
posed to achieve abdominal multi-organ and pan-cancer segmentation. First,
the proposed method builds on the nnU-Net framework and extends it to in-
troduce a pseudo-label-based semi-supervised learning strategy through itera-
tive training. This strategy effectively utilizes a substantial amount of unlabeled
and partially labeled data. In addition, the use of the pocket U-Net reduces
the network parameters, thereby decreasing the GPU utilization and increasing
the compatibility with a wide range of devices. Subsequently, a cascaded net-
work is employed to accelerate segmentation: the first-tier network performs a
region-of-interest (ROI) segmentation to reduce image dimensions, followed by
the second-tier network to perform a refined segmentation. Finally, the proposed
method achieves efficient segmentation of abdominal organs and pan-cancer.

The main contributions of the proposed method are as follows:

– We integrated a semi-supervised training strategy based on pseudo labels
into the nnU-Netv2 framework.

– We implemented a two-stage cascaded architecture to enhance the inference
speed.

– We employed the Pocket U-Net architecture as the backbone network, result-
ing in a significant reduction in the model’s parameter size. This optimization
ensures efficient GPU utilization.



2 Method

2.1 Preprocessing

The preprocessing steps in our proposed method align with the approach for
handling CT data as defined by nnU-Net [9]. These steps encompass the following
procedures: (a) the exclusion of irrelevant background regions through cropping;
(b) the application of CT value truncation to eliminate superfluous information;
(c) the utilization of mean and standard deviation computed from all training
samples for normalization; (d) the resampling of all images to ensure a consistent
target (targets are set to 4.0mm×1.2mm×1.2mm and 2.5mm×0.8mm×0.8mm
for ROI segmentation network and detail segmentation network in the proposed
method, respectively).

2.2 Proposed Method

Pocket U-Net As shown in Fig. 1, traditionally, in the U-Net architecture, it
is customary to double the number of feature channels following each downsam-
pling operation. However, this practice significantly contributes to the increase
in the parameter size of model. Moreover, previous research in medical image
segmentation has demonstrated that controlling the expansion of feature chan-
nels can maintain satisfactory performance while effectively managing parameter
size [2]. Inspired by this study, a specialized variant of U-Net, named as Pocket
U-Net, was introduced as the backbone network. The difference between the
traditional U-Net and Pocket U-Net is illustrated in Fig. 1, wherein Pocket U-
Net maintains a consistent number of feature channels across all scales, thereby
ensuring optimal GPU utilization.

ROI Segmentation Network Owing to the localization of major abdominal
organs within a specific region, known as the ROI, voxels outside the ROI in-
troduce additional complexity during both model training and inference. Thus,
the first part of the cascaded network is designed with an ROI segmentation
network to identify the ROI where abdominal organs are present, thereby reduc-
ing computational overhead. Specifically, all organ and tumor regions are set as
foreground regions of the same labels (all labels are set to 1 in our method), and
a pocket U-Net is employed to identify all foreground regions. Considering the
relatively straightforward nature of this task and its low precision requirements,
a light pocket U-Net was trained using only fully labeled data.

Herein, a light Pocket U-Net implies smaller target spacing (i.e., reduced
image dimensions), small patch sizes, shallow depth, and multiple downsampling
operations in z-axis.

Detail Segmentation Network Once the ROI has been delineated by the ROI
segmentation network, the image is cropped based on the ROI. Subsequently,
the cropped image is then input to the detail segmentation network. In contrast
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Fig. 1. Network Architecture. In contrast to the conventional U-Net, Pocket U-Net
primarily modifies the number of channels, resulting in a substantial reduction of model
parameters.



to the ROI segmentation network, the detail segmentation network utilizes a
larger target spacing to retain finer details in the image. Furthermore, the detail
segmentation network employs larger patch sizes and reduces the frequency of
downsampling operations, facilitating the network in capturing both fine-grained
details and contextual information. Another notable difference from the ROI
segmentation network is that while the ROI segmentation network is trained
once using fully labeled data, the detail segmentation network engages in semi-
supervised learning and undergoes multiple iterations of training utilizing all
available data.

Semi-supervised learning Semi-supervised learning plays a pivotal role in
effectively harnessing partially labeled and unlabeled data [18,19]. The specific
implementation of semi-supervised learning can be illustrated by the detail seg-
mentation network, which involves a five-step process. First, the detail segmen-
tation network undergoes initial training using fully labeled images. Following
this initial training phase, the network is then deployed to generate initial pseudo
labels for both partially labeled and unlabeled data. Second, in the second round
of training for the detail segmentation network, in addition to the fully labeled
data, partial labeling and unlabeled data are incorporated. Notably, a additional
process is applied to the partially labeled data in this round. Specifically, the
unlabeled portions within the partially labeled data are supplemented with the
generated initial pseudo labels, whereas the labeled portions remain unaltered
to ensure label accuracy. Meanwhile, the unlabeled data are entirely assigned
pseudo labels. Similarly, the detail segmentation network trained in the second
round is utilized to generate new pseudo labels. Third, building upon the pseudo
labels generated in the second round, the procedure described in the second step
is reiterated to conduct a third round of training. Furthermore, the detail seg-
mentation network obtained from the third round of training can likewise be
employed for pseudo label generation. Fourth, relying on the pseudo labels de-
rived from the first three rounds of training, partially labeled and unlabeled data
with pseudo labels for the final training are selected based on computed uncer-
tainty scores [8]. Specifically, uncertainty scores are calculated by measuring
the average overlap between the pseudo labels obtained in the first and second
rounds and between the pseudo labels obtained in the second and third rounds.
A higher degree of overlap corresponds to a lower uncertainty score, and the
mathematical formula for calculating these scores is expressed as follows:

us =
1

3

3∑
i=1

SUM(vx,y,z
i ̸= vx,y,z

i−1 )

SUM(vx,y,z
i > 0)

(1)

where us denotes the uncertainty scores, vx,y,zi denotes the value of voxels with
coordinates (x, y, z) in the pseudo label obtained through ith round of training,
and SUM(·) denotes the sum of the number of voxels that meet the condition.
Based on a pre-defined uncertainty score threshold, a selection was made to in-
clude partially labeled and unlabeled data for the final training. Additionally,



the pseudo labels generated in the third round are utilized as labels for the unla-
beled portions of these data, thus converting them into fully labeled data. Fifth
and finally, the selected partially labeled and unlabeled data, now equipped with
pseudo labels, are used in conjunction with fully labeled data for the final train-
ing of the detail segmentation network. The final trained detail segmentation
network is seamlessly integrated with the ROI segmentation network to form
the ultimate model.

Loss Function Given the iterative training strategy used in semi-supervised
learning, there is no requirement to introduce an additional loss specifically for
semi-supervised learning purposes. Herein, a combination of the cross-entropy
loss and Dice loss was utilized. This loss functions are presently well-established
and extensively applied in the field of medical image segmentation [9,11].

2.3 Post-processing

To prevent isolated errors in the foreground regions, a connected component
analysis was employed for segmentation result of each organ. Specifically, only
the largest connected component was retained to improve performance. Addi-
tionally, since the images are cropped between the ROI segmentation network
and the detail segmentation network, it is necessary to reconstruct the images
in post-processing based on the cropping coordinates.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [13][14],
aiming to aim to promote the development of foundation models in abdominal
disease analysis. The segmentation targets cover 13 organs and various abdom-
inal lesions. The training dataset is curated from more than 30 medical centers
under the license permission, including TCIA [4], LiTS [1], MSD [17], KiTS [6,7],
and AbdomenCT-1K [15]. The training set includes 4000 abdomen CT scans
where 2200 CT scans with partial labels and 1800 CT scans without labels.
Among them, the 2200 partially labeled CT scans contain partially labeled data
for all organs and tumors, i.e., fully labeled data. The validation and testing
sets include 100 and 400 CT scans, respectively, which cover various abdominal
cancer types, such as liver cancer, kidney cancer, pancreas cancer, colon cancer,
gastric cancer, and so on. The organ annotation process used ITK-SNAP [20],
nnU-Net [9], and MedSAM [12].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.



3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04.6 LTS
CPU Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) One GeForce RTX 2080 Ti 11G
CUDA version 11.7
Programming language Python 3.9
Deep learning framework torch 2.0.1
Code https://github.com/wt812549723/FLARE2023_solution

Training protocols The handling of unlabeled images and partially labeled
data has been comprehensively explained in Section 2.3. Additionally, the data
augmentation techniques employed in our proposed method align with the de-
fault settings utilized in nnU-Net [9], encompassing rotations, scaling, Gaus-
sian noise, Gaussian blur, adjustments in brightness and contrast, simulation of
low resolution, gamma correction, and mirroring. Furthermore, both the patch
sampling strategy and the criteria for optimal model selection are entirely in
accordance with the guidelines established by nnU-Net [9]. To further enhance
segmentation efficiency, testtime augmentation (TTA) has been disabled during
inference, and the step size for sliding window prediction has been set to 1.

Table 2. Training protocols of ROI segmentation network.

Network initialization “He" normal initialization
Batch size 2
Patch size 32×224×224
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule halved by 200 epochs
Training time 35.3 hours
Loss function Cross-Entropy loss + Dice loss
Number of model parameters 5.76M1

Number of flops 485.17G2

https://github.com/wt812549723/FLARE2023_solution


Table 3. Training protocols for detail segmentation network.

Network initialization “He" normal initialization
Batch size 2
Patch size 48×224×224
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule halved by 200 epochs
Loss function Cross-Entropy loss + Dice loss
Training time 44.0 hours
Number of model parameters 7.97M3

Number of flops 2.77T 4

4 Results and discussion

Table 4. Quantitative evaluation results.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 98.12 ± 0.83 98.71 ± 1.82 97.97 98.38 75.37 75.40
Right Kidney 88.94 ± 21.75 89.54 ± 21.63 90.42 90.78 73.35 73.59
Spleen 94.38 ± 11.86 94.96 ± 11.89 93.91 94.84 72.70 73.34
Pancreas 85.72 ± 5.73 95.84 ± 3.21 84.17 94.65 68.77 74.35
Aorta 96.69 ± 3.19 98.46 ± 3.87 96.91 98.67 76.67 77.95
Inferior vena cava 92.32 ± 4.67 93.03 ± 5.44 91.90 92.46 72.51 73.35
Right adrenal gland 88.64 ± 4.71 97.34 ± 2.64 88.22 97.07 66.57 73.17
Left adrenal gland 84.69 ± 9.32 93.82 ± 8.03 84.31 93.22 66.47 72.77
Gallbladder 81.20 ± 26.12 81.33 ± 27.32 82.53 82.65 62.37 63.07
Esophagus 80.21 ± 16.40 89.39 ± 15.51 81.71 91.19 68.28 74.51
Stomach 92.12 ± 6.40 94.61 ± 7.12 92.43 94.75 72.16 73.62
Duodenum 80.58 ± 8.53 92.68 ± 6.22 80.54 92.52 65.21 73.27
Left kidney 90.27 ± 16.67 91.42 ± 15.77 91.26 91.82 72.47 73.00
Tumor 16.27 ± 21.01 8.87 ± 17.54 15.92 8.16 15.67 0.06
Average 88.76 ± 15.77 93.16 ± 15.77 88.94 93.31 70.22 73.18

4.1 Quantitative results on validation set

Based on the results presented in Table 4, our method achieved notable perfor-
mance in organ segmentation on the publicly available validation dataset. Specif-
ically, it attained an average DSC of 88.76% and an average NSD of 93.16%.
However, for tumor segmentation on the same dataset, our method achieved a



Table 5. Comparison results on the public validation set, where “w/o” denotes “with-
out”.

Target The Proposed Method Pocket U-Net
(w/o unlabeled data)

DSC(%) NSD(%) DSC(%) NSD(%)
Liver 98.12 ± 0.83 98.71 ± 1.82 96.14 ± 4.87 95.78 ± 5.89
Right Kidney 88.94 ± 21.75 89.54 ± 21.63 90.24 ± 19.63 89.64 ± 20.27
Spleen 94.38 ± 11.86 94.96 ± 11.89 80.42 ± 24.33 78.94 ± 23.35
Pancreas 85.72 ± 5.73 95.84 ± 3.21 84.32 ± 8.80 94.91 ± 6.92
Aorta 96.69 ± 3.19 98.46 ± 3.87 96.41 ± 3.79 97.89 ± 4.80
Inferior vena cava 92.32 ± 4.67 93.03 ± 5.44 90.93 ± 7.29 91.03 ± 8.60
Right adrenal gland 88.64 ± 4.71 97.34 ± 2.64 86.44 ± 7.05 95.79 ± 5.32
Left adrenal gland 84.69 ± 9.32 93.82 ± 8.03 85.10 ± 8.30 94.03 ± 6.73
Gallbladder 81.20 ± 26.12 81.33 ± 27.32 73.26 ± 27.15 72.43 ± 27.92
Esophagus 80.21 ± 16.40 89.39 ± 15.51 80.56 ± 17.45 90.11 ± 16.71
Stomach 92.12 ± 6.40 94.61 ± 7.12 87.13 ± 13.60 89.64 ± 14.32
Duodenum 80.58 ± 8.53 92.68 ± 6.22 79.76 ± 10.87 92.90 ± 7.28
Left kidney 90.27 ± 16.67 91.42 ± 15.77 88.67 ± 19.06 87.46 ± 20.53
Tumor 16.27 ± 21.01 8.87 ± 17.54 39.26 ± 29.31 26.77 ± 22.11
Average 88.76 ± 15.77 93.16 ± 15.77 86.11 ± 6.37 90.04 ± 6.89

comparatively lower average DSC of 16.27% and a moderate average NSD of
8.87%. Furthermore, on the online validation dataset, our method consistently
demonstrated strong performance in organ segmentation, with an average DSC
of 88.76% and an average NSD of 93.16%. However, in the challenging task of tu-
mor segmentation on this dataset, our method achieved an average DSC of 15.92
and an average NSD of 8.16%. In addition, the post-processing method based
on the largest connected analysis method brought an improvement of 1.21% to
the model.

Analyzing these results reveals valuable insights. Our proposed method excels
in segmenting larger organs, such as the liver, spleen, and stomach, as well as in
delineating major blood vessels like the aorta and inferior vena cava. In contrast,
its performance appears less robust when applied to smaller organs such as the
gallbladder, esophagus, and duodenum. Notably, our method faces challenges
in tumor segmentation, likely attributed to the diverse nature of tumors, their
widespread distribution, and the absence of distinct concentration zones.

The comparison results indicate that the inclusion of unlabeled data has
yielded a favorable impact on organ segmentation. Surprisingly, however, unla-
beled data has adversely affected tumor segmentation, resulting in a significant
decline in tumor segmentation metrics. This phenomenon may be attributed to
the relatively low accuracy of tumor pseudo-labels, which introduced additional
noise into the model.



Table 6. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 54.24 3410 72616
0051 (512, 512, 100) 66.54 3710 94022
0017 (512, 512, 150) 92.46 3776 141352
0019 (512, 512, 215) 100.37 3546 148469
0099 (512, 512, 334) 117.00 3706 169899
0063 (512, 512, 448) 150.09 3770 224764
0048 (512, 512, 499) 169.41 3746 263733
0029 (512, 512, 554) 221.69 3960 392044

Case #FLARETs_0075 (slice #65)

Case #FLARETs_0038 (slice #177)

Case #FLARETs_0007 (slice #63)

CT Image Ground Truth The Proposed Method W/o Unlabeled Data

Case #FLARETs_0089 (slice #67)

Fig. 2. Two examples with good segmentation results (the above two rows) and two
examples with bad segmentation results (the following two rows) in the validation set.
Among these, the first column represents the original images, the second column shows
the gold standard, the third column displays the results of our proposed method, and
the fourth column demonstrates the outcomes of the method that does not utilize
unlabeled data. The red arrow indicates the improvement of semi-supervised training.



4.2 Qualitative results on validation set

Based on the results shown in Figure 2, we have observed that our approach
is not particularly sensitive to low-contrast tumor segmentation. The proposed
method tends to classify low-contrast tumors as normal regions or background.
Furthermore, while models that do not utilize unlabeled data perform signifi-
cantly better than the proposed method in terms of tumor segmentation metrics,
they also exhibit inaccuracies in tumor segmentation. In organ segmentation,
the introduction of unlabeled data has led to performance improvements. It can
be observed that our method performs better in spleen segmentation for Case
#FLARETs_0007 and Case #FLARETs_0038, as well as gallbladder segmenta-
tion for Case #FLARETs_0089. Hence, the primary limitation of our approach
lies in tumor segmentation.

4.3 Segmentation efficiency results on validation set

The segmentation efficiency results for the validation dataset are presented in
Table 5. These primarily include running time, GPU memory consumption, and
the area under the GPU Memory-Time curve. The shortest running time was
43.53 seconds, the longest was 221.69 seconds, with an average of 82.61 seconds.
GPU memory consumption ranged from a minimum of 3200MB to a maximum
of 4388MB, averaging at 3560MB. The area under the GPU Memory-Time curve
varied from a minimum of 53508MB to a maximum of 392044MB, with an aver-
age of 120090MB. Compared to traditional U-Net, our approach offers significant
advantages in terms of parameter size. In the ROI segmentation network, the
parameter size for the traditional U-Net constructed by nnU-Net is 123.61M,
whereas the parameter size of our method is only 5.76M. As for detail segmen-
tation network, the parameter sizes of traditional U-Net and our method are
235.60M and 7.97M, respectively.

4.4 Results on final testing set

As shown in Table 4, our method consistently demonstrated perform an average
DSC of 88.76% and an average NSD of 93.16% in organ segmentation. In the
challenging task of tumor segmentation on this dataset, our method achieved an
average DSC of 15.92% and an average NSD of 8.16%.

4.5 Limitation and future work

The current method exhibits notable limitations in tumor segmentation, partic-
ularly in the identification of widely distributed and variably-sized abdominal
tumors. In essence, the challenge of pan-cancer segmentation persists. Moreover,
there is ample room for enhancing the model’s efficiency. Despite the significant
advantage in terms of model parameters, several areas can still be fine-tuned
to further reduce inference time. Furthermore, there is a pressing need to ex-
plore novel semi-supervised learning approaches to fully exploit the potential of
unlabeled data in tumor segmentation.



5 Conclusion

While our proposed method has demonstrated promising results in organ seg-
mentation, it encounters substantial challenges in the realm of tumor segmenta-
tion. Surprisingly, the integration of unlabeled data had a detrimental impact on
tumor segmentation. Furthermore, despite the minimal parameter count of our
method, there is potential for further enhancement in segmentation efficiency
across various aspects.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2023 challenge has not
used any pre-trained models nor additional datasets other than those provided
by the organizers. The proposed solution is fully automatic without any manual
intervention. We thank all the data owners for making the CT scans publicly
available and CodaLab [16] for hosting the challenge platform.

References

1. Bilic, P., Christ, P., Li, H.B., Vorontsov, E., Ben-Cohen, A., Kaissis, G., Szeskin, A.,
Jacobs, C., Mamani, G.E.H., Chartrand, G., Lohöfer, F., Holch, J.W., Sommer, W.,
Hofmann, F., Hostettler, A., Lev-Cohain, N., Drozdzal, M., Amitai, M.M., Vivanti,
R., Sosna, J., Ezhov, I., Sekuboyina, A., Navarro, F., Kofler, F., Paetzold, J.C.,
Shit, S., Hu, X., Lipková, J., Rempfler, M., Piraud, M., Kirschke, J., Wiestler, B.,
Zhang, Z., Hülsemeyer, C., Beetz, M., Ettlinger, F., Antonelli, M., Bae, W., Bellver,
M., Bi, L., Chen, H., Chlebus, G., Dam, E.B., Dou, Q., Fu, C.W., Georgescu, B.,
i Nieto, X.G., Gruen, F., Han, X., Heng, P.A., Hesser, J., Moltz, J.H., Igel, C.,
Isensee, F., Jäger, P., Jia, F., Kaluva, K.C., Khened, M., Kim, I., Kim, J.H., Kim,
S., Kohl, S., Konopczynski, T., Kori, A., Krishnamurthi, G., Li, F., Li, H., Li, J.,
Li, X., Lowengrub, J., Ma, J., Maier-Hein, K., Maninis, K.K., Meine, H., Merhof,
D., Pai, A., Perslev, M., Petersen, J., Pont-Tuset, J., Qi, J., Qi, X., Rippel, O.,
Roth, K., Sarasua, I., Schenk, A., Shen, Z., Torres, J., Wachinger, C., Wang, C.,
Weninger, L., Wu, J., Xu, D., Yang, X., Yu, S.C.H., Yuan, Y., Yue, M., Zhang,
L., Cardoso, J., Bakas, S., Braren, R., Heinemann, V., Pal, C., Tang, A., Kadoury,
S., Soler, L., van Ginneken, B., Greenspan, H., Joskowicz, L., Menze, B.: The liver
tumor segmentation benchmark (lits). Medical Image Analysis 84, 102680 (2023)
6

2. Celaya, A., Actor, J.A., Muthusivarajan, R., Gates, E., Chung, C., Schellingerhout,
D., Riviere, B., Fuentes, D.: Pocketnet: A smaller neural network for medical image
analysis. IEEE Transactions on Medical Imaging 42(4), 1172–1184 (2023) 3

3. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation
with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 2613–2622 (June 2021) 2

4. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S.,
Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., Prior, F.: The cancer imaging
archive (tcia): maintaining and operating a public information repository. Journal
of Digital Imaging 26(6), 1045–1057 (2013) 6



5. He, R., Yang, J., Qi, X.: Re-distributing biased pseudo labels for semi-supervised
semantic segmentation: A baseline investigation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 6930–6940 (October
2021) 2

6. Heller, N., Isensee, F., Maier-Hein, K.H., Hou, X., Xie, C., Li, F., Nan, Y., Mu,
G., Lin, Z., Han, M., Yao, G., Gao, Y., Zhang, Y., Wang, Y., Hou, F., Yang, J.,
Xiong, G., Tian, J., Zhong, C., Ma, J., Rickman, J., Dean, J., Stai, B., Tejpaul,
R., Oestreich, M., Blake, P., Kaluzniak, H., Raza, S., Rosenberg, J., Moore, K.,
Walczak, E., Rengel, Z., Edgerton, Z., Vasdev, R., Peterson, M., McSweeney, S.,
Peterson, S., Kalapara, A., Sathianathen, N., Papanikolopoulos, N., Weight, C.:
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced
ct imaging: Results of the kits19 challenge. Medical Image Analysis 67, 101821
(2021) 6

7. Heller, N., McSweeney, S., Peterson, M.T., Peterson, S., Rickman, J., Stai, B.,
Tejpaul, R., Oestreich, M., Blake, P., Rosenberg, J., et al.: An international chal-
lenge to use artificial intelligence to define the state-of-the-art in kidney and kidney
tumor segmentation in ct imaging. American Society of Clinical Oncology 38(6),
626–626 (2020) 6

8. Huang, Z., Wang, H., Ye, J., Niu, J., Tu, C., Yang, Y., Du, S., Deng, Z., Gu, L.,
He, J.: Revisiting nnu-net for iterative pseudo labeling and efficient sliding win-
dow inference. In: MICCAI Challenge on Fast and Low-Resource Semi-supervised
Abdominal Organ Segmentation. pp. 178–189. Springer (2022) 5

9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18(2), 203–211 (2021) 2, 3, 6, 7

10. Li, Y., Chen, J., Xie, X., Ma, K., Zheng, Y.: Self-loop uncertainty: A novel pseudo-
label for semi-supervised medical image segmentation. In: Medical Image Comput-
ing and Computer Assisted Intervention–MICCAI 2020: 23rd International Confer-
ence, Lima, Peru, October 4–8, 2020, Proceedings, Part I 23. pp. 614–623. Springer
(2020) 2

11. Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., Martel, A.L.: Loss
odyssey in medical image segmentation. Medical Image Analysis 71, 102035 (2021)
2, 6

12. Ma, J., Wang, B.: Segment anything in medical images. arXiv preprint
arXiv:2304.12306 (2023) 6

13. Ma, J., Zhang, Y., Gu, S., An, X., Wang, Z., Ge, C., Wang, C., Zhang, F., Wang,
Y., Xu, Y., Gou, S., Thaler, F., Payer, C., Štern, D., Henderson, E.G., McSweeney,
D.M., Green, A., Jackson, P., McIntosh, L., Nguyen, Q.C., Qayyum, A., Conze,
P.H., Huang, Z., Zhou, Z., Fan, D.P., Xiong, H., Dong, G., Zhu, Q., He, J., Yang,
X.: Fast and low-gpu-memory abdomen ct organ segmentation: The flare challenge.
Medical Image Analysis 82, 102616 (2022) 6

14. Ma, J., Zhang, Y., Gu, S., Ge, C., Ma, S., Young, A., Zhu, C., Meng, K., Yang, X.,
Huang, Z., Zhang, F., Liu, W., Pan, Y., Huang, S., Wang, J., Sun, M., Xu, W., Jia,
D., Choi, J.W., Alves, N., de Wilde, B., Koehler, G., Wu, Y., Wiesenfarth, M., Zhu,
Q., Dong, G., He, J., the FLARE Challenge Consortium, Wang, B.: Unleashing
the strengths of unlabeled data in pan-cancer abdominal organ quantification: the
flare22 challenge. arXiv preprint arXiv:2308.05862 (2023) 6

15. Ma, J., Zhang, Y., Gu, S., Zhu, C., Ge, C., Zhang, Y., An, X., Wang, C., Wang, Q.,
Liu, X., Cao, S., Zhang, Q., Liu, S., Wang, Y., Li, Y., He, J., Yang, X.: Abdomenct-



1k: Is abdominal organ segmentation a solved problem? IEEE Transactions on
Pattern Analysis and Machine Intelligence 44(10), 6695–6714 (2022) 6

16. Pavao, A., Guyon, I., Letournel, A.C., Tran, D.T., Baro, X., Escalante, H.J., Es-
calera, S., Thomas, T., Xu, Z.: Codalab competitions: An open source platform to
organize scientific challenges. Journal of Machine Learning Research 24(198), 1–6
(2023) 12

17. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., Ronneberger, O.,
Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka,
J., Heckers, S.H., Jarnagin, W.R., McHugo, M.K., Napel, S., Vorontsov, E., Maier-
Hein, L., Cardoso, M.J.: A large annotated medical image dataset for the develop-
ment and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063
(2019) 6

18. Wang, E., Zhao, Y., Wu, Y.: Cascade dual-decoders network for abdominal organs
segmentation. In: MICCAI Challenge on Fast and Low-Resource Semi-supervised
Abdominal Organ Segmentation, pp. 202–213. Springer (2022) 5

19. Yang, X., Song, Z., King, I., Xu, Z.: A survey on deep semi-supervised learning.
IEEE Transactions on Knowledge and Data Engineering (2022) 2, 5

20. Yushkevich, P.A., Gao, Y., Gerig, G.: Itk-snap: An interactive tool for semi-
automatic segmentation of multi-modality biomedical images. In: Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society. pp.
3342–3345 (2016) 6



Table 7. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) Number 5
Author affiliations, Email, and ORCID Yes
Corresponding author is marked Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided Figure number 1
Pre-processing Page number 3
Strategies to use the partial label Page number 5
Strategies to use the unlabeled images. Page number 5
Strategies to improve model inference Page number 4
Post-processing Page number 5
Dataset and evaluation metric section is presented Page number 8
Environment setting table is provided Table number 1
Training protocol table is provided Table number 2/3
Ablation study Page number 5
Efficiency evaluation results are provided Table number 6
Visualized segmentation example is provided Figure number 2
Limitation and future work are presented Yes
Reference format is consistent. Yes


