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The accelerated adoption of digital pathology and advances in deep learning 
have enabled the development of robust models for various pathology 
tasks across a diverse array of diseases and patient cohorts. However, 
model training is often difficult due to label scarcity in the medical domain, 
and a model’s usage is limited by the specific task and disease for which 
it is trained. Additionally, most models in histopathology leverage only 
image data, a stark contrast to how humans teach each other and reason 
about histopathologic entities. We introduce CONtrastive learning from 
Captions for Histopathology (CONCH), a visual-language foundation model 
developed using diverse sources of histopathology images, biomedical text 
and, notably, over 1.17 million image–caption pairs through task-agnostic 
pretraining. Evaluated on a suite of 14 diverse benchmarks, CONCH can be 
transferred to a wide range of downstream tasks involving histopathology 
images and/or text, achieving state-of-the-art performance on histology 
image classification, segmentation, captioning, and text-to-image 
and image-to-text retrieval. CONCH represents a substantial leap over 
concurrent visual-language pretrained systems for histopathology, with 
the potential to directly facilitate a wide array of machine learning-based 
workflows requiring minimal or no further supervised fine-tuning.

The gold standard for the diagnosis of many diseases remains the exami-
nation of tissue by a pathologist. The recent rise of computational 
pathology1–4, which leverages artificial intelligence (AI) to solve prob-
lems in pathology, has demonstrated considerable advances across 
many tasks, including metastasis detection5, cancer subtyping6,7, sur-
vival prediction8–10, unknown primary origin site prediction11,12, image 
search13–16 and prediction of molecular alterations17,18, among other 
tasks19. Additionally, current strides in the field are made under the 

paradigm of developing models targeting specific tasks using large 
cohorts of labeled training examples, such as in lymph node metastasis 
detection20 and prostate cancer grading21,22. However, the process of 
data collection and annotation of whole-slide images (WSIs) is labor 
intensive and is not scalable to open-set recognition problems or rare 
diseases, both of which are common to the practice of pathology. 
With thousands of possible diagnoses and many other tasks, training 
separate models for every step of the pathology workflow is untenable. 
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state-of-the-art performance across all benchmarks relative to other 
visual-language foundation models (Fig. 1d), including PLIP54, Biomed-
CLIP44 and OpenAICLIP30, and it outperforms concurrent baselines, 
often by a large margin (Figs. 2–5).

Results
Zero-shot classification of diverse tissues and diseases
Contrastively aligned visual-language pretraining allows the model to 
be directly applied to downstream classification tasks without requiring 
further labeled examples for supervised learning or fine-tuning. This 
zero-shot transfer capability allows a single pretrained foundation 
model to be applied off the shelf to different downstream datasets with 
an arbitrary number of classes compared with the current paradigm 
of training a new model for every new task. While we do not expect 
zero-shot classification to currently be sufficiently accurate for most 
clinical use cases, in some tasks, we found CONCH to perform sur-
prisingly well, and it may serve as a strong baseline for conventional 
supervised learning, especially when training labels are scarce.

Given a task, we first represented the set of class or category names 
using a set of predetermined text prompts, where each prompt corre-
sponded to a class. An image was then classified by matching it with the 
most similar text prompt in the model’s shared image–text representa-
tion space (Fig. 2a; see Methods for details). In practice, there are often 
multiple ways to phrase the same concept in text (for example, ‘invasive 
lobular carcinoma (ILC) of the breast’ and ‘breast ILC’); therefore, we 
created an ensemble of multiple text prompts for each class during 
prediction, which was found to generally boost predictive perfor-
mance compared to using a single text prompt (Extended Data Fig. 2). 
Additionally, while previous studies44,54 primarily focused on classifi-
cation tasks at the region-of-interest (ROI) level, we also investigated 
the zero-shot capability of our model on gigapixel WSIs by leveraging 
MI-Zero56, which divides a WSI into smaller tiles and subsequently aggre-
gates individual tile-level scores into a slide-level prediction (Fig. 2b).

In total, we evaluated CONCH on four slide-level classification 
tasks: The Cancer Genome Atlas (TCGA) BRCA (invasive breast carci-
noma subtyping), TCGA NSCLC (non-small-cell lung cancer subtyping), 
TCGA RCC (renal cell carcinoma subtyping) and Dartmouth Hitchcock 
Medical Center (DHMC) LUAD (lung adenocarcinoma histologic pat-
tern classification) and three ROI-level tasks: CRC100k (colorectal 
cancer tissue classification), WSSS4LUAD (LUAD tissue classifica-
tion) and SICAP (Gleason pattern classification). We used balanced 
accuracy as the primary evaluation metric for TCGA NSCLC, TCGA 
RCC, TCGA LUAD, CRC100k and WSSS4LUAD, which accounted for 
class imbalance by weighing the accuracy score of each class equally. 
Following the community standard, we used Cohen’s κ and quadratic 
weighted Cohen’s κ as primary metrics for LUAD pattern classification 
and Gleason pattern classification, respectively, as they are regarded as 
more subjective tasks, which typically translates to higher inter-rater 
variability. We refer readers to Supplementary Tables 1–14 for more 
detailed reporting of model performance and Methods for detailed 
descriptions of evaluation datasets.

Additionally, as diverse as these tasks are, they are all analyses of 
visual data or include other structured information such as ‘omics’  
(refs. 23–26) and other multimodal data sources27–29. However, the 
practice of pathology and the communication of pathological findings 
make extensive use of natural language, be it in the form of the report 
that the pathologist prepares for the patient and their treating clini-
cian, the journal article that details a new histopathologic entity or the 
textbook chapter that teaches residents how to practice pathology.

The general machine learning community has made immense 
strides in foundation models that use both visual and language infor-
mation. Representative tools such as CLIP30, ALIGN31 and CoCa32, 
among others33–38, use large-scale image–caption pairs39 to pretrain 
visual-language foundation models—task-agnostic pretrained mod-
els that demonstrate robust performance in downstream vision and 
visual-language tasks. In the broader biomedical imaging domain, 
visual-language data have been leveraged for a variety of tasks, 
including X-ray report generation40,41, zero-shot classification42–45 and 
retrieval45–48, among others49–53. However, the number of studies inte-
grating vision and language data for representation learning in com-
putational pathology is small, with recent studies44,54–58 demonstrating 
the potential of using paired image–caption data to learn meaningful 
visual representations and to develop foundation models for histo-
pathology that can be transferred to multiple downstream tasks in a 
zero-shot setting, that is, using no task-specific training data. However, 
these studies44,54,56 were limited in the scale of histopathology-specific 
pretraining data due to the lack of readily available image–caption pairs 
in this domain, leading to limited practical utility from relatively poor 
performance. Additionally, the broader capabilities of these models 
remain underexplored.

Given the diversity of tasks, the difficulty in acquiring large data-
sets of rare diseases or combinations of findings, and the central nature 
of language to the practice of pathology, there is a need for (1) high- 
performing visual-language foundation models that leverage 
large-scale pretraining and generalize well across tasks; and (2) exten-
sive studies on the wide range of potential applications of these models 
to understand their utility and limitations. We introduce CONtrastive 
learning from Captions for Histopathology (CONCH), a visual-language 
foundation model developed using diverse sources of histopathology 
images, biomedical text and over 1.17 million image–caption pairs 
(Fig. 1a–b and Extended Data Fig. 1) through task-agnostic pretraining 
to address these unfilled needs. Based on CoCa32, a state-of-the-art 
visual-language foundation pretraining framework, CONCH uses an 
image encoder, a text encoder and a multimodal fusion decoder, and it 
is trained using a combination of contrastive alignment objectives that 
seek to align the image and text modalities in the model’s representa-
tion space and a captioning objective that learns to predict the caption 
corresponding to an image (Fig. 1c). We investigate the capabilities 
of CONCH on a wide array of tasks, including classification of image 
tiles and gigapixel WSIs, cross-modal image-to-text and text-to-image 
retrieval, image segmentation and image captioning, using a total 
of 14 diverse benchmarks. We demonstrate that our model achieves 

Fig. 1 | Data curation and model schematic. a, Automated data cleaning 
pipeline. Educational sources (EDU) and parts of the PubMed Central Open 
Access Dataset (PMC OA) were manually cleaned and used to train an object 
detector to detect histopathology images, a language model to split captions 
referring to multiple images and a matching model to match detected images 
to their corresponding captions. The cleaning process yielded a dataset of 1.79 
million image–text pairs, and we then filtered out pairs referring to nonhumans 
to create our CONCH (human-only) pretraining dataset of 1.17 million (see 
Methods for details on data cleaning and Discussion on ablation experiments 
investigating data filtering). b, Estimated distribution of image–text pairs in 
the human-only pretraining dataset by topic. Note that pretraining data cover 
a diverse range of pathology topics. Inset, comparison of the distribution 
of caption lengths between PMC-Path and EDU (see Extended Data Fig. 1 for 

wordclouds of captions from each category). c, Visual-language pretraining 
setup. CONCH consists of an image encoder, a text encoder and a multimodal 
text decoder. The pretraining process uses both contrastive and captioning 
objectives. The contrastive objectives align the image and text encoders 
by maximizing the cosine-similarity scores between paired image and text 
embeddings, while the captioning objective maximizes the likelihood of 
generating the correct text conditioned on the image and previously generated 
text (see Methods for details). <bos>, beginning of sentence; attn, attention; 
<eos>, end of sentence. d, Radar plot comparing the performance of CONCH 
and baselines on various downstream tasks. CONCH outperforms baselines by 
a significant margin on a diverse set of tasks spanning zero-shot classification, 
retrieval and zero-shot segmentation (see Results for detailed descriptions of 
each task and metric).
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On slide-level benchmarks, CONCH outperformed state-of-the-art 
visual-language foundation models (PLIP, BiomedCLIP and OpenAI-
CLIP) on all tasks, often by a wide margin (Fig. 2c). For instance, for 

NSCLC subtyping and RCC subtyping, CONCH achieved a zero-shot 
accuracy of 90.7% and 90.2%, respectively, and it outperformed 
the next-best-performing model, PLIP, by 12.0% and 9.8% on each 
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Fig. 2 | Zero-shot and supervised classification. a, Schematic of zero-shot 
classification using contrastively aligned image and text encoders. A prompt is 
constructed for each class, and the image is classified according to the prompt 
whose embedding is closest to that of the image in the shared embedding space. 
b, Zero-shot classification of WSIs. Each WSI is divided into tiles and processed 
as in a. The similarity scores for tiles are aggregated using top-K pooling to 
form slide-level similarity scores, the highest of which corresponds to the 
slide-level prediction. In c,d, dashed lines represent the average over tasks. 
Error bars represent 95% confidence intervals, and the centers correspond to 
computed values of each metric, as specified below. c, Zero-shot performance on 
downstream subtyping (TCGA BRCA, n = 150; TCGA RCC, n = 225; TCGA NSCLC, 
n = 150; DHMC LUAD, n = 143; CRC100k, n = 7,180; WSSS4LUAD, n = 4,693) and 
grading (SICAP, n = 2,122) tasks. Cohen’s κ is reported for DHMC LUAD and 

quadratically weighted Cohen’s κ is reported for SICAP, while balanced accuracy 
is reported for all other tasks. Additional metrics are reported in Supplementary 
Tables 1–7. d, Supervised evaluation of embeddings of each model. Linear 
probing is used for ROI-level tasks (CRC100k and SICAP), while ABMIL is used 
for slide-level tasks, with the same metrics reported as in c (see Supplementary 
Tables 15–19 for more detailed results). e, From left to right: pathologist-
annotated IDC, corresponding heatmap and selected tiles at higher power. The 
heatmap is colored on the basis of the cosine-similarity score between each tile 
within the slide and the text prompt corresponding to the predicted class label. 
We find excellent agreement between the annotated image and high-similarity 
regions, with the tiles demonstrating classic IDC morphology within the high-
similarity (high sim.) regions and stroma or other normal constituents of the 
breast in the low-similarity (low sim.) regions.
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task with P < 0.01 according to a two-sided paired permutation test 
(Methods, ‘Statistical analysis’). On the more difficult BRCA subtyp-
ing task, CONCH achieved a zero-shot accuracy of 91.3%, while other 
models performed at near-random chance, with accuracies ranging 
from 50.7% (PLIP) to 55.3% (BiomedCLIP), nearly 35% (P < 0.01) lower 
than CONCH. Lastly, on the LUAD pattern classification task, CONCH 
achieved a κ score of 0.200, which was 0.12 higher than that for the 
next-best-performing model, PLIP, although no significance was noted 
(P = 0.055). On ROI-level benchmarks, we observed similar findings, 
where CONCH achieved a zero-shot quadratic κ of 0.690 on SICAP 
(outperforming BiomedCLIP by 0.140, P < 0.01), a zero-shot accuracy 
of 79.1% on CRC100k (outperforming PLIP by 11.7%, P < 0.01) and a 
zero-shot accuracy of 71.9% on WSSS4LUAD (outperforming PLIP by 
9.5%, P < 0.01). These results demonstrate that, in addition to achieving 
more accurate predictions on relatively easy tasks, CONCH was still 
able to achieve meaningful predictions on some more challenging 
tasks where other models may especially struggle.

When classifying a WSI using zero-shot transfer, in addition to 
computing an aggregated, slide-level prediction, we can create a heat-
map to visualize the cosine-similarity score between each tile in the 
slide and the text prompt corresponding to the predicted class label. 
Regions with high similarity scores are deemed by the model to be close 
matches with the diagnosis (for example, invasive ductal carcinoma 
(IDC)), while regions with low similarity scores do not match the diag-
nosis (Fig. 2e). In an example of a breast IDC slide, we found that regions 
highlighted in the heatmap closely resembled the tumor regions as 
delineated by pathologist annotation (Fig. 2e, left and middle). Because 
the slide-level prediction score is a simple average of the similarity 
scores of the top-K tiles for a given class, the heatmap enables human 
interpretability by directly highlighting regions involved in the model’s 
decision-making process, which can be displayed in high resolution 
to the human user for inspection (Fig. 2e, right). Additional examples 
are visualized in Extended Data Figs. 3–5. These findings suggest the 
possibility of using the zero-shot recognition ability of our model for 
coarse-grained tissue segmentation on WSIs, which we quantitatively 
evaluated in Results (‘Zero-shot segmentation’).

Few-shot classification with task-specific 
supervised learning
The zero-shot recognition capability of contrastive pretrained 
visual-language models for histopathology enables efficient and 
expedited application of a single foundation model to a potentially 
wide range of tasks without going through the laborious processes of 
training data collection, annotation and supervised model training 
for each new task. Sometimes, however, it may still be desirable to 
specialize the model with labeled training examples to maximize per-
formance for a given task, ideally using as few labels as possible. In this 
section, we investigate the label efficiency when using the pretrained 
representation of the image encoder backbone of the visual-language 
foundation models for task-specific supervised classification. For 
each benchmark using supervised training, we used either the official 
training set (if provided) or the remaining cases from the dataset after 
holding out the set of cases used for zero-shot evaluation (Methods, 
‘Downstream evaluation datasets’). For slide-level tasks, we trained 
weakly supervised classification models using slide-level labels based 
on the widely used attention-based multiple-instance learning (ABMIL) 
algorithm59. For ROI-level tasks, we used logistic regression on top of 
the global (for example, classification (<CLS>) token) representation 
of each encoder, a practice commonly known as linear probing. In addi-
tion to PLIP, BiomedCLIP and OpenAICLIP encoders, we introduced 
supplementary baselines for comparison: for slide-level tasks, given 
its popularity, we used ResNet50 (ref. 60) (truncated after the third 
residual block) pretrained on ImageNet61, while, for ROI-level tasks, we 
included CTransPath62—a state-of-the-art self-supervised pretrained 
histopathology image encoder (see Methods for details).

On the slide-level tasks (Fig. 2d, left), CONCH achieved a balanced 
accuracy score of 86.7%, 94.2% and 93.3% on BRCA subtyping, RCC 
subtyping and NSCLC subtyping, respectively, outperforming the com-
monly used ResNet50 ImageNet baseline by 10.0%, 2.6% and 10.7%, 
respectively (P < 0.01, P = 0.223 and P = 0.033). Overall, CONCH obtained 
an average accuracy of 91.4% across the three tasks, whereas PLIP and 
BiomedCLIP had an average accuracy of 87.3% and 89.4%, respectively, 
but no statistical significance was detected other than for BRCA subtyp-
ing in the comparison with PLIP (P = 0.04). In the ROI-level tasks (Fig. 2d, 
right), CONCH performed nearly identically to the state-of-the-art 
CTransPath encoder (93.8% versus 93.8% balanced accuracy on CRC100k 
and 0.833 versus 0.835 quadratically weighted κ on SICAP), while out-
performing PLIP, BiomedCLIP and OpenAICLIP by 4.0–5.8% in balanced 
accuracy on CRC100k and by 0.071–0.128 in quadratically weighted κ 
on SICAP (P < 0.01 for all comparisons). These results demonstrated 
that, overall, CONCH provides a strong image encoder that performed 
either comparably to or better than all visual encoders tested, includ-
ing a strong, vision-only self-supervised baseline (see Supplementary 
Tables 15–19 for detailed reporting of model performance).

Next, we investigated the label efficiency of different visual- 
language pretrained encoders in the few-shot setting, where we varied 
the number of training labels per class (nc), for nc = 1, 2, 4, 8, up to 512 
per class or until we reached the maximum number of available labels 
in the training set. In the few-shot setting, for each experiment, we 
sampled five different sets of training examples and showed their 
individual performance by boxplot to account for the high variance 
in model performance when performing supervised learning with 
very few training examples (Fig. 3 and Extended Data Fig. 6). We first 
observed that CONCH achieved better performance (in terms of the 
median accuracy of five runs) than other encoders for all sizes of train-
ing set and for all tasks, which translated to requiring fewer labels to 
achieve the same performance. For instance, in BRCA subtyping, using 
the CONCH encoder and 8 training labels per class outperformed using 
PLIP, BiomedCLIP or OpenAICLIP with 64 labels per class, representing 
a nontrivial reduction in training set size—a trend we also observed for 
most tasks tested. Additionally, we noted that the zero-shot perfor-
mance of CONCH was highly competitive when compared to few-shot 
supervised learning. Aside from relatively easy tasks such as RCC sub-
typing and CRC tissue classification, CONCH zero-shot outperformed 
PLIP-based and BiomedCLIP-based supervised learning in BRCA sub-
typing (up to 64 labels per class), NSCLC subtyping (up to 128 labels per 
class) and Gleason grading (up to 8 labels per class for PLIP and 64 labels 
per class for BiomedCLIP). These findings suggest that the zero-shot 
capability of a good visual-language foundation model should not be 
trivialized and, in fact, can serve as a very good baseline when evaluat-
ing the performance of task-specific diagnostic models trained with 
supervised learning. On the other hand, we found that the zero-shot 
capability of previous visual-language foundation models (that is, 
PLIP and BiomedCLIP) could be relatively easily surpassed by using 
supervised learning on top of the CONCH vision encoder with just a 
few labeled examples.

Application to classification of rare diseases
While previous investigations have focused on evaluating zero-shot 
and few-shot performance of visual-language pretrained models on 
relatively narrow tasks corresponding to a small set of possible classes 
(2–5 classes), to our best knowledge, the effectiveness of such models 
in large-scale, potentially fine-grained disease classification involving 
rare diseases has yet to be studied. Here, we investigated the utility of 
CONCH in recognizing up to 30 categories of brain tumors, all of which 
are classified as rare cancers following the definition of the RARECARE 
project63 as having an annual crude incidence rate smaller than 6 per 
100,000, the definition adopted by the National Cancer Institute’s 
Surveillance, Epidemiology and End Results (SEER) program. We con-
structed a large-scale subtyping benchmark using the EBRAINS dataset 
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and evaluated the effectiveness of both zero-shot and supervised learn-
ing of various models.

In zero-shot classification, CONCH achieved a balanced accuracy 
score of 37.1% on the 30-class subtyping problem (Extended Data Fig. 7 
and Supplementary Table 20), far surpassing the random chance base-
line of 3.3%, as well as the second-best-performing visual-language pre-
trained zero-shot classifier, BiomedCLIP (+17.0%, P < 0.01). However, the 
generally low zero-shot performance of these models suggests that the  
 current generation of visual-language foundation models may not yet 
be capable of directly performing ‘in the wild’, that is, open-set recog-
nition of diverse diseases in pathology, and they are likely to achieve 
limited performance when evaluated on more challenging benchmarks 
involving many classes and rare entities.

Next, we studied the quality of pretrained representations of our 
vision encoder for training weakly supervised ABMIL classification 
models. Similar to the previous section, we also included additional 
baselines for pretrained vision encoders, including CTransPath, Kimi-
aNet64 and truncated ResNet50 (ImageNet initialized weights). We found 
that, while the zero-shot performance of CONCH was limited due to the 
challenging nature of the task, image embeddings of the frozen CONCH 
encoder could be used to develop strong-performing classification 

models when combined with weakly supervised learning. Specifically, 
CONCH combined with ABMIL achieved a balanced accuracy of 68.2% 
(Extended Data Fig. 7a and Supplementary Table 21), surpassing the 
vision-only self-supervised learning (SSL) pretrained CTransPath model 
(+6.8%, P < 0.01), as well as all other visual-language pretrained models 
tested by a substantial margin (+10.7%, P < 0.01 for PLIP, +14.4%, P < 0.01 
for BiomedCLIP and +17.8%, P < 0.01 for OpenAICLIP). These results 
demonstrate the potential utility of a strong pretrained visual-language 
model as an effective image-only encoder for standard weakly super-
vised learning of computational pathology workflows, even when the 
task predominantly involves rare diseases. Lastly, we also investigated 
the few-shot learning performance of various models, motivated by the 
need for high label efficiency when training diagnostic models for rare 
diseases due to limited data availability. We observed a similar trend 
of superior label efficiency for CONCH compared to all other models 
tested, with other models generally requiring around four times as many 
labels to achieve comparable performance (Extended Data Fig. 7b).

Zero-shot cross-modal retrieval
By learning an aligned latent space for visual and language embeddings, 
our model is capable of cross-modal retrieval in a zero-shot setting, that 
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level labels (see Methods, ‘Supervised and weakly supervised classification 
experiments’ for details). We show their individual model performance for BRCA 
subtyping (a), RCC subtyping (b) and NSCLC subtyping (c) by boxplot (n = 5 
for each box) to study the variance in model performance when performing 

supervised learning with very few training examples. Boxes indicate quartile 
values and whiskers extend to data points within 1.5× the interquartile range. For 
reference, the zero-shot performance of each model is shown as a dashed line on 
the same plot. In terms of few-shot supervised learning, CONCH achieves better 
performance (in terms of the median accuracy of five runs) than other encoders 
for different sizes of training set and for all tasks. Additionally, the zero-shot 
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is, retrieving the corresponding text entry on the basis of an image query 
(image-to-text, abbreviated as ‘i2t’) or vice versa (text-to-image, abbrevi-
ated as ‘t2i’). This task naturally lends itself to image search applications,  
which are useful in the biomedical domain for applications such as identify-
ing cases for inclusion in research cohorts or clinical trials, assistance with 
rare disease presentations or morphologies, and collecting cases for or  
helping to create educational resources. To perform text-to-image retrieval 
(the image-to-text direction was analogous), we used the text encoder to 
embed a text input that served as a query. We then used the query text  
embedding to retrieve similar images in the latent space (Fig. 4b).

We evaluated our model on three image–caption datasets, source 
A and source B (both are held-out sources from model pretraining that 
cover a diverse range of general pathology concepts) and TCGA LUAD 
(a much more specific dataset of tiles extracted from LUAD slides in 
TCGA and annotated with captions in house). Following previous stud-
ies31,44,54, we used Recall@K as the metric for cross-modal retrieval (see 
Methods for more detailed descriptions of retrieval datasets).

On average, over the three datasets, CONCH significantly out-
performed baselines by a large margin, achieving mean recall for 
text-to-image retrieval of 44.0%, and it outperformed the next-best 
model, BiomedCLIP, by 17.3% with P < 0.01 according to a two-sided 
paired permutation test (Fig. 4a). For source A and source B, CONCH 
achieved mean recall for text-to-image retrieval of 68.8% and 39.0%, 
respectively, outperforming the second-best model, BiomedCLIP, by 
31.5% and 15.1% (P < 0.01 for both). For TCGA LUAD, CONCH achieved 
text-to-image mean recall of 24.0%, outperforming the next-best 
model, BiomedCLIP, by 5.3% but with no statistical significance 
(P = 0.22). However, CONCH significantly outperformed PLIP and 
OpenAICLIP (P < 0.01). Image-to-text retrieval for all three datasets  
followed the same trend as text-to-image retrieval in terms of per-
formance and statistical significance, except for TCGA LUAD where 
the gap for CONCH and BiomedCLIP was slightly smaller (1.6%). 
We refer readers to Supplementary Tables 22–27 for more detailed 
reporting of model performance. On the basis of these results,  
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CONCH was able to perform more accurate cross-modal retrieval  
than baselines.

In addition to using the paired captions as queries, we show exam-
ples of retrieved results using CONCH with simple text prompts of 
concepts related to LUAD (for example, ‘solid-pattern LUAD’) on the 
TCGA LUAD dataset (Fig. 4c). To provide examples from more complex 
text queries, such as ‘cribriform prostatic adenocarcinoma’, we used a  
highly diverse dataset of 321,261 tiles sampled from 1,620 cases held 
out during pretraining, spanning 108 OncoTree65 codes (Extended 
Data Fig. 8). However, as this dataset did not have paired text data, we 
were not able to quantify the retrieval performance. The presented 
examples were confirmed by a pathologist to represent the text query  
closely.

Zero-shot segmentation
While WSIs can be gigapixels in size, they are generally heterogene-
ous, with diverse cell types, morphologies and tissue architectures 
represented, each often making up a small share of the slide. Conse-
quently, segmentation on the slide level is a difficult and useful task to 
identify distinct regions of a WSI on the basis of the characteristics of 
interest, and it can reduce the number of tiles needed for downstream 
applications. However, because annotated data at the sub-slide level 
are expensive and laborious to collect, a general model capable of 
performing slide-level segmentation in a zero-shot setting is valuable. 
In this work, we explored the possibility of performing coarse-grained 
tissue segmentation on WSIs without labeled examples, instead directly 
using the demonstrated zero-shot retrieval and classification capabili-
ties of our model.

Given a WSI, we divided the tissue regions into smaller image 
tiles and posed a given segmentation task as classifying each tile 
using zero-shot classification and assigning the predicted class label 
to all pixels in the tile, performed for all tiles (Fig. 5a). To minimize 
sharp transition in predicted values for pixels at the boundary of 
neighboring tiles, we tiled the WSIs with a 75% overlap and averaged 
the prediction scores in overlapped regions to achieve a smoother 
appearance in the predicted segmentation map. We evaluated our 
model on SICAP for prostate tumor versus normal tissue segmenta-
tion and on DigestPath for malignant versus benign tissue segmen-
tation in CRC specimens. We report the widely used Dice score, in 
addition to precision and recall, for each task against ground-truth 
pixel-level annotations, with scores macro-averaged over all images 
in each dataset (see Methods for more details). We refer the reader to 
Supplementary Tables 28 and 29 for more detailed results of model  
performance.

CONCH outperformed other models in both tasks (Fig. 5b,c). In 
SICAP, CONCH achieved an average Dice score of 0.601 (0.549, P = 0.08 
for PLIP and 0.484, P < 0.01 for BiomedCLIP), an average recall score 
of 0.751 (0.644, P < 0.01 for PLIP and 0.557, P < 0.01 for BiomedCLIP) 
and an average precision core of 0.672 (0.605, P = 0.024 for PLIP and 
0.536, P < 0.01 for BiomedCLIP). In DigestPath, CONCH achieved an 
average Dice score of 0.615 (0.426, P < 0.01 for PLIP and 0.446, P < 0.01 
for BiomedCLIP), an average recall score of 0.709 (0.541, P < 0.01 for 
PLIP and 0.601, P < 0.01 for BiomedCLIP) and an average precision core 
of 0.663 (0.526, P = 0.024 for PLIP and 0.581, P < 0.01 for BiomedCLIP). 
Additionally, we found that, despite the coarse-grained and zero-shot 
nature of the approach, the model was able to produce reasonably 
accurate pixel-level segmentation masks in some instances, as visual-
ized in Fig. 5d,e.

Discussion
Most previous tools in computational pathology have attempted to 
extract meaningful patterns and discriminative signals from image 
data and/or structured patient data such as genomics and have ignored 
the textual aspect of pathology. However, these approaches leave 
on the table a huge amount of information present in descriptions 

of images, information that allows pathology trainees to generalize 
from a few exemplar images of an entity to images in the real world that 
are often substantially more diverse. While several recent studies44,54 
attempted to leverage image and caption data from social media or 
biomedical research articles to build visual-language foundation mod-
els applicable to the domain of histopathology, we found that, across a 
number of tasks, both their zero-shot and their supervised classifica-
tion performance remain limited, hindering their practical value as 
general-purpose recognition or retrieval systems for histopathology. 
Additionally, beyond working on small ROIs, the models’ abilities to 
perform in more complex settings (for example, classification of rare 
diseases or tumor segmentation on heterogeneous gigapixel WSIs) 
remain underexplored.

In this study, we demonstrated that, by using the currently larg-
est histopathology-specific, paired image–text dataset of over 1.17 
million examples for task-agnostic pretraining, we could build a 
high-performance visual-language foundation model that could then 
demonstrate utility in a wide range of clinically relevant downstream 
tasks such as classification, retrieval and tissue segmentation. Our 
model is equipped with strong zero-shot recognition capabilities out of 
the box, which can potentially relieve the burden of annotating training 
examples for many specific classification tasks, and we demonstrated 
that its zero-shot performance often rivaled or even outperformed con-
ventional supervised learning baselines in these tasks under few-shot 
settings. Additionally, the much-improved zero-shot image-to-text 
and text-to-image retrieval capabilities of our model will potentially 
empower trainees, physicians and researchers to more accurately 
and flexibly retrieve relevant patient cases or educational examples 
based on image or natural language queries once it can be efficiently 
implemented into healthcare systems or databases. Equipped with 
a multimodal decoder, our visual-language foundation model also 
provides the flexibility to be further fine-tuned in downstream tasks 
that involve language generation (for example, image captioning; see 
Methods, ‘Captioning with fine-tuning’ for details and Extended Data 
Fig. 9 and Supplementary Table 30 for exploratory results) and/or 
multimodal reasoning based on both visual and textual inputs. How-
ever, beyond promising results in select tasks, we also found and noted 
that current visual-language pretrained models, including CONCH, 
still perform poorly on challenging zero-shot problems (relative to 
their supervised learning counterparts) that involve a large number 
of classes and rare diseases. These observations suggest that we still 
potentially have a long way to go before achieving the goal of building 
a foundation model capable of truly universal zero-shot recognition 
or retrieval for histopathology.

We additionally performed ablation experiments to investigate the 
effect of data filtering, different pretraining algorithms and unimodal 
pretraining on the performance of our model. Most notably, we found 
that performing unimodal pretraining (especially vision encoder SSL 
pretraining) could improve model performance in zero-shot clas-
sification and retrieval across most tasks (see Extended Data Fig. 10 
for more details).

Another relatively underexplored aspect is the compatibility of 
visual-language pretrained foundation models with conventional 
end-to-end supervised learning aimed at targeting specific tasks. 
For some widely studied, single-disease model tasks such as prostate 
adenocarcinoma Gleason grading, there have been substantial efforts 
by various groups around the world to build large and diverse datasets 
with detailed ROI or pixel-level annotations suitable for end-to-end 
supervised machine learning. A natural question is, given the abun-
dance of annotated data, does pretraining a foundation model on 
images and captions from diverse tissue types and diseases still lead 
to tangible benefits for these specific tasks? We attempted to provide 
some insight into this question by assembling a large and diverse data-
set of more than 200,000 labeled ROIs for the task of prostate can-
cer Gleason grading from multiple publicly available sources, before 
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performing end-to-end fine-tuning of our vision encoder, as well as a 
handful of other pretrained standard convolutional neural network 
(CNN)-based and vision transformer (ViT)-based models including 
domain-specific encoders such as KimiaNet64 and CTransPath62. In 
our experiments, we found that, even with hundreds of thousands of 
labeled ROIs paired with transfer learning from ImageNet weights or 
SSL pretraining, a fine-tuned CONCH model can still provide a sizeable 
improvement, even when compared to a much larger ViT-Large model 
(Supplementary Table 31).

While a recent investigation found that current visual-language 
pretrained foundational models may perform worse than smaller 
encoders in the specific scenario of WSI-to-WSI matching using one 
specific algorithm66, our experiments in both rare disease few-shot 
and weakly supervised classification, as well as end-to-end fine-tuning, 
showed that CONCH can serve as a state-of-the-art visual encoder for 
histopathology images, in addition to providing a shared image–text 
latent space that unlocks additional multimodal capabilities. Neverthe-
less, these findings highlight the importance of continuous research 
and evaluation to better understand the strengths and limitations of 
foundational models for computational pathology.

A key limitation of our study is the scale of data pretraining, which 
still pales in comparison to billion-scale datasets used in developing 
large-scale visual-language foundation models in the general machine 

learning community; therefore, we are likely to see further potential 
improvement in zero-shot recognition capabilities, representation 
quality and robustness by increasing both the quantity and the quality 
of histopathology image–caption datasets. However, given the increas-
ing data scale used in pretraining, the potential for unintentional data 
overlap between pretraining data and downstream test data becomes 
increasingly high, a limitation also shared by previous vision-language 
pretraining approaches in the biomedical domain44,54. Detecting and 
removing duplicates and near-duplicates typically relies on a combina-
tion of heuristics and manual assessment, and this has not been suffi-
ciently explored in the biomedical domain, serving as an open research 
question for future work. In this study, we minimized the potential for 
data overlap by ensuring that no publicly available test dataset was 
directly derived from any training sources and by only holding out data 
at the source level. Another limitation of the study is that we did not 
investigate the robustness of zero-shot classification (for both image 
ROIs and WSIs) across different data cohorts with potentially different 
staining variations, tissue preparation protocols and scanner-specific 
imaging profiles, compared to using conventional supervised learning 
or parameter-efficient fine-tuning techniques67,68. Additionally, while 
we showed that simply ensembling a small number of templates and 
class names written by a pathologist can already work well for several 
tasks, we did not attempt to explicitly engineer the prompts on the 
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Fig. 5 | Zero-shot segmentation. a, Schematic illustrating zero-shot 
segmentation on WSIs (or large tissue sections). To perform segmentation, we 
divided each WSI into tiles and used zero-shot classification to predict the label of 
each tile. The tile-level predictions were stitched together to form the predicted 
segmentation mask. b,c, Zero-shot segmentation performance of CONCH and 
baselines on SICAP (n = 31) (b) and DigestPath (n = 250) (c) datasets. The macro-
averaged Dice score, precision and recall are reported. Error bars represent 95% 
confidence intervals. d,e, Examples of CONCH segmentation prediction on WSIs 

for SICAP (d) and DigestPath (e). The left panel shows the ground truth, and 
the right panel shows the predicted segmentation mask, with example regions 
enlarged. Red and blue indicate tumor and normal tissue, respectively. In general, 
in these examples, CONCH displays excellent sensitivity to tumor regions with 
slightly lower specificity, although most of the regions that CONCH segments 
as tumor that are in fact nontumor are adjacent to cancerous glands or contain 
cancer-associated stroma for both SICAP and DigestPath.
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basis of the model’s performance (for example, by using a validation 
set). We note that doing an explicit search for ‘good’ prompts on a 
small validation set (if it is available) may be much more effective in 
practice while still retaining the benefit of not needing to fine-tune the 
model, although it would no longer be strictly considered zero-shot 
transfer69,70. Moreover, as a zero-shot classification algorithm for WSIs, 
MI-Zero is only best suited for tasks where the defining morphological 
patterns of each class are mutually exclusive, and it may not work on 
tasks with specific assumptions or guidelines. This includes tasks such 
as Gleason scoring where both the primary and the secondary pattern 
may need to be considered to inform the classification or tumor versus 
normal classification, in which a slide may be appropriately labeled as 
‘positive’ as soon as a single tumor-containing region is identified. We 
note that, for these types of tasks, the pooling function of MI-Zero can 
be adjusted to better suit the nature of the task, and we leave its imple-
mentation and evaluation to future studies. Lastly, while the current 
landscape of visual-language foundation models for histopathology 
focuses primarily on image-level tasks, the ability of these models to 
recognize fine-grained visual concepts at the region level (that is, cel-
lular or even subcellular level) has not yet been studied, meaning that 
other important tasks such as mitosis detection, fine-grained tissue 
segmentation or cell counting currently remain outside the scope of 
their downstream capabilities.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
Dataset curation
Most data used for this study were obtained from publicly available 
research articles. For internal data, the Mass General Brigham insti-
tutional review board approved the retrospective analysis of internal 
pathology images, corresponding reports and electronic records. 
All internal digital data, including WSIs, pathology reports and EMRs 
were deidentified before computational analysis and model develop-
ment. Patients were not directly involved or recruited for the study. 
Informed consent was waived for analyzing archival pathology slides 
retrospectively. We used publicly available articles from PubMed to 
curate the largest-to-date dataset of histopathology image–caption 
pairs. We used deep learning to automate data cleaning iteratively.  For 
curation, we divided the data sources into two categories: EDU, which 
consists of data extracted from educational notes, and PMC OA, which 
consists of data downloaded from the PubMed Central Open Access 
Dataset (https://ncbi.nlm.nih.gov/pmc/tools/openftlist/).

The data curation process poses two main challenges: filtering for 
histopathology data and handling image panels. The first challenge 
is that the raw downloaded data comprised both histopathology and 
non-histopathology examples. The second challenge is that a sub-
stantial portion of the data were in the form of figure panels, where 
the images consisted of multiple subimages arranged in a panel with 
parts of the caption addressing all or some of the subimages. In light 
of these challenges, manually cleaning the data was infeasible. We 
cleaned the data in three steps: (1) detecting histopathology images 
(as single images or subimages); (2) splitting captions that referred to 
image panels into separate captions into subcaptions; and (3) aligning 
subimages with subcaptions within each image panel.

To detect histopathology images, we used an object detection 
model (YOLOv5)71 to generate bounding boxes for extracting detected 
images. To avoid the laborious task of manually labeling ground-truth 
bounding boxes, we generated synthetic data by randomly selecting 
single-panel images and arranging them in an image panel. We itera-
tively refined the detection model by validating it on a small subset 
(<0.5%) of PMC OA and adding incorrectly labeled samples to the 
training set.

For caption splitting, we collected a dataset of original and split 
captions (while cleaning the EDU dataset) to fine-tune a generative 
pretrained transformer (GPT)-style model pretrained on PubMed and 
other medical text72. We posed the problem of splitting captions as 
causal language modeling, where we fine-tuned the language model 
to take the original full caption as input and predicted the subcaptions 
separated by the keyword ‘next caption’. We used the fine-tuned model 
to perform caption splitting.

To align the detected histopathology images with split captions, 
we first trained a CLIP model30 on the cleaned EDU dataset, along with 
PMC OA single figures that did not require splitting and alignment. 
Using the trained model, given a set of m detected images and n split 
captions from an image panel, we computed the image embeddings 
{u0, u1, …, um} and text embeddings {v0, v1, …, vn} in the aligned latent 
space. For each image embedding ui, we computed the cosine-similarity 
score with each text embedding vj. We retrieved the text with the high-
est cosine-similarity score si, j ∶= uT

i vj  and considered {ui, vj} to be an 
image–caption pair for our cleaned dataset.

By applying the three steps above to PMC OA, we created 
PMC-Path, a pathology-specific image–caption dataset derived from 
PubMed figures. We then combined it with EDU to form our full, unfil-
tered pretraining dataset of 1,786,362 image–caption pairs. However, 
PMC-Path also contained a substantial number of pairs referring to 
animal histopathology, as well as non-hematoxylin and eosin (H&E) 
stains (immunohistochemistry (IHC), Masson’s trichrome, Congo 
red, etc.). Because our downstream evaluation concerned only human 
histopathology and H&E tasks, we wanted to assess how the animal and 
special staining data would affect performance. We first parsed the 

captions to exclude samples referencing nonhuman animals, forming 
a dataset of 1,170,647 human pairs. Additionally, we trained a classifier 
that identified H&E stains to further filter the human-only dataset and 
create a dataset of 457,372 pairs. We found that CONCH pretrained on 
the human-only dataset performed the best on downstream tasks in 
general (Extended Data Fig. 10a).

Visual-language pretraining
For visual-language pretraining, we used an equal-weighted combina-
tion of the image–text contrastive loss and the captioning loss following 
CoCa32, a state-of-the-art visual-language foundation model pretrained 
on general-domain image–caption pairs. The model consisted of an 
image encoder, f( ⋅ ; θ), a text encoder, g( ⋅ ; ϕ), and a multimodal text 
decoder, h( ⋅ ; ψ). The image encoder included the backbone and two 
attentional pooler modules, parameterized by θbackbone, θcontrast and 
θcaption, respectively. The backbone was a ViT73 following the standard 
ViT-base architecture with 12 transformer layers, 12 attention heads, 
an embedding dimension of 768 and a hidden dimension of 3,072. The 
token size was 16 × 16, and learned absolute positional embeddings 
were added to each token. The backbone transformed images in the 
form of raw red–green–blue (RGB) pixel values to dense feature maps 
in a more semantically rich representation space learned from data. 
Each attentional pooler was responsible for computing a fixed number 
(denoted by n) of image tokens from the last layer representation of the 
ViT backbone using multiheaded attention and n learned queries. For 
enabling cross-modal retrieval through contrastive learning, the first 
attentional pooler fcontrast( ⋅ ; θcontrast) used a single query (ncontrast = 1) to 
compute a single image token designed to capture the global repre-
sentation of the image. The second attentional pooler fcaption( ⋅ ; θcaption) 
used ncaption = 256 queries to generate a set of 256 image tokens designed 
to capture more local and fine-grained details of the image, which are 
typically required for captioning. The text encoder and multimodal 
decoder were both GPT-style models that used causal attention masks 
for left-to-right autoregressive language modeling. Similar to the image 
encoder, the text encoder and multimodal decoder consisted of 12 
transformer layers with an embedding dimension of 768 and a hidden 
dimension of 3,072. The text encoder included an embedding table for 
mapping discrete word tokens to continuous embeddings and a set of 
learned absolute positional embeddings. Additionally, the text encoder 
appended a learned <CLS> token to each tokenized caption, which 
had access to the full context during transformer attention to extract 
a global representation of a given caption. The multimodal decoder 
inserted a cross-attention layer after each multiheaded self-attention 
layer to incorporate information from image tokens and included a 
final language modeling head for predicting the distribution of the 
next token over the supported vocabulary.

During visual-language pretraining, a mini-batch consisted of M 
image–caption pairs (xi,wi)

M
i=1, where wi = (<BOS>, wi,1, …, wi,T, <EOS>) 

is a sequence of T word tokens representing the ith caption. For a given 
pair (xi, wi), we let (ui, vi) be the output of fcontrast( ⋅ ; θcontrast) and the 
output of g( ⋅ ; ϕ) at the position corresponding to the <CLS> token 
after ℓ2-normalization. The complete objective is given by:

ℒ = − 1
2M

M
∑
i=1

log exp(τuT
i vi)

∑M
j=1 exp(τu

T
i vj)

− 1
2M

M
∑
j=1

log
exp(τ vTj uj)

∑M
i=1 exp(τ v

T
j ui)

− 1
M

M
∑
i=1

T+1
∑
t=1

logp (wi,t|wi,0∶t−1,xi;θ,ϕ,ψ)

The first and second terms represent image-to-text and text-to-image 
contrastive loss, respectively, to maximize the cosine-similarity scores 
between paired image and text embeddings relative to remaining 
negative pairings in the mini-batch. The last term seeks to maximize 
the log-likelihood of each observed token under the multimodal 
autoregressive language model ( jointly parameterized by the image 
encoder, text encoder and multimodal decoder), conditioned on 
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previous tokens in the caption, as well as the corresponding image. Each 
visual-language pretraining experiment was trained for 40 epochs, 
distributed across eight NVIDIA A100 80-GB graphics processing units 
(GPUs) with a local batch size of 48 per GPU, and gradient accumulation 
was used to achieve an effective global batch size of 1,536. We set the 
image size to 448 × 448 pixels, where larger images were first resized 
along the shorter edge and center-cropped, and smaller images were 
zero-padded as needed. For all optimization hyperparameters, refer 
to Supplementary Table 32.

Pretraining unimodal encoders
Prior work56 showed that performing self-supervised pretraining of 
unimodal modules using unpaired data before joint visual-language 
pretraining using paired image–caption data can substantially improve 
downstream zero-shot transfer performance. We pretrained our 
image encoder using iBOT74, a state-of-the-art, self-supervised pre-
training algorithm for unlabeled image data. An in-house dataset of 
16 million 256 × 256-sized image tiles were sampled and extracted at 
×20-equivalent magnification from the tissue regions of 21,442 WSIs 
spanning over 350 cancer subtypes under the OncoTree classification 
system65. Detailed hyperparameters for image-only pretraining are pro-
vided in Supplementary Table 33. For pretraining the language model, 
we built a diverse corpus of pathology-relevant texts ranging from 
pathology educational texts to final diagnosis sections of over 550,000 
surgical pathology reports from Massachusetts General Hospital and 
over 400,000 select histopathology-relevant PubMed abstracts. We 
used regex to deidentify in-house diagnostic reports, notably replac-
ing patient and physician names, specimen identifiers, medical record 
numbers and dates with a corresponding special token in the vocabu-
lary. We pretrained a 24-layer GPT-style autoregressive model using the 
next-word prediction loss. Specifically, given a sequence of word tokens 
w = (<BOS>, w1, …, wT, <EOS>), we maximized the log-likelihood of each 
token under an autoregressive generative model parameterized by ξ:

ℒclm(ξ ) = −
T+1
∑
t=1

logp (wt|w0∶t−1; ξ )

Detailed hyperparameters for text-only pretraining are provided in 
Supplementary Table 34. After pretraining, the first 12 layers of the 
transformer-based language models and the embedding table were 
used to initialize the unimodal text encoder, while the last 12 layers 
and the language modeling classifier head were used to initialize the 
corresponding parameters in the multimodal decoder.

We assessed the benefit of unimodal pretraining by comparing 
downstream performance between the unimodal domain-specific 
pretraining scheme above versus CONCH with the image encoder 
pretrained on ImageNet versus CONCH with the language model ran-
domly initialized (Extended Data Fig. 10). We found that CONCH with 
domain-specific pretraining outperformed CONCH with ImageNet 
pretraining on both zero-shot transfer and retrieval tasks. CONCH with 
the pretrained language model performed similarly to CONCH with 
a randomly initialized language model on classification and grading 
tasks but outperformed it in retrieval tasks.

Zero-shot transfer on ROIs and tiles
For zero-shot transfer, we used the method described in CLIP30. Each 
class was associated with a text prompt consisting of a class name 
(for example, ‘adenocarcinoma’) and a template (for example, ‘this 
is {}.’; see Supplementary Table 35 for templates used across all 
tasks). For a prompt associated with class j ∈ {1, 2, …, C}, we computed 
the ℓ2-normalized embedding vj using a text encoder trained on our 
paired dataset to form the linear classifier weights. Because model 
performance can vary considerably depending on the choice of 
prompts, we measured the performance spread by sampling subsets 
from a pathologist-curated set of prompts and reporting the median. 

Alternatively, we could also ensemble all the prompts within a class 
by using the mean embedding over the prompts as the text embed-
ding associated with that class (see Extended Data Fig. 2 for a com-
parison with and without ensembling). Analogously, for each image, 
we computed the ℓ2-normalized embedding ui. We then computed 
cosine-similarity scores between the image and each text embedding, 
and the predicted class was consequently the class with the highest 
similarity score:

̂yi = argmax
j

ui
Tvj

Because some evaluation sets were imbalanced, we report the balanced 
accuracy (that is, the macro average over the accuracy obtained on each 
class) and the average F1 score weighted by the support of each class. 
For SICAP, we also report the quadratic Cohen’s κ score, which is often 
used for prostate Gleason grading75, where errors between adjacent 
grading classes are penalized less.

Similarly, for cross-modal retrieval, we used the same method as 
zero-shot classification above to retrieve the top-K images that were 
closest in the aligned latent space to a specific text query (text-to-image 
retrieval). Image-to-text retrieval was performed analogously. To evalu-
ate retrieval, we followed ALIGN31 and used Recall@K, that is, for what 
percentage of the test set is the correct result in the top-K retrieved 
samples. We chose K ∈ {1, 5, 10}, and we also report mean recall by 
averaging the scores over the three Recall@K values.

Unless otherwise specified, we enforced the maximum image 
size to be 448 × 448 for CONCH through image resizing and center 
cropping, similar to its pretraining configuration. For all models that 
were not ours, we used their provided processor function and default 
configuration for image and text processing in downstream evaluation.

Extending zero-shot transfer to WSIs
To extend zero-shot transfer to gigapixel images, we followed the 
method introduced by MI-Zero56. Specifically, for classification over 
C classes, the WSI was first divided into N tiles, and the ℓ2-normalized 
embeddings were computed independently using the image encoder. 
For each tile embedding, we computed similarity scores with each text 
embedding following the method for tiles described above, obtaining 
a set of C similarity scores for each tile. To aggregate similarity scores 
across tiles, we used the top-K pooling operator by averaging over 
the highest K similarity scores for each class to obtain the slide-level 
similarity score. Consequently, the class with the highest slide-level 
score was the predicted class. We chose K ∈ {1, 5, 10, 50, 100}, and we 
report metrics for the K value with the highest balanced accuracy for 
classification tasks and Cohen’s κ for DHMC LUAD. Similarly to the 
classification of tiles, we report the slide-level balanced accuracy and 
weighted F1 score for classification tasks. For DHMC LUAD, because the 
task of LUAD subtyping can be subjective, we report Cohen’s κ score.

We performed zero-shot slide-level segmentation using a similar 
approach to that used for classification. We divided the WSI into tiles 
and computed similarity scores for each tile independently. However, 
instead of aggregating the scores across tiles into a single slide-level 
prediction, we mapped the tile-level scores to their corresponding 
spatial locations in the WSI, averaging the scores in overlapped regions. 
Finally, for each pixel, we assigned the class with the highest score as the 
prediction, producing a pixel-level segmentation mask. We computed 
the Dice score76 to quantify the quality of the predicted segmentation 
mask relative to the ground truth.

Details of WSI preprocessing for both classification and segmenta-
tion tasks are described in Methods, ‘WSI processing’.

Supervised and weakly supervised classification experiments
We performed supervised classification experiments on all tasks with 
a labeled set of training examples available, including TCGA BRCA for 
BRCA subtyping, TCGA NSCLC for NSCLC subtyping, TCGA RCC for 
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RCC subtyping, CRC100k for CRC tissue classification and SICAP for 
Gleason grading. For each dataset, we used the official training and 
testing split if it was available or we used the remaining labeled cases 
for training after holding out the cases used for zero-shot classifica-
tion evaluation (see Methods, ‘Downstream evaluation datasets’ for a 
more detailed breakdown). For slide-level experiments, we considered 
four visual-language pretrained image encoders, namely, CONCH, 
PLIP, BiomedCLIP and OpenAICLIP. All four encoders followed the 
ViT-base architecture with a patch size of 16 except PLIP, which used 
a patch size of 32. For slide-level tasks, we additionally considered 
a ResNet50 encoder truncated after the third residual block, with 
weights initialized from supervised classification on ImageNet, as it 
has been a common choice in the weakly supervised classification of 
WSIs. For ROI-level tasks, we added CTransPath62 as a baseline, which 
is a state-of-the-art general-purpose vision encoder trained with SSL 
on a large dataset of unlabeled histopathology images. We did not use 
CTransPath for TCGA slide-level tasks because TCGA slides (including 
those used in our test sets) made up a large portion of the data used to 
train CTransPath; therefore, this could have resulted in information 
leakage that unfairly inflated the performance of CTransPath on TCGA 
benchmarks.

For all experiments, we standardized the image input size to 
224 × 224. We used each image encoder to extract a low-dimensional 
feature embedding from each image (tiles in the case of WSIs). For 
CONCH, we used the output of the attentional pooler that corre-
sponded to image–text alignment, with an embedding dimension 
of 512. For CLIP-based models, including PLIP, BiomedCLIP and Ope-
nAICLIP, we used the <CLS> token, which was also used for image–text 
alignment during pretraining and similarly had a dimension of 512. 
For ResNet50, we used global average pooling after the third residual 
block to obtain a 1,024-dimensional embedding. For CTransPath, we 
also used the <CLS> token representation, which had an embedding 
dimension of 768.

For WSI classification, we used the same preprocessing setup as 
zero-shot classification with MI-Zero. We used the widely used ABMIL59 
for weakly supervised classification of WSIs using slide-level labels. 
The ABMIL model architecture consists of a fully connected layer and 
a rectified linear unit (ReLU) nonlinearity that first maps the inputs to 
an embedding dimension of 512, followed by a two-layer, gated vari-
ant (as described in the original paper) of the attention network, with 
a hidden dimension of 384. Lastly, a fully connected classifier head 
maps the attention-pooled slide-level representation to logits, which 
are interpreted as class probabilities after softmax normalization. We 
used dropout with P = 0.25 after each intermediate layer in the network 
for regularization. We trained each model for 20 epochs on the train-
ing set, using an AdamW optimizer, a cosine learning rate scheduler 
and a learning rate of 1 × 10−4. We used a weighted data sampler that 
increased the sampling probability of slides from minority classes 
such that, on average, the model saw the same number of slides from 
each class each epoch. The full set of hyperparameters is summarized 
in Supplementary Table 36.

For ROI-level classification, we conducted linear probing by train-
ing a logistic regression model on top of the pretrained image embed-
dings of each encoder. We followed a practice recommended by the 
large-scale self-supervised representation learning community77 and 
set the ℓ2 regularization coefficient λ to 100

MC
, where M is the embedding 

dimension and C is the number of classes. We used the limited-memory 
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) solver and set the maxi-
mum number of iterations to 800.

For few-shot classification, we kept the test set the same, and we 
varied the number of labeled examples per class for training (known 
as ‘shot’) from nc = 1, 2, 4, 8, 16, 32, up to either nc = 512 or the maximum 
number of labeled examples available for a given class. Otherwise, the 
hyperparameters and training setup remained the same as described 
above.

End-to-end fine-tuning for classification experiments
We evaluated the utility of CONCH in image ROI classification using 
standard end-to-end fine-tuning on a four-class Gleason grading bench-
mark with a total of 228,482 (training, 189,484; validation, 9,959; test-
ing, 29,039) image ROIs individually labeled as NC, G3, G4 or G5 (see 
Methods, ‘Downstream evaluation datasets’ for more details). We 
compared its performance against that of five other models covering a 
variety of model architectures, pretraining strategies and sizes, includ-
ing ViT-B/16 (ViT of the same architecture as the CONCH vision encoder 
backbone), ViT-L/16 (larger ViT with ~3.5 times the number of param-
eters as ViT-B), ResNet50 (popular, widely used standard CNN architec-
ture), CTransPath (a histopathology-specific image encoder based on 
the Swin transformer architecture, pretrained using large-scale vision 
SSL, which has achieved state-of-the-art performance on many compu-
tational pathology tasks) and KimiaNet64 (a lightweight CNN based on 
the DenseNet121 architecture, pretrained on a histopathology image 
classification task using supervised learning). For ViT-B/16, ViT-L/16 
and ResNet50, we initialized the models using weights pretrained 
on ImageNet; for CTransPath and KimiaNet, we used the pretrained 
weights provided by their respective authors. We also investigated 
the label efficiency of each model by further subsampling 10% and 
1% of labels from the full training set (189,484 ROIs from 4,622 slides) 
at the slide level, corresponding to 19,304 ROIs from 462 slides and 
1,864 ROIs from 46 slides, respectively. The results are summarized in 
Supplementary Table 31.

We used eight 80-GB NVDIA A100 GPUs for each experiment using 
a batch size per GPU of 32 for ViT-L/16 (due to GPU memory constraints) 
and a batch size of 128 for all other models. All images were resized to 
448 × 448 for both training and inference. We warmed up the learning 
rate over 250 steps and used the AdamW optimizer with β = (0.9, 0.999) 
with fp16 automatic mixed precision training. For each model, we swept 
the learning rate over {1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2} using 
the validation set. We trained for a maximum of 20 epochs and moni-
tored the validation performance for early stopping with a patience 
of five epochs, using the best-performing model on the validation set 
for evaluation on the test set. We increased the maximum number of 
epochs to 40 and 80 for training with 10% labels and 1% labels, respec-
tively, to account for the fewer training iterations per epoch, and we 
similarly increased the early-stopping patience to 10 and 20 epochs, 
respectively. We used standard data augmentation techniques during 
training, including random horizontal and vertical flips, discrete angle 
rotation (θrot ∈ {0, 90, 180, 270}) and color jittering (brightness, 16/255; 
contrast, 0.125; saturation, 0.075; hue, 0.01).

Captioning with fine-tuning
Image captioning has been a widely explored task in the general visual- 
language domain36,78,79. In addition to distilling a top-level diagnosis of 
the image, image captioning can potentially provide morphological 
and contextual details, as well as additional interpretability, offering 
a much richer set of information than discrete labels. While prior stud-
ies44,54,56 in visual-language pretraining showed applications in classifi-
cation and retrieval, they are not equipped with generative capabilities. 
By adding a generative loss along with alignment and a text encoder 
module using the CoCa framework, our model is augmented with the 
ability to generate text conditioned on image inputs. We explored the 
captioning capabilities of CONCH on image–caption pairs extracted 
from a held-out source, source A, where a board-certified pathologist 
manually reviewed and condensed each caption such that it retained 
only information that could be inferred from the image, including 
the top-level diagnosis and detailed morphological descriptions. 
Given that our pretraining data were far from the scale of high-quality 
zero-shot captioning, we performed fine-tuning on the dataset. We 
partitioned the dataset into training, validation and testing splits and 
fine-tuned CONCH and baselines. Because PLIP and BiomedCLIP are not 
readily adaptable to captioning tasks, we compared the results against 
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GenerativeImage2Text (GIT)78, a widely used family of open-source 
visual-language pretrained models for image captioning.

We fine-tuned the entire model on a small training set of image–
caption pairs. When fine-tuning CONCH, we simply set the contrastive 
loss to zero and kept only the captioning loss in the training objec-
tive. To evaluate performance, we report the commonly used metrics 
METEOR (metric for evaluation of translation with explicit ordering)80 
and ROUGE (recall-oriented understudy for gisting evaluation)81. For 
each model, we trained for a maximum of 40 epochs and selected the 
checkpoint with the highest METEOR on the validation set using an 
early-stopping patience of 10 epochs. At inference time, we gener-
ated captions using top-K sampling82 as the decoding strategy with 
K = 50, where, at each timestep, the K most likely tokens were filtered 
and the probability mass was redistributed before sampling. Similar 
to zero-shot classification and retrieval, we set the maximum image 
size to 448 × 448. The full set of hyperparameters used to fine-tune 
captioning is presented in Supplementary Table 37.

Evaluation metrics
For classification tasks, we report balanced accuracy, weighted F1 score 
and the area under the receiver operating characteristic curve (AUROC). 
Balanced accuracy is defined as the macro average of the recall of each 
class. Weighted F1 score is computed by taking the average of the F1 score 
(the harmonic mean of precision and recall) of each class, weighted by 
the support of each class. In the binary case, the AUROC is calculated 
from a plot of the true positive rate against the false positive rate as the 
classification threshold is varied. The AUROC is generalized to the mul-
ticlass case by averaging over the AUROC of all pairwise combinations of 
classes. For retrieval, we used the metric Recall@K, which is the propor-
tion of the data correctly retrieved among the top-K retrieved samples. 
Following ALIGN31, we chose K ∈ {1, 5, 10}, and we also computed the 
mean recall, which averages over the Recall@K values. For segmentation, 
we report the Dice score, which is the same as the F1 score, and the preci-
sion and recall score, macro-averaged across all images and classes. For 
captioning, we report METEOR and ROUGE for comparing the predicted 
caption with the ground-truth caption. METEOR80 is a metric based on 
unigram matching that considers both precision and recall between the 
original and ground truth and takes into account synonyms and word 
forms. ROUGE81 computes the overlap of n-grams between the predicted 
caption and ground truth. We used ROUGE-1, which considers unigrams.

Downstream evaluation datasets
Source A was a dataset of image–caption pairs extracted from a 
held-out source. We split multipanel figures and matched them with 
captions manually. Because we also used this dataset for captioning, 
and because the captions were generally noisy and often contained 
information not present in the images, a board-certified pathologist 
cleaned the text, and we used the cleaned version for all downstream 
tasks. After filtering and cleaning, we obtained 797 images with an 
average width of 570 pixels and an average height of 428 pixels. We used 
this dataset in its entirety for cross-modal retrieval. We also used this 
dataset for captioning after performing a 70–10–20 split for training, 
validation and testing. To avoid information leakage, the dataset split 
was performed at the figure level (taking into account multifigure 
panels that were separated).

Source B was a dataset of image–caption pairs extracted from a 
held-out source. Similar to source A, we split multipanel figures and 
matched them with captions manually. After filtering and cleaning, 
we obtained 1,755 images with an average width of 512 pixels and an 
average height of 410 pixels. Because the dataset was much bigger than 
source A, we did not perform manual cleaning of the captions. We used 
this dataset for cross-modal retrieval.

TCGA LUAD consisted of 165 image–caption pairs extracted from 
49 LUAD H&E histopathology slides from TCGA (https://portal.gdc.
cancer.gov/).

For each slide, a board-certified pathologist chose up to five tiles 
of interest from each slide and provided captions describing the tis-
sue pattern and any notable morphological features. This process 
yielded a set of 165 image tiles with an average width of 656 pixels 
and an average height of 642 pixels. We used this set of image tiles for 
cross-modal retrieval.

TCGA BRCA consisted of BRCA H&E formalin-fixed paraffin- 
embedded (FFPE) diagnostic histopathology WSIs from TCGA. This 
dataset consisted of cases for primary IDC and ILC. After removing slides 
with missing metadata, we collected a total of 1,048 slides (837 IDC and 
211 ILC). The zero-shot test set was a sampled subset of the full TCGA 
RCC dataset consisting of 150 WSIs (75 for each class). For the supervised 
learning experiments, we held out the zero-shot test set as the test set and 
used the remaining slides as the supervised training set after excluding 
slides from patients who appeared in the test set. This process yielded 
a training set of 881 slides (754 IDC and 127 ILC; see Supplementary 
Table 38 for prompts used for each class in zero-shot classification).

TCGA NSCLC consisted of NSCLC H&E FFPE diagnostic histopa-
thology WSIs from TCGA. This dataset consisted of cases of primary 
LUAD and lung squamous cell carcinoma (LUSC). After removing slides 
with missing or incorrect metadata, we collected a total of 1,041 slides 
(529 LUAD and 512 LUSC). The zero-shot test set was a sampled subset 
of the full TCGA RCC dataset consisting of 150 WSIs (75 for each class). 
For the supervised learning experiments, we held out the zero-shot 
test set as the test set and used the remaining slides as the supervised 
training set after excluding slides from patients who appeared in the 
test set. This process yielded a training set of 846 slides (432 LUAD and 
414 LUSC; see Supplementary Table 38 for prompts used for each class 
in zero-shot classification).

TCGA RCC consisted of RCC H&E FFPE diagnostic histopathology 
WSIs from TCGA. This dataset consisted of cases of primary clear cell 
RCC (CCRCC), papillary RCC (PRCC) and chromophobe RCC (CHRCC). 
After removing slides missing low-resolution downsamples, we col-
lected a total of 922 WSIs (519 CCRCC, 294 PRCC and 109 CHRCC). The 
zero-shot test set was a sampled subset of the full TCGA RCC dataset 
consisting of 225 WSIs (75 for each of the three classes). For the super-
vised learning experiments, we held out the zero-shot test set as the 
test set and used the remaining slides as the supervised training set 
after excluding slides from patients who appeared in the test set. This 
process yielded a training set of 693 slides (444 CCRCC, 215 PRCC and 
34 ChRCC; see Supplementary Table 38 for prompts used for each class 
in zero-shot classification).

DHMC LUAD83 consisted of 143 H&E LUAD slides, each labeled with 
the primary histologic growth pattern (59 acinar, 51 solid, 19 lepidic, 9 
micropapillary and 5 papillary). We only used this dataset for zero-shot 
classification (see Supplementary Table 39 for prompts used for each 
class in zero-shot classification).

CRC100k84 consisted of 224 × 224 pixel image tiles at 0.5 µm per 
pixel (mpp) extracted from 50 patients with colorectal adenocarci-
noma. Each image belonged to one of nine classes: adipose, back-
ground, debris, lymphocytes, mucus, smooth muscle, normal colon 
mucosa, cancer-associated stroma or colorectal adenocarcinoma 
epithelium. For the supervised dataset, we used the officially provided 
splits of 100,000 images in the training set and 7,180 images in the test 
set. For the zero-shot test set, we used only the official test set (see 
Supplementary Table 40 for prompts used for each class in zero-shot 
classification).

WSSS4LUAD85 consisted of LUAD image tiles of around 200–
500 pixels in dimension, each labeled as tumor, tumor-associated 
stroma and/or normal. For our evaluation, we filtered for the samples 
with only one ground-truth label. We were left with 4,693 images from 
the official training split (see Supplementary Table 41 for prompts used 
for each class in zero-shot classification).

SICAP75 consisted of 512 × 512 pixel images extracted from 155 
WSIs of core-needle biopsies of prostate cancer, digitized at ×10 
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magnification. The official training and testing split partitioned the 
dataset into 9,959 images from 124 WSIs for training and 2,122 images 
from 31 WSIs for testing. Each tile was labeled with the primary Gleason 
pattern (G3, G4 or G5) or as noncancerous (NC). For zero-shot classifica-
tion, we used only the official test set for evaluation, while, for super-
vised classification, we used the official splits for training and testing. 
For zero-shot segmentation (tumor versus benign), we used the slides 
from the official test split and corresponding pixel-level segmentation 
mask for evaluation (combining Gleason patterns G3, G4 and G5 as the 
tumor class; see Supplementary Table 41 for prompts used for each 
class in zero-shot classification and segmentation).

DigestPath86 consisted of 660 colonoscopy H&E tissue section 
images from 324 patients, acquired at ×20-equivalent magnification. 
We used the subset of 250 images from 93 patients for which pixel-level 
lesion annotation for colorectal cancer tissue was provided, and we 
performed zero-shot segmentation evaluation (see Supplementary 
Table 41 for prompts used for each class in zero-shot segmentation).

EBRAINS87,88 consisted of H&E histopathology WSIs of brain tis-
sue from the EBRAINS Digital Tumor Atlas. We used a subset of 2,319 
slides corresponding to a 30-way fine-grained brain tumor subtyping 
task, where only classes with at least 30 slides were kept to ensure that 
a reasonable number of slides were available for both model training 
and evaluation. For the supervised dataset, we performed a 50–25–25 
split for training (1,151 slides), validation (595 slides) and testing (573 
slides). For the zero-shot test set, we used the testing split of 573 slides 
(see Supplementary Tables 42–44 for prompts used for each class in 
zero-shot classification). The WSI counts for each class in the dataset 
were as follows: (1) IDH1-wild-type glioblastoma (474 slides); (2) pilo-
cytic astrocytoma (173 slides); (3) meningothelial meningioma (104 
slides); (4) pituitary adenoma (99 slides); (5) IDH1-mutant and 1p/19q 
codeleted anaplastic oligodendroglioma (91 slides); (6) ganglioglioma 
(88 slides); (7) hemangioblastoma (88 slides); (8) adamantinomatous 
craniopharyngioma (85 slides); (9) IDH1-mutant and 1p/19q codeleted 
oligodendroglioma (85 slides); (10) atypical meningioma (83 slides); 
(11) schwannoma (81 slides); (12) IDH1-mutant diffuse astrocytoma 
(70 slides); (13) transitional meningioma (68 slides); (14) diffuse large 
B cell lymphoma of the central nervous system (59 slides); (15) gliosar-
coma (59 slides); (16) fibrous meningioma (57 slides); (17) anaplastic 
ependymoma (50 slides); (18) IDH1-wild-type anaplastic astrocytoma 
(47 slides); (19) metastatic tumors (47 slides); (20) IDH1-mutant ana-
plastic astrocytoma (47 slides); (21) ependymoma (46 slides); (22) 
anaplastic meningioma (46 slides); (23) secretory meningioma (41 
slides); (24) lipoma (38 slides); (25) hemangiopericytoma (34 slides); 
(26) IDH1-mutant glioblastoma (34 slides); (27) non-Wingless-related 
integration (Wnt)/non-Sonic hedgehog (Shh) medulloblastoma (32 
slides); (28) Langerhans cell histiocytosis (32 slides); (29) angiomatous 
meningioma (31 slides); and (30) hemangioma (30 slides).

Prostate Gleason Grading consisted of 228,482 image ROIs of 
H&E-stained prostate tissue curated from three publicly available 
datasets: AGGC89, PANDA90 and SICAP75. In the case of PANDA and AGGC, 
each ROI was extracted at ×10-equivalent magnification with dimen-
sions 512 × 512 pixels and was labeled as NC, G3, G4 or G5, assigned using 
the pixel-level annotation masks provided by the respective dataset. 
We used this dataset to compare end-to-end fine-tuning performance 
between our model and other vision encoders commonly used in com-
putational pathology. We partitioned the dataset at the slide level and 
split the dataset into training (189,000 ROIs from 4,622 slides in PANDA 
and the AGGC official training set), validation (10,000 ROIs from 124 
slides in the SICAP official training set), and testing (29,000 ROIs from 
92 slides in the official test sets of AGGC and SICAP).

WSI processing
For slide-level tasks, the processing pipeline for WSIs consisted of tissue 
segmentation, tiling and feature extraction. We used the CLAM library7 
for tissue segmentation, which computes a binary mask for tissue using 

binary thresholding along the saturation channel after converting a 
downsample of the slide from the RGB to hue–saturation–value (HSV) 
color space. Median blurring and morphological closing were used 
to smooth tissue contours and remove artifacts. The contours were 
filtered by area to yield the segmentation mask. For zero-shot and 
supervised classification, we followed previous conventions7,62 and 
divided the segmented tissue regions into contiguous 256 × 256 pixel 
tiles at ×10-equivalent magnification. For segmentation, we extracted 
tiles using a smaller tile size (224 × 224 pixels) with 75% overlap at the 
highest magnification possible (that is, ×10 for SICAP and ×20 for 
DigestPath) to achieve more fine-grained predictions. After tiling, for 
feature extraction, we resized all tiles to 224 × 224 pixels and computed 
embeddings for each tile independently using a frozen pretrained 
image encoder, before caching them for downstream evaluation.

Pretraining dataset characterization
We estimated the distribution of topics covered by our pretrain-
ing captions. We first created a list of 19 topics that covered major 
anatomical sites relevant to the study of pathology. For each topic, 
a board-certified pathologist then curated a list of keywords associated 
with the topic. We then mapped a caption to a topic if it contained a 
specific word. Because it was impractical to curate an exhaustive set 
of keywords to cover all captions, we used k-nearest neighbors (kNN) 
with k = 5 to categorize the remaining captions. The distribution of 
captions on the topics is shown in Fig. 1b. Within each topic (as well 
as the overall dataset), we qualitatively visualized the contents of the 
captions using wordclouds (Extended Data Fig. 1).

Statistical analysis
Nonparametric bootstrapping with 1,000 samples was used to con-
struct 95% confidence intervals for model performance. For each evalu-
ation metric, observed differences in model performance were tested 
for statistical significance using a two-sided paired permutation test 
with 1,000 permutations. In each permutation, independent predic-
tions of two models were randomly swapped to obtain a new difference 
in model performance. The P value was the proportion of differences 
in model performance greater than the observed difference in terms 
of absolute value. The null hypothesis was that there was no difference 
in model performance for the given test set and evaluation metric.

Computing hardware and software
We used Python (version 3.8.13) for all experiments and analyses in the 
study, which can be replicated using open-source libraries as outlined 
below. For task-agnostic pretraining, we used eight 80-GB NVIDIA A100 
GPUs configured for multi-GPU training using DistributedDataParal-
lel (DDP) as implemented by the popular open-source deep learn-
ing framework PyTorch (version 2.0.0, CUDA 11.7) (https://pytorch.
org). All downstream experiments were conducted on single 24-GB 
NVIDIA 3090 GPUs. For unimodal pretraining of our visual encoder 
using iBOT, we modified the ViT implementation maintained by the 
open-source Timm library (version 0.9.2) from Hugging Face (https://
huggingface.co) for the encoder backbone and used the original iBOT 
implementation (https://github.com/bytedance/ibot) for training. For 
natural language processing (NLP) workflows, we used open-source 
libraries provided by Hugging Face. Notably, we used Transformers 
(version 4.27.3) and Accelerate (version 0.15.0) for tokenization of text 
data and unimodal pretraining of our language model, and we used 
Evaluate (version 0.4.0) for accessing common machine translation 
and image captioning metrics including ROUGE (from rouge-score 
version 0.1.2) and METEOR (from nltk version 3.6.7). We integrated 
our pretrained unimodal visual encoder and language model into 
the open clip library (version 2.14.0) for visual-language pretrain-
ing using the CoCa framework. All WSI processing was supported by 
OpenSlide (version 4.3.1) and openslide-python (version 1.2.0). We 
used Scikit-learn (version 1.2.1) for its implementation of common 
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machine learning model evaluation metrics for image classification 
and to train logistic regression models for linear probe experiments. 
Numpy (version 1.20.3) and Pandas (version 1.5.3) were used data col-
lection and preparation. Implementations of other visual-language 
models benchmarked in the study were found on the Hugging Face 
model hub (https://huggingface.co/models): PLIP (https://hugging-
face.co/vinid/plip), BiomedCLIP (https://huggingface.co/microsoft/
BiomedCLIP-PubMedBERT_256-vit_base_patch16_224), OpenAICLIP 
(https://huggingface.co/openai/clip-vit-base-patch16), GIT-base 
(https://huggingface.co/microsoft/git-base) and GIT-large (https://
huggingface.co/microsoft/git-large). Pillow (version 9.3.0) and 
Opencv-python were used to perform basic image processing tasks. 
Matplotlib (version 3.7.1) and Seaborn (version 0.12.2) were used to 
create plots and figures. Usage of other miscellaneous Python libraries 
is listed in the Nature Portfolio Reporting Summary.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
TCGA whole-slide data and labels are available from the NIH genomic 
data commons (http://portal.gdc.cancer.gov). DHMC LUAD whole-slide 
data and labels can be accessed through the Dartmouth Biomedical 
Informatics Research and Data Science website (http://bmirds.github.
io/LungCancer/). SICAP whole-slide and tile data with corresponding 
labels can be accessed through the data portal at http://data.mende-
ley.com/datasets/9xxm58dvs3/1. CRC100k tile data and labels can be 
found at http://zenodo.org/record/1214456. WSSS4LUAD image tiles 
and labels can be found at http://wsss4luad.grand-challenge.org/. 
Pretraining data were curated from image–caption pairs in educa-
tional resources and PubMed. EBRAINS WSIs can be found at http://
search.kg.ebrains.eu/instances/Dataset/8fc108ab-e2b4-406-8999-
60269dc1f994. AGGC and PANDA WSIs can be accessed through their 
respective Grand Challenge portals (http://aggc22.grand-challenge.
org/data/ and http://panda.grand-challenge.org/data/). The unpro-
cessed PubMed Central Open Access dataset is available from the NIH 
PubMed Central website (http://ncbi.nlm.nih.gov/pmc/tools/open-
ftlist/). Restrictions apply to the availability of anonymized patient 
data that were used retrospectively for this project with institutional 
permission and are, thus, not publicly available. All requests for pro-
cessed or raw data collected or curated in house should be made to the 
corresponding author and will be evaluated according to institutional 
and departmental policies to determine whether the data requested 
are subject to intellectual property or patient privacy  obligations.

Code availability
Model weights for CONCH can be assessed for academic research pur-
poses at http://huggingface.co/MahmoodLab/conch. Code for using 
the pretrained model is provided at http://github.com/mahmoodlab/
CONCH. We have documented all technical deep learning methods and 
software libraries used in the study while ensuring the paper is acces-
sible to the broader clinical and scientific audience.
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Extended Data Fig. 1 | Caption content of pre-training dataset. Wordclouds of captions to qualitatively visualize the caption content of each category in the pre-
training dataset. Larger words are more represented in the captions. Common articles, nouns, and verbs are ignored.
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Extended Data Fig. 2 | Zero-shot classification: single prompt vs. ensembling. 
a-d, slide-level tasks. e, ROI-level tasks. We compare using a single text prompt 
per class vs. ensembling over multiple class names and templates. Since zero-
shot performance of a visual-language pretrained model can be sensitive to 
the prompts used52 when using a single prompt per class, for each class, we 
independently randomly sample a prompt from the pool of candidate templates 
and class names (see Supplementary Data Tables 34-38 for the prompt pools). 
We randomly sample 50 sets of prompts for each task, and plot the resulting 
distribution of zero-shot performance for each model using boxplot. Each dot 
corresponds to a single set of prompts (n = 50 for each box). Boxes indicate 
quartile values, and whiskers extend to data points within 1.5 × the interquartile 

range. Triangles indicate the performance of prompt ensembling. For slide-
level tasks, we show performance for all Ks used in top-K pooling. We observe 
prompt ensembling can substantially boost performance (relative to the 
median performance of randomly sampled single prompts) for most models in 
most tasks, except when the median performance is near random chance, such 
as for OpenAICLIP on most tasks and PLIP on TCGA BRCA. The poor median 
performance in these scenarios indicates that the model fails to perform under 
the majority of prompts sampled and therefore it is unsurprising that the 
ensembled prompt performs equally bad or worse. See Supplementary Data 
Tables 1-14 for more results.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-02856-4

Extended Data Fig. 3 | CONCH heatmaps, renal cell carcinomas. Pathologist-
annotated H&E images, corresponding cosine-similarity heatmaps of, from top 
to bottom, papillary, chromophobe, and clear cell renal cell carcinomas. Tiles of 
high similarity (red border) and low similarity (black border) with the predicted 
class label are randomly sampled and displayed next to each heatmap. We find 

excellent agreement between the annotated image and the regions of the slide 
with high similarity, with the tiles demonstrating stereotypical morphology 
of the tumors within the high-similarity regions and stroma or other normal 
constituents of the kidney in the low similarity regions.
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Extended Data Fig. 4 | CONCH heatmaps, non-small cell lung carcinomas. 
Pathologist-annotated H&E images, corresponding cosine-similarity heatmaps 
of adenocarcinoma (top) and squamous cell carcinoma (bottom) of the lung. 
Tiles of high similarity (red border) and low similarity (black border) with the 
predicted class label are randomly sampled and displayed next to each heatmap. 

We find excellent agreement between the annotated image and the regions of the 
slide with high similarity, with the tiles demonstrating stereotypical morphology 
of the tumors within the high-similarity regions and stroma or other normal 
constituents of the lung in the low similarity regions.
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Extended Data Fig. 5 | CONCH heatmap, lobular carcinoma of the breast. 
Pathologist-annotated H&E image, corresponding cosine-similarity heatmap 
of lobular carcinoma of the breast. Tiles of high similarity (red border) and low 
similarity (black border) with the predicted class label are randomly sampled and 
displayed next to the heatmap. As with the ductal carcinoma heatmap in Fig. 2e, 

we find excellent agreement between the annotated image and the regions of the 
slide with high similarity, with the tiles demonstrating stereotypical morphology 
of lobular caricnoma within the high-similarity regions and stroma or other 
normal constituents of the breast in the low similarity regions.
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Extended Data Fig. 6 | ROI-level few-shot classification experiments. a, b. We 
investigate the label efficiency of different visual-language pretrained encoders 
in the few-shot setting where we vary the number of training labels per class (nc), 
for nc= 1,2,4,8,16,… up to 512. For each nc, we sample 5 different sets of training 
examples and perform linear probing on each training set using associated 
image labels (see Supervised classification experiments for details). We show 
their individual model performance via boxplot (i.e., n = 5 for each box) to study 
the variance in model performance when performing supervised learning with 

very few training examples. Boxes indicate quartile values and whiskers extend 
to data points within 1.5 × the interquartile range. For reference, the zero-shot 
performance of each model is shown as a dotted line on the same plot. In terms 
of few-shot supervised learning, CONCH achieves better performance (i.e. in 
terms of the median accuracy of 5 runs) than other encoders for different sizes 
of training set and for all tasks. Additionally, in SICAP, we find CONCH zero-shot 
performance to be competitive with PLIP and BiomedCLIP few-shot up to 64 
labels per class.
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Extended Data Fig. 7 | Rare disease classification results on EBRAINS.  
a. Weakly-supervised ABMIL performance for CONCH and other pretrained 
encoder models on the EBRAINS 30-class brain tumor subtyping task (n = 573). 
Error bars represent 95% confidence intervals; the center is the computed 
value of balanced accuracy. b. We investigate the label efficiency of different 
pretrained encoders in the few-shot setting where we vary the number of 
training labels per class (nc), for ncϵ{1, 2, 4, 8, 16}. For each nc, we sample 5 
different sets of training examples and follow the experimental protocol in a 
to train an ABMIL model on each training set using associated slide labels (see 
Supervised classification experiments for details). We show their individual 

model performance via boxplot (i.e., n = 5 for each box) to study the variance in 
model performance when performing supervised learning with very few training 
examples. Boxes indicate quartile values and whiskers extend to data points 
within 1.5 × the interquartile range. For reference, the zero-shot performance 
of each model is shown as a dotted line on the same plot. Additional metrics are 
reported in Supplementary Data Table 20 - 21. We find that CONCH consistently 
outperform all other visual language pretrained models in zeroshot classification 
and all pretrained encoders in weakly-supervised learning in terms of both 
performance and label efficiency.

http://www.nature.com/naturemedicine
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Extended Data Fig. 8 | Additional Retrieval Examples. Retrieved examples 
(among top 10) using complex prompts with detailed morphological 
information. Images are from an in-house dataset of tiles sampled from 1,620 

cases held-out during pretraining, spanning 108 OncoTree codes (5 for each 
code). Similarity scores between each image and prompt are shown in the  
top-right corner of each image.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-02856-4

Extended Data Fig. 9 | Image captioning results. a. Captioning performance 
of CONCH and baselines fine-tuned on Source A (train n=558, validation n=77, 
test n=162). The METEOR and ROUGE metrics are both calculated to evaluate the 
quality of generated captions. Captions were generated using top-K sampling 
with K=50 as the decoding strategy. Error bars representing 95% confidence 
intervals; the center is the computed value of each metric indicated by the 
x-axis label. CONCH outperforms both GIT baselines with p < 0.01. Although 
our absolute performance on these metrics is not ideal, image captioning is a 
considerably more difficult task than classification and retrieval, and we show 
that our pretraining data and approach can significantly improve performance 
over general visual-language models. b. Examples of captions generated by 

CONCH considered by a pathologist to be high quality. The green text boxes 
show generated captions and gray text boxes show captions corrected by a 
pathologist. c. Examples of partially correct captions generated by CONCH. 
Reasonably correct portions of the generated caption are highlighted in blue. 
In general, we noticed that some of the generated captions are regurgitated 
verbatim from the training dataset, likely due to the limited scale of fine-tuning 
(training split: n=558). Given that our current pretraining scale is still relatively 
small compared to works in the general visual-language domain, we expect the 
fine-tuned captioning performance to potentially improve substantially with 
more high-quality training data.

http://www.nature.com/naturemedicine
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Extended Data Fig. 10 | CONCH pretraining ablations. In a, b, error bars 
represent 95% confidence intervals and the centres correspond to computed 
values of each metric as specified by the legend (left) or the y-axis label 
(middle, right). a. Comparison between CONCH pretrained on human-only 
data (n = 1,170,647) using CoCa vs. human-only data using CLIP vs. H&E only 
data (n = 457,372) vs. the full unfiltered dataset (n = 1,786,362). Left. Zero-shot 
performance on downstream subtyping (TCGA BRCA, n = 150; TCGA RCC, n = 225; 
TCGA NSCLC, n = 150; DHMC LUAD, n = 143; CRC100k, n = 7, 180; WSSS4LUAD, 
n = 4, 693) and grading (SICAP, n = 2, 122) tasks. Following pre-established 
conventions, quadratically weighted Cohen’s κ is reported for SICAP and 
Cohen’s κ is reported for DHMC LUAD, while balanced accuracy is reported for 

all other tasks. CONCH performs the best on average. Middle and right. Model 
performance in cross-modal retrieval on 3 datasets of image-text pairs (Source A,  
n = 797; Source B, n = 1,755; TCGA LUAD, n = 165). CONCH (CLIP) performs the 
best on average. b. Comparison between CONCH and no domain-specific 
unimodal pretraining. CONCH (No vision pretraining) replaces the image 
encoder pretrained on histopathology image patches with an analogous encoder 
pretrained on ImageNet. CONCH (No language pretraining) initializes the text 
encoder randomly instead of pretraining on pathology-related text. Left. Zero-
shot performance on subtyping and grading tasks. Middle and right. Cross-
modal retrieval performance.
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