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The accelerated adoption of digital pathology and advances in deep learning
have enabled the development of robust models for various pathology
tasks across adiverse array of diseases and patient cohorts. However,

model training is often difficult due to label scarcity in the medical domain,
and amodel’s usage is limited by the specific task and disease for which

itis trained. Additionally, most models in histopathology leverage only
image data, a stark contrast to how humans teach each other and reason
about histopathologic entities. We introduce CONtrastive learning from
Captions for Histopathology (CONCH), a visual-language foundation model
developed using diverse sources of histopathology images, biomedical text
and, notably, over 1.17 million image-caption pairs through task-agnostic
pretraining. Evaluated on a suite of 14 diverse benchmarks, CONCH can be
transferred to a wide range of downstream tasks involving histopathology
images and/or text, achieving state-of-the-art performance on histology
image classification, segmentation, captioning, and text-to-image

and image-to-textretrieval. CONCH represents a substantial leap over
concurrent visual-language pretrained systems for histopathology, with
the potential to directly facilitate a wide array of machine learning-based
workflows requiring minimal or no further supervised fine-tuning.

Thegold standard for the diagnosis of many diseases remains the exami-
nation of tissue by a pathologist. The recent rise of computational
pathology'™*, which leverages artificial intelligence (Al) to solve prob-
lems in pathology, has demonstrated considerable advances across
many tasks, including metastasis detection’, cancer subtyping®’, sur-
vival prediction®°, unknown primary origin site prediction'",image
search” ' and prediction of molecular alterations'”'8, among other
tasks". Additionally, current strides in the field are made under the

paradigm of developing models targeting specific tasks using large
cohorts of labeled training examples, such as inlymph node metastasis
detection®® and prostate cancer grading®-*2. However, the process of
data collection and annotation of whole-slide images (WSIs) is labor
intensive andis notscalable to open-set recognition problems or rare
diseases, both of which are common to the practice of pathology.
With thousands of possible diagnoses and many other tasks, training
separate models for every step of the pathology workflow is untenable.
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Additionally, as diverse as these tasks are, they are all analyses of
visual data or include other structured information such as ‘omics’
(refs. 23-26) and other multimodal data sources”%. However, the
practice of pathology and the communication of pathological findings
make extensive use of natural language, beitin the form of the report
that the pathologist prepares for the patient and their treating clini-
cian, thejournalarticle that details anew histopathologic entity or the
textbook chapter that teaches residents how to practice pathology.

The general machine learning community has made immense
strides in foundation models that use both visual and language infor-
mation. Representative tools such as CLIP*°, ALIGN* and CoCa*,
among others®%, use large-scale image—-caption pairs® to pretrain
visual-language foundation models—task-agnostic pretrained mod-
els that demonstrate robust performance in downstream vision and
visual-language tasks. In the broader biomedical imaging domain,
visual-language data have been leveraged for a variety of tasks,
including X-ray report generation*®*, zero-shot classification*** and
retrieval® %, among others* >, However, the number of studies inte-
grating vision and language data for representation learning in com-
putational pathology is small, with recent studies****® demonstrating
the potential of using paired image-caption data to learn meaningful
visual representations and to develop foundation models for histo-
pathology that can be transferred to multiple downstream tasksina
zero-shot setting, thatis, using no task-specific training data. However,
these studies****** were limited in the scale of histopathology-specific
pretraining datadue tothelack of readily availableimage-caption pairs
inthis domain, leading to limited practical utility from relatively poor
performance. Additionally, the broader capabilities of these models
remain underexplored.

Given the diversity of tasks, the difficulty in acquiring large data-
sets of rare diseases or combinations of findings, and the central nature
of language to the practice of pathology, there is a need for (1) high-
performing visual-language foundation models that leverage
large-scale pretraining and generalize well across tasks; and (2) exten-
sive studies onthe wide range of potential applications of these models
to understand their utility and limitations. We introduce CONtrastive
learning from Captions for Histopathology (CONCH), avisual-language
foundation model developed using diverse sources of histopathology
images, biomedical text and over 1.17 million image-caption pairs
(Fig.1la-band Extended Data Fig.1) through task-agnostic pretraining
to address these unfilled needs. Based on CoCa®, a state-of-the-art
visual-language foundation pretraining framework, CONCH uses an
image encoder, atextencoder and amultimodal fusion decoder, and it
istrained using a combination of contrastive alignment objectives that
seek to align the image and text modalities in the model’s representa-
tionspace and a captioning objective thatlearns to predict the caption
corresponding to an image (Fig. 1c). We investigate the capabilities
of CONCH on a wide array of tasks, including classification of image
tiles and gigapixel WSlIs, cross-modal image-to-text and text-to-image
retrieval, image segmentation and image captioning, using a total
of 14 diverse benchmarks. We demonstrate that our model achieves

state-of-the-art performance across all benchmarks relative to other
visual-language foundation models (Fig. 1d), including PLIP**, Biomed-
CLIP** and OpenAICLIP*, and it outperforms concurrent baselines,
often by alarge margin (Figs. 2-5).

Results
Zero-shot classification of diverse tissues and diseases
Contrastively aligned visual-language pretraining allows the model to
bedirectly applied to downstream classification tasks without requiring
further labeled examples for supervised learning or fine-tuning. This
zero-shot transfer capability allows a single pretrained foundation
modelto be applied offthe shelfto different downstream datasets with
an arbitrary number of classes compared with the current paradigm
of training a new model for every new task. While we do not expect
zero-shot classification to currently be sufficiently accurate for most
clinical use cases, in some tasks, we found CONCH to perform sur-
prisingly well, and it may serve as a strong baseline for conventional
supervised learning, especially when training labels are scarce.
Givenatask, wefirstrepresented the set of class or category names
using a set of predetermined text prompts, where each prompt corre-
sponded toaclass. Animage was then classified by matching it with the
most similar text promptinthe model’s shared image-text representa-
tionspace (Fig. 2a; see Methods for details). In practice, there are often
multiple ways to phrase the same conceptin text (for example, ‘invasive
lobular carcinoma (ILC) of the breast’ and ‘breast ILC’); therefore, we
created an ensemble of multiple text prompts for each class during
prediction, which was found to generally boost predictive perfor-
mance compared to using asingle text prompt (Extended Data Fig. 2).
Additionally, while previous studies**** primarily focused on classifi-
cation tasks at the region-of-interest (ROI) level, we also investigated
the zero-shot capability of our model on gigapixel WSIs by leveraging
MI-Zero*, which divides a WSIinto smaller tiles and subsequently aggre-
gatesindividual tile-level scores into a slide-level prediction (Fig. 2b).
In total, we evaluated CONCH on four slide-level classification
tasks: The Cancer Genome Atlas (TCGA) BRCA (invasive breast carci-
nomasubtyping), TCGANSCLC (non-small-cell lung cancer subtyping),
TCGARCC (renal cell carcinoma subtyping) and Dartmouth Hitchcock
Medical Center (DHMC) LUAD (lung adenocarcinoma histologic pat-
tern classification) and three ROI-level tasks: CRC100k (colorectal
cancer tissue classification), WSSS4LUAD (LUAD tissue classifica-
tion) and SICAP (Gleason pattern classification). We used balanced
accuracy as the primary evaluation metric for TCGA NSCLC, TCGA
RCC, TCGA LUAD, CRC100k and WSSS4LUAD, which accounted for
class imbalance by weighing the accuracy score of each class equally.
Following the community standard, we used Cohen’s k and quadratic
weighted Cohen’s k as primary metrics for LUAD pattern classification
and Gleason pattern classification, respectively, asthey are regarded as
more subjective tasks, which typically translates to higher inter-rater
variability. We refer readers to Supplementary Tables 1-14 for more
detailed reporting of model performance and Methods for detailed
descriptions of evaluation datasets.

Fig.1|Data curation and model schematic. a, Automated data cleaning
pipeline. Educational sources (EDU) and parts of the PubMed Central Open
Access Dataset (PMC OA) were manually cleaned and used to train an object
detector to detect histopathology images, alanguage model to split captions
referring to multiple images and a matching model to match detected images
to their corresponding captions. The cleaning process yielded a dataset of 1.79
millionimage-text pairs, and we then filtered out pairs referring to nonhumans
to create our CONCH (human-only) pretraining dataset of 1.17 million (see
Methods for details on data cleaning and Discussion on ablation experiments
investigating data filtering). b, Estimated distribution of image-text pairsin
the human-only pretraining dataset by topic. Note that pretraining data cover
adiverse range of pathology topics. Inset, comparison of the distribution

of caption lengths between PMC-Path and EDU (see Extended Data Fig. 1 for

wordclouds of captions from each category). ¢, Visual-language pretraining
setup. CONCH consists of an image encoder, a text encoder and amultimodal
text decoder. The pretraining process uses both contrastive and captioning
objectives. The contrastive objectives align the image and text encoders

by maximizing the cosine-similarity scores between paired image and text
embeddings, while the captioning objective maximizes the likelihood of
generating the correct text conditioned on the image and previously generated
text (see Methods for details). <bos>, beginning of sentence; attn, attention;
<eos>, end of sentence. d, Radar plot comparing the performance of CONCH
and baselines on various downstream tasks. CONCH outperforms baselines by
asignificant margin on a diverse set of tasks spanning zero-shot classification,
retrieval and zero-shot segmentation (see Results for detailed descriptions of
each task and metric).
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Onslide-level benchmarks, CONCH outperformed state-of-the-art
visual-language foundation models (PLIP, BiomedCLIP and OpenAl-
CLIP) on all tasks, often by a wide margin (Fig. 2c). For instance, for

NSCLC subtyping and RCC subtyping, CONCH achieved a zero-shot
accuracy of 90.7% and 90.2%, respectively, and it outperformed
the next-best-performing model, PLIP, by 12.0% and 9.8% on each
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Fig.2|Zero-shot and supervised classification. a, Schematic of zero-shot
classification using contrastively aligned image and text encoders. A promptis
constructed for each class, and the image is classified according to the prompt
whose embedding is closest to that of the image in the shared embedding space.
b, Zero-shot classification of WSIs. Each WSl is divided into tiles and processed
asina. The similarity scores for tiles are aggregated using top-K pooling to

form slide-level similarity scores, the highest of which corresponds to the
slide-level prediction.Inc,d, dashed lines represent the average over tasks.
Error bars represent 95% confidence intervals, and the centers correspond to
computed values of each metric, as specified below. ¢, Zero-shot performance on
downstream subtyping (TCGA BRCA, n=150; TCGARCC, n =225; TCGANSCLC,
n=150; DHMC LUAD, n =143; CRC100k, n=7,180; WSSS4LUAD, n=4,693) and
grading (SICAP, n = 2,122) tasks. Cohen’s k is reported for DHMC LUAD and

quadratically weighted Cohen’s k is reported for SICAP, while balanced accuracy
isreported for all other tasks. Additional metrics are reported in Supplementary
Tables1-7.d, Supervised evaluation of embeddings of each model. Linear
probingis used for ROI-level tasks (CRC100k and SICAP), while ABMIL is used
for slide-level tasks, with the same metrics reported as in ¢ (see Supplementary
Tables15-19 for more detailed results). e, From left to right: pathologist-
annotated IDC, corresponding heatmap and selected tiles at higher power. The
heatmapis colored on the basis of the cosine-similarity score between each tile
within the slide and the text prompt corresponding to the predicted class label.
We find excellent agreement between the annotated image and high-similarity
regions, with the tiles demonstrating classic IDC morphology within the high-
similarity (high sim.) regions and stroma or other normal constituents of the
breast in the low-similarity (low sim.) regions.
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task with P<0.01 according to a two-sided paired permutation test
(Methods, ‘Statistical analysis’). On the more difficult BRCA subtyp-
ing task, CONCH achieved a zero-shot accuracy of 91.3%, while other
models performed at near-random chance, with accuracies ranging
from 50.7% (PLIP) to 55.3% (BiomedCLIP), nearly 35% (P < 0.01) lower
than CONCH. Lastly, on the LUAD pattern classification task, CONCH
achieved a k score of 0.200, which was 0.12 higher than that for the
next-best-performing model, PLIP, although no significance was noted
(P=0.055). On ROI-level benchmarks, we observed similar findings,
where CONCH achieved a zero-shot quadratic kx of 0.690 on SICAP
(outperforming BiomedCLIP by 0.140, P< 0.01), azero-shot accuracy
of 79.1% on CRC100k (outperforming PLIP by 11.7%, P< 0.01) and a
zero-shot accuracy of 71.9% on WSSS4LUAD (outperforming PLIP by
9.5%, P< 0.01). These results demonstrate that, inaddition to achieving
more accurate predictions on relatively easy tasks, CONCH was still
able to achieve meaningful predictions on some more challenging
tasks where other models may especially struggle.

When classifying a WSI using zero-shot transfer, in addition to
computing anaggregated, slide-level prediction, we can create a heat-
map to visualize the cosine-similarity score between each tile in the
slide and the text prompt corresponding to the predicted class label.
Regions with high similarity scores are deemed by the model to be close
matches with the diagnosis (for example, invasive ductal carcinoma
(IDC)), while regions with low similarity scores do not match the diag-
nosis (Fig. 2e). Inan example of abreast IDC slide, we found that regions
highlighted in the heatmap closely resembled the tumor regions as
delineated by pathologist annotation (Fig. 2e, left and middle). Because
the slide-level prediction score is a simple average of the similarity
scores of the top-Ktiles for a given class, the heatmap enables human
interpretability by directly highlighting regions involved in the model’s
decision-making process, which can be displayed in high resolution
to the human user for inspection (Fig. 2e, right). Additional examples
are visualized in Extended Data Figs. 3-5. These findings suggest the
possibility of using the zero-shot recognition ability of our model for
coarse-grained tissue segmentation on WSIs, which we quantitatively
evaluated in Results (‘Zero-shot segmentation’).

Few-shot classification with task-specific
supervised learning

The zero-shot recognition capability of contrastive pretrained
visual-language models for histopathology enables efficient and
expedited application of a single foundation model to a potentially
wide range of tasks without going through the laborious processes of
training data collection, annotation and supervised model training
for each new task. Sometimes, however, it may still be desirable to
specialize the model with labeled training examples to maximize per-
formance for agiven task, ideally using as few labels as possible. In this
section, we investigate the label efficiency when using the pretrained
representation of theimage encoder backbone of the visual-language
foundation models for task-specific supervised classification. For
eachbenchmark using supervised training, we used either the official
trainingset (if provided) or the remaining cases from the dataset after
holding out the set of cases used for zero-shot evaluation (Methods,
‘Downstream evaluation datasets’). For slide-level tasks, we trained
weakly supervised classification models using slide-level labels based
onthewidely used attention-based multiple-instance learning (ABMIL)
algorithm®. For ROI-level tasks, we used logistic regression on top of
the global (for example, classification (<cLs>) token) representation
of eachencoder, apractice commonly known as linear probing. In addi-
tion to PLIP, BiomedCLIP and OpenAICLIP encoders, we introduced
supplementary baselines for comparison: for slide-level tasks, given
its popularity, we used ResNet50 (ref. 60) (truncated after the third
residual block) pretrained on ImageNet®, while, for ROI-level tasks, we
included CTransPath®—a state-of-the-art self-supervised pretrained
histopathology image encoder (see Methods for details).

Ontheslide-level tasks (Fig. 2d, left), CONCH achieved abalanced
accuracy score of 86.7%, 94.2% and 93.3% on BRCA subtyping, RCC
subtyping and NSCLC subtyping, respectively, outperforming the com-
monly used ResNet50 ImageNet baseline by 10.0%, 2.6% and 10.7%,
respectively (P<0.01,P=0.223and P=0.033). Overall, CONCH obtained
an average accuracy of 91.4% across the three tasks, whereas PLIP and
BiomedCLIP had anaverage accuracy of 87.3% and 89.4%, respectively,
butno statistical significance was detected other than for BRCA subtyp-
inginthe comparison with PLIP (P=0.04).Inthe ROI-level tasks (Fig. 2d,
right), CONCH performed nearly identically to the state-of-the-art
CTransPathencoder (93.8% versus 93.8% balanced accuracy on CRC100k
and 0.833 versus 0.835 quadratically weighted k on SICAP), while out-
performing PLIP, BiomedCLIP and OpenAICLIP by 4.0-5.8% in balanced
accuracy on CRC100k and by 0.071-0.128 in quadratically weighted x
on SICAP (P < 0.01 for all comparisons). These results demonstrated
that, overall, CONCH provides astrongimage encoder that performed
either comparably to or better than all visual encoders tested, includ-
ing a strong, vision-only self-supervised baseline (see Supplementary
Tables 15-19 for detailed reporting of model performance).

Next, we investigated the label efficiency of different visual-
language pretrained encoders in the few-shot setting, where we varied
the number of training labels per class (n.), forn.=1, 2, 4, 8, up to 512
per class or until we reached the maximum number of available labels
in the training set. In the few-shot setting, for each experiment, we
sampled five different sets of training examples and showed their
individual performance by boxplot to account for the high variance
in model performance when performing supervised learning with
very few training examples (Fig. 3 and Extended Data Fig. 6). We first
observed that CONCH achieved better performance (in terms of the
median accuracy of five runs) than other encoders for all sizes of train-
ing set and for all tasks, which translated to requiring fewer labels to
achieve the same performance. Forinstance, in BRCA subtyping, using
the CONCH encoder and 8 traininglabels per class outperformed using
PLIP, BiomedCLIP or OpenAICLIP with 64 labels per class, representing
anontrivial reductionin training set size—a trend we also observed for
most tasks tested. Additionally, we noted that the zero-shot perfor-
mance of CONCH was highly competitive when compared to few-shot
supervised learning. Aside fromrelatively easy tasks such as RCC sub-
typing and CRC tissue classification, CONCH zero-shot outperformed
PLIP-based and BiomedCLIP-based supervised learning in BRCA sub-
typing (up to 64 labels per class), NSCLC subtyping (up to 128 labels per
class) and Gleason grading (up to 8 labels per class for PLIP and 64 labels
per class for BiomedCLIP). These findings suggest that the zero-shot
capability of agood visual-language foundation model should not be
trivialized and, infact, canserve asavery good baseline when evaluat-
ing the performance of task-specific diagnostic models trained with
supervised learning. On the other hand, we found that the zero-shot
capability of previous visual-language foundation models (that is,
PLIP and BiomedCLIP) could be relatively easily surpassed by using
supervised learning on top of the CONCH vision encoder with just a
few labeled examples.

Application to classification of rare diseases

While previous investigations have focused on evaluating zero-shot
and few-shot performance of visual-language pretrained models on
relatively narrow tasks corresponding to a small set of possible classes
(2-5classes), to our best knowledge, the effectiveness of such models
inlarge-scale, potentially fine-grained disease classification involving
rare diseases has yet to be studied. Here, we investigated the utility of
CONCHinrecognizing up to 30 categories of brain tumors, all of which
areclassified as rare cancers following the definition of the RARECARE
project® as having an annual crude incidence rate smaller than 6 per
100,000, the definition adopted by the National Cancer Institute’s
Surveillance, Epidemiology and End Results (SEER) program. We con-
structed alarge-scale subtyping benchmark using the EBRAINS dataset
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Fig. 3| Slide-level few-shot classification experiments. a-c, We investigated
the label efficiency of different visual-language pretrained encoders in the
few-shot setting where we varied the number of training labels per class (n.), for
n.=1,2,4,8,16... until we reached the maximum number of available labels in
the training set. For each n., we sampled five different sets of training examples
and trained a weakly supervised ABMIL model on each training set using slide-
level labels (see Methods, ‘Supervised and weakly supervised classification
experiments’ for details). We show their individual model performance for BRCA
subtyping (a), RCC subtyping (b) and NSCLC subtyping (c) by boxplot (n=5

for each box) to study the variance in model performance when performing

supervised learning with very few training examples. Boxes indicate quartile
values and whiskers extend to data points within 1.5x the interquartile range. For
reference, the zero-shot performance of each model is shown as adashed line on
the same plot. In terms of few-shot supervised learning, CONCH achieves better
performance (in terms of the median accuracy of five runs) than other encoders
for different sizes of training set and for all tasks. Additionally, the zero-shot
performance of CONCH is surprisingly competitive, exceeding the few-shot
performance of PLIP, BiomedCLIP and OpenAICLIP with up to 64 labels per class
inthe case of BRCA and NSCLC subtyping. Sup., supervised learning.

and evaluated the effectiveness of both zero-shot and supervised learn-
ing of various models.

In zero-shot classification, CONCH achieved abalanced accuracy
score of 37.1% on the 30-class subtyping problem (Extended Data Fig.7
and Supplementary Table 20), far surpassing the random chance base-
line of 3.3%, as well as the second-best-performing visual-language pre-
trained zero-shot classifier, BiomedCLIP (+17.0%, P < 0.01). However, the
generally low zero-shot performance of these models suggests that the
currentgeneration of visual-language foundation models may not yet
be capable of directly performing ‘in the wild’, that is, open-set recog-
nition of diverse diseases in pathology, and they are likely to achieve
limited performance when evaluated on more challenging benchmarks
involving many classes and rare entities.

Next, we studied the quality of pretrained representations of our
vision encoder for training weakly supervised ABMIL classification
models. Similar to the previous section, we also included additional
baselines for pretrained vision encoders, including CTransPath, Kimi-
aNet® and truncated ResNet50 (ImageNet initialized weights). We found
that, while the zero-shot performance of CONCH was limited due to the
challenging nature of the task, image embeddings of the frozen CONCH
encoder could be used to develop strong-performing classification

models when combined with weakly supervised learning. Specifically,
CONCH combined with ABMIL achieved a balanced accuracy of 68.2%
(Extended Data Fig. 7a and Supplementary Table 21), surpassing the
vision-only self-supervised learning (SSL) pretrained CTransPath model
(+6.8%, P< 0.01), as well as all other visual-language pretrained models
tested by asubstantial margin (+10.7%, P < 0.01for PLIP, +14.4%, P < 0.01
for BiomedCLIP and +17.8%, P < 0.01 for OpenAICLIP). These results
demonstrate the potential utility of a strong pretrained visual-language
model as an effective image-only encoder for standard weakly super-
vised learning of computational pathology workflows, even when the
task predominantly involves rare diseases. Lastly, we also investigated
the few-shot learning performance of various models, motivated by the
need for high label efficiency when training diagnostic models for rare
diseases due to limited data availability. We observed a similar trend
of superior label efficiency for CONCH compared to all other models
tested, with other models generally requiring around four times as many
labels to achieve comparable performance (Extended Data Fig. 7b).

Zero-shot cross-modal retrieval
By learning analigned latent space for visual and language embeddings,
our modelis capable of cross-modal retrieval inazero-shot setting, that
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computed between the query image and all text samples in the database. The
top-K most similar texts were retrieved. We report Recall@k for K € {1, 5,10} and
the meanrecall, which averages over K. We show both text-to-image (top row)
and image-to-text (bottom row) retrieval for each retrieval task (columns). The
rightmost column reports the average across tasks for each metric. CONCH
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outperforms other baselines on all retrieval tasks. Error bars indicate 95%
confidence intervals. b, Schematic for zero-shot image-to-text retrieval (the text-
to-image direction is analogous). ¢, Examples of images in the top five retrieved
results from TCGA LUAD using LUAD-relevant queries with cosine-similarity
scores shownin the top-right corner. Examples of other datasets using more
diverse queries are shown in Extended Data Fig. 7. In general, we found that the
images retrieved by the model matched what was described in the text prompt.

is, retrieving the corresponding text entry on the basis of animage query
(image-to-text, abbreviated as ‘i2t’) or vice versa (text-to-image, abbrevi-
ated as ‘t2i"). Thistask naturally lends itselftoimage searchapplications,
whichareusefulinthebiomedicaldomainforapplicationssuchasidentify-
ingcasesforinclusioninresearch cohortsor clinical trials, assistance with
rare disease presentations or morphologies, and collecting cases for or
helpingtocreateeducationalresources. To performtext-to-imageretrieval
(theimage-to-text direction was analogous), we used the text encoder to
embed a text input that served as a query. We then used the query text
embedding to retrieve similarimagesin the latent space (Fig. 4b).

We evaluated our model on threeimage-caption datasets, source
Aandsource B (bothare held-out sources from model pretraining that
cover adiverse range of general pathology concepts) and TCGA LUAD
(amuch more specific dataset of tiles extracted from LUAD slides in
TCGA and annotated with captions in house). Following previous stud-
ies**** we used Recall@K as the metric for cross-modal retrieval (see
Methods for more detailed descriptions of retrieval datasets).

On average, over the three datasets, CONCH significantly out-
performed baselines by a large margin, achieving mean recall for
text-to-image retrieval of 44.0%, and it outperformed the next-best
model, BiomedCLIP, by 17.3% with P < 0.01 according to a two-sided
paired permutation test (Fig. 4a). For source A and source B, CONCH
achieved mean recall for text-to-image retrieval of 68.8% and 39.0%,
respectively, outperforming the second-best model, BiomedCLIP, by
31.5% and 15.1% (P < 0.01 for both). For TCGA LUAD, CONCH achieved
text-to-image mean recall of 24.0%, outperforming the next-best
model, BiomedCLIP, by 5.3% but with no statistical significance
(P=0.22). However, CONCH significantly outperformed PLIP and
OpenAICLIP (P < 0.01). Image-to-text retrieval for all three datasets
followed the same trend as text-to-image retrieval in terms of per-
formance and statistical significance, except for TCGA LUAD where
the gap for CONCH and BiomedCLIP was slightly smaller (1.6%).
We refer readers to Supplementary Tables 22-27 for more detailed
reporting of model performance. On the basis of these results,
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CONCH was able to perform more accurate cross-modal retrieval
than baselines.

Inadditiontousingthe paired captions as queries, we show exam-
ples of retrieved results using CONCH with simple text prompts of
concepts related to LUAD (for example, ‘solid-pattern LUAD’) on the
TCGALUAD dataset (Fig. 4c). To provide examples from more complex
text queries, such as ‘cribriform prostaticadenocarcinoma’, we used a
highly diverse dataset of 321,261 tiles sampled from 1,620 cases held
out during pretraining, spanning 108 OncoTree® codes (Extended
DataFig. 8). However, as this dataset did not have paired text data, we
were not able to quantify the retrieval performance. The presented
examples were confirmed by a pathologist to represent the text query
closely.

Zero-shot segmentation

While WSIs can be gigapixels in size, they are generally heterogene-
ous, with diverse cell types, morphologies and tissue architectures
represented, each often making up a small share of the slide. Conse-
quently, segmentation on theslide levelis a difficult and useful task to
identify distinct regions of a WSI on the basis of the characteristics of
interest, and it can reduce the number of tiles needed for downstream
applications. However, because annotated data at the sub-slide level
are expensive and laborious to collect, a general model capable of
performingslide-level segmentationinazero-shot settingis valuable.
Inthis work, we explored the possibility of performing coarse-grained
tissue segmentation on WSIs without labeled examples, instead directly
using the demonstrated zero-shot retrieval and classification capabili-
ties of our model.

Given a WSI, we divided the tissue regions into smaller image
tiles and posed a given segmentation task as classifying each tile
using zero-shot classification and assigning the predicted class label
to all pixels in the tile, performed for all tiles (Fig. 5a). To minimize
sharp transition in predicted values for pixels at the boundary of
neighboring tiles, we tiled the WSIs with a 75% overlap and averaged
the prediction scores in overlapped regions to achieve a smoother
appearance in the predicted segmentation map. We evaluated our
model on SICAP for prostate tumor versus normal tissue segmenta-
tion and on DigestPath for malignant versus benign tissue segmen-
tation in CRC specimens. We report the widely used Dice score, in
addition to precision and recall, for each task against ground-truth
pixel-level annotations, with scores macro-averaged over all images
ineach dataset (see Methods for more details). We refer the reader to
Supplementary Tables 28 and 29 for more detailed results of model
performance.

CONCH outperformed other models in both tasks (Fig. 5b,c). In
SICAP, CONCH achieved an average Dice score of 0.601 (0.549, P=0.08
for PLIP and 0.484, P< 0.01 for BiomedCLIP), an average recall score
of 0.751 (0.644, P< 0.01 for PLIP and 0.557, P< 0.01 for BiomedCLIP)
and an average precision core of 0.672 (0.605, P=0.024 for PLIP and
0.536, P<0.01 for BiomedCLIP). In DigestPath, CONCH achieved an
average Dice score 0f 0.615(0.426, P < 0.01for PLIPand 0.446, P< 0.01
for BiomedCLIP), an average recall score of 0.709 (0.541, P< 0.01 for
PLIPand 0.601, P< 0.01for BiomedCLIP) and an average precision core
0f 0.663(0.526, P =0.024 for PLIP and 0.581, P < 0.01for BiomedCLIP).
Additionally, we found that, despite the coarse-grained and zero-shot
nature of the approach, the model was able to produce reasonably
accurate pixel-level segmentation masks in some instances, as visual-
izedinFig.5d,e.

Discussion

Most previous tools in computational pathology have attempted to
extract meaningful patterns and discriminative signals from image
dataand/or structured patient data such as genomics and haveignored
the textual aspect of pathology. However, these approaches leave
on the table a huge amount of information present in descriptions

of images, information that allows pathology trainees to generalize
from afew exemplarimages of an entity toimages in the real world that
are often substantially more diverse. While several recent studies****
attempted to leverage image and caption data from social media or
biomedical research articles to build visual-language foundation mod-
elsapplicable to the domain of histopathology, we found that, across a
number of tasks, both their zero-shot and their supervised classifica-
tion performance remain limited, hindering their practical value as
general-purpose recognition or retrieval systems for histopathology.
Additionally, beyond working on small ROIs, the models’ abilities to
performin more complex settings (for example, classification of rare
diseases or tumor segmentation on heterogeneous gigapixel WSIs)
remain underexplored.

In this study, we demonstrated that, by using the currently larg-
est histopathology-specific, paired image-text dataset of over 1.17
million examples for task-agnostic pretraining, we could build a
high-performance visual-language foundation model that could then
demonstrate utility in a wide range of clinically relevant downstream
tasks such as classification, retrieval and tissue segmentation. Our
modelis equipped with strong zero-shot recognition capabilities out of
thebox, which can potentially relieve the burden of annotating training
examples for many specific classification tasks, and we demonstrated
thatits zero-shot performance oftenrivaled or even outperformed con-
ventional supervised learning baselines in these tasks under few-shot
settings. Additionally, the much-improved zero-shot image-to-text
and text-to-image retrieval capabilities of our model will potentially
empower trainees, physicians and researchers to more accurately
and flexibly retrieve relevant patient cases or educational examples
based on image or natural language queries once it can be efficiently
implemented into healthcare systems or databases. Equipped with
amultimodal decoder, our visual-language foundation model also
provides the flexibility to be further fine-tuned in downstream tasks
thatinvolve language generation (for example, image captioning; see
Methods, ‘Captioning with fine-tuning’ for details and Extended Data
Fig. 9 and Supplementary Table 30 for exploratory results) and/or
multimodal reasoning based on both visual and textual inputs. How-
ever,beyond promisingresultsin select tasks, we also found and noted
that current visual-language pretrained models, including CONCH,
still perform poorly on challenging zero-shot problems (relative to
their supervised learning counterparts) that involve a large number
of classes and rare diseases. These observations suggest that we still
potentially have along way to go before achieving the goal of building
afoundation model capable of truly universal zero-shot recognition
or retrieval for histopathology.

We additionally performed ablation experimentstoinvestigate the
effect of datafiltering, different pretraining algorithms and unimodal
pretraining on the performance of our model. Most notably, we found
that performing unimodal pretraining (especially vision encoder SSL
pretraining) could improve model performance in zero-shot clas-
sification and retrieval across most tasks (see Extended Data Fig. 10
for more details).

Another relatively underexplored aspect is the compatibility of
visual-language pretrained foundation models with conventional
end-to-end supervised learning aimed at targeting specific tasks.
For some widely studied, single-disease model tasks such as prostate
adenocarcinoma Gleasongrading, there have been substantial efforts
by various groups around the world to build large and diverse datasets
with detailed ROI or pixel-level annotations suitable for end-to-end
supervised machine learning. A natural question is, given the abun-
dance of annotated data, does pretraining a foundation model on
images and captions from diverse tissue types and diseases still lead
totangible benefits for these specific tasks? We attempted to provide
someinsightinto this questionby assembling alarge and diverse data-
set of more than 200,000 labeled ROIs for the task of prostate can-
cer Gleason grading from multiple publicly available sources, before
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Fig.5|Zero-shot segmentation. a, Schematic illustrating zero-shot
segmentation on WSIs (or large tissue sections). To perform segmentation, we
divided each WSl into tiles and used zero-shot classification to predict the label of
eachtile. The tile-level predictions were stitched together to form the predicted
segmentation mask. b,c, Zero-shot segmentation performance of CONCH and
baselines on SICAP (n = 31) (b) and DigestPath (n = 250) (c) datasets. The macro-
averaged Dice score, precision and recall are reported. Error bars represent 95%
confidenceintervals. d,e, Examples of CONCH segmentation prediction on WSIs

C
DigestPath
1.00
BiomedCLIP B CONCH BiomedCLIP

N OpenAICLIP PLIP BN OpenAICLIP

0.75

' 1
1
0.50 !
1ol
0.25

Recall Dice score Precision Recall

Ground truth Predicted

for SICAP (d) and DigestPath (e). The left panel shows the ground truth, and

the right panel shows the predicted segmentation mask, with example regions
enlarged. Red and blue indicate tumor and normal tissue, respectively. In general,
inthese examples, CONCH displays excellent sensitivity to tumor regions with
slightly lower specificity, although most of the regions that CONCH segments
astumor that are in fact nontumor are adjacent to cancerous glands or contain
cancer-associated stroma for both SICAP and DigestPath.

performing end-to-end fine-tuning of our vision encoder, as well as a
handful of other pretrained standard convolutional neural network
(CNN)-based and vision transformer (ViT)-based models including
domain-specific encoders such as KimiaNet®* and CTransPath®. In
our experiments, we found that, even with hundreds of thousands of
labeled ROIs paired with transfer learning from ImageNet weights or
SSL pretraining, a fine-tuned CONCH model cansstill provide asizeable
improvement, even when compared toamuch larger ViT-Large model
(Supplementary Table 31).

While a recent investigation found that current visual-language
pretrained foundational models may perform worse than smaller
encoders in the specific scenario of WSI-to-WSI matching using one
specific algorithm®®, our experiments in both rare disease few-shot
and weakly supervised classification, as well as end-to-end fine-tuning,
showed that CONCH can serve as a state-of-the-art visual encoder for
histopathology images, in addition to providing a shared image-text
latent space that unlocks additional multimodal capabilities. Neverthe-
less, these findings highlight the importance of continuous research
and evaluation to better understand the strengths and limitations of
foundational models for computational pathology.

Akey limitation of our study is the scale of data pretraining, which
still pales in comparison to billion-scale datasets used in developing
large-scale visual-language foundation modelsin the general machine

learning community; therefore, we are likely to see further potential
improvement in zero-shot recognition capabilities, representation
quality and robustness by increasing both the quantity and the quality
of histopathology image-caption datasets. However, given the increas-
ing datascale used in pretraining, the potential for unintentional data
overlap between pretraining dataand downstream test databecomes
increasingly high, alimitation also shared by previous vision-language
pretraining approaches in the biomedical domain****, Detecting and
removing duplicates and near-duplicates typically relies ona combina-
tion of heuristics and manual assessment, and this has not been suffi-
ciently exploredinthe biomedical domain, serving as an openresearch
question for future work. In this study, we minimized the potential for
data overlap by ensuring that no publicly available test dataset was
directly derived from any training sources and by only holding out data
at the source level. Another limitation of the study is that we did not
investigate the robustness of zero-shot classification (for both image
ROIsand WSIs) across different data cohorts with potentially different
staining variations, tissue preparation protocols and scanner-specific
imaging profiles, compared to using conventional supervised learning
or parameter-efficient fine-tuning techniques® %, Additionally, while
we showed that simply ensembling a small number of templates and
class names written by a pathologist can already work well for several
tasks, we did not attempt to explicitly engineer the prompts on the
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basis of the model’s performance (for example, by using a validation
set). We note that doing an explicit search for ‘good’ promptsona
small validation set (if it is available) may be much more effective in
practice whilesstill retaining the benefit of not needing to fine-tune the
model, although it would no longer be strictly considered zero-shot
transfer®’®, Moreover, as azero-shot classification algorithm for WSIs,
MI-Zerois only best suited for tasks where the defining morphological
patterns of each class are mutually exclusive, and it may not work on
tasks with specific assumptions or guidelines. Thisincludes tasks such
as Gleasonscoring where both the primary and the secondary pattern
may need to be considered to inform the classification or tumor versus
normal classification, inwhich aslide may be appropriately labeled as
‘positive’ assoon as a single tumor-containing regionis identified. We
note that, for these types of tasks, the pooling function of MI-Zero can
beadjusted tobetter suit the nature of the task, and we leaveitsimple-
mentation and evaluation to future studies. Lastly, while the current
landscape of visual-language foundation models for histopathology
focuses primarily on image-level tasks, the ability of these models to
recognize fine-grained visual concepts at the region level (that s, cel-
lular or even subcellular level) has not yet been studied, meaning that
other important tasks such as mitosis detection, fine-grained tissue
segmentation or cell counting currently remain outside the scope of
their downstream capabilities.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41591-024-02856-4.
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Methods

Dataset curation

Most data used for this study were obtained from publicly available
research articles. For internal data, the Mass General Brigham insti-
tutional review board approved the retrospective analysis of internal
pathology images, corresponding reports and electronic records.
Allinternal digital data, including WSlIs, pathology reports and EMRs
were deidentified before computational analysis and model develop-
ment. Patients were not directly involved or recruited for the study.
Informed consent was waived for analyzing archival pathology slides
retrospectively. We used publicly available articles from PubMed to
curate the largest-to-date dataset of histopathology image-caption
pairs. We used deep learning to automate data cleaningiteratively. For
curation, we divided the datasources into two categories: EDU, which
consists of data extracted from educational notes, and PMC OA, which
consists of data downloaded from the PubMed Central Open Access
Dataset (https://ncbi.nlm.nih.gov/pmc/tools/openftlist/).

The data curation process poses two main challenges: filtering for
histopathology data and handling image panels. The first challenge
is that the raw downloaded data comprised both histopathology and
non-histopathology examples. The second challenge is that a sub-
stantial portion of the data were in the form of figure panels, where
the images consisted of multiple subimages arranged in a panel with
parts of the caption addressing all or some of the subimages. In light
of these challenges, manually cleaning the data was infeasible. We
cleaned the data in three steps: (1) detecting histopathology images
(assingleimages or subimages); (2) splitting captions that referred to
image panels into separate captionsinto subcaptions; and (3) aligning
subimages with subcaptions within each image panel.

To detect histopathology images, we used an object detection
model (YOLOvS)"' to generate bounding boxes for extracting detected
images. To avoid the laborious task of manually labeling ground-truth
bounding boxes, we generated synthetic data by randomly selecting
single-panel images and arranging them in an image panel. We itera-
tively refined the detection model by validating it on a small subset
(<0.5%) of PMC OA and adding incorrectly labeled samples to the
training set.

For caption splitting, we collected a dataset of original and split
captions (while cleaning the EDU dataset) to fine-tune a generative
pretrained transformer (GPT)-style model pretrained on PubMed and
other medical text”>. We posed the problem of splitting captions as
causal language modeling, where we fine-tuned the language model
totake the original full captionasinputand predicted the subcaptions
separated by the keyword ‘next caption’. We used the fine-tuned model
to perform caption splitting.

To align the detected histopathology images with split captions,
wefirst trained a CLIP model*° on the cleaned EDU dataset, along with
PMC OA single figures that did not require splitting and alignment.
Using the trained model, given a set of m detected images and n split
captions from an image panel, we computed the image embeddings
{u,, u,, ..., u,,} and text embeddings {v,, v, ..., v,} in the aligned latent
space. Foreachimage embedding u;,, we computed the cosine-similarity
score witheach textembeddingv,. We retrieved the text with the high-
est cosine-similarity score s;; := u’v; and considered {u,, v;} to be an
image-caption pair for our cleaned dataset.

By applying the three steps above to PMC OA, we created
PMC-Path, a pathology-specificimage-caption dataset derived from
PubMed figures. We then combined it with EDU to form our full, unfil-
tered pretraining dataset 0of 1,786,362 image—-caption pairs. However,
PMC-Path also contained a substantial number of pairs referring to
animal histopathology, as well as non-hematoxylin and eosin (H&E)
stains (immunohistochemistry (IHC), Masson’s trichrome, Congo
red, etc.). Because our downstream evaluation concerned only human
histopathology and H&E tasks, we wanted to assess how the animal and
special staining data would affect performance. We first parsed the

captions to exclude samples referencing nonhuman animals, forming
adataset 0f1,170,647 human pairs. Additionally, we trained a classifier
thatidentified H&E stainsto further filter the human-only dataset and
create a dataset of 457,372 pairs. We found that CONCH pretrained on
the human-only dataset performed the best on downstream tasks in
general (Extended Data Fig.10a).

Visual-language pretraining
For visual-language pretraining, we used an equal-weighted combina-
tion of theimage-text contrastiveloss and the captioningloss following
CoCa*, astate-of-the-art visual-language foundation model pretrained
on general-domain image-caption pairs. The model consisted of an
image encoder, f{( - ; 8), a text encoder, g( - ; ¢), and a multimodal text
decoder, A(-; ). The image encoder included the backbone and two
attentional pooler modules, parameterized by 6y,cxponer Ocontrast aNd
Bapiions Tespectively. The backbone was a ViT” following the standard
ViT-base architecture with 12 transformer layers, 12 attention heads,
anembedding dimension of 768 and a hidden dimension of 3,072. The
token size was 16 x 16, and learned absolute positional embeddings
were added to each token. The backbone transformed images in the
form of raw red-green-blue (RGB) pixel values to dense feature maps
in a more semantically rich representation space learned from data.
Each attentional pooler was responsible for computing afixed number
(denoted by n) ofimage tokens fromthe last layer representation of the
ViT backbone using multiheaded attention and nlearned queries. For
enabling cross-modal retrieval through contrastive learning, the first
attentional pooler £, nasi( * 5 Bcontras) Used a single query (Monerase = 1) tO
compute a single image token designed to capture the global repre-
sentation of theimage. The second attentional pooler f.,cion( - ; Ocaption)
used N0 = 256 queries to generate a set of 256 image tokens designed
to capture more local and fine-grained details of the image, which are
typically required for captioning. The text encoder and multimodal
decoder wereboth GPT-style models that used causal attention masks
forleft-to-right autoregressive language modeling. Similar to theimage
encoder, the text encoder and multimodal decoder consisted of 12
transformer layers with anembedding dimension of 768 and a hidden
dimension of 3,072. The text encoder included an embeddingtable for
mapping discrete word tokens to continuous embeddings and aset of
learned absolute positional embeddings. Additionally, the textencoder
appended a learned <cLs> token to each tokenized caption, which
had access to the full context during transformer attention to extract
a global representation of a given caption. The multimodal decoder
inserted a cross-attention layer after each multiheaded self-attention
layer to incorporate information from image tokens and included a
final language modeling head for predicting the distribution of the
next token over the supported vocabulary.

During visual-language pretraining, a mini-batch consisted of M
image-caption pairs (x,-,w,-)f.‘il, where w; = (<BOS>, W3, ..., W; , <EOS>)
is asequence of Tword tokens representing the ith caption. Foragiven
pair (x;, w;), we let (u,, v;) be the output of f.onerase( - 5 Ocontrase) and the
output of g( - ; ) at the position corresponding to the <cL.s> token
after £,-normalization. The complete objective is given by:

ud exp(tulv;)

L=--3log—

) _ 1 g’: log exp(r V/Tllj)
Mg Z/:l exp(rui vf)

m i Zf; exp(T \'j.Tui)

L MTH
VDY log p (Wi [Wi0:c-1, X3 0, @, )
i=1t=1
Thefirstand second terms represent image-to-text and text-to-image
contrastive loss, respectively, to maximize the cosine-similarity scores
between paired image and text embeddings relative to remaining
negative pairings in the mini-batch. The last term seeks to maximize
the log-likelihood of each observed token under the multimodal
autoregressive language model (jointly parameterized by the image
encoder, text encoder and multimodal decoder), conditioned on
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previous tokensinthe caption, aswell asthe correspondingimage. Each
visual-language pretraining experiment was trained for 40 epochs,
distributed across eight NVIDIA A100 80-GB graphics processing units
(GPUs) with alocal batchsize of 48 per GPU, and gradient accumulation
was used to achieve an effective global batch size of 1,536. We set the
image size to 448 x 448 pixels, where larger images were first resized
along the shorter edge and center-cropped, and smaller images were
zero-padded as needed. For all optimization hyperparameters, refer
to Supplementary Table 32.

Pretraining unimodal encoders

Prior work®® showed that performing self-supervised pretraining of
unimodal modules using unpaired data before joint visual-language
pretraining using paired image-caption data can substantiallyimprove
downstream zero-shot transfer performance. We pretrained our
image encoder using iBOT”, a state-of-the-art, self-supervised pre-
training algorithm for unlabeled image data. An in-house dataset of
16 million 256 x 256-sized image tiles were sampled and extracted at
x20-equivalent magnification from the tissue regions of 21,442 WSIs
spanning over 350 cancer subtypes under the OncoTree classification
system®, Detailed hyperparameters forimage-only pretraining are pro-
videdin Supplementary Table 33. For pretraining the language model,
we built a diverse corpus of pathology-relevant texts ranging from
pathology educational texts to final diagnosis sections of over 550,000
surgical pathology reports from Massachusetts General Hospital and
over 400,000 select histopathology-relevant PubMed abstracts. We
used regex to deidentify in-house diagnostic reports, notably replac-
ing patient and physician names, specimenidentifiers, medical record
numbers and dates with a corresponding special token in the vocabu-
lary. We pretrained a 24-layer GPT-style autoregressive model using the
next-word prediction loss. Specifically, given asequence of word tokens
w=(<BOS>,Wj, ..., Wy, <EOS>), we maximized the log-likelihood of each
token under an autoregressive generative model parameterized by ¢:

T+1

Lem@) =~ Z logp (WelWo:c—1;€)

t=1

Detailed hyperparameters for text-only pretraining are provided in
Supplementary Table 34. After pretraining, the first 12 layers of the
transformer-based language models and the embedding table were
used to initialize the unimodal text encoder, while the last 12 layers
and the language modeling classifier head were used to initialize the
corresponding parameters in the multimodal decoder.

We assessed the benefit of unimodal pretraining by comparing
downstream performance between the unimodal domain-specific
pretraining scheme above versus CONCH with the image encoder
pretrained on ImageNet versus CONCH with the language model ran-
domly initialized (Extended Data Fig. 10). We found that CONCH with
domain-specific pretraining outperformed CONCH with ImageNet
pretraining onboth zero-shot transfer and retrieval tasks. CONCH with
the pretrained language model performed similarly to CONCH with
arandomly initialized language model on classification and grading
tasks but outperformeditinretrieval tasks.

Zero-shot transfer on ROIs and tiles

For zero-shot transfer, we used the method described in CLIP*°. Each
class was associated with a text prompt consisting of a class name
(forexample, ‘adenocarcinoma’) and atemplate (forexample, ‘this
is {}/;see Supplementary Table 35 for templates used across all
tasks). For apromptassociated with classj € {1, 2, ..., C}, we computed
the ¢,-normalized embedding v, using a text encoder trained on our
paired dataset to form the linear classifier weights. Because model
performance can vary considerably depending on the choice of
prompts, we measured the performance spread by sampling subsets
froma pathologist-curated set of prompts and reporting the median.

Alternatively, we could also ensemble all the prompts within a class
by using the mean embedding over the prompts as the text embed-
ding associated with that class (see Extended Data Fig. 2 for acom-
parison with and without ensembling). Analogously, for each image,
we computed the ¢,-normalized embedding u,. We then computed
cosine-similarity scores between the image and each text embedding,
and the predicted class was consequently the class with the highest
similarity score:

— Ty,
Y, = argmax u;'v;
J

Because some evaluation sets wereimbalanced, we report the balanced
accuracy (thatis, themacro average over the accuracy obtained oneach
class) and the average F, score weighted by the support of each class.
For SICAP, we alsoreport the quadratic Cohen’s k score, whichis often
used for prostate Gleason grading”, where errors between adjacent
grading classes are penalized less.

Similarly, for cross-modal retrieval, we used the same method as
zero-shot classification above to retrieve the top-K images that were
closestinthe aligned latent space to aspecific text query (text-to-image
retrieval). Image-to-text retrieval was performed analogously. To evalu-
ateretrieval, we followed ALIGN* and used Recall@K, that s, for what
percentage of the test set is the correct result in the top-K retrieved
samples. We chose K € {1, 5,10}, and we also report mean recall by
averaging the scores over the three Recall@K values.

Unless otherwise specified, we enforced the maximum image
size to be 448 x 448 for CONCH through image resizing and center
cropping, similar to its pretraining configuration. For all models that
were not ours, we used their provided processor function and default
configuration forimage and text processing in downstream evaluation.

Extending zero-shot transfer to WSIs
To extend zero-shot transfer to gigapixel images, we followed the
method introduced by MI-Zero®. Specifically, for classification over
Cclasses, the WSI was first divided into Ntiles, and the #,-normalized
embeddings were computed independently using the image encoder.
For eachtileembedding, we computed similarity scores with each text
embedding following the method for tiles described above, obtaining
asetof Csimilarity scores for each tile. To aggregate similarity scores
across tiles, we used the top-K pooling operator by averaging over
the highest K similarity scores for each class to obtain the slide-level
similarity score. Consequently, the class with the highest slide-level
score was the predicted class. We chose K € {1, 5,10, 50,100}, and we
report metrics for the K value with the highest balanced accuracy for
classification tasks and Cohen’s k for DHMC LUAD. Similarly to the
classification of tiles, we report the slide-level balanced accuracy and
weighted F; score for classification tasks. For DHMC LUAD, because the
task of LUAD subtyping can be subjective, we report Cohen’s x score.

We performed zero-shot slide-level segmentation using a similar
approach to that used for classification. We divided the WSl into tiles
and computed similarity scores for each tileindependently. However,
instead of aggregating the scores across tiles into a single slide-level
prediction, we mapped the tile-level scores to their corresponding
spatiallocationsin the WSI, averaging the scores in overlapped regions.
Finally, for each pixel, we assigned the class with the highest score as the
prediction, producing a pixel-level segmentation mask. We computed
the Dice score’ to quantify the quality of the predicted segmentation
mask relative to the ground truth.

Details of WSI preprocessing for both classification and segmenta-
tion tasks are described in Methods, ‘WSl processing’.

Supervised and weakly supervised classification experiments

We performed supervised classification experiments on all tasks with
alabeled set of training examples available, including TCGA BRCA for
BRCA subtyping, TCGA NSCLC for NSCLC subtyping, TCGA RCC for
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RCC subtyping, CRC100k for CRC tissue classification and SICAP for
Gleason grading. For each dataset, we used the official training and
testing split if it was available or we used the remaining labeled cases
for training after holding out the cases used for zero-shot classifica-
tion evaluation (see Methods, ‘Downstream evaluation datasets’ for a
more detailed breakdown). For slide-level experiments, we considered
four visual-language pretrained image encoders, namely, CONCH,
PLIP, BiomedCLIP and OpenAICLIP. All four encoders followed the
ViT-base architecture with a patch size of 16 except PLIP, which used
a patch size of 32. For slide-level tasks, we additionally considered
a ResNet50 encoder truncated after the third residual block, with
weights initialized from supervised classification on ImageNet, as it
has been a common choice in the weakly supervised classification of
WSiIs. For ROI-level tasks, we added CTransPath®® as a baseline, which
is a state-of-the-art general-purpose vision encoder trained with SSL
onalarge dataset of unlabeled histopathology images. We did not use
CTransPath for TCGA slide-level tasks because TCGA slides (including
thoseusedinourtest sets) made up alarge portion of the datausedto
train CTransPath; therefore, this could have resulted in information
leakage that unfairly inflated the performance of CTransPath on TCGA
benchmarks.

For all experiments, we standardized the image input size to
224 x 224. We used each image encoder to extract a low-dimensional
feature embedding from each image (tiles in the case of WSIs). For
CONCH, we used the output of the attentional pooler that corre-
sponded to image-text alignment, with an embedding dimension
of 512. For CLIP-based models, including PLIP, BiomedCLIP and Ope-
nAICLIP, we used the <cLs>token, which was also used forimage-text
alignment during pretraining and similarly had a dimension of 512.
For ResNet50, we used global average pooling after the third residual
block to obtain a1,024-dimensional embedding. For CTransPath, we
also used the <c1.s> token representation, which had an embedding
dimension of 768.

For WSI classification, we used the same preprocessing setup as
zero-shot classification with MI-Zero. We used the widely used ABMIL*
for weakly supervised classification of WSIs using slide-level labels.
The ABMIL model architecture consists of a fully connected layer and
arectified linear unit (ReLU) nonlinearity that first maps the inputs to
an embedding dimension of 512, followed by a two-layer, gated vari-
ant (as described in the original paper) of the attention network, with
a hidden dimension of 384. Lastly, a fully connected classifier head
maps the attention-pooled slide-level representation to logits, which
areinterpreted as class probabilities after softmax normalization. We
used dropoutwith P=0.25 after each intermediate layer in the network
for regularization. We trained each model for 20 epochs on the train-
ing set, using an AdamW optimizer, a cosine learning rate scheduler
and a learning rate of 1 x10™*. We used a weighted data sampler that
increased the sampling probability of slides from minority classes
such that, on average, the model saw the same number of slides from
eachclasseachepoch. Thefull set of hyperparametersis summarized
inSupplementary Table 36.

For ROIl-level classification, we conducted linear probing by train-
ingalogisticregression model on top of the pretrained image embed-
dings of each encoder. We followed a practice recommended by the
large-scale self-supervised representation learning community’” and
setthe #,regularization coefficientAto %, where Misthe embedding
dimension and Cis the number of classes. We used the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) solver and set the maxi-
mum number of iterations to 800.

For few-shot classification, we kept the test set the same, and we
varied the number of labeled examples per class for training (known
as‘shot’) fromn, =1, 2,4, 8,16, 32, up toeither n.= 512 or the maximum
number of labeled examples available for agiven class. Otherwise, the
hyperparameters and training setup remained the same as described
above.

End-to-end fine-tuning for classification experiments

We evaluated the utility of CONCH in image ROI classification using
standard end-to-end fine-tuning on afour-class Gleason grading bench-
mark with atotal of 228,482 (training, 189,484; validation, 9,959; test-
ing, 29,039) image ROIs individually labeled as NC, G3, G4 or G5 (see
Methods, ‘Downstream evaluation datasets’ for more details). We
compared its performance against that of five other models coveringa
variety of modelarchitectures, pretraining strategies and sizes, includ-
ing ViT-B/16 (ViT of the same architecture asthe CONCH vision encoder
backbone), ViT-L/16 (larger ViT with ~3.5 times the number of param-
etersas ViT-B), ResNet50 (popular, widely used standard CNN architec-
ture), CTransPath (a histopathology-specificimage encoder based on
the Swintransformer architecture, pretrained using large-scale vision
SSL, which has achieved state-of-the-art performance on many compu-
tational pathology tasks) and KimiaNet®* (a lightweight CNN based on
the DenseNet121 architecture, pretrained on a histopathology image
classification task using supervised learning). For ViT-B/16, ViT-L/16
and ResNet50, we initialized the models using weights pretrained
on ImageNet; for CTransPath and KimiaNet, we used the pretrained
weights provided by their respective authors. We also investigated
the label efficiency of each model by further subsampling 10% and
1% of labels from the full training set (189,484 ROIs from 4,622 slides)
at the slide level, corresponding to 19,304 ROIs from 462 slides and
1,864 ROIs from 46sslides, respectively. The results are summarizedin
Supplementary Table 31.

We used eight 80-GB NVDIA A100 GPUs for each experiment using
abatchsize per GPU of 32 for ViT-L/16 (due to GPU memory constraints)
and abatch size of 128 for all other models. Allimages were resized to
448 x 448forbothtraining and inference. We warmed up the learning
rate over 250 steps and used the AdamW optimizer with S = (0.9, 0.999)
with fpl6 automatic mixed precisiontraining. For each model, we swept
the learning rate over {1x107°,1x107%,1x107,1x1073,1x 1072} using
the validation set. We trained for a maximum of 20 epochs and moni-
tored the validation performance for early stopping with a patience
of five epochs, using the best-performing model on the validation set
for evaluation on the test set. We increased the maximum number of
epochsto40and 80 for training with10% labels and 1% labels, respec-
tively, to account for the fewer training iterations per epoch, and we
similarly increased the early-stopping patience to 10 and 20 epochs,
respectively. We used standard data augmentation techniques during
training, including random horizontal and vertical flips, discrete angle
rotation (6, € {0, 90, 180, 270}) and color jittering (brightness, 16/255;
contrast, 0.125; saturation, 0.075; hue, 0.01).

Captioning with fine-tuning

Image captioning hasbeen awidely explored task inthe general visual-
language domain®*’*”°, In addition to distilling a top-level diagnosis of
the image, image captioning can potentially provide morphological
and contextual details, as well as additional interpretability, offering
amuchricher setofinformation than discrete labels. While prior stud-
ies******invisual-language pretraining showed applications in classifi-
cationand-retrieval, they are not equipped with generative capabilities.
By adding a generative loss along with alignment and a text encoder
module using the CoCa framework, our model is augmented with the
ability to generate text conditioned onimage inputs. We explored the
captioning capabilities of CONCH on image-caption pairs extracted
fromaheld-outsource, source A, where aboard-certified pathologist
manually reviewed and condensed each caption such that it retained
only information that could be inferred from the image, including
the top-level diagnosis and detailed morphological descriptions.
Giventhat our pretraining datawere far from the scale of high-quality
zero-shot captioning, we performed fine-tuning on the dataset. We
partitioned the datasetinto training, validation and testing splits and
fine-tuned CONCH and baselines. Because PLIP and BiomedCLIP are not
readily adaptable to captioning tasks, we compared the results against
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Generativelmage2Text (GIT)”®, a widely used family of open-source
visual-language pretrained models for image captioning.

We fine-tuned the entire model on a small training set of image-
caption pairs. When fine-tuning CONCH, we simply set the contrastive
loss to zero and kept only the captioning loss in the training objec-
tive. To evaluate performance, we report the commonly used metrics
METEOR (metric for evaluation of translation with explicit ordering)*°
and ROUGE (recall-oriented understudy for gisting evaluation)®'. For
each model, we trained for amaximum of 40 epochs and selected the
checkpoint with the highest METEOR on the validation set using an
early-stopping patience of 10 epochs. At inference time, we gener-
ated captions using top-K sampling®” as the decoding strategy with
K=50, where, at each timestep, the K most likely tokens were filtered
and the probability mass was redistributed before sampling. Similar
to zero-shot classification and retrieval, we set the maximum image
size to 448 x 448. The full set of hyperparameters used to fine-tune
captioningis presented in Supplementary Table 37.

Evaluation metrics

For classification tasks, we report balanced accuracy, weighted F, score
andtheareaunder thereceiver operating characteristic curve (AUROC).
Balanced accuracy is defined as the macro average of the recall of each
class. Weighted F, score is computed by taking the average of the F; score
(the harmonic mean of precision and recall) of each class, weighted by
the support of each class. In the binary case, the AUROC is calculated
froma plot of the true positive rate against the false positive rate as the
classificationthresholdis varied. The AUROC is generalized to the mul-
ticlass case by averaging over the AUROC of all pairwise combinations of
classes. Forretrieval, we used the metric Recall@K, whichis the propor-
tion of the data correctly retrieved among the top-K retrieved samples.
Following ALIGN*, we chose K € {1, 5,10}, and we also computed the
meanrecall, whichaverages over the Recall@K values. For segmentation,
wereportthe Dicescore, whichisthe sameasthe F,score, and the preci-
sionandrecall score, macro-averaged across allimages and classes. For
captioning, we report METEOR and ROUGE for comparing the predicted
captionwith the ground-truth caption. METEOR® is a metric based on
unigram matchingthat considers both precisionandrecallbetweenthe
original and ground truth and takes into account synonyms and word
forms.ROUGE® computes the overlap of n-grams between the predicted
captionand ground truth. We used ROUGE-1, which considers unigrams.

Downstream evaluation datasets

Source A was a dataset of image-caption pairs extracted from a
held-out source. We split multipanel figures and matched them with
captions manually. Because we also used this dataset for captioning,
and because the captions were generally noisy and often contained
information not present in the images, a board-certified pathologist
cleaned the text, and we used the cleaned version for all downstream
tasks. After filtering and cleaning, we obtained 797 images with an
average width of 570 pixels and an average height of 428 pixels. We used
this dataset inits entirety for cross-modal retrieval. We also used this
dataset for captioning after performing a 70-10-20 split for training,
validation and testing. To avoid information leakage, the dataset split
was performed at the figure level (taking into account multifigure
panels that were separated).

Source B was a dataset of image-caption pairs extracted froma
held-out source. Similar to source A, we split multipanel figures and
matched them with captions manually. After filtering and cleaning,
we obtained 1,755 images with an average width of 512 pixels and an
average height of 410 pixels. Because the dataset was much bigger than
source A, we did not perform manual cleaning of the captions. We used
this dataset for cross-modal retrieval.

TCGA LUAD consisted of 165 image-caption pairs extracted from
49 LUAD H&E histopathology slides from TCGA (https://portal.gdc.
cancer.gov/).

For eachslide, aboard-certified pathologist chose up to five tiles
of interest from each slide and provided captions describing the tis-
sue pattern and any notable morphological features. This process
yielded a set of 165 image tiles with an average width of 656 pixels
and an average height of 642 pixels. We used this set of image tiles for
cross-modal retrieval.

TCGA BRCA consisted of BRCA H&E formalin-fixed paraffin-
embedded (FFPE) diagnostic histopathology WSIs from TCGA. This
dataset consisted of cases for primary IDC and ILC. After removingslides
with missing metadata, we collected atotal of 1,048 slides (837 IDC and
211ILC). The zero-shot test set was a sampled subset of the full TCGA
RCC dataset consisting of 150 WSlIs (75 for each class). For the supervised
learning experiments, we held out the zero-shot test set asthe test setand
used the remaining slides as the supervised training set after excluding
slides from patients who appeared in the test set. This process yielded
atraining set of 881 slides (754 IDC and 127 ILC; see Supplementary
Table 38 for prompts used for each class in zero-shot classification).

TCGA NSCLC consisted of NSCLC H&E FFPE diagnostic histopa-
thology WSIs from TCGA. This dataset consisted of cases of primary
LUAD and lung squamous cell carcinoma (LUSC). After removing slides
withmissing orincorrect metadata, we collected a total of 1,041slides
(529 LUAD and 512 LUSC). The zero-shot test set was asampled subset
of the full TCGA RCC dataset consisting of 150 WSlIs (75 for each class).
For the supervised learning experiments, we held out the zero-shot
test set as the test set and used the remaining slides as the supervised
training set after excluding slides from patients who appeared in the
test set. This process yielded atraining set of 846 slides (432 LUAD and
414 LUSC; see Supplementary Table 38 for prompts used for each class
in zero-shot classification).

TCGARCC consisted of RCC H&E FFPE diagnostic histopathology
WSIs from TCGA. This dataset consisted of cases of primary clear cell
RCC (CCRCC), papillary RCC (PRCC) and chromophobe RCC (CHRCC).
After removing slides missing low-resolution downsamples, we col-
lected atotal of 922 WSIs (519 CCRCC, 294 PRCC and 109 CHRCC). The
zero-shot test set was a sampled subset of the full TCGA RCC dataset
consisting of 225 WSIs (75 for each of the three classes). For the super-
vised learning experiments, we held out the zero-shot test set as the
test set and used the remaining slides as the supervised training set
after excluding slides from patients who appeared in the test set. This
processyielded atraining set of 693 slides (444 CCRCC, 215PRCC and
34 ChRCC; see Supplementary Table 38 for prompts used for each class
in zero-shot classification).

DHMC LUAD® consisted of 143 H&E LUAD slides, each labeled with
the primary histologic growth pattern (59 acinar, 51solid, 19 lepidic, 9
micropapillary and 5 papillary). We only used this dataset for zero-shot
classification (see Supplementary Table 39 for prompts used for each
classinzero-shot classification).

CRC100k* consisted of 224 x 224 pixel image tiles at 0.5 um per
pixel (mpp) extracted from 50 patients with colorectal adenocarci-
noma. Each image belonged to one of nine classes: adipose, back-
ground, debris, lymphocytes, mucus, smooth muscle, normal colon
mucosa, cancer-associated stroma or colorectal adenocarcinoma
epithelium. For the supervised dataset, we used the officially provided
splits of 100,000 imagesin the training set and 7,180 images in the test
set. For the zero-shot test set, we used only the official test set (see
Supplementary Table 40 for prompts used for each class in zero-shot
classification).

WSSS4LUAD® consisted of LUAD image tiles of around 200-
500 pixels in dimension, each labeled as tumor, tumor-associated
stroma and/or normal. For our evaluation, we filtered for the samples
with only one ground-truth label. We were left with 4,693 images from
the official training split (see Supplementary Table 41 for prompts used
for each class in zero-shot classification).

SICAP” consisted of 512 x 512 pixel images extracted from 155
WSIs of core-needle biopsies of prostate cancer, digitized at x10
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magnification. The official training and testing split partitioned the
datasetinto 9,959 images from 124 WSlIs for training and 2,122 images
from 31 WSIs for testing. Each tile was labeled with the primary Gleason
pattern (G3, G4 or G5) or as noncancerous (NC). For zero-shot classifica-
tion, we used only the official test set for evaluation, while, for super-
vised classification, we used the official splits for training and testing.
For zero-shot segmentation (tumor versus benign), we used the slides
fromthe official test splitand corresponding pixel-level segmentation
mask for evaluation (combining Gleason patterns G3, G4 and G5 as the
tumor class; see Supplementary Table 41 for prompts used for each
classinzero-shot classification and segmentation).

DigestPath®® consisted of 660 colonoscopy H&E tissue section
images from 324 patients, acquired at x20-equivalent magnification.
We used the subset of 250 images from 93 patients for which pixel-level
lesion annotation for colorectal cancer tissue was provided, and we
performed zero-shot segmentation evaluation (see Supplementary
Table 41for prompts used for each class in zero-shot segmentation).

EBRAINS®”®8 consisted of H&E histopathology WSlIs of brain tis-
sue from the EBRAINS Digital Tumor Atlas. We used a subset of 2,319
slides corresponding to a30-way fine-grained brain tumor subtyping
task, where only classes with atleast 30 slides were kept to ensure that
areasonable number of slides were available for both model training
and evaluation. For the supervised dataset, we performed a 50-25-25
split for training (1,151 slides), validation (595 slides) and testing (573
slides). For the zero-shot test set, we used the testing split of 573 slides
(see Supplementary Tables 42-44 for prompts used for each class in
zero-shot classification). The WSI counts for each class in the dataset
were as follows: (1) IDHI-wild-type glioblastoma (474 slides); (2) pilo-
cytic astrocytoma (173 slides); (3) meningothelial meningioma (104
slides); (4) pituitary adenoma (99 slides); (5) IDHI-mutant and 1p/19q
codeleted anaplastic oligodendroglioma (91slides); (6) ganglioglioma
(88slides); (7) hemangioblastoma (88 slides); (8) adamantinomatous
craniopharyngioma (85slides); (9) IDHI-mutant and 1p/19q codeleted
oligodendroglioma (85 slides); (10) atypical meningioma (83 slides);
(11) schwannoma (81 slides); (12) IDHI-mutant diffuse astrocytoma
(70slides); (13) transitional meningioma (68 slides); (14) diffuse large
B celllymphoma ofthe central nervous system (59 slides); (15) gliosar-
coma (59 slides); (16) fibrous meningioma (57 slides); (17) anaplastic
ependymoma (50 slides); (18) IDHI-wild-type anaplastic astrocytoma
(47 slides); (19) metastatic tumors (47 slides); (20) IDHI-mutant ana-
plastic astrocytoma (47 slides); (21) ependymoma (46 slides); (22)
anaplastic meningioma (46 slides); (23) secretory meningioma (41
slides); (24) lipoma (38 slides); (25) hemangiopericytoma (34 slides);
(26) IDH1-mutant glioblastoma (34 slides); (27) non-Wingless-related
integration (Wnt)/non-Sonic hedgehog (Shh) medulloblastoma (32
slides); (28) Langerhans cell histiocytosis (32 slides); (29) angiomatous
meningioma (31slides); and (30) hemangioma (30 slides).

Prostate Gleason Grading consisted of 228,482 image ROIs of
H&E-stained prostate tissue curated from three publicly available
datasets: AGGC®’, PANDA’® and SICAP”. In the case of PANDA and AGGC,
each ROl was extracted at x10-equivalent magnification with dimen-
sions 512 x 512 pixelsand was labeled as NC, G3, G4 or G5, assigned using
the pixel-level annotation masks provided by the respective dataset.
We used this dataset to compare end-to-end fine-tuning performance
between our model and other visionencoders commonly used in com-
putational pathology. We partitioned the dataset at the slide level and
splitthe datasetinto training (189,000 ROIs from 4,622 slides in PANDA
and the AGGC official training set), validation (10,000 ROIs from 124
slidesin the SICAP official training set), and testing (29,000 ROIs from
92 slides in the official test sets of AGGC and SICAP).

WSI processing

Forslide-level tasks, the processing pipeline for WSIs consisted of tissue
segmentation, tiling and feature extraction. We used the CLAM library’
for tissue segmentation, which computes abinary mask for tissue using

binary thresholding along the saturation channel after converting a
downsample of the slide from the RGB to hue-saturation-value (HSV)
color space. Median blurring and morphological closing were used
to smooth tissue contours and remove artifacts. The contours were
filtered by area to yield the segmentation mask. For zero-shot and
supervised classification, we followed previous conventions”** and
divided the segmented tissue regionsinto contiguous 256 x 256 pixel
tiles at x10-equivalent magnification. For segmentation, we extracted
tiles using a smaller tile size (224 x 224 pixels) with 75% overlap at the
highest magnification possible (that is, x10 for SICAP and %20 for
DigestPath) to achieve more fine-grained predictions. After tiling, for
feature extraction, we resized all tiles to 224 x 224 pixels and computed
embeddings for each tile independently using a frozen pretrained
image encoder, before caching them for downstream evaluation.

Pretraining dataset characterization

We estimated the distribution of topics covered by our pretrain-
ing captions. We first created a list of 19 topics that covered major
anatomical sites relevant to the study of pathology. For each topic,
aboard-certified pathologist then curated alist of keywords associated
with the topic. We then mapped a caption to a topic if it contained a
specific word. Because it was impractical to curate an exhaustive set
of keywords to cover all captions, we used k-nearest neighbors (kNN)
with k=5 to categorize the remaining captions. The distribution of
captions on the topics is shown in Fig. 1b. Within each topic (as well
as the overall dataset), we qualitatively visualized the contents of the
captions using wordclouds (Extended Data Fig.1).

Statistical analysis

Nonparametric bootstrapping with 1,000 samples was used to con-
struct 95% confidence intervals for model performance. For each evalu-
ationmetric, observed differences in model performance were tested
for statistical significance using a two-sided paired permutation test
with 1,000 permutations. In each permutation, independent predic-
tions of two models were randomly swapped to obtain anew difference
inmodel performance. The Pvalue was the proportion of differences
inmodel performance greater than the observed difference in terms
of absolute value. The null hypothesis was that there was no difference
inmodel performance for the given test set and evaluation metric.

Computing hardware and software

We used Python (version 3.8.13) for all experiments and analysesin the
study, which canbereplicated using open-source libraries as outlined
below. For task-agnostic pretraining, we used eight 80-GB NVIDIA A100
GPUs configured for multi-GPU training using DistributedDataParal-
lel (DDP) as implemented by the popular open-source deep learn-
ing framework PyTorch (version 2.0.0, CUDA 11.7) (https://pytorch.
org). All downstream experiments were conducted on single 24-GB
NVIDIA 3090 GPUs. For unimodal pretraining of our visual encoder
using iBOT, we modified the ViT implementation maintained by the
open-source Timm library (version 0.9.2) from Hugging Face (https://
huggingface.co) for the encoder backbone and used the original iBOT
implementation (https://github.com/bytedance/ibot) for training. For
natural language processing (NLP) workflows, we used open-source
libraries provided by Hugging Face. Notably, we used Transformers
(version4.27.3) and Accelerate (version 0.15.0) for tokenization of text
data and unimodal pretraining of our language model, and we used
Evaluate (version 0.4.0) for accessing common machine translation
and image captioning metrics including ROUGE (from rouge-score
version 0.1.2) and METEOR (from nltk version 3.6.7). We integrated
our pretrained unimodal visual encoder and language model into
the open clip library (version 2.14.0) for visual-language pretrain-
ing using the CoCa framework. All WSI processing was supported by
OpensSlide (version 4.3.1) and openslide-python (version 1.2.0). We
used Scikit-learn (version 1.2.1) for its implementation of common
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machine learning model evaluation metrics for image classification
and to train logistic regression models for linear probe experiments.
Numpy (version1.20.3) and Pandas (version 1.5.3) were used data col-
lection and preparation. Implementations of other visual-language
models benchmarked in the study were found on the Hugging Face
model hub (https://huggingface.co/models): PLIP (https://hugging-
face.co/vinid/plip), BiomedCLIP (https://huggingface.co/microsoft/
BiomedCLIP-PubMedBERT _256-vit_base_patch16_224), OpenAICLIP
(https://huggingface.co/openai/clip-vit-base-patch16), GIT-base
(https://huggingface.co/microsoft/git-base) and GIT-large (https://
huggingface.co/microsoft/git-large). Pillow (version 9.3.0) and
Opencv-python were used to perform basic image processing tasks.
Matplotlib (version 3.7.1) and Seaborn (version 0.12.2) were used to
create plots and figures. Usage of other miscellaneous Pythonlibraries
islisted in the Nature Portfolio Reporting Summary.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

TCGA whole-slide data and labels are available from the NIH genomic
datacommons (http://portal.gdc.cancer.gov). DHMC LUAD whole-slide
data and labels can be accessed through the Dartmouth Biomedical
Informatics Research and Data Science website (http://bmirds.github.
io/LungCancer/). SICAP whole-slide and tile data with corresponding
labels can be accessed through the data portal at http://data.mende-
ley.com/datasets/9xxm58dvs3/1. CRC100k tile data and labels can be
found at http://zenodo.org/record/1214456. WSSS4LUAD image tiles
and labels can be found at http://wsss4luad.grand-challenge.org/.
Pretraining data were curated from image-caption pairs in educa-
tional resources and PubMed. EBRAINS WSIs can be found at http://
search.kg.ebrains.eu/instances/Dataset/8fc108ab-e2b4-406-8999-
60269dc1f994. AGGC and PANDA WSIs can be accessed through their
respective Grand Challenge portals (http://aggc22.grand-challenge.
org/data/ and http://panda.grand-challenge.org/data/). The unpro-
cessed PubMed Central Open Access dataset is available from the NIH
PubMed Central website (http://ncbi.nlm.nih.gov/pmc/tools/open-
ftlist/). Restrictions apply to the availability of anonymized patient
data that were used retrospectively for this project with institutional
permission and are, thus, not publicly available. All requests for pro-
cessed orraw data collected or curated in house should be made to the
corresponding author and will be evaluated according toinstitutional
and departmental policies to determine whether the data requested
aresubject tointellectual property or patient privacy obligations.

Code availability

Model weights for CONCH can be assessed for academic research pur-
poses at http://huggingface.co/MahmoodLab/conch. Code for using
the pretrained modelis provided at http://github.com/mahmoodlab/
CONCH. We have documented all technical deep learning methods and
software libraries used in the study while ensuring the paper is acces-
sible to the broader clinical and scientific audience.
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Extended Data Fig.1| Caption content of pre-training dataset. Wordclouds of captions to qualitatively visualize the caption content of each category in the pre-
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Extended Data Fig. 2| Zero-shot classification: single prompt vs. ensembling.
a-d, slide-level tasks. e, ROI-level tasks. We compare using a single text prompt
per class vs. ensembling over multiple class names and templates. Since zero-
shot performance of a visual-language pretrained model can be sensitive to

the prompts used*> when using a single prompt per class, for each class, we
independently randomly sample a prompt from the pool of candidate templates
and class names (see Supplementary Data Tables 34-38 for the prompt pools).
We randomly sample 50 sets of prompts for each task, and plot the resulting
distribution of zero-shot performance for each model using boxplot. Each dot
corresponds to a single set of prompts (n = 50 for each box). Boxes indicate
quartile values, and whiskers extend to data points within 1.5 x the interquartile

range. Triangles indicate the performance of prompt ensembling. For slide-
level tasks, we show performance for all Ks used in top-K pooling. We observe
prompt ensembling can substantially boost performance (relative to the
median performance of randomly sampled single prompts) for most models in
most tasks, except when the median performance is near random chance, such
as for OpenAICLIP on most tasks and PLIP on TCGA BRCA. The poor median
performance in these scenarios indicates that the model fails to perform under
the majority of prompts sampled and therefore it is unsurprising that the
ensembled prompt performs equally bad or worse. See Supplementary Data
Tables1-14 for more results.
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Extended Data Fig. 3| CONCH heatmaps, renal cell carcinomas. Pathologist- excellent agreement between the annotated image and the regions of the slide
annotated H&E images, corresponding cosine-similarity heatmaps of, from top with high similarity, with the tiles demonstrating stereotypical morphology
tobottom, papillary, chromophobe, and clear cell renal cell carcinomas. Tiles of of the tumors within the high-similarity regions and stroma or other normal
high similarity (red border) and low similarity (black border) with the predicted constituents of the kidney in the low similarity regions.

class label are randomly sampled and displayed next to each heatmap. We find
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Extended Data Fig. 4 | CONCH heatmaps, non-small cell lung carcinomas. We find excellent agreement between the annotated image and the regions of the
Pathologist-annotated H&E images, corresponding cosine-similarity heatmaps slide with high similarity, with the tiles demonstrating stereotypical morphology
of adenocarcinoma (top) and squamous cell carcinoma (bottom) of the lung. of the tumors within the high-similarity regions and stroma or other normal
Tiles of high similarity (red border) and low similarity (black border) with the constituents of the lung in the low similarity regions.

predicted class label are randomly sampled and displayed next to each heatmap.
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Extended Data Fig. 5| CONCH heatmap, lobular carcinoma of the breast. we find excellent agreement between the annotated image and the regions of the
Pathologist-annotated H&E image, corresponding cosine-similarity heatmap slide with high similarity, with the tiles demonstrating stereotypical morphology
oflobular carcinoma of the breast. Tiles of high similarity (red border) and low oflobular caricnoma within the high-similarity regions and stroma or other

similarity (black border) with the predicted class label are randomly sampled and normal constituents of the breast in the low similarity regions.
displayed next to the heatmap. As with the ductal carcinoma heatmap in Fig. 2e,
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Extended Data Fig. 6 | ROI-level few-shot classification experiments. a, b. We
investigate the label efficiency of different visual-language pretrained encoders
inthe few-shot setting where we vary the number of training labels per class (n,),
forn=1,2,4,8,16,... up to 512. For each n, we sample 5 different sets of training
examples and perform linear probing on each training set using associated
image labels (see Supervised classification experiments for details). We show
their individual model performance viaboxplot (i.e., n = 5 for each box) to study
the variance in model performance when performing supervised learning with

very few training examples. Boxes indicate quartile values and whiskers extend
to data points within 1.5 x the interquartile range. For reference, the zero-shot
performance of each modelis shown as a dotted line on the same plot. In terms
of few-shot supervised learning, CONCH achieves better performance (i.e.in
terms of the median accuracy of 5 runs) than other encoders for different sizes
of training set and for all tasks. Additionally, in SICAP, we find CONCH zero-shot
performance to be competitive with PLIP and BiomedCLIP few-shot up to 64
labels per class.
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Extended Data Fig. 7 | Rare disease classification results on EBRAINS.
a. Weakly-supervised ABMIL performance for CONCH and other pretrained

encoder models on the EBRAINS 30-class brain tumor subtyping task (n = 573).

Error bars represent 95% confidence intervals; the center is the computed
value of balanced accuracy. b. We investigate the label efficiency of different
pretrained encoders in the few-shot setting where we vary the number of
training labels per class (n,), for n.€f{l, 2, 4, 8,16}. For each n., we sample 5
different sets of training examples and follow the experimental protocolina
to train an ABMIL model on each training set using associated slide labels (see
Supervised classification experiments for details). We show their individual

Few-shot weakly-supervised classification

1 CONCH (Sup.) - === CONCH (Zero Shot)

[ PLIP (Sup.) PLIP (Zero Shot)
[] BiomedCLIP (Sup.) BiomedCLIP (Zero Shot)
[ OpenAICLIP (Sup.) - - - - OpenAICLIP (Zero Shot)
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model performance viaboxplot (i.e., n = 5 for each box) to study the variance in
model performance when performing supervised learning with very few training
examples. Boxes indicate quartile values and whiskers extend to data points
within 1.5 x the interquartile range. For reference, the zero-shot performance

of each model is shown as a dotted line on the same plot. Additional metrics are
reported in Supplementary Data Table 20 - 21. We find that CONCH consistently
outperform all other visual language pretrained models in zeroshot classification
and all pretrained encoders in weakly-supervised learning in terms of both
performance and label efficiency.
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Extended Data Fig. 8 | Additional Retrieval Examples. Retrieved examples
(among top 10) using complex prompts with detailed morphological
information. Images are from anin-house dataset of tiles sampled from 1,620
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code). Similarity scores between eachimage and prompt are shown in the
top-right corner of each image.
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Correct examples

I Predicted Corrected

" glioblastoma. this diffuse astrocytoma is highly cellular and is

"] composed of mitotically active cells. note the prominent vascularity and
l the area of hemorrhage. there is little intervening fibrous matter.

© Glioblastoma. This astrocytoma is highly cellular and is composed of
~ pleomorphic glial cells. Note the prominent vascularity and the area of
~ necrosis at right.

-J oncocytoma. as shown here, the cells form discrete nests in renal
‘| parenchyma composed of cells resembling polygonal cells and
{resembling hepatocytes. these neoplasms have an oncocytic
appearance.

' Renal oncocytoma. As shown here, the polygonal cells form discrete
| nests and resemble hepatocytes. These neoplasms have an oncocytic
appearance.
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Partially correct examples

oncocytoma. as shown here, the neoplastic cells are quite uniform in
# size, with prominent pink cytoplasm. note the presence of prominent
fclearcells: mitoses are not seen.

: Chromophobe renal cell carcinoma. As shown here, the neoplastic cells
are quite uniform in size, with prominent pink cytoplasm. Note the
presence of distinct cell borders. Mitoses are not seen.

i glioblastoma. this malignant glioma is highly cellular with marked
hyperchromatism and pleomorphism. note the prominent vascularity

g and the area of pale necrosis in the center, with neoplastic cells
concentrated around it.

Glioblastoma. This malignant glioma is highly cellular with marked
hyperchromatism and pleomorphism. Note the prominent vascularity
and the area of necrosis at left. There are multiple mitotic figures,
ncluding atypical mitoses.

Extended Data Fig. 9 | Image captioning results. a. Captioning performance
of CONCH and baselines fine-tuned on Source A (train n=558, validation n=77,
test n=162). The METEOR and ROUGE metrics are both calculated to evaluate the
quality of generated captions. Captions were generated using top-K sampling
with K=50 as the decoding strategy. Error bars representing 95% confidence
intervals; the center is the computed value of each metricindicated by the
x-axis label. CONCH outperforms both GIT baselines with p < 0.01. Although
our absolute performance on these metrics is notideal, image captioning is a
considerably more difficult task than classification and retrieval, and we show
that our pretraining data and approach can significantly improve performance
over general visual-language models. b. Examples of captions generated by

CONCH considered by a pathologist to be high quality. The green text boxes
show generated captions and gray text boxes show captions corrected by a
pathologist. c. Examples of partially correct captions generated by CONCH.
Reasonably correct portions of the generated caption are highlighted in blue.
Ingeneral, we noticed that some of the generated captions are regurgitated
verbatim from the training dataset, likely due to the limited scale of fine-tuning
(training split: n=558). Given that our current pretraining scale is still relatively
small compared to works in the general visual-language domain, we expect the
fine-tuned captioning performance to potentially improve substantially with
more high-quality training data.
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Extended Data Fig.10 | CONCH pretraining ablations. Ina, b, error bars
represent 95% confidence intervals and the centres correspond to computed
values of each metric as specified by the legend (left) or the y-axis label
(middle, right). a. Comparison between CONCH pretrained on human-only
data (n=1,170,647) using CoCa vs. human-only data using CLIP vs. H&E only
data (n=457,372) vs. the full unfiltered dataset (n =1,786,362). Left. Zero-shot
performance on downstream subtyping (TCGA BRCA, n=150; TCGARCC, n =225;
TCGANSCLC, n=150; DHMC LUAD, n =143; CRC100k, n =7,180; WSSS4LUAD,
n=4,693) and grading (SICAP, n =2, 122) tasks. Following pre-established
conventions, quadratically weighted Cohen’s k is reported for SICAP and
Cohen’s kis reported for DHMC LUAD, while balanced accuracy is reported for

all other tasks. CONCH performs the best on average. Middle and right. Model
performancein cross-modal retrieval on 3 datasets of image-text pairs (Source A,
n=797;Source B, n=1,755; TCGA LUAD, n=165). CONCH (CLIP) performs the
best onaverage. b. Comparison between CONCH and no domain-specific
unimodal pretraining. CONCH (No vision pretraining) replaces the image
encoder pretrained on histopathology image patches with an analogous encoder
pretrained on ImageNet. CONCH (No language pretraining) initializes the text
encoder randomly instead of pretraining on pathology-related text. Left. Zero-
shot performance on subtyping and grading tasks. Middle and right. Cross-
modalretrieval performance.
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tools/openftlist/). In house data are not publicly available. All requests for data collected or curated in-house will be evaluated based on institutional and
departmental policies to determine whether the data requested is subject to intellectual property or patient privacy obligations.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Gender or sex was not included as a covariate in our experimental analysis at any stage of the study. Data pertaining to sex
and gender may have been collected for data used in downstream tasks, which were curated by their original investigators,
we refer readers to their original source for more detailed descriptions. For pretraining data sourced from the web and
educational resources, no gender or sex data are made available in a structured format. Forin-house BWH data used for
pretraining, we provide the aggregate distribution of self-reported sex as follows: 11855 Female, 9575 Male, 12 Unspecified.
For in-house BWH data used for in retrieval analysis (ED figure 8), the distribution is as follows: 908 Female, 711 Male, 1
Unspecified.

Reporting on race, ethnicity, or No covariates regarding race, ethnicity, and other social groupings were collected, used or analyzed in the study.
other socially relevant

groupings

Population characteristics No covariates relating to population characteristics were collected, used or analyzed in the study.
Recruitment No patient recruitment was necessary for using histology whole slide images retrospectively.

Ethics oversight Brigham and Women's Hospital IRB committee approved the retrospective analysis of pathology data.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculations were performed. For pretraining data, we internally curated as much paired histology data as possible from
educational resources and the PubMed Central Open Access data portal. After cleaning and curation, we yielded an unfiltered dataset of
1,786,362 cases, a human-only subset of 1,170,647 cases (on which we base most of analysis), and a human-only subset of 457,372 cases. For
downstream datasets, see the Downstream evaluation datasets subsection of the Methods section in the manuscript for more details.

Data exclusions  For pretraining data, no additional data exclusions were performed after curation.
For WSSS4LUAD, we excluded data that had more than one ground truth label.
For EBRAINS, we excluded classes that had fewer than 30 total WSls.

Replication Replication was successful for all experiments in this study.
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Randomization  For downstream evaluation that required creating train, validation, test splits, we created them randomly. We created 70% train, 10%
validation, 20% test splits for captioning on the figure level, i.e., ensuring that extracted images from the same figure are only in the same
split. For few-shot and supervised analyses, all splits were created stratified by class and on a patient level, i.e., ensuring that slides from the
same patient are only in the same split.

Blinding Blinding was not necessary for our study because our experiments were based on digitized histology slides or region-level images.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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