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ABSTRACT

Multimodal machine learning has achieved remarkable progress in a wide range
of scenarios. However, the reliability of multimodal learning remains largely un-
explored. In this paper, through extensive empirical studies, we identify current
methods suffer from unreliable predictive confidence that tends to rely on par-
tial modalities when estimating confidence. Specifically, we find that the con-
fidence estimated by current models could even increase when some modalities
are corrupted. To address the issue, we introduce an intuitive principle for multi-
modal classification, i.e., the confidence should not increase when one modality
is removed. Accordingly, we propose a novel regularization technique, i.e., Cal-
ibrating Multimodal Learning (CML) regularization, to calibrate the predictive
confidence of previous methods. This technique could be flexibly equipped by
existing models and improve the performance in terms of confidence calibration,
classification accuracy, and model robustness.

1 INTRODUCTION

Multiple modalities data widely exist in real-world applications such as medical analysis (Perrin
et al., 2009), social media (Wang et al., 2019), and autonomous driving (Khodayari et al., 2010).
To fully explore the potential value of each modality, multimodal learning emerges as a promising
way to train a machine learning (ML) model by integrating all available multimodal cues for fur-
ther data analysis tasks (e.g., instance classification). Numerous approaches have been proposed to
build multimodal classification paradigms for various tasks (Wang et al., 2019; Antol et al., 2015;
Bagher Zadeh et al., 2018; Kishi et al., 2019). Despite above progresses, the reliability of current
multimodal classification methods remains largely unexplored. One key aspect of the reliability is
to build a high-quality uncertainty estimator (Neal, 2012; MacKay, 1992), which can quantitatively
characterize the probability that predictions will be wrong. With such an estimator, further pro-
cessing can be taken to improve the performance of the system (e.g., human assistance) when the
predictive uncertainty is high. This is especially useful in high-stake scenarios (Hafner et al., 2019;
Qaddoum & Hines, 2012).

In the setting of multimodal classification, in addition to exact overall prediction confidence, the re-
lationship between the modalities should also be taken into concerns. Intuitively, the confidence of
an ideal multimodal classifier should not increase when one modality is removed. An illustrative ex-
ample of an ideal confidence estimator is shown in Fig. 1, where the confidence gradually decreases
when the observed information becomes less comprehensive. However, in practice, the confidence
estimation obtained by ordinary training methods tends to be overconfident to partial modalities,
which violates the principle and leads to some counter-intuitive phenomenons. We perform ex-
tensive empirical studies and observe that when a modality is removed, the overall confidence can
even increase. This observation contradicts the usual assumption of multimodal classification since
modalities are assumed to be predictive of the target for most multimodal classification tasks (Wu
et al., 2022). Intuitively, this implies that the models are more inclined to believe in a unique modal-
ity and is prone to be affected by this modality, which has also been shown in prior works (Wu et al.,
2022; Wang et al., 2020). This further impairs the robustness of the learned models, i.e., the mod-
els are easy to be influenced when some modalities are corrupted, since the models can not make
decisions taking all modalities into account fairly.

A natural idea to address the above issue is to employ recent uncertainty calibration methods such
as temperature scaling (Guo et al., 2017) or Bayesian learning (Cobb & Jalaian, 2021; Karaletsos
& Bui, 2020; Foong et al., 2020), which can build more accurate uncertainty estimation than the
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Figure 1: Motivation of calibrating multimodal learning. The confidence of an ideal multimodal
classifier should decrease (at least not increase) when one modality is removed.

traditional training/inference manner. However, these approaches do not explicitly consider the re-
lationship between different modalities (i.e., they can only calibrate the fused confidence but cannot
adjust the relationship between different modalities during training) and thus still fail to achieve sat-
isfactory performance in the multimodal classification setting. Therefore, we claim that high-quality
uncertainty estimation in various multimodal classification tasks needs to explicitly treat all modal-
ities fairly. To this end, we propose a novel regularization technique called Calibrating Multimodal
Learning (CML) which enforces the consistency between prediction confidence and the number of
modalities. The motivation of CML is based on a natural intuition, i.e., the prediction confidence
should decrease (at least not increase) when one modality is removed, which could intrinsically im-
prove the confidence calibration. Specifically, we propose a simple regularization term that enforces
a model to learn an intuitive ranking relationship by adding a penalty for the samples whose predic-
tive confidence will increase when one modality is removed. The main contributions of this paper
are summarized as follows:

• We perform extensive empirical studies to show that most existing multimodal classifica-
tion paradigms tend to over-rely on partial modalities (different samples over-rely on dif-
ferent modalities rather than all samples over-rely on the same modalities), which implies
they fail to achieve trustworthy uncertainty estimation.

• We introduce a measure to evaluate the reliability of the confidence estimation from the
confidence ranking perspective, which can characterize whether a multimodal learning
method can treat all modalities fairly.

• We propose a regularization strategy to calibrate the confidence of various multimodal clas-
sification methods. We then conduct extensive experiments to show the superiority of our
method in terms of the confidence calibration (Table 1), classification accuracy (Table 2)
and model robustness (Table 3).

2 RELATED WORK

Uncertainty estimation provides a way for trustworthy prediction (Abdar et al., 2021). Uncer-
tainty can be used as an indicator of whether the predictions given by models are prone to be
wrong. Many uncertainty-based models have been proposed in the past decades, such as Bayesian
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Figure 2: Current methods (MMTM (Wu et al., 2022), CPM-Nets (Zhang et al., 2019), and MI-
WAE (Mattei & Frellsen, 2019)) violate the Proposition 1 (red color indicates the proportion of test
samples whose predictive confidence given by the model decreases while providing more modali-
ties, “CI" is defined in Eq. 1). We estimate the performance on two-modality datasets, and the pie
charts show that different samples over-rely on different modalities rather than all samples over-rely
on the same modality (e.g., “53% Mod1” indicates “among the samples who violate Proposition 1,
there is 53 percent of samples whose confidence will increase when Mod2 is removed and the other
samples will increase confidence when Mod1 is removed”).

neural networks (Neal, 2012; MacKay, 1992; Denker & LeCun, 1990; Kendall & Gal, 2017),
Dropout (Molchanov et al., 2017), Deep ensembles (Lakshminarayanan et al., 2017; Havasi et al.,
2020), and DUQ (van Amersfoort et al., 2020) built upon RBF networks. Prediction confidence
is always referred to in classification models, which expects the predicted class probability to be
consistent with the empirical accuracy. Many methods focus on smoothing the prediction probabil-
ities distribution, such as Label smoothing (Müller et al., 2019), focal loss (Mukhoti et al., 2020),
TCP (Corbière et al., 2019)and Temperature scaling (TS) (Guo et al., 2017). More related researches
please refer to Appendix G.

Multimodal learning emerges as a promising way to train a machine learning model. Recently,
there have been a wide range of research interests in handling missing modalities for multimodal
learning, including imputation-independent (Type I) methods (Zhang et al., 2019) and imputation-
dependent (Type II) methods (Mattei & Frellsen, 2019; Wu & Goodman, 2018). Imputation-
independent methods have no need to reconstruct the missing modalities and make classification
via an uniform representation. For imputation-dependent methods (based on reconstruction), the
strategy model can be split into two stages, reconstructing the missing modalities and making clas-
sification according to the reconstructed modalities. Besides the methods for incomplete multimodal
learning, recent multimodal methods (Type III) Joze et al. (2020); Wu et al. (2022) achieve SOTA
performance in multimodal video classification. We evaluate the performance of CPM-Nets (Zhang
et al., 2019), MIWAE (Mattei & Frellsen, 2019), and MMTM (Joze et al., 2020; Wu et al., 2022) in
experiments due to their representativeness in different types of multimodal learning.

3 METHOD

In this section, we first introduce some basic notations in Section 3.1. Then, we show the basic
assumption of our method and its empirical motivations in Section 3.2 and evaluate the confidence
estimation performance of current multimodal methods in Section 3.3. At the end, we propose a
simple yet effective regularization technique and elaborate the technical details in Section 3.4.

3.1 NOTATION

We define the training data as D =
{
{xm

i }Mm=1, yi
}N

i=1
, where xm

i is the input feature of the m-th
modality of the i-th sample, and yi ∈ {1, · · · ,K} is the corresponding class label. To distinguish
whether the input is a unique modality or a set of modalities, we use xm to represent the m-th
modality, and use the x(S) to represent multimodal input set, where S is a set of modalities’ indexes
(e.g., if we have S = {1, 2}, then x(S) indicates a feature set consisting of x1 and x2, and x(M) =
{x1, · · · , xM} indicates the complete M modalities). The goal is to learn a function: f(x(M))→ z,
where the output z of the network is a vector of K values called logits. Then the logits vector is
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transformed by a softmax layer: p̂k = ezk/
∑

k e
zk , where the probability distribution of a sample x

is defined as P(y | w, x(M)) = {p̂k}K1 . The predicted class label is: ŷ = argmaxy P(y | w, x(M)).

3.2 BASIC ASSUMPTION

In the real-world applications, the quality of test samples is unstable (e.g., some modalities may be
corrupted), so the quality (i.e., available modalities) of the multimodal input should be reflected in
some quantitative manner (i.e., predictive confidence) when multimodal methods are deployed in
the real-world applications. However, it is difficult to exactly define the “quality” of each sample,
and we cannot define the exact functional relationship between the quality and confidence since the
confidence estimation is unique for different models even for a same sample. To address this issue,
we approximate this relationship with a ranking-based form as follow:

Proposition 1. Given two versions of a unique sample x(M), i.e., x(T) and x(S), if we
can assure T ⊂ S, then, for a trustworthy multimodal classifier f(·), it should hold
Conf(f(x(T))) ≤ Conf(f(x(S)).

Proposition 1 indicates that the predictive confidence shouldn’t increase when one modality is re-
moved. We further define the prediction Confidence Increment (CI) with informativeness increment
for a unique sample as:

CI(x(S), x(T)) = Conf(f(x(S)))− Conf(f(x(T))) subject to: T ⊂ S, (1)

where T and S are sets of modalities’ indexes. Specially, a negative value indicates a poor confidence
estimation performance that the predictive confidence increases when one modality is removed.
To quantify the extent that a learned model violates Proposition 1, we introduce a novel measure:
Violating Ranking Rate (VRR) as the proportion of test samples whose predictive confidence will
increase when removing one modality:

VRR = E
[
1

(
CI(x(S), x(T)) < 0

)]
subject to: T ⊂ S. (2)

We initialize S as the complete modalities, and obtain T by randomly removing a modality from S.
Then T is regarded as S for another confidence ranking pair and we repeat this process until there
is only one modality remained in T (please refer to Appendix A for detail). A natural question then
arises: How about the confidence estimation performance of the current methods when one modality
is removed?

3.3 CONFIDENCE ESTIMATION PERFORMANCE OF CURRENT MULTIMODAL METHODS

To evaluate the quality of confidence estimation of existing multimodal classifiers, we compute the
VRR score of CPM-Nets (Zhang et al., 2019) and MIWAE (Mattei & Frellsen, 2019), which are two
typical methods in handling incomplete multimodal data. In addition to incomplete multimodal, we
also evaluate the MMTM (Wu et al., 2022), which is a SOTA multimodal classification method. As
shown in Tab. 1, the VRR scores of previous methods are quite high which indicates the prediction
confidence on many samples will violate Proposition 1. And the visualization is shown in Fig. 2,
where the red color indicates the proportion of test samples whose predictive confidence given by
the model decreases while providing more modalities.

A naive strategy is to re-balance the contribution of every modality (i.e., allocating a smaller weight
to the modality that samples over-rely on during the fusion). As shown in Fig. 2, however, we
find that different samples over-rely on different modalities rather than all samples over-rely on
the same modality. This indicates that the problem can’t be solved by re-weighting the overall
contribution of different modalities since it will make the confidence estimation of some samples
worse. Instead, our method characterizes the relationship between the modalities in term of simple-
wise, which inherently calibrates the contribution for all samples. Intuitively, it is risky for a model
which usually increases the prediction confidence when one modality is removed, which implies
that the confidence and its quality are not matched. For this issue, they cannot be deployed into
risk-sensitive applications such as medical analysis. As a comparison, our method can significantly
decrease VRR score (see more details in Tab. 1) for a more trustworthy confidence estimation.
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3.4 CML REGULARIZATION

As shown in Section 3.3, the current multimodal methods usually increase the prediction confidence
when one modality is removed, which hinders the model performance inherently. To address this
issue, a naive strategy is to penalize the confidence difference between the x(T) and x(S):

L(T,S) = Conf(x(T))− Conf(x(S)). (3)

However, models sometimes can still make an accurate prediction confidently when one modality is
removed in practice. Eq. 3 forces the models to predict small confidence strictly when one modality
is removed, which pushes the model to estimate an extremely small confidence for each modality
(the illustration please refer to Appendix C.6). For this issue, we relax this regularization by only
penalizing the situation that the estimated confidence increases when one modality is removed. For
any pair of multimodal inputs which satisfies that T ⊂ S, the regularization can be written as:

L(T,S) = max
(
0,Conf(x(T))− Conf(x(S))

)
. (4)

For each sample, the total regularization loss is integrated over all pairs of inputs with different
numbers of modalities, which can be written as:

LCML =
∑
T, S
L(T,S), {∀(T, S)|T ⊂ S}. (5)

The exact computation of above loss needs to enumerate all modality set pairs (i.e., T and S), which
is typically computational expensive sometimes. Therefore, we propose to approximate this loss by
sampling modality set pairs and find this strategy works well in practice. Specifically, we conduct
sampling as same as that in computing VRR (Eq. 2).

The proposed regularization is general and thus can be equipped by current multimodal classifiers
to calibrate their confidence estimation as an additional loss item. We typically provide examples
in utilizing the proposed technique in imputation-independent method(i.e., CPM-Nets (Zhang et al.,
2019)), imputation-dependent method(i.e., MIWAE (Mattei & Frellsen, 2019)), and recent multi-
modal classification method (i.e., MMTM (Wu et al., 2022)). The proposed regularization can be
deployed to current multimodal methods flexibly, the objective function is induced as:

Li = Lcl
i + λLCML

i , (6)

where Lcl
i is the classification loss criterion (e.g., cross-entropy loss), and λ is the hyperparameter

controlling the strength of CML regularization. The details are shown in Algorithm 1.

Algorithm 1: The training pseudocode for deploying CML regularization

1 Given dataset D =
{
{xm

i }Mm=1, yi
}N

i=1
, initialized classifier f , classification loss criterion Lcl,

coefficient of CML regularization λ, and epochs for training the classifier train_epochs
2 for e = 1, . . . , train_epochs do
3 S←M; Lcl ← Lcl(x(S)); LCML ← 0
4 for m = 1, . . . ,M − 1 do
5 Randomly remove a modality of S and set it as T
6 Compute the classification loss: Lcl ← Lcl + Lcl(x(T))
7 Compute the regularization loss:

LCML ← LCML +max
(
0,Conf(x(T))− Conf(x(S))− τ

)
8 S← T
9 end

10 Total loss: L = 1
ML

cl+λLCML

11 Update the parameters of the classifier f with L
12 end
13 return the classifier f
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3.5 DISCUSSION AND ANALYSES

◦Why should a model meet the ranking relationship regardless of the label? For multimodal
learning, all modalities are assumed to be predictive of the target (Wu et al., 2022), which can be
expressed as I(y, xm) ≥ 0, where I(·) denotes mutual information (Blum & Mitchell, 1998).

Lemma 3.1. Suppose we have two versions of a unique sample x(M), i.e., x(T) and x(S), if we can
assure T ⊂ S, then, for any class label y, we have I(y, x(T)) ≤ I(y, x(S)).

In other words, x(S) is more predictive of the target than x(T) regardless of the label. For a trustworthy
multimodal method, the confidence of x(T) should not be larger than x(S).

◦Why can CML regularization calibrate the model? CML regularization can guarantee a smaller
confidence of x(T) when the model makes a wrong prediction of x(S), which means that CML can
alleviate the over-confidence.

Lemma 3.2. Suppose the CML regularization can achieve a lower VRR, i.e., VRRCML <
VRROri, then for the samples that meet E

(
ConfCML(x(S))

)
= E

(
ConfOri(x(S))

)
, we have

E
(
ConfCML(x(T))

)
≤ E

(
ConfOri(x(T))

)
.

Although it is difficult to make ConfOri(·) equal to ConfCML(·) strictly for all samples, as shown
in Appendix C.5, we find ConfCML(x(S)) and ConfOri(x(S)) are very similar for most samples,
where ConfOri(·) and ConfCML(·) indicate the confidence estimated by the original model and the
model improved by CML regularization respectively.

◦Why not just penalize the difference in confidence: Conf(x(T))−Conf(x(S))? Forcing the con-
fidence for x(T) to be smaller than the confidence for x(S) strictly will lead to a very small confidence
for x(T) and will make the model estimate an extremely small confidence for each modality, and the
experiments are shown in Appendix C.6. What’s more, the model sometimes can still make correct
predictions confidently when one modality is removed. A flexible ranking regularization makes it
more suitable for real data.

4 EXPERIMENTS

4.1 SETUP

We deploy the proposed regularization method to different types of multimodal classifiers including
the imputation-independent method (Type I), the imputation-dependent method (Type II), and the
recent SOTA method (Type III). CPM-Nets (Zhang et al., 2019) is a typical imputation-independent
algorithm, which can adapt to arbitrary missing patterns without reconstructing the missing modal-
ities. MIWAE (Mattei & Frellsen, 2019) is a typical imputation-dependent algorithm. The above
two methods are typical in incomplete multimodal learning. In addition to incomplete multimodal
learning methods, we also deploy the regularization to the current multimodal method (Wu et al.,
2022), which is named MMTM. For MMTM, we approximate removing one modality by corrupting
its features (e.g., adding strong noise) due to the model can’t make a prediction when one modality
is absolutely removed.

Datasets: We evaluate the proposed method on diverse datasets, including YaleB (Georghiades
et al., 2002), Handwritten (Perkins & Theiler, 2003), CUB (Wah et al., 2011), Animal (Krizhevsky
et al., 2012; Simonyan & Zisserman, 2014), TUANDROMD (Borah et al., 2020), NYUD2 (Qi et al.,
2017), and SUNRGBD (Song et al., 2015).

Experiment setting: For a fair comparison, the only difference between whether the model is
equipped with CML regularization or not is whether the coefficient λ is set to 0. Please refer to
Appendix C.2 for more detailed settings.

4.2 QUESTIONS TO BE VERIFIED

We conduct diverse experiments to comprehensively investigate the underlying assumption and the
proposed method, including:
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◦ Can CML regularization improve the confidence estimation of multimodal classifiers? To
validate whether the proposed method improves multimodal classifiers’ confidence estimation, we
evaluate the confidence estimation of current multimodal classifiers without and with CML regular-
ization, respectively. We conduct experiments of each type of methods on five datasets and evaluate
their trustworthiness in terms of VRR (defined in the Eq. 2).

◦ Can CML regularization improve robustness? CML regularization can improve multimodal
classifiers’ confidence estimation, so a natural question arises - does a better confidence estimation
imply better robustness? To verify this, we evaluate the robustness on the complete multimodal data
and noisy multimodal data (adding Gaussian noise to some modalities, i.e., zero mean with varying
variance ϵ).

◦ Is CML easy to be deployed and not sensitive to hyperparameters? In order to investigate
the key factor that makes the improvement in the proposed method, we evaluate the performance
in terms of classification accuracy under different strengths of CML regularization. We conduct
experiments on both the original and noised data (i.e., adding noise to one of the modalities during
the test). More details are shown in Appendix C.2.

Table 1: VRR (%) of test samples (a lower value indicates a better confidence estimation. Type III
is shown in Appendix). “✗” indicates the model is not equipped with the proposed regularization
(λ = 0). Performance on Type III please refer to Tab. 8 (Appendix F).

Method CML TUANDROMD YaleB Handwritten CUB Animal

Type I
✗ 23.38± 1.39 39.15± 4.97 17.64± 2.31 2.83± 1.55 44.39± 7.55
✓ 12.58± 2.84 15.05± 1.12 3.18± 0.80 2.17± 1.13 29.02± 5.43

Improve △ 10.80 △ 24.10 △ 14.46 △ 0.66 △ 15.37

Type II
✗ 39.17± 2.32 20.54± 4.26 33.82± 5.16 23.17± 4.87 12.51± 1.50
✓ 8.38± 1.31 14.46± 2.17 29.99± 2.30 20.17± 3.05 8.64± 0.32

Improve △ 30.79 △ 6.08 △ 3.83 △ 3.00 △ 3.87

4.3 RESULTS

4.3.1 CONFIDENCE ESTIMATION

(a) CUB (b) Tuandromd

Figure 3: Confidence estimation when one
modality is removed, where “CI” is defined
in Eq. 1.

We evaluate the confidence estimation of current
multimodal classification models from a ranking
perspective and find that for a large number of sam-
ples the confidence will increase when one modal-
ity is removed, while the confidence estimation of
classification models equipped with the proposed
CML regularization is significantly improved. We
intuitively demonstrate the confidence changing in
Fig. 3, and the quantitative results are shown in
Tab. 1. According to Fig. 3, we show the confi-
dence estimation of CPM-Nets, where “Original”
and “CML” indicate the model is without and with
the proposed CML regularization respectively. Ac-
cording to Fig. 3, it is observed that the confidence without CML regularization may increase when
one modality is removed, which indicates that the model doesn’t take all modalities into account
fairly when making predictions. This will lead to unpromising robustness and generalization, which
clearly verifies the main assumption in Sec. 4.3.2.

We also report the quantitative results on five datasets. It is observed that the confidence estimation
of each model is obviously improved with the proposed CML regularization.
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Table 2: Accuracy performance comparison for whether the model is equipped with the CML regu-
larization term (i.e., whether λ is set to 0).

Method Dataset CML Accuracy
(↑)

NLL
(↓)

AURC
(↓)

E-AURC
(↓)

Type I

CUB
✗ 87.00± 4.36 20.49± 0.30 59.44± 22.10 49.52± 17.35
✓ 88.33± 4.05 20.53± 0.46 55.94± 17.07 47.92± 16.89

Improve △ 1.33 ▽ 0.04 △ 3.50 △ 1.60

Animal
✗ 81.72± 2.51 36.87± 0.41 82.14± 27.20 63.94± 22.74
✓ 82.73± 1.64 36.87± 0.36 71.54± 16.03 55.50± 13.13

Improve △ 1.01 0.00 △ 10.60 △ 8.44

TUAND-
ROMD

✗ 84.66± 0.43 6.88± 0.00 61.46± 6.09 49.00± 5.75
✓ 85.20± 0.81 6.88± 0.00 58.24± 5.05 46.64± 4.55

Improve △ 0.54 0.00 △ 3.22 △ 2.36

Type II

CUB
✗ 92.33± 1.11 2.33± 0.55 10.92± 1.94 7.82± 1.32
✓ 94.50± 1.71 2.24± 1.27 9.32± 3.91 7.60± 3.02

Improve △ 2.17 △ 0.86 △ 1.60 △ 0.22

Animal
✗ 86.75± 0.33 8.25± 3.79 27.62± 7.42 18.40± 7.27
✓ 87.61± 0.50 4.99± 0.46 21.26± 1.31 13.24± 0.92

Improve △ 0.86 △ 3.26 △ 6.36 △ 5.16

TUAND-
ROMD

✗ 86.32± 0.85 3.26± 0.09 43.40± 2.65 33.56± 2.38
✓ 88.69± 0.99 3.21± 0.15 38.62± 5.44 31.90± 4.37

Improve △ 2.37 △ 0.05 △ 4.78 △ 1.66

Type III

NYUD2
✗ 66.89± 0.85 10.03± 0.10 140.53± 5.66 78.40± 5.01
✓ 68.09± 0.68 9.83± 0.15 137.27± 6.94 79.87± 6.30

Improve △ 1.20 △ 0.20 △ 3.26 △ 1.47

SUN-
RGBD

✗ 62.11± 0.31 13.27± 0.53 181.00± 1.20 97.87± 1.48
✓ 62.78± 0.32 13.25± 0.46 174.90± 1.50 95.00± 1.00

Improve △ 0.67 △ 0.05 △ 6.10 △ 2.87

4.3.2 CML REGULARIZATION IMPROVES ROBUSTNESS

In this subsection, we evaluate the performance on the complete multimodal data, where the train-
ing/test data is divided as previous work (Zhang et al., 2019). From Tab. 2, the classification models
equipped with CML regularization consistently outperform their counterpart (i.e., the original clas-
sification models) validating the rationality of CML principle. Limited by space, results on more
datasets are shown in Appendix C.4.

We also find that CML regularization can improve the robustness of imperfect data, such as noise.
We evaluate the models in terms of the accuracy in the test under Gaussian noise (i.e., zero mean and
varying variance ϵ), and “Noise On” indicates which modality is noised (e.g., {1} indicates the first
modality is noised). We report the performance on the challenging datasets (CUB and Animal) in
the main text (Tab. 3) and more results are in Appendix C.3. We can find that the models equipped
with CML regularization are more robust to noise, especially when the noise is much heavier.

4.3.3 PERFORMANCE UNDER DIFFERENT STRENGTHS OF CML REGULARIZATION

In this subsection, we report the accuracy under different strengths of regularization (where “λ = 0”
indicates the model is not equipped with the proposed CML regularization). We also add Gaussian
noise (i.e., zero mean and varying variance ϵ) to one of the modalities, and it is clear that the model
with CML regularization is more robust to the potential noise.

We show the results in Fig. 4. From Fig. 4, we can find that CML regularization can promote the
accuracy on the noised data. The main reason is that the CML regularization enforces the reasonable
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Table 3: Accuracy performance comparison when some of the modalities is corrupted with Gaussian
noise (i.e., zero mean with varying variance ϵ).

Dataset Noise on CML ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.5

CUB

{1}
✗ 84.72± 3.32 82.22± 4.53 79.72± 4.43 71.17± 9.14
✓ 85.83± 2.72 85.00± 3.50 84.17± 4.08 81.11± 4.37

Improve △ 1.11 △ 2.78 △ 4.45 △ 9.94

{2}
✗ 84.44± 2.75 83.89± 3.22 83.61± 2.83 83.61± 3.87
✓ 85.83± 3.40 85.28± 2.75 85.28± 1.97 85.00± 1.80

Improve △ 1.39 △ 1.39 △ 1.67 △ 1.39

{1, 2}
✗ 85.00± 3.12 82.78± 3.98 80.00± 4.46 72.50± 11.14
✓ 85.83± 2.72 85.84± 3.12 85.83± 4.25 81.39± 6.43

Improve △ 0.83 △ 3.06 △ 5.83 △ 8.89

Animal

{1}
✗ 80.78± 2.79 80.96± 2.78 80.85± 2.80 80.68± 2.93
✓ 82.03± 1.91 82.37± 2.09 82.55± 2.24 82.30± 2.40

Improve △ 1.25 △ 1.41 △ 1.70 △ 1.62

{2}
✗ 80.70± 2.45 79.81± 3.14 77.34± 4.80 68.52± 9.68
✓ 82.07± 1.57 81.23± 2.32 78.93± 3.65 72.39± 8.35

Improve △ 1.37 △ 1.42 △ 1.59 △ 3.87

{1, 2}
✗ 80.87± 2.55 79.97± 3.12 77.11± 5.86 65.08± 12.75
✓ 82.14± 1.76 81.95± 2.65 79.63± 5.28 72.46± 11.39

Improve △ 1.27 △ 1.98 △ 2.52 △ 7.38

(a) Noise on the first modality (b) Noise on the second modality

Figure 4: Accuracy estimation where one of the modalities is corrupted with noise.

confidence estimation. Moreover, according to Fig. 4, the proposed regularization is not sensitive to
the hyperparameter λ, where quite a promising performance could be excepted with a mild regular-
ization strength.

5 CONCLUSION

Through extensive empirical studies, we observe that the confidence estimations of current mul-
timodal learning algorithms are typically unreliable, which tend to rely on some partial modali-
ties. This further leads the learned model to being non-robust against the modality corruption. To
be specific, model tends to be overconfident to some modalities, and ignores the evidences from
other modalities even those may be useful to make decision. To solve this problem, we introduce
a novel regularization technique to calibrate the confidence estimation, which forces model to learn
a calibrated predictive distribution. This technique can be naturally applied to most existing mul-
timodal learning methods without modifying their original training process and model structures.
We perform comprehensive experiments to demonstrate our method’s superiority in classification
performance, confidence calibration and model robustness.
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Figure 5: Illustration of generating S and T.
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To compute this score in practice, we initialize S as the complete modalities, and obtain T by ran-
domly removing a modality from S. Then T is regarded as S for another confidence ranking pair
and we repeat this process until there is only one modality remained in T.

B ANALYSIS OF THE TRAINING TIME AND SPACE COMPLEXITY

Ideally, CML should be computed over all possible pairs at each model update. However, it is
computationally expensive, so we employ an approximation scheme following Toneva et al. (2018)
for reducing the costs. For example, given samples with 4 modalities (a, b, c, d), we need to sample
3 pairs (a/ab, ab/abc, abc/abcd) to approximate CML loss, and indexes are shuffled for different
epochs. So if the complexity of the traditional model is o(n), the complexity of our method will be
o((k-1)n), where k indicates the number of modalities. It should be pointed out that compared models
in our experiments are also equipped with sampling, and the complexity of compared methods is
also o((k-1)n). We report the training time (seconds) for the same training epochs (Platform: RTX
3090×8, CUDA Version: 11.2). It is observed that the original model and model equipped with
CML have the same level of computational complexity.

Table 4: Training time (Platform: RTX 3090 ×8).
Method CML TUANDROMD YaleB Handwritten CUB Animal

Type I ✗ 245.3 1574.6 141.5 351.6 1582.7
✓ 297.6 1210.2 191.2 348.5 1641.3

Type II ✗ 1447.7 703.3 233.2 565.2 717.8
✓ 1489.1 662.9 210.8 781.7 720.3

C EXPERIMENTS DETAILS

C.1 DATASET DETAILS

We evaluate the proposed method on diverse datasets, including data with multiple modalities and
multiple types of features. ◦ YaleB: Similar to previous work Georghiades et al. (2002), we also
use a subset of this face image dataset, which contains 650 facial images, 10 classes and 3 different
types of features. ◦Handwritten Perkins & Theiler (2003): This is a database of handwritten digits
which contains 2, 000 images, 10 classes, 6 types of features. ◦ CUB Wah et al. (2011): Following
CPM-Nets Zhang et al. (2019), we use a subset of this dataset, which contains first 10 classes of
original dataset and 2 modalities (deep visual feature and text feature) are obtained by GoogleNet
and doc2vec Le & Mikolov (2014). ◦ Animal: This dataset contains 10, 158 images, 50 classes, and
2 types of features (deep visual feature from DECAF Krizhevsky et al. (2012) and VGG19 Simonyan
& Zisserman (2014)). ◦ TUANDROMD Borah et al. (2020): The dataset contains 4, 465 instances,
2 classes and 2 types of modalities.

C.2 EXPERIMENT SETTING

Type-I: For CPM-Nets and the first five datasets(i.e.,YaleB, Handwritten, CUB and Animal), we
follow the author’s implementation Zhang et al. (2019): the dimensionality of latent representation
is 150. Parameter lambda for cub/animal/hand-written/yaleB/tuandromd is set as 5/45/45/10/5. The
dimensionalities of input, hidden layers are 128 and 300. We use Adam optimizer to train all CPM-
Nets models with the learning rate of 10−2 and no additional regularization term. For Tuandromd
dataset, we tune the dimensionality of latent representation to 512. The dimensionalities of input
and hidden layers are both 512. We use Adam optimizer to train CPM-Net with L2-regularization
term. Type-II: For MIWAE, we train the encoder, decoder and classifier respectively. The number
of hidden units of them is all 128. Parameter lambda for cub/animal/hand-written/yaleB/tuandromd
are set as 15/25/10/35/75 for best performance. The dimensionalities of the latent space are 64. We
use Adam optimizer to train the encoder and decoder with a learning rate of 10−2. Then we train
the encoder, decoder and classifier altogether for another with a learning rate of 10−3. As same as
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Table 5: Accuracy performance comparison when some of the modalities is blurred (Type I).

Dataset Noise on CML ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5

YaleB

{1} ✗ 97.43± 1.58 96.92± 1.88 96.41± 2.20 94.10± 1.31 92.82± 1.31
✓ 98.46± 1.0998.46± 1.0998.46± 1.09 98.20± 1.3198.20± 1.3198.20± 1.31 96.15± 1.8896.15± 1.8896.15± 1.88 94.62± 1.8894.62± 1.8894.62± 1.88 93.59± 1.3093.59± 1.3093.59± 1.30

{2} ✗ 95.13± 0.72 94.10± 1.31 92.57± 0.73 92.05± 1.45 91.54± 1.66
✓ 96.92± 1.2696.92± 1.2696.92± 1.26 95.90± 2.0295.90± 2.0295.90± 2.02 94.61± 2.8894.61± 2.8894.61± 2.88 93.33± 2.5493.33± 2.5493.33± 2.54 93.08± 3.1493.08± 3.1493.08± 3.14

{3} ✗ 94.87± 0.96 94.87± 0.96 94.10± 0.96 92.82± 1.81 92.05± 1.31
✓ 96.92± 1.8896.92± 1.8896.92± 1.88 97.18± 1.9297.18± 1.9297.18± 1.92 96.15± 1.8896.15± 1.8896.15± 1.88 94.87± 2.5494.87± 2.5494.87± 2.54 94.36± 2.0294.36± 2.0294.36± 2.02

{1, 2} ✗ 96.67± 2.61 95.13± 3.46 91.28± 2.83 88.72± 3.10 86.41± 3.10
✓ 97.69± 0.6397.69± 0.6397.69± 0.63 95.39± 2.2695.39± 2.2695.39± 2.26 92.56± 2.0292.56± 2.0292.56± 2.02 89.72± 2.2189.72± 2.2189.72± 2.21 86.66± 1.8186.66± 1.8186.66± 1.81

{1, 3} ✗ 97.43± 0.96 97.69± 1.66 97.43± 1.81 97.18± 2.20 96.15± 2.26
✓ 98.46± 1.0998.46± 1.0998.46± 1.09 98.46± 1.2698.46± 1.2698.46± 1.26 98.46± 1.6698.46± 1.6698.46± 1.66 96.92± 1.8896.92± 1.8896.92± 1.88 96.67± 2.2096.67± 2.2096.67± 2.20

{2, 3} ✗ 94.62± 1.08 93.85± 1.25 90.26± 2.54 87.95± 2.83 86.67± 2.38
✓ 96.41± 1.8196.41± 1.8196.41± 1.81 95.64± 1.9295.64± 1.9295.64± 1.92 93.84± 3.3293.84± 3.3293.84± 3.32 91.28± 3.1091.28± 3.1091.28± 3.10 89.49± 3.1689.49± 3.1689.49± 3.16

{1, 2, 3} ✗ 96.15± 1.88 96.41± 3.16 93.85± 4.40 87.69± 8.21 84.10± 10.32
✓ 97.43± 1.8197.43± 1.8197.43± 1.81 97.43± 1.9297.43± 1.9297.43± 1.92 93.85± 4.4093.85± 4.4093.85± 4.40 87.69± 7.6187.69± 7.6187.69± 7.61 82.56± 9.2682.56± 9.2682.56± 9.26

Hand-
written

{1} ✗ 97.18± 1.92 95.38± 1.25 93.34± 1.31 92.57± 1.58 91.28± 1.31
✓ 98.46± 1.2698.46± 1.2698.46± 1.26 95.90± 1.9295.90± 1.9295.90± 1.92 93.85± 1.8893.85± 1.8893.85± 1.88 93.08± 1.6693.08± 1.6693.08± 1.66 92.31± 0.6392.31± 0.6392.31± 0.63

{2} ✗ 88.46± 1.66 87.18± 1.31 86.92± 1.09 86.92± 1.09 86.92± 1.09
✓ 90.77± 3.3390.77± 3.3390.77± 3.33 90.26± 3.5790.26± 3.5790.26± 3.57 89.75± 3.8589.75± 3.8589.75± 3.85 89.75± 3.8489.75± 3.8489.75± 3.84 89.75± 3.8489.75± 3.8489.75± 3.84

{3} ✗ 85.90± 1.92 85.13± 1.81 84.87± 1.45 84.62± 1.66 84.62± 1.66
✓ 88.97± 2.5488.97± 2.5488.97± 2.54 88.21± 2.6188.21± 2.6188.21± 2.61 87.69± 2.7487.69± 2.7487.69± 2.74 87.69± 3.3287.69± 3.3287.69± 3.32 87.44± 3.1087.44± 3.1087.44± 3.10

{1, 2} ✗ 88.97± 3.68 83.08± 3.50 78.97± 1.92 77.69± 2.74 75.90± 3.57
✓ 88.97± 4.0488.97± 4.0488.97± 4.04 83.59± 2.9783.59± 2.9783.59± 2.97 80.51± 3.4680.51± 3.4680.51± 3.46 77.18± 4.2877.18± 4.2877.18± 4.28 74.10± 3.8474.10± 3.8474.10± 3.84

{1, 3} ✗ 91.54± 1.09 91.28± 3.16 88.97± 5.41 87.43± 5.83 85.64± 6.42
✓ 93.59± 2.3893.59± 2.3893.59± 2.38 91.79± 3.6891.79± 3.6891.79± 3.68 88.97± 4.0488.97± 4.0488.97± 4.04 86.93± 4.9986.93± 4.9986.93± 4.99 85.39± 4.9185.39± 4.9185.39± 4.91

{2, 3} ✗ 63.59± 8.00 59.74± 7.0059.74± 7.0059.74± 7.00 57.69± 5.9957.69± 5.9957.69± 5.99 56.67± 5.9456.67± 5.9456.67± 5.94 55.90± 5.4955.90± 5.4955.90± 5.49
✓ 64.36± 7.4964.36± 7.4964.36± 7.49 58.46± 6.37 56.67± 6.10 55.64± 6.04 54.87± 6.29

{1, 2, 3} ✗ 54.87± 10.68 37.95± 6.9237.95± 6.9237.95± 6.92 29.48± 4.7629.48± 4.7629.48± 4.76 24.36± 4.0424.36± 4.0424.36± 4.04 22.31± 4.1222.31± 4.1222.31± 4.12
✓ 57.18± 11.4157.18± 11.4157.18± 11.41 35.64± 4.80 26.67± 2.54 22.82± 2.54 20.77± 1.09

CUB

{1} ✗ 84.72± 3.32 82.22± 4.53 79.72± 4.43 76.39± 6.85 71.17± 9.14
✓ 85.83± 2.7285.83± 2.7285.83± 2.72 85.00± 3.5085.00± 3.5085.00± 3.50 84.17± 4.0884.17± 4.0884.17± 4.08 83.06± 3.9983.06± 3.9983.06± 3.99 81.11± 4.3781.11± 4.3781.11± 4.37

{2} ✗ 84.44± 2.75 83.89± 3.22 83.61± 2.83 83.89± 3.49 83.61± 3.87
✓ 85.83± 3.4085.83± 3.4085.83± 3.40 85.28± 2.7585.28± 2.7585.28± 2.75 85.28± 1.9785.28± 1.9785.28± 1.97 85.28± 1.9785.28± 1.9785.28± 1.97 85.00± 1.8085.00± 1.8085.00± 1.80

{1, 2} ✗ 85.00± 3.12 82.78± 3.98 80.00± 4.46 76.67± 7.48 72.50± 11.14
✓ 85.83± 2.7285.83± 2.7285.83± 2.72 85.84± 3.1285.84± 3.1285.84± 3.12 85.83± 4.2585.83± 4.2585.83± 4.25 84.44± 4.3884.44± 4.3884.44± 4.38 81.39± 6.4381.39± 6.4381.39± 6.43

Animal

{1} ✗ 80.78± 2.79 80.96± 2.78 80.85± 2.80 80.81± 2.88 80.68± 2.93
✓ 82.03± 1.9182.03± 1.9182.03± 1.91 82.37± 2.0982.37± 2.0982.37± 2.09 82.55± 2.2482.55± 2.2482.55± 2.24 82.42± 2.2282.42± 2.2282.42± 2.22 82.30± 2.4082.30± 2.4082.30± 2.40

{2} ✗ 80.70± 2.45 79.81± 3.14 77.34± 4.80 72.89± 7.46 68.52± 9.68
✓ 82.07± 1.5782.07± 1.5782.07± 1.57 81.23± 2.3281.23± 2.3281.23± 2.32 78.93± 3.6578.93± 3.6578.93± 3.65 75.81± 6.3075.81± 6.3075.81± 6.30 72.39± 8.3572.39± 8.3572.39± 8.35

{1, 2} ✗ 80.87± 2.55 79.97± 3.12 77.11± 5.86 72.23± 9.04 65.08± 12.75
✓ 82.14± 1.7682.14± 1.7682.14± 1.76 81.95± 2.6581.95± 2.6581.95± 2.65 79.63± 5.2879.63± 5.2879.63± 5.28 76.63± 7.7376.63± 7.7376.63± 7.73 72.46± 11.3972.46± 11.3972.46± 11.39

TUAND-
ROMD

{1} ✗ 84.77± 0.55 80.47± 0.99 76.53± 1.11 72.65± 0.76 70.17± 0.66
✓ 86.50± 0.5986.50± 0.5986.50± 0.59 82.46± 0.7782.46± 0.7782.46± 0.77 78.30± 1.1878.30± 1.1878.30± 1.18 74.92± 1.3974.92± 1.3974.92± 1.39 72.45± 1.3372.45± 1.3372.45± 1.33

{2} ✗ 86.56± 0.27 85.71± 0.48 84.14± 0.58 82.35± 0.86 80.85± 1.05
✓ 88.87± 0.2288.87± 0.2288.87± 0.22 88.74± 0.2888.74± 0.2888.74± 0.28 88.58± 0.6388.58± 0.6388.58± 0.63 88.15± 0.6588.15± 0.6588.15± 0.65 87.93± 0.6787.93± 0.6787.93± 0.67

{1, 2} ✗ 84.88± 1.19 80.72± 1.02 76.60± 0.75 73.15± 1.10 70.35± 1.25
✓ 87.41± 3.4087.41± 3.4087.41± 3.40 82.78± 1.1482.78± 1.1482.78± 1.14 79.28± 1.0079.28± 1.0079.28± 1.00 76.30± 1.1176.30± 1.1176.30± 1.11 73.82± 1.3573.82± 1.3573.82± 1.35

prior work Corbière et al. (2019), we evaluated the performance according to Accuracy (%), NLL
(10−1), AURC (10−3), and E-AURC (10−3). For both types above, we set 0 as the default value of
τ to ensure the model meets CML strictly.
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Table 6: Accuracy performance comparison when some of the modalities is blurred (Type II).

Dataset Noise Noise on CML ϵ = 0.5 ϵ = 1.0 ϵ = 1.5 ϵ = 2.0 ϵ = 2.5

YaleB

{1} ✗ 95.90± 2.54 94.87± 3.22 93.85± 2.88 93.59± 3.16 93.59± 3.16
✓ 97.43± 1.3197.43± 1.3197.43± 1.31 96.15± 2.5196.15± 2.5196.15± 2.51 95.13± 2.9795.13± 2.9795.13± 2.97 94.36± 2.9794.36± 2.9794.36± 2.97 93.85± 3.4693.85± 3.4693.85± 3.46

{2} ✗ 96.15± 2.26 93.33± 3.22 91.03± 2.62 90.26± 2.02 89.23± 2.18
✓ 97.69± 1.2697.69± 1.2697.69± 1.26 96.67± 1.5896.67± 1.5896.67± 1.58 94.10± 2.2094.10± 2.2094.10± 2.20 92.82± 2.8392.82± 2.8392.82± 2.83 92.05± 2.0292.05± 2.0292.05± 2.02

{3} ✗ 98.72± 0.36 96.92± 1.26 96.15± 0.63 96.15± 0.63 95.90± 0.96
✓ 98.72± 0.7398.72± 0.7398.72± 0.73 97.69± 1.0997.69± 1.0997.69± 1.09 97.43± 0.9697.43± 0.9697.43± 0.96 97.18± 1.3197.18± 1.3197.18± 1.31 96.67± 1.5896.67± 1.5896.67± 1.58

{1, 2} ✗ 95.64± 2.83 91.02± 3.46 88.46± 4.53 87.18± 3.46 85.90± 4.09
✓ 96.66± 1.3196.66± 1.3196.66± 1.31 93.59± 2.3893.59± 2.3893.59± 2.38 90.51± 2.9790.51± 2.9790.51± 2.97 86.67± 3.4686.67± 3.4686.67± 3.46 84.62± 3.2684.62± 3.2684.62± 3.26

{1, 3} ✗ 98.46± 0.63 98.46± 1.66 97.69± 1.66 97.43± 1.45 97.18± 1.31
✓ 98.20± 0.7398.20± 0.7398.20± 0.73 97.95± 1.9297.95± 1.9297.95± 1.92 97.69± 1.6697.69± 1.6697.69± 1.66 98.20± 1.5898.20± 1.5898.20± 1.58 97.69± 1.6697.69± 1.6697.69± 1.66

{2, 3} ✗ 97.43± 0.36 95.89± 0.36 95.38± 0.62 94.62± 0.62 92.82± 0.73
✓ 98.72± 0.3698.72± 0.3698.72± 0.36 97.69± 1.0997.69± 1.0997.69± 1.09 96.66± 0.7396.66± 0.7396.66± 0.73 95.38± 0.6295.38± 0.6295.38± 0.62 94.61± 1.6694.61± 1.6694.61± 1.66

{1, 2, 3} ✗ 97.69± 0.63 95.64± 0.36 93.08± 1.09 89.23± 1.66 82.31± 1.26
✓ 98.46± 0.6398.46± 0.6398.46± 0.63 97.18± 1.3197.18± 1.3197.18± 1.31 95.64± 0.9695.64± 0.9695.64± 0.96 92.56± 2.5492.56± 2.5492.56± 2.54 88.46± 2.2788.46± 2.2788.46± 2.27

Hand-
written

{1} ✗ 98.42± 0.51 98.25± 0.35 97.92± 0.12 97.92± 0.12 97.58± 0.12
✓ 99.50± 0.4199.50± 0.4199.50± 0.41 99.50± 0.4199.50± 0.4199.50± 0.41 99.50± 0.4199.50± 0.4199.50± 0.41 99.50± 0.4199.50± 0.4199.50± 0.41 99.50± 0.4199.50± 0.4199.50± 0.41

{2} ✗ 98.17± 1.03 97.75± 0.54 97.33± 0.47 97.00± 0.41 96.92± 0.42
✓ 98.83± 0.2498.83± 0.2498.83± 0.24 98.50± 0.4198.50± 0.4198.50± 0.41 98.67± 0.4798.67± 0.4798.67± 0.47 98.67± 0.4798.67± 0.4798.67± 0.47 98.67± 0.4798.67± 0.4798.67± 0.47

{1, 2} ✗ 97.67± 0.47 97.25± 0.54 96.58± 0.51 95.92± 0.59 95.67± 0.94
✓ 99.00± 0.0099.00± 0.0099.00± 0.00 98.83± 0.2498.83± 0.2498.83± 0.24 98.83± 0.2498.83± 0.2498.83± 0.24 98.83± 0.2498.83± 0.2498.83± 0.24 98.83± 0.2498.83± 0.2498.83± 0.24

{1, 3} ✗ 98.08± 0.12 97.00± 1.22 96.33± 1.55 95.33± 1.55 95.08± 1.59
✓ 99.50± 0.0099.50± 0.0099.50± 0.00 99.17± 0.4799.17± 0.4799.17± 0.47 98.00± 0.4198.00± 0.4198.00± 0.41 97.67± 0.2497.67± 0.2497.67± 0.24 95.78± 1.0495.78± 1.0495.78± 1.04

{2, 3} ✗ 98.17± 0.24 96.83± 0.47 95.67± 0.85 94.75± 0.94 94.17± 0.85
✓ 99.00± 0.0099.00± 0.0099.00± 0.00 98.67± 0.4798.67± 0.4798.67± 0.47 97.67± 0.6297.67± 0.6297.67± 0.62 97.33± 1.0397.33± 1.0397.33± 1.03 97.33± 1.0397.33± 1.0397.33± 1.03

{1, 2, 3} ✗ 96.50± 1.08 93.58± 1.74 90.67± 3.09 88.75± 3.54 87.58± 3.36
✓ 98.50± 0.7198.50± 0.7198.50± 0.71 97.17± 1.1897.17± 1.1897.17± 1.18 95.50± 1.2295.50± 1.2295.50± 1.22 93.67± 0.8593.67± 0.8593.67± 0.85 92.50± 0.8292.50± 0.8292.50± 0.82

CUB

{1} ✗ 91.11± 1.04 86.94± 2.83 83.61± 3.93 80.83± 4.14 79.17± 3.79
✓ 93.33± 1.8093.33± 1.8093.33± 1.80 90.83± 2.4590.83± 2.4590.83± 2.45 87.50± 3.6087.50± 3.6087.50± 3.60 85.56± 4.3885.56± 4.3885.56± 4.38 81.11± 4.5381.11± 4.5381.11± 4.53

{2} ✗ 91.11± 0.40 91.95± 0.39 91.11± 0.40 89.72± 0.39 88.61± 0.79
✓ 93.61± 1.0493.61± 1.0493.61± 1.04 92.78± 1.0492.78± 1.0492.78± 1.04 92.50± 1.8092.50± 1.8092.50± 1.80 91.67± 2.9691.67± 2.9691.67± 2.96 91.39± 3.2291.39± 3.2291.39± 3.22

{1, 2} ✗ 92.78± 1.97 88.61± 1.42 85.83± 1.80 79.72± 2.83 74.17± 4.46
✓ 94.72± 2.1994.72± 2.1994.72± 2.19 92.22± 3.7592.22± 3.7592.22± 3.75 90.00± 4.4690.00± 4.4690.00± 4.46 86.11± 4.1086.11± 4.1086.11± 4.10 79.17± 4.9179.17± 4.9179.17± 4.91

Animal

{1} ✗ 86.61± 0.20 85.81± 0.36 84.82± 1.02 83.77± 1.29 82.16± 2.32
✓ 87.20± 0.1887.20± 0.1887.20± 0.18 87.01± 0.1887.01± 0.1887.01± 0.18 86.60± 0.2086.60± 0.2086.60± 0.20 86.03± 0.0486.03± 0.0486.03± 0.04 85.42± 0.2985.42± 0.2985.42± 0.29

{2} ✗ 86.33± 0.54 85.62± 0.61 84.84± 0.95 83.04± 1.24 81.34± 1.73
✓ 87.04± 0.0887.04± 0.0887.04± 0.08 86.64± 0.2686.64± 0.2686.64± 0.26 85.95± 0.4285.95± 0.4285.95± 0.42 84.78± 0.1784.78± 0.1784.78± 0.17 82.71± 0.2482.71± 0.2482.71± 0.24

{1, 2} ✗ 86.01± 0.17 84.80± 0.81 83.17± 1.65 80.92± 2.77 77.42± 4.14
✓ 87.04± 0.4287.04± 0.4287.04± 0.42 86.50± 0.1586.50± 0.1586.50± 0.15 85.38± 0.3485.38± 0.3485.38± 0.34 83.84± 0.6583.84± 0.6583.84± 0.65 81.67± 0.7581.67± 0.7581.67± 0.75

TUAND-
ROMD

{1} ✗ 81.14± 0.70 78.21± 0.92 75.39± 1.09 73.21± 1.46 71.71± 1.26
✓ 81.99± 1.9981.99± 1.9981.99± 1.99 78.79± 2.4278.79± 2.4278.79± 2.42 76.37± 2.5776.37± 2.5776.37± 2.57 74.36± 2.6374.36± 2.6374.36± 2.63 73.19± 2.6073.19± 2.6073.19± 2.60

{2} ✗ 84.19± 0.82 84.43± 0.48 84.46± 0.35 84.32± 0.45 84.21± 0.44
✓ 84.88± 1.6284.88± 1.6284.88± 1.62 84.73± 1.8984.73± 1.8984.73± 1.89 84.84± 1.7684.84± 1.7684.84± 1.76 84.39± 0.8984.39± 0.8984.39± 0.89 84.97± 1.5284.97± 1.5284.97± 1.52

{1, 2} ✗ 83.56± 1.23 80.85± 1.30 77.85± 1.53 75.90± 2.07 74.08± 2.22
✓ 83.99± 1.8783.99± 1.8783.99± 1.87 81.48± 2.3081.48± 2.3081.48± 2.30 78.50± 2.3078.50± 2.3078.50± 2.30 76.73± 2.1976.73± 2.1976.73± 2.19 75.23± 2.2075.23± 2.2075.23± 2.20

C.3 ROBUSTNESS EVALUATION

We evaluate models in terms of accuracy under Gaussian noise (i.e., zero mean and varying variance
ϵ), and “Noise On” indicates which modality is noised (e.g., {1} indicates the first modality is
noised). In addition to the performance on the challenging datasets (CUB and Animal) in the main
text (Tab. 3), we show more other results (Tab. 5 6). It is clear that the models equipped with CML
are more robust to noise, especially when the noise is much heavier.
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C.4 ADDITIONAL RESULTS FOR ROBUSTNESS ESTIMATION

Table 7: Accuracy performance comparison for whether the model is equipped with the cma regu-
larization term on additional dataset (i.e., whether λ is set to 0).

Method Dataset CML Accuracy
(↑)

NLL
(↓)

AURC
(↓)

E-AURC
(↓)

Type I

YaleB
✗ 95.84± 0.78 21.98± 0.05 3.00± 1.38 2.08± 1.37
✓ 97.69± 1.09 21.98± 0.05 1.46± 1.51 1.12± 1.32

Improve △ 1.85 0.00 △ 1.54 △ 0.96

Hand-
written

✗ 89.00± 3.64 20.30± 0.25 35.83± 20.43 28.80± 15.49
✓ 93.60± 0.60 20.06± 0.11 11.00± 6.17 8.90± 5.80

Improve △ 4.60 △ 0.14 △ 14.83 △ 19.90

Type II

YaleB
✗ 95.69± 2.10 1.80± 0.71 5.50± 2.86 4.32± 2.32
✓ 97.84± 0.58 1.11± 0.49 5.02± 6.39 4.76± 6.26

Improve △ 2.15 △ 0.69 △ 0.48 ▽ 0.44

Hand-
written

✗ 98.40± 0.64 0.49± 0.12 0.32± 0.16 0.16± 0.12
✓ 99.05± 0.19 0.50± 0.10 0.18± 0.07 0.14± 0.08

Improve △ 0.65 0.00 △ 0.14 △ 0.02

Limited by space, we show the performance of model equipped with CML on YaleB and Hand-
written. From Table 7, the classification models equipped with CML consistently outperforms their
counterpart validating the rationality of CML principle.

C.5 CONFIDENCE ESTIMATION FOR COMPLETE INPUTS
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Figure 6: Confidence estimation on complete inputs. We estimate the confidence on complete in-
puts (top) and the confidence when one modality is removed (bottom). We can find CML regular-
ization keeps the confidence estimation on complete input but alleviate the over-confidence when
one modality is removed, which indicates the proposed method calibrates the multimodal model by
rethinking the relationship between the modalities.
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We show the confidence estimation for complete inputs, as shown in Fig. 6, we can find that the
confidence estimation of original model and CML model are very similar. To prevent the model
from being over-confident when model predicts a wrong prediction, the regularization will not be
added when prediction of complete input is wrong. From the bottom figures, we can find CML regu-
larization alleviates the problem that model increases the confidence when one modality is removed.

Proof of Lemma 3.2: if we have VRRCML < VRROri, then we have E
(
ConfCML(x(T))

)
−

E
(
ConfCML(x(S))

)
≤ E

(
ConfOri(x(T))

)
− E

(
ConfOri(x(S))

)
, then we have:

E
(
ConfCML(x(T))

)
≤ E

(
ConfOri(x(T))

)
,

subject to: E
(
ConfCML(x(T))

)
= E

(
ConfOri(x(T))

) (7)

During the train stage, we evaluate the confidence difference between the E
(
ConfCML(x(T))

)
and

E
(
ConfOri(x(T))

)
, i.e., E

(∣∣ConfCML(x(T))− ConfOri(x(T))
∣∣). We find the confidence differ-

ence between the E
(
ConfCML(x(T))

)
and E

(
ConfOri(x(T))

)
is very small (less than 0.1%), which

implies that the confidence estimation on complete inputs are very close.

C.6 CONFIDENCE ESTIMATION WHEN JUST PENALIZING THE CONFIDENCE DIFFERENCE
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Figure 7: Confidence estimation when penalizing the confidence difference.

Forcing the confidence for x(T) to be smaller than the confidence for x(S) strictly (Eq. 3) will lead to
a very small confidence for x(T) and will make the model estimate an extremely small confidence for
each modality, which contradicts the fact that the model sometimes can still make correct predictions
confidently when one modality is removed. A flexible ranking regularization makes it more suitable
for real data.

D ALGORITHMS

In addition to the general algorithm shown in the main text, we show the specific algorithms corre-
sponding to different types of algorithms and add more comments for better understanding.

D.1 CML FOR THE IMPUTATION-INDEPENDENT MODEL

D.2 CML FOR THE IMPUTATION-DEPENDENT MODEL

For imputation-dependent method, we use MIWAE to train the reconstruction model first, then we
use the reconstructed modalities to train the classifier.

For reconstruction-based method, the missing modalities need to be reconstructed first, so the pro-
cess can be divided into two stages.
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Algorithm 2: CML for the imputation-independent model

1 Given dataset D =
{
{xm

i }Mm=1, yi
}N

i=1
, classifier f , and classification loss function Lcl,

Coefficient λ of CML, epochs for training the classifier epoch
2 for e = 1, . . . , epoch do
3 S←M
4 Make the prediction via input S
5 Lcl ← Lcl(x(S))

6 LCML ← 0 for m = M − 1, . . . , 1 do
7 Randomly erase a modality of S and set it as T
8 Make the prediction via input T
9 Lcl ← Lcl + Lcl(x(T))

10 LCML ← LCML +max
(
0,Conf(x(T))− Conf(x(S))− τ

)
11 end
12 L = 1

ML
cl+λLCML

13 Update the parameters of the classification model with L
14 end
15 Return the classifier fcl

Algorithm 3: CML for the imputation-dependent model

1 Given dataset D =
{
{xm

i }Mm=1, yi
}N

i=1
, reconstruction network fre and classifier fcl,

reconstruction loss function Lre, Coefficient λ of CML, epochs for training the reconstruction
net epochre and classifier epochcl

2 for e1 = 1, . . . , epochre do
3 Reconstruct the modalities via reconstruction model
4 Compute the reconstruction loss by Lre

5 Update the parameters of the reconstruction model
6 end
7 for e2 = 1, . . . , epochcl do
8 S←M
9 LCE ← LCE(x(S))

10 LCML ← 0
11 for m = M − 1, . . . , 1 do
12 Randomly erase a modality of S and set it as T
13 Reconstruct the erased modalities via reconstruction model and add them to x(T)

14 Compute the classification loss LCE(x(T)) with Cross-Entropy loss function
15 LCE ← LCE + LCE(x(T))

16 LCML ← LCML +max
(
0,Conf(x(T))− Conf(x(S))− τ

)
17 end
18 L = 1

ML
CE+λLCML

19 Update the parameters of the classification model with L
20 end
21 Return the reconstruction model fre and classifier fcl

E DISCUSSION

E.1 DATA-IMBALANCED

◦Why the CML can still work when the training data is data-imbalanced (e.g., long-tailed)?

CML can improve performance when the data for the training model is data-imbalanced since it
increases the confidence of the minority classes. For a trustworthy model, the model should treat the
majority and minority classes equally during the test. CML requires the model to make predictions
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fairly regardless of whether the majority and minority classes of the samples belong. On the con-
trary, the original model tends to predict lower confidence for the minority classes than the majority
classes. And the improvements on the data-imbalanced dataset Animal (data distribution is shown
in Fig. 8) validate the effectiveness.

Figure 8: Illustration of data distribution of Animal dataset (the number of samples for every
classes).

Animal is a data-imbalanced real-world dataset, the improvement shows CML can also deal with
applications that suffer from data-imbalanced. The original model tends to predict lower confidence
for the minority classes than the majority classes, which is unfair to minority classes. CML requires
the model to make predictions fairly regardless of whether the majority and minority classes of the
samples belong.

E.2 WHEN ADDITIONAL MODALITY IS CORRUPTED

◦Why the confidence should not decrease even when the additional modality is corrupted?

Intuitively, the predictive confidence should decrease when some features are corrupted:
Conf(x) > Conf(xϵ), (8)

where xϵ indicates the input x is corrupted by the perturbation ϵ. It seems CML is no longer work,
and the confidence relationship between the x(T) and x(S) should be changed:

Conf(x(T)) > Conf(x(S)). (9)
Mathematically, however, Eq. 9 is not the multi-modality representation of Eq. 8, and the Eq. 10
should hold:

Conf(x(S)) = Conf(x(T) ∪ x(∁ST)) > Conf(x(T) ∪ x(∁ST)
ϵ ) (10)

Theoretically, the confidence decrease is in terms of x(S) rather than x(T) when the additional modal-
ities x(∁ST) are corrupted.

F CML BEING DEPLOYED IN ADVANCED MULTIMODAL MODELS

MMTM is a SOTA method in multimodal learning which is selected as a representative method by
Wu et al. (2022) and originally proposed by Joze et al. (2020). NYU Depth V2 and SUN RGB-D
are two widely used multi-modality datasets for RGB-D scene recognition. ◦ NYUD2: Following
previous work Georghiades et al. (2002), we use a reorganized version of this dataset, which contains
1449 samples, 10 scene classes. ◦ SUN RGB-D Perkins & Theiler (2003): This is a standard
database of RGB-D scene recognition. Similar to previous work Georghiades et al. (2002), we also
use a subset of this dataset which contains the 19 major scene categories and 9504 samples in total.
Following the author’s implementation, We employ pre-trained ResNet-18 as the backbone network
for MMTM. The input images are fed into depth and visual block first. Then the rgb and depth
features are fused by MMTM before the final prediction. We add CML regularization to the softmax
output before and after MMTM fusion process. In our experiment, the squeeze ratio of MMTM
Module is set to 16. The dimensionalities of rgb and depth feature are both 512.
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Table 8: VRR (%) of test samples (a lower value indicates a better confidence estimation). “✗”
indicates the model is not equipped with the proposed regularization (λ = 0).

Method CML NYUD-2 SUN-RGBD

Type III
✗ 58.09± 4.46 57.09± 1.50
✓ 46.99± 2.89 52.56± 3.49

Improve △ 11.10 △ 4.53

Table 9: Accuracy performance comparison of MMTM when some of the modalities is corrupted
with color jitter (i.e., randomly change the brightness, contrast, saturation and hue of an image with
jitter factor ϵ.).

Dataset Noise on CML ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.5

NYUD-2

{1}
✗ 65.72± 0.70 64.13± 1.78 63.79± 1.79 60.89± 1.21
✓ 66.64± 1.22 65.41± 0.65 64.31± 0.92 62.26± 1.77

Improve △ 0.92 △ 1.28 △ 0.52 △ 1.37

{2}
✗ 61.34± 0.98 57.98± 0.81 53.98± 2.28 52.26± 3.23
✓ 62.63± 0.60 57.89± 1.56 54.80± 2.90 52.57± 3.38

Improve △ 1.29 ▽ 0.09 △ 0.82 △ 0.31

{1, 2}
✗ 60.43± 0.82 55.17± 0.85 51.01± 2.64 41.52± 4.01
✓ 61.87± 0.93 56.24± 2.22 51.53± 1.91 41.99± 3.37

Improve △ 1.44 △ 1.07 △ 0.52 △ 0.47

SUN-RGBD

{1}
✗ 60.72± 0.58 58.98± 0.72 57.40± 0.75 55.68± 0.95
✓ 61.50± 0.59 59.95± 0.17 57.97± 0.30 57.21± 0.32

Improve △ 0.78 △ 0.97 △ 0.57 △ 1.53

{2}
✗ 60.11± 0.24 58.57± 0.60 57.46± 0.69 55.25± 1.05
✓ 59.90± 0.49 58.44± 0.75 57.25± 0.56 55.34± 0.87

Improve ▽ 0.21 ▽ 0.13 ▽ 0.21 −

{1, 2}
✗ 58.67± 0.42 54.77± 0.44 51.66± 0.64 45.68± 1.35
✓ 58.95± 0.20 54.73± 0.71 51.36± 0.66 45.99± 1.24

Improve △ 0.28 − ▽ 0.30 △ 0.31

G RELATED WORK DETAILS

Uncertainty estimation provides a way for trustworthy prediction (Abdar et al., 2021). Uncer-
tainty can be used as an indicator of whether the predictions given by models are prone to be
wrong. Many uncertainty-based models have been proposed in the past decades, such as Bayesian
neural networks (Neal, 2012; MacKay, 1992; Denker & LeCun, 1990; Kendall & Gal, 2017),
Dropout (Molchanov et al., 2017), and Deep ensembles (Lakshminarayanan et al., 2017; Havasi
et al., 2020). Built upon RBF networks, DUQ (van Amersfoort et al., 2020) is able to identify the
out-of-distribution samples, which uses distance to represent the prediction uncertainty. Prediction
confidence is always referred to in classification models, which expects the predicted class prob-
ability to be consistent with the empirical accuracy. Models are frequently overconfident because
softmax probabilities are computed with the fast-growing exponential function (Hendrycks & Gim-
pel, 2017), so many methods focus on smoothing the prediction probabilities distribution, such as
Label smoothing (Müller et al., 2019). The recent approach employs the focal loss to calibrate the
deep neural networks (Mukhoti et al., 2020). A recent work (Corbière et al., 2019) introduces True
Class Probability (TCP) to ensure the low confidence for the failure predictions. Temperature scal-
ing (TS) (Guo et al., 2017) is a well-known post-hoc confidence calibration method, which aims to
re-scale the output probability by manipulating the softmax inputs, i.e., the logits.

Incomplete multimodal learning Recently, there have been a wide range of research interests in
handling missing modalities for multimodal learning, including imputation-independent (Type I)
methods (Zhang et al., 2019) and imputation-dependent (Type II) methods (Mattei & Frellsen, 2019;
Wu & Goodman, 2018). Imputation-independent methods have no need to reconstruct the miss-
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Table 10: Accuracy performance comparison of MMTM when some of the modalities is corrupted
with gaussian noise (i.e., zero mean with varying variance ϵ).

Dataset Noise on CML ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.5

NYUD-2

{1}
✗ 64.77± 1.76 63.03± 1.92 61.50± 2.83 58.81± 4.05
✓ 65.26± 1.92 63.98± 1.60 62.94± 1.97 59.88± 3.03

Improve △ 1.49 △ 0.95 △ 1.44 △ 1.07

{2}
✗ 65.41± 1.27 62.17± 1.76 59.08± 1.54 55.75± 2.75
✓ 66.12± 1.10 62.75± 1.26 59.79± 2.23 55.90± 3.38

Improve △ 1.29 △ 0.58 △ 0.71 △ 0.15

{1, 2}
✗ 61.87± 0.82 55.60± 2.61 48.62± 4.32 37.68± 4.94
✓ 63.12± 1.49 57.31± 1.58 49.51± 2.75 37.98± 5.21

Improve △ 1.25 △ 1.71 △ 0.89 △ 0.30

SUN-RGBD

{1}
✗ 60.69± 0.65 58.78± 0.95 56.84± 1.13 53.14± 1.32
✓ 61.00± 0.32 59.31± 0.83 57.47± 0.62 54.77± 1.00

Improve △ 0.31 △ 0.53 △ 0.63 △ 1.63

{2}
✗ 60.93± 0.58 59.25± 0.71 57.55± 1.08 54.81± 1.66
✓ 61.25± 0.59 59.19± 0.68 57.50± 1.27 54.34± 1.93

Improve △ 0.32 − − ▽ 0.47

{1, 2}
✗ 59.16± 0.88 53.56± 1.51 47.22± 2.12 35.90± 2.38
✓ 59.59± 1.09 54.14± 0.58 47.38± 1.47 36.30± 2.39

Improve △ 0.43 △ 0.58 △ 0.16 △ 0.40

ing modalities and make classification via an uniform representation. For imputation-dependent
methods (based on reconstruction), the strategy model can be split into two stages, reconstructing
the missing modalities and making classification according to the reconstructed modalities. CPM-
Nets (Zhang et al., 2019) is an advanced method (i.e., Type I) which can guarantee the performance
by fully exploiting all samples and all modalities to produce structured representation for inter-
pretability, and the method has been extended and deployed into medical domain (Lee & van der
Schaar, 2021). MIWAE (Mattei & Frellsen, 2019) is a typical reconstruction model (i.e., Type II)
in multimodal learning, whose objective is a lower bound of the likelihood of the observed data that
can be tight in the limit of very large computational power.
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