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Abstract

Transformers have achieved great success in001
effectively processing sequential data such as002
text. Their architecture consisting of several003
attention and feedforward blocks can model re-004
lations between elements of a sequence in par-005
allel manner, which makes them very efficient006
to train and effective in sequence modeling.007
Even though they have shown strong perfor-008
mance in processing sequential data, the size009
of their parameters is considerably larger when010
compared to other architectures such as RNN011
and CNN based models. Therefore, several012
approaches have explored parameter sharing013
and recurrence in Transformer models to ad-014
dress their computational demands. However,015
such methods struggle to maintain high perfor-016
mance compared to the original Transformer017
model. To address this challenge, we propose018
our novel approach, RingFormer, which em-019
ploys one Transformer layer that processes in-020
put repeatedly in a circular, ring-like manner,021
while utilizing low-rank matrices to generate022
input-dependent level signals. This allows us023
to reduce the model parameters substantially024
while maintaining high performance in a va-025
riety of tasks such as translation and image026
classification, as validated in the experiments.027

1 Introduction028

Transformer models, since their introduction029

(Vaswani et al., 2017), have dramatically trans-030

formed the landscape of deep learning, particu-031

larly excelling in tasks involving sequential data032

such as natural language processing (Brown et al.,033

2020; Radford et al., 2019) and machine translation034

(Ott et al., 2018). Not long after their inception,035

they have also shown strong performance in vari-036

ous other domains such as reinforcement learning037

(Chen et al., 2021), image classification (Dehghani038

et al., 2023; Dosovitskiy et al., 2020; Liu et al.,039

2021), object detection (Carion et al., 2020) and040

image generation (Jiang et al., 2021; Peebles and041

Xie, 2022; Zhang et al., 2022). Their core architec- 042

ture, characterized by self-attention mechanisms 043

and feedforward neural networks, enables effective 044

handling of long-range dependencies and parallel 045

processing of input sequences. The ability of this 046

architecture to model intricate relationships within 047

data has led to significant breakthroughs, making 048

it a foundation model across many modern large- 049

scale AI systems (Anthropic, 2023; Google, 2024; 050

OpenAI et al., 2024; Touvron et al., 2023). 051

However, the impressive capabilities of trans- 052

former models come with substantial computa- 053

tional and memory costs (Brown et al., 2020; Doso- 054

vitskiy et al., 2020). The standard Transformer ar- 055

chitecture consists of multiple layers, each contain- 056

ing millions of parameters that need to be trained 057

and stored. This results in high memory usage and 058

significant computational demands, often requiring 059

specialized hardware. Moreover, deploying these 060

models in resource-constrained environments, such 061

as mobile devices or edge computing scenarios, be- 062

comes challenging due to their size and complexity. 063

These limitations have spurred a growing interest in 064

developing more parameter-efficient Transformer 065

architectures (Dehghani et al., 2019; Pires et al., 066

2023) that can retain their powerful performance 067

while being more accessible and less resource in- 068

tensive. 069

In this paper, we introduce a Transformer archi- 070

tecture that recurrently leverages a single shared 071

Transformer block in a novel way by integrating 072

input-dependent level signals at each block itera- 073

tion, which are shown to be crucial for adapting 074

the shared block to different stages of the model. 075

The level signals are generated by depth-specific 076

low-rank transformations applied to the input in the 077

attention and feedforward layers within the Trans- 078

former block. Our RingFormer model can also be 079

viewed as stacking Transformer layers whose pa- 080

rameters combine (1) a set of global parameters 081

shared across all Transformer layers and (2) a set 082
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of local low-rank layer-dependent parameters. This083

simple design effectively addresses the trade-off084

between reducing the number of model parame-085

ters and limiting the model’s capacity to capture086

complex patterns.087

We validate our model through experiments and088

analysis on machine translation and image classi-089

fication. The results of experiments and analysis090

demonstrate that our model closely replicates the091

behavior of the original Transformer model, and it092

performs better against existing parameter-matched093

recurrence-based Transformer models, underscor-094

ing the effectiveness of our approach in maintaining095

high performance with fewer parameters.096

The contributions of this paper are summarized097

as follows:098

• We enhance a recurrent Transformer architec-099

ture to significantly reduce the model’s pa-100

rameter count while maintaining high perfor-101

mance.102

• We propose novel input-dependent level sig-103

nals generated in a parameter-efficient way104

using low-rank matrices to improve the adapt-105

ability of a recurrent Transformer model, and106

show that those signals help the model repli-107

cate the behavior of the original model.108

• We demonstrate the validity of our approach109

through careful analysis and ablation studies,110

and show the effectiveness of our model on111

tasks such as translation and image classifica-112

tion.113

2 Background114

2.1 Transformer Architecture115

The Transformer architecture (Vaswani et al., 2017)116

comprises multiple layers of the same structure117

stacked together, with each layer consisting of two118

main modules: Attention and Feedforward Network119

described in Equations (1) and (2), respectively.120

Each of these modules is accompanied by residual121

connections and layer normalization. In addition,122

to provide information about the position of to-123

kens in the sequence, the Transformer model adds124

static sinusoidal or learnable positional encodings125

to the input embeddings. These encodings allow126

the model to capture the order within a sequence.127

The following equations describe the mechanism128

of two main modules:129

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (1)130

FFN(x) = σ(xWup + bup)Wdown + bdown (2) 131

132

Here, Q, K, and V are the results of projecting the 133

input vectors through their respective matrices. At- 134

tention module can be classified into self-attention 135

(when the Q, K, and V input vectors are the same) 136

and cross-attention (when the Q input vector is 137

different from the K and V input vectors), while 138

the feedforward block consists of up-projection and 139

down-projection transformations with non-linearity 140

function σ between them. 141

It is well known that Transformer architecture 142

follows a scaling law for both vision tasks and 143

NLP tasks (Dehghani et al., 2023; Hoffmann et al., 144

2022). This scaling law demonstrates that the per- 145

formance of Transformer models improves pre- 146

dictably as the model size and computational re- 147

sources increase. Due to the steep slope of the scal- 148

ing law, the parameter sizes of Transformer models 149

have continued to grow, leading to significant ad- 150

vancements in their capabilities. However, this 151

growth has also made training and using such mas- 152

sive models increasingly infeasible without sub- 153

stantial GPU resources. 154

2.2 Related Work 155

To address the challenge of requiring extensive 156

hardware resources for large Transformer models, 157

researchers have explored various methods to en- 158

hance efficiency. 159

One approach is related to pruning of Trans- 160

former model layers, which involves removing less 161

important layers or weights to streamline the model. 162

It was found that many deep layers in large lan- 163

guage models are redundant (Gromov et al., 2024), 164

and by pruning up to half of these layers, it was 165

possible to significantly reduce the model size with 166

minimal accuracy degradation. 167

Another strategy is sharing parameters across 168

different layers or components in Transformers, re- 169

ducing the model’s complexity and memory usage. 170

The Universal Transformers (Dehghani et al., 2019) 171

introduces a model where parameters are shared 172

across layers using a recurrent mechanism with 173

layer-dependent positional encoding, which main- 174

tains good performance in various NLP tasks while 175

reducing the number of parameters. People have 176

also proposed sequence and cycle strategies for 177

sharing parameters across layers (Takase and Kiy- 178

ono, 2021), improving efficiency and performance 179

in tasks like machine translation and speech recog- 180
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nition. Similarly, Subformer (Reid et al., 2021) and181

One Wide Feedforward (Pires et al., 2023) inves-182

tigate partial weight sharing within layers, show-183

ing that significant parameter reductions can be184

achieved with little accuracy sacrifice. These mod-185

els demonstrate that shared parameters can lead to186

efficient and effective Transformer architectures.187

To investigate recurrence-based models, we per-188

formed a layer representation similarity analysis189

using the common CKA (centered kernel align-190

ment) (Kornblith et al., 2019) method and mean191

attention distance (MAD) (Dosovitskiy et al., 2020)192

analysis, and we found that the layer representa-193

tions and internal attention behavior of the previ-194

ously proposed fully recurrence-based Transformer195

model (Dehghani et al., 2019) are considerably196

different compared to those of the original Trans-197

former model.198

We hypothesized that the difference in model199

behavior, especially in attention module, might be200

the main cause for the gap in performance, and if201

we can simulate the behavior of the original model202

using a recurrent model with adaptive level signals,203

we can also maintain higher performance. Our204

proposed methodology is focused on addressing205

this difference, narrowing the gap of the model206

behavior, and in turn the model performance.207

3 Method208

3.1 Overview209

In this section, we provide a detailed explanation210

of our proposed work, covering the specific details211

about the structure of our model.212

The encoder or decoder Transformer-based mod-213

els consist of several layers with the same structure,214

where each layer is a combination of sub-layers215

such as attention and feedforward layers. Those216

models can be formulated in the following way:217

F (x) = fN (fN−1(...f2(f1(x))))

= f(f(...f(f(x, p1), p2)), pN−1), pN )
(3)218

where N , F , f , x and pi denote the number of219

layers, entire encoder (or decoder), each encoder220

(or decoder) block, input and parameters of each ith221

layer, respectively. The general formulation of the222

recurrent Transformer model with level transition223

functions can be written as below:224

F (x) = fN (fN−1(...f1(x)))

fi(x) = fr(x, gi(x))
(4)225

226

where fr denotes the recurrent Transformer block 227

and gi(x) represents a generic level transition func- 228

tion specific for each level. In Universal Trans- 229

formers (Dehghani et al., 2019), it was shown 230

that using static spatio-temporal positional embed- 231

dings can serve as level transition functions for 232

the recurrent Transformer layer and have good 233

model performance. Specifically, in that work, 234

level transition function gi(x) can be represented 235

as gi(x) = x+l(i, xp), where l is a function that re- 236

turns a positional embedding vector based on level 237

depth i and the position xp of the vector x, while 238

the ith Transformer block function fi(x) can be 239

represented as fi(x) = fr(gi(x)). 240

Below, we describe our way of constructing and 241

integrating level transition function gi(x) to gener- 242

ate adaptive level signals. 243

3.2 Adaptive Level Signals 244

To have effective transition between the levels 245

when using recurrent Transformer block, we make 246

gi(x) directly dependent on the input in the fol- 247

lowing way: gi(x) = Mi · x, where M is a learn- 248

able transformation matrix. Since the main role of 249

level signals is to nudge the input vectors in the 250

right direction, which is an easier task compared 251

to the main input transformation done by the re- 252

current layer, we hypothesize that making the M 253

matrix low-rank while keeping the recurrent layers 254

at full-rank will let us have parameter-efficiency 255

and high performance at the same time. We draw 256

inspiration for such a low-rank matrix construc- 257

tion and its weight initialization from the parame- 258

ter efficient fine-tuning (PEFT) technique, LoRA 259

(Hu et al., 2021), and decompose Mi into two low- 260

dimensional matrices, Ai and Bi described in Equa- 261

tion 5. 262

Mi = Ai ·BT
i , Ai, Bi ∈ Rd×r and r ≪ d (5) 263

Since a Transformer layer consists of an atten- 264

tion block and a feedforward block, we generate 265

two distinct signals gAi(x) and gFi(x): one for the 266

attention block and the other for the feedforward 267

block, respectively. Additionally, since the Trans- 268

former block also has layer normalization applied 269

between the sub-layers, for each level, we allo- 270

cate unique layer normalization in the attention and 271

feedforward layers. This provides extra input adap- 272

tation while only slightly increasing the number of 273

total parameters in the model. 274
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Figure 1: Overview of (a) vanilla Transformer (Vaswani et al., 2017), (b) recurrent Transformer (Dehghani et al.,
2019) and (d) our RingFormer architecture. The Transformer block represents either encoder or decoder. In
the RingFormer model, a single block consisting of attention and feedforward modules is used iteratively, with
each sub-modules having unique layer normalization and level signals. (c) illustration of the low-rank matrices
representing the level functions, where Mdown down-projects the input to a lower dimensional space and Mup

up-projects back to the original space.

3.2.1 Attention Block275

For the attention mechanism, which calculates rele-276

vance between elements of a sequence using three277

projection matrices (query, key, and value), we gen-278

erate level signals for each of those projections279

using separate low-rank matrices. We integrate280

signals after the projection of the input vector x281

by WQ,WK and WV matrices (shared across the282

levels) in the following way:283

Qi = WQ · x+ gAQi
(x),

Ki = WK · x+ gAKi
(x),

Vi = WV · x+ gAV i
(x),

(6)284

where gAQi
(x) = MQi · x, gAKi

(x) = MKi · x,285

gAV i
(x) = MV i · x. By incorporating the level286

functions separately for Q, K, and V, we enable287

fine-grained control over depth-dependent modifi-288

cations to each component of the attention mecha-289

nism. Also, adding the level signals in this manner290

avoids direct input changes to the main recurrent291

projections, which was found to be beneficial in292

our experiments. This can be because such a direct293

input change can interfere with the learning pro-294

cess of the recurrent layers in the attention module,295

which needs to solely focus on modeling effective296

communication between tokens.297

3.2.2 Feedforward Block 298

For feedforward block, the projection of input to 299

intermediate vector of this module requires rela- 300

tively large number of parameters. Furthermore, 301

there have been various explorations regarding the 302

role of feedforward network in Transformers. One 303

such study (Geva et al., 2021) argues that the feed- 304

forward network can be interpreted as a key-value 305

memory pair, where the matrix of the first linear 306

layer is involved in the coefficients of input factors, 307

and the matrix of the second linear layer relates to 308

information about the training corpus. Considering 309

parameter-efficiency and the previous finding, in 310

our approach, for the feedforward network, we add 311

signals before projecting the input using the up- 312

projection layer to guide the coefficient formation 313

of the input in the following way: 314

FFN(x) = σ((x+ gFi(x))Wup)Wdown (7) 315

where gFi(x) = MFi · x, the function σ is a non- 316

linear function such as GELU (Hendrycks and Gim- 317

pel, 2023), and the bias terms were omitted for 318

brevity. 319

In encoder-decoder models, we iteratively reuse 320

a single Transformer block consisting of attention 321

and feedforward sub-blocks in the encoder, while 322

the decoder utilizes a separate shared Transformer 323

block with cross-attention, which is also shared 324

across layers. For the recurrent cross-attention 325

module inside the decoder, we do not incorporate 326
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level signals, as cross-attention takes on the out-327

put of the already level-adapted attention module328

as query and the representations from the encoder329

as key and value, which do not require additional330

adaptation at different levels. The overall structure331

of our model is illustrated in Figure 1.332

4 Experiments333

We evaluate the performance of our RingFormer334

model and baseline models across two tasks: ma-335

chine translation and image classification.336

For the baseline models, we choose the vanilla337

Transformer model (Dosovitskiy et al., 2020;338

Vaswani et al., 2017), one recurrent transformer339

model, Universal Transformer (Dehghani et al.,340

2019), and one partially recurrent model, One Wide341

Feed Forward model (Pires et al., 2023), with spe-342

cific adaptations to the corresponding tasks de-343

scribed below.344

4.1 Experimental Details345

In this section, we provide detailed description of346

each downstream task to facilitate the reproduction347

of our experimental results. For all of our models,348

the rank of the decomposed matrices for the level349

signals is fixed at the input hidden dimension di-350

vided by 16. We perform ablations for the different351

ranks and show the results in Table 4.352

Translation Transformer model is firstly pro-353

posed in translation task (Vaswani et al., 2017).354

Thus, we also test our model on the translation355

task, with two model sizes shown in Table 1. We356

train all models on WMT-14 (Bojar et al., 2014)357

German-English dataset which consists of 4.5M358

pairs of sentences. For evaluation, we calculate359

BLEU score (Papineni et al., 2002) for the WMT-360

14 German-English test set and we employ BiBERT361

vocabulary with bi-lingual tokenizer with vocab362

size equal to 52K (Xu et al., 2021). We set the363

number of layer (iteration), batch size and entire364

training step as 6, 512 and 830K for base and large365

setting on two A100 80GB GPUs, respectively. In366

the training session, we used Adam (Kingma and367

Ba, 2017) optimizer with a cosine learning rate368

scheduler having 40K of warm-up steps. Also, we369

used GELU (Hendrycks and Gimpel, 2023) as acti-370

vation function for all models.371

The main model hyperparameters and experi-372

ment results are given in Table 1, where we re-373

port the parameter size except those parameters374

in the encoder, decoder and vocabulary head be- 375

cause their count is the same for all models having 376

the same hidden input dimension and feedforward 377

block dimension. For base size models, the en- 378

coder and decoder embedding layer each consists 379

of 26.62M parameters, and vocabulary head con- 380

tains 26.67M parameters; for large size models, 381

53.24M for encoder and decoder embedding layer, 382

53.30M for vocabulary head. 383

Image Classification As the ViT (Dosovitskiy 384

et al., 2020) model became very prevalent in the vi- 385

sion domain, especially in image classification, we 386

decided to test our model and other baseline mod- 387

els on this task. The models are adjusted to have 388

only encoder layers, which take image patches with 389

a class token attached as an input, and perform the 390

prediction using the hidden state of the class token 391

from the last layer. For the Vision Transformer 392

(ViT) model (Dosovitskiy et al., 2020), we stick to 393

the original architecture, while for the Universal 394

Transformer (Dehghani et al., 2019), static sinu- 395

sodial spatio-temporal positional embeddings are 396

used as level transition function between the levels 397

in the encoder. For the One Wide Feed Forward 398

model (Pires et al., 2023), the feedforward layer is 399

shared across the levels, while the attention layer 400

parameters are distinct for each level. 401

We first train smaller models on a subset of the 402

original ImageNet-1K dataset (Deng et al., 2009) 403

for 100 epochs. We randomly chose 100 classes 404

with the total number of 100K training samples (1K 405

per each class) from the original training set, and 406

5K testing samples (50 per each class) from the 407

original validation set. For easy referencing, we 408

call that subset ImageNet-small. As the size of the 409

dataset is relatively small, we decided to train mod- 410

els having only 6 layers / iterations (in the case of 411

recurrent models, we say iterations or levels instead 412

of layers). For bigger size models with 12 layers / 413

iterations, we trained on the whole ImageNet-1K 414

for 50 epochs due to limited resources. 415

The additional training and ImageNet-small 416

dataset details are given in Appendix A.1 and A.3. 417

The model hyperparameters, parameter size and ex- 418

periment results on ImageNet-small and ImageNet- 419

1K are given in Table 2 and 3. 420

4.2 Experimental Results 421

Translation The details of experimental results 422

on translation are presented in Table 1. Our Ring- 423

Former model achieves competitive performance 424
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Figure 2: Representation Similarity Analysis using CKA (centered kernel alignment) (Kornblith et al., 2019) for the
base-size models trained on the translation task. The figures on the upper row are for the encoder part. The figures
on the lower row means are for the decoder part. All models have 6 number of layers / iterations. The values on the
figures are between 0 and 1, where higher values indicate more similarity of layers between models.

model H/FF P ∗ BLEU ↑

Vanilla Transformer 512 / 2048 44.05M 30.46
One Wide FFN 512 / 2048 20.98M 29.54

Universal 512 / 2048 7.34M 29.12
RingFormer 512 / 2048 8.94M 29.52

Vanilla Transformer 1024 / 4096 176.18M 30.96
One Wide FFN 1024 / 4096 83.91M 29.88

Universal 1024 / 4096 29.37M 29.47
RingFormer 1024 / 4096 35.71M 29.96

Table 1: Translation results on WMT-14 De-En (Bojar
et al., 2014). We evaluated models based on test dataset
BLEU score (Papineni et al., 2002), which is rounded
to the second decimal place. Bolded score indicates
the highest performance, underlined score indicates the
second highest performance. The H , FF , and P ∗ rep-
resent the hidden input dimension, feedforward block
dimension, parameter size (except parameters of embed-
ding layer in encoder, decoder and vocabulary head),
respectively.

with Vanilla Transformer model (Vaswani et al.,425

2017) and One Wide FFN model (Pires et al., 2023)426

with less number of parameters for base and large427

size models. RingFormer outperforms Universal428

model (Dehghani et al., 2019), while having sim-429

ilar parameter size. These results also imply that430

our design choice for level-signals is more effective431

than adding input-independent sinusoidal vectors.432

Image Classification The experimental results433

for image classification are shown in Table 2 and 3.434

Using ImageNet-small, we conducted experi-435

model H/FF P Acc ↑

ViT 512 / 2048 19.36M 63.66%
UiT 512 / 2048 3.60M 58.64%

OWFd 376 / 1024 4.51M 58.62%
RingFormer 512 / 2048 4.4M 60.66%

ViTd 328 / 1536 8.94M 62.22%
UiTs 848 / 3072 8.84M 59.38%
OWF 512 / 2048 8.86M 61.50%

RingFormers 728 / 3072 8.82M 62.58%

Table 2: Image classification results on ImageNet-
small (the subset of ImageNet-1K (Deng et al.,
2009)). Bolded score indicates the highest performance,
underlined score indicates the second highest perfor-
mance. The superscripts "d" and "s" represent that the
models are downscaled and upscaled, respectively. The
H , FF , and P represent the hidden input dimension,
feedforward block dimension, and total parameter size,
respectively. The values for P and Acc were rounded
to the second decimal place.

ments on the ViT (Dosovitskiy et al., 2020) model, 436

downscaled One Wide FFN (OWFd) (Pires et al., 437

2023), UiT (Dehghani et al., 2019) and our Ring- 438

Former model. The results, presented in the up- 439

per half of Table 2, indicate that the ViT model 440

achieves the highest accuracy, which is expected 441

as it has more than four times the number of pa- 442

rameters compared to the other models. However, 443

our RingFormer model has the second best per- 444

formance, outperforming the other models of the 445

same size. In the below half of Table 2, where 446
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model H/FF P Acc ↑

ViT 768 / 3072 86.42M 65.65%
OWF 768 / 3072 34.45M 64.31%
UiT 768 / 3072 8.45M 61.63%

RingFormer 768 / 3072 12.02M 63.68%

UiTs 1560 / 6240 31.99M 63.30%
RingFormers 1284 / 5120 31.95M 65.91%

Table 3: Image classification results on ImageNet-1K
(Deng et al., 2009)). Bolded score indicates the high-
est performance, underlined score indicates the second
highest performance. The superscript "s" represent that
the models are upscaled. The H , FF , and P represent
the hidden input dimension, feedforward block dimen-
sion, total parameter size, respectively. The values for
P and Acc were rounded to the second decimal place.

we scale all the models to the size of One Wide447

FFN model, our model shows the best performance,448

which shows the effectiveness of our approach.449

We observed similar tendency when we trained450

bigger size models on the ImageNet-1K dataset,451

for which the results are shown in Table 3. When452

comparing the models with the same input hidden453

dimension and feedforward block dimension, ViT454

model showed the best result, but when we up-455

scaled our RingFormer model (RingFormers) to456

match the size of OWF model, it outperformed the457

two baseline models (OWF and UiTs), and also458

showed slightly higher performance compared to459

the ViT model.460

Additionally, we calculated the forward GFLOPs461

for models the same H/FF shown in Table 3,462

namely ViT, OWF, UiT and RingFormer. For an463

RGB input image of size 224x224 (applied with464

16x16 patch size), ViT, UiT and OWF models ex-465

hibit similar computational costs of around 17.636466

GFLOPs, while RingFormer requires slightly more467

computations at 19.03 GFLOPs. This increase is468

attributed to the additional depth-specific and input-469

dependent level signals used in RingFormer to im-470

prove performance while maintaining a lower pa-471

rameter count compared to standard Transformers.472

Representation Similarity Analysis To analyze473

representations across layers / iterations between474

the original Transformer model and other models,475

we utilized CKA (Kornblith et al., 2019) method as476

shown in Figure 2. We performed this analysis on477

base size models, for which we used 3K test source-478

target pair of sentences from WMT-14 De-En (Bo-479

jar et al., 2014). The similarity scores on the diag-480

onal axis in the sub-figures indicate how close the481

layers (sharing the same index) are between mod- 482

els. We found that RingFormer closely matches the 483

Vanilla Transformer (Vaswani et al., 2017) along 484

with One Wide FFN (Pires et al., 2023), while Uni- 485

versal Transformer (Dehghani et al., 2019) shows 486

lower similarity. We also report the analysis results 487

for large models in Appendix A.2. 488

Mean Attention Distance Analysis To study the 489

qualities of attention heads in the vision models, 490

we perform MAD analysis, which is conducted in 491

the original ViT paper (Dosovitskiy et al., 2020). 492

We first do the analysis on the smaller models 493

trained on ImageNet-small (ViT, UiTs, OWF, and 494

RingFormers shown in Table 2), and also on the 495

larger size models trained on ImageNet-1K (ViT, 496

OWF, UiTs and RingFormers in Table 3). We com- 497

puted mean attention distances of 500 images ran- 498

domly taken from the ImageNet-small validation 499

set and took their average. The MAD analysis plots 500

for each model above are shown in Figure 3. 501

We observe that, in the ViT model, different 502

attention heads yield different attention distances 503

suggesting they use both local and global informa- 504

tion from an image. But as we go deeper in the 505

Transformer blocks, the heads tend to focus more 506

on global aggregate information. The same type of 507

phenomenon occurs in the case of One Wide FFN 508

model, which is expected as its attention layers are 509

not recurrent. In the case of our RingFormer model, 510

the properties of its attention heads are also very 511

similar to those of the ViT model. It can be seen as 512

a validation of our hypothesis that the level signals 513

could successfully steer the behavior of a recurrent 514

Transformer model as it goes through a series of 515

iterations. When it comes to the Universal Trans- 516

former model, it is found that the types of signals 517

that exist in that model could not sufficiently help 518

it simulate its attention module behavior as it is 519

considerably different compared to that of the ViT 520

model. 521

4.3 Ablation Study 522

In this section, we conduct an ablation study with 523

various experiments on the translation task to vali- 524

date the effectiveness of our proposed method. The 525

training details for ablation study are the same as 526

those of main translation models, except smaller 527

batch size (128), hidden input dimension and feed- 528

forward block dimension. The model hyperparam- 529

eters and experimental results for these ablation 530

studies are presented in Table 4. 531
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Figure 3: MAD (mean attention distance) analysis for the models trained on image classification task: ViT,
RingFormer, OWF - One Wide FFN, UiT - Universal Transformer. The smaller models shown on the upper row
have 8 attention heads, and larger models shown on the lower row have 12 attention heads. The points on the plots
represent the mean attention distance of an attention head belonging to a particular Transformer layer.

First, we train a recurrent Transformer using532

static level signals introduced in Universal Trans-533

formers (Dehghani et al., 2019), which has the534

lowest performance. When we drop either atten-535

tion level signals or FFN level signals, “w.o. attn”536

and “w.o. FF” in Table 4, the performance degrada-537

tion occurs compared with other variations where538

those signals are present. Also, we do the following539

two ablations: 1) we add level signals “before attn”540

projection while keeping our original design for541

FF level signals, 2) we add level signals, “inter-FF542

signal”, after intermediate feedforward projection543

like FFN(x) = σ(xWup + gFi(x))Wdown, while544

keeping our original design for attention level sig-545

nals. The performances of those two experiments546

are almost the same but lower than our design547

choice where additions occur i) after attention pro-548

jection and ii) before the up-projection layer of549

the FF block. In addition, when we use smaller550

rank, H / 32, compared to our default rank, H / 16,551

the performance decreases, but when we increase552

the rank or make the matrix full-rank to generate553

level signals, as expected, the models show better554

performance.555

5 Conclusion556

In this paper, we introduce RingFormer, a557

parameter-efficient recurrent Transformer architec-558

ture that employs a single Transformer layer recur-559

model H/F P BLEU ↑

static signal 128 / 512 20.48M 23.35
w.o. attn signal 128 / 512 20.51M 24.23
w.o. FF signal 128 / 512 20.59M 24.37

before attn 128 / 512 20.58M 24.56
inter-FF signal 128 / 512 20.56M 24.58

H / 32 rank signal 128 / 512 20.53M 24.21
H / 8 rank signal 128 / 512 20.68M 24.96
full-rank signal 128 / 512 21.27M 25.37

Ours 128 / 512 20.58M 24.92

Table 4: Ablation experiment results of translation task
in WMT-14 (Bojar et al., 2014) German-English pairs
with various model-designs. Each model is evaluated by
BLEU (Papineni et al., 2002) score on the test set. The
H , FF , and P represent the hidden input dimension,
feedforward block dimension, and total parameter size,
respectively.

rently while integrating input-dependent signal vec- 560

tors created using low-rank matrices for each level. 561

This approach significantly reduces the number of 562

parameters while maintaining high performance in 563

tasks such as machine translation and image classi- 564

fication. We hope that our research on enhancing 565

recurrent Transformer with adaptive level signals 566

can enable smaller organizations and research insti- 567

tutions to train powerful models without the need 568

for extensive computational resources, thus democ- 569

ratizing access to advanced AI capabilities. 570
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6 Limitations571

Our approach introduces additional computations572

compared to the original Transformer due to the573

integration of depth-specific and input-dependent574

signals. However, this trade-off is necessary to575

maintain the performance of standard Transformers576

while significantly reducing parameter count com-577

pared to other recurrent Transformer models. Due578

to computational constraints, we were not able to579

conduct experiments on large-scale language mod-580

eling tasks, which require significantly more data581

and training resources, and our experiments were582

limited to relatively smaller scale models. While583

our design choices suggest that RingFormer should584

retain its advantages at larger scales, future work585

can focus on further validating its performance on586

billion-parameter models and explore its effective-587

ness in domains such as language modeling.588

References589

Anthropic. 2023. Model card and evaluations for claude590
models. https://www-cdn.anthropic.com/591
5c49cc247484cecf107c699baf29250302e5da70/592
claude-2-model-card.pdf.593
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A Appendix 731

A.1 Implementation Details 732

Translation Models are trained based on the two 733

size variations, base size and large size. The base 734

size models are trained based on the following 735

model configuration settings: 6 Transformer layers, 736

8 attention heads, 512 hidden dimension size, 2048 737

feedforward dimension with maximum sequence 738

length 50. For training, their maximum learning 739

rate is 7e-4 with 17K step cosine warm-up sched- 740

uler and total 210K training steps on two A100 741

80GB GPUs. The large size models are trained 742

based on the following model configuration set- 743

tings: 6 Transformer layers, 16 attention heads, 744

1024 hidden dimension size, 4096 feedforward di- 745

mension with maximum sequence length 50. For 746

training, their maximum learning rate is 2e-4 with 747

17K step cosine warm-up scheduler and total 210K 748

training steps on two A100 80GB GPUs. 749

Image Classification For the models trained 750

on ImageNet-small dataset, we used 224x224 751

image resolution, 16x16 patch size, 6 Transformer 752

layers, 8 attention heads, learning rate of 1e−3, 753

cosine learning rate scheduler with 2K warm-up 754

steps, batch size of 1024, and training for 9775 755

steps (100 epochs) with one RTX 3090 GPU. For 756

the models trained on ImageNet-1K dataset, we 757

used the same image resolution and patch size 758

as mentioned above, 12 Transformer layers, 12 759

attention heads, learning rate of 5e−4, cosine 760

learning rate scheduler with 3128 warm-up 761

steps (5 epochs), batch size of 4096, 16 gradient 762

accumulation steps, and training for around 15650 763

steps (50 epochs) on two RTX 3090 GPUs. 764

765

For all models, we used dropout rate of 0.1, gra- 766

dient clipping of 1.0 during training and GELU 767

(Hendrycks and Gimpel, 2023) activation function. 768

A.2 Additional Analysis 769

In Figure 4, we share the representation similar- 770

ity analysis for big size models in the Translation 771

task. This analysis also has been conducted under 772

the same conditions as in the base size case. Sim- 773

ilar with the results in Figure 2, One Wide FFN 774

(Pires et al., 2023) and our RingFormer model have 775

higher layer-wise representations with the Vanilla 776

Transformer (Vaswani et al., 2017) compared to 777

Universal Transformer (Dehghani et al., 2019). 778
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Figure 4: Representation Similarity Analysis using CKA (centered kernel alignment) (Kornblith et al., 2019) for the
large-size models trained on the translation task: Transformer, Ring - RingFormer, OWF - One Wide FFN, Uni -
Universal Transformer. The figures on the upper row are for the encoder part. The figures on the lower row means
are for the decoder part. All models have 6 number of layers / iterations. The values on the figures are between 0
and 1, where higher values indicate more similarity of layers between models.

A.3 ImageNet-small Dataset779

We sampled a subset of ImageNet-1K (Deng et al.,780

2009) that contains randomly selected 100 classes,781

with 100,000 images for training and 5000 images782

for testing, in order to perform experiments on783

smaller size models. In the supplimentary code.zip784

file, we will share the names of all the sampled785

images for training and testing as a json file.786

787
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