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Abstract

It is difficult for non-autoregressive translation001
(NAT) models to capture the multi-modal dis-002
tribution of target translations due to their con-003
ditional independence assumption, which is004
known as the “multi-modality problem”, in-005
cluding the lexical multi-modality and the syn-006
tactic multi-modality. While the first one has007
been well studied, the syntactic multi-modality008
brings severe challenge to the standard cross009
entropy (XE) loss in NAT and is under studied.010
In this paper, we conduct a systematic study on011
the syntactic multi-modality problem. Specif-012
ically, we decompose it into short- and long-013
range syntactic multi-modalities and evaluate014
several recent NAT algorithms with advanced015
loss functions on both carefully designed syn-016
thesized datasets and real datasets. We find017
that the Connectionist Temporal Classification018
(CTC) loss and the Order-Agnostic Cross En-019
tropy (OAXE) loss can better handle short- and020
long-range syntactic multi-modalities respec-021
tively. Furthermore, we take the best of both022
and design a new loss function to better han-023
dle the complicated syntactic multi-modality024
in real-world datasets. To facilitate practical025
usage, we provide a guide to use different loss026
functions for different kinds of syntactic multi-027
modality.028

1 Introduction029

Traditional Neural Machine Translation (NMT)030

models predict each target token conditioned on031

previous generated tokens in an autoregressive032

way (Vaswani et al., 2017), resulting in high la-033

tency in inference. Non-Autoregressive Transla-034

tion (NAT) models generate all the target tokens035

in parallel (Gu et al., 2018), significantly reduc-036

ing inference latency. A disadvantage of NAT is037

that it suffers from the multi-modality problem (Gu038

et al., 2018) when a source sentence corresponds039

to multiple correct translations (Ott et al., 2018).040

There are two types of multi-modalities: the lex-041

ical one and the syntactic one. The former one has042

been adequately studied (Gu et al., 2018; Zhou 043

et al., 2019; Ding et al., 2020), while the latter 044

one brings severe challenges to the widely used 045

cross entropy (XE) loss in NAT. With standard XE 046

loss, the generated tokens are required to be strictly 047

aligned with ground truth tokens in the same posi- 048

tions, which fails to provide positive feedback for 049

correctly predicted words on different positions as 050

shown in Fig. 1a. Therefore, advanced loss func- 051

tions are introduced to provide better feedback for 052

NAT training: Connectionist Temporal Classifica- 053

tion (CTC) loss (Libovickỳ and Helcl, 2018) con- 054

siders all possible monotonic alignments between a 055

generated sequence and the ground truth; Aligned 056

Cross-Entropy (AXE) loss (Ghazvininejad et al., 057

2020) selects the best monotonic alignment; and 058

Order-Agnostic cross entropy (OAXE) loss (Du 059

et al., 2021) calculates the XE loss with the best 060

alignment based on maximum bipartite matching 061

algorithm. 062

Even if with those advanced loss functions, 063

we find they do not perform consistently across 064

datasets and languages. In addition, diverse gram- 065

mar rules in natural language (Comrie, 1989) im- 066

plies the existence of different kinds of syntac- 067

tic multi-modality. Inspired by Odlin (2008), we 068

categorize the syntactic multi-modality into two 069

sub types: the long-range and short-range ones. 070

The long-range multi-modality is mainly caused 071

by long-range word order diversity (e.g., an adver- 072

bial of place may appear at the beginning or the 073

end of a sentence). The short-range multi-modality 074

is mainly caused by short-range word order diver- 075

sity (e.g., an adverb may appear either in front of 076

or behind the corresponding verb) and optional 077

words (e.g., in some languages, determiners and 078

prepositions may be optional (Ott et al., 2018)). 079

Based on the above categorization of syntactic 080

multi-modality, we further ask two research ques- 081

tions: (1) Which kinds of syntactic multi-modality 082

do these loss functions excel at respectively? (2) 083
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How to better address this problem by taking ad-084

vantage of different loss functions?085

In this paper, we conduct a systematic study to086

answer these questions:087

• Since the short-range and long-range syntactic088

multi-modalities are usually entangled together089

in real-world datasets, we first design synthesized090

datasets to decouple them to better evaluate ex-091

isting NAT algorithms (§3). We find that the092

CTC loss (Libovickỳ and Helcl, 2018) can better093

handle the short-range syntactic multi-modality094

while the OAXE loss (Du et al., 2021) is good at095

the long-range one. Though carefully designed,096

the synthesized datasets are still different from097

the real-world datasets. Accordingly, we fur-098

ther conduct analyses on real-world datasets (§4),099

which also show consistent findings with that in100

synthesized datasets.101

• We design a new loss function that takes the best102

of both CTC and OAXE, and performs better to103

handle the short- and long-range syntactic multi-104

modalities simultaneously (§5), as verified by105

experiments on benchmark datasets including106

WMT14 EN-DE, WMT17 EN-FI, and WMT14107

EN-RU. Moreover, we further provide a practical108

guide to use different loss functions for different109

kinds of syntactic multi-modality (§5).110

2 Background111

Non-Autoregressive Translation Given the112

source sentence x = (x1, x2, ..., xTx), traditional113

NMT model generates the target sentence y =114

(y1, y2, ..., yTy) from left to right and token by115

token: P (y|x) =
∏Ty

t=1 P (yt|y<t, x; θenc, θdec),116

where y<t indicates the target tokens generated117

before the t-th timestep, Tx and Ty denote the118

length of source and target sentence, θenc and θdec119

denote the encoder and decoder parameters re-120

spectively. This autoregressive way suffers from121

high latency while inference. Non-Autoregressive122

Translation (NAT) (Gu et al., 2018) is proposed123

to reduce the inference time by generating the124

whole sequence in parallel, P (y|x) = P (Ty|x) ·125 ∏Ty

t=1 P (yt|x; θenc, θdec), where P (Ty|x) indicates126

the length prediction function. While the infer-127

ence speed is boosted, the translation accuracy is128

sacrificed due to that target tokens are generated129

conditional independently.130

Multi-Modality Problem The multi-modality131

problem (Gu et al., 2018; Zhou et al., 2019) in-132

A dog ravenously eats  a  pie   in   a pet restaurant

In   a pet   restaurant a dog eats a pie ravenouslyPRED

GT

(a) XE
A dog ravenously eats  a  pie   in   a pet restaurant

In   a pet   restaurant a dog eats a pie ravenouslyPRED

GT

(b) AXE
A dog ravenously eats  a  pie   in   a pet restaurant

In   a pet   restaurant a dog eats a pie ravenouslyPRED

GT

(c) CTC, where solid, dash, and dot dash lines illustrate three
possible alignments respectively.

A dog ravenously eats  a  pie   in   a pet restaurant

In   a pet   restaurant a dog eats a pie ravenouslyPRED

GT

(d) OAXE

Figure 1: The illustration of different loss functions,
where “GT” stands for ground truth, “PRED” stands for
predicted sequence, the green check indicates that credit
is provided to the token.

dicates that one source sentence may have multiple 133

correct target translations, which brings challenges 134

to NAT models as they generate each target to- 135

ken independently. Specifically, we categorize the 136

multi-modality problem into two sub-problems, i.e., 137

lexical and syntactic multi-modalities. The lexical 138

multi-modality indicates that a source token can 139

be translated into different target synonym tokens 140

(i.e., “thank you” in English can be translated into 141

both “Danke” or “Vielen Dank” in German), while 142

the syntactic multi-modality indicates the inconsis- 143

tency of word-orders (e.g., an adverb may appear 144

either in front of or behind the corresponding verb) 145

and the existence of optional words between source 146

and target languages (e.g., in some languages, de- 147

terminers and prepositions may be optional) (Ott 148

et al., 2018). The lexical multi-modality prob- 149

lem has been adequately studied in recent works. 150

Sequence-level knowledge distillation (Gu et al., 151

2018; Zhou et al., 2019) is shown capable to reduce 152

the lexical diversity of the dataset and thus alleviate 153

the problem. Some works also introduce extra loss 154

functions such as KL-divergence (Ding et al., 2020) 155

and bag-of-ngram (Shao et al., 2020) to alleviate 156

the lexical multi-modality problem. 157

On the contrary, there still lacks a systematic 158
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study on the syntactic multi-modality problem.159

Generally, it is difficult to solve this problem be-160

cause the order and optional words vary from differ-161

ent languages. For example, the word order of Rus-162

sian is quite flexible (Kallestinova, 2007), thus the163

syntactic multi-modality may exist more frequently164

in Russian corpora. In contrast, the structure of165

English sentences is mostly subject–verb–object166

(SVO) (Givón, 1983), which results in less varia-167

tion on word order. In this paper, we categorize the168

syntactic multi-modality problem into short-range169

and long-range instances, and provide detailed anal-170

yses accordingly.171

Loss Functions in NAT Standard cross-172

entropy (XE) loss requires the predicted tokens are173

strictly aligned with ground truth tokens, which174

fails to deal with the syntactic multi-modality175

problem. Different loss functions are proposed176

to solve the problem, and here we consider some177

most recent works. The CTC loss sums XE losses178

of all possible monotonic alignments and has been179

widely used in speech recognition (Graves et al.,180

2006, 2013), and the effectiveness of the CTC loss181

in NAT has been validated (Libovickỳ and Helcl,182

2018; Gu and Kong, 2020). AXE (Ghazvininejad183

et al., 2020) selects the monotonic alignment184

between the predicted sequence and the ground185

truth with the minimum XE loss. OAXE (Du et al.,186

2021) further relaxes the position constraint and187

only considers the best alignment. The illustration188

for each loss function is provided in Fig. 1. Though189

effective in different datasets, these works ignore190

fine-grain features of the multi-modality problem191

such as short/long syntactic multi-modalities. In192

this work, we analyse the performance of these193

loss functions in different syntactic scenarios,194

and provide a practical guide to use appropriate195

loss functions for different kinds of syntactic196

multi-modality.197

3 Analyses on Synthesized Datasets198

To make fine-grained analyses on the syntactic199

multi-modality problem, we first categorize it into200

long-range and short-range types, where the long-201

range one is mainly caused by long-range word202

order diversity, and the short-range one is mainly203

caused by short-range word order diversity and op-204

tional words. Then, we would like to evaluate the205

accuracy of different losses on different types of206

syntactic multi-modality. However, in real-world207

corpora, the different types are usually entangled,208

Sen

NP VP

DT RB JJ N

The  extremely  large  dog  eats  the  small  pie ravenously

V JJDT N

NP

RB

Figure 2: An illustration of generating a syntax tree for
a source sentence. In the first iteration, “Sen” consists of
(“NP”, “VP”) as the solid lines. In the second iteration,
“NP” consists of (“DT”, “RB”, “JJ”, “N”) and “VP”
consists of (“V”, “NP”, “RB”) as the dash lines. In the
third iteration, “NP” consists of (“DT”, “JJ”, “N”) as
the dot-and-dash lines.

making it difficult to control and analyse one as- 209

pect without changing the other. Thus, we con- 210

struct synthesized datasets based on phrase struc- 211

ture rules (Chomsky, 1959) to manually control 212

the degree of syntactic multi-modality in different 213

aspects, and evaluate the performance of different 214

existing techniques. 215

3.1 Synthesized Datasets 216

We first employ phrase structure rules (Chomsky, 217

1959) to synthesize the source sentences, where 218

the rules are based on the syntax of languages. 219

Considering that translation can be decomposed 220

to word reordering and word translation (Banga- 221

lore and Riccardi, 2001; Sudoh et al., 2011), we 222

then “translate” the synthesized source sentences to 223

synthesized target sentences in two steps: 1) word 224

reordering by changing its syntax tree; 2) and word 225

translation by substituting the source words into 226

target words. 227

Source Sentence Synthesis. We first generate 228

the syntax tree of the source sentence. Specifically, 229

we use the notations of the constituents in syntax 230

tree according to the Penn Treebank syntactic and 231

part of speech (POS) tag sets1 (Marcus et al., 1993), 232

and generate the syntax tree of a source sentence 233

as following (Rosenbaum, 1967): 234

• Sen → NP VP, 235

• NP → (DT) (RB)∗ (JJ)∗ N, 236

• VP → V (NP) (RB)∗, 237

1“Sen”:sentence; “NP”: noun phrase; “VP”: verb phrase;
“DT”: determiner; “JJ”: adjective; “RB”: adverb; “N”: noun;
“V”: verb.
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Sen

NP VP

DT RB JJ N V JJDT N

NP

Sen
1 − 𝑃𝑙𝑜

Source Target

NP

RB JJ N

VP

V JJDT N

NP

RB RB

1 − 𝑃1
𝑠𝑜 − 𝑃2

𝑠𝑜

15001 12600 100301 27000 5002 15002 12060 3500 13000               28000 21003 30004 26010 16601 29012 25303 17728 

Figure 3: An illustration of “translation”, where the constituent order of “Sen” is changed to “VP NP” with
probability 1− P lo, the constituent order of “VP” is changed to “RB V NP” with probability 1− P so

1 − P so
2 , and

the circled “DT” is removed with probability P op. Meanwhile, the numbers in the source sentence are replaced
with the ones in the target sentence based on mappings.

where the constituent on the left side of the arrow238

consists of the constituents on the right side in se-239

quence, “(·)” means that the constituent is optional,240

and “(·)*” denotes that the constituent is not only241

optional but can also be repetitive. For each sen-242

tence, we start with a single constituent Sen and243

iteratively decompose “Sen”, “NP”, and “VP” ac-244

cording to the rules until all the constituents are245

decomposed to “DT”, “JJ”, “RB”, “V”, and “N”.246

An illustration of generating a syntax tree is de-247

picted in Fig. 2. To synthesize the source sentence248

according to the syntax tree, we use numbers as249

the words in the synthesized source sentences and250

use different ranges of numbers to represent words251

with different POS, where the details of the ranges252

are provided in Appendix A. Then, a number is253

randomly sampled in the corresponding range for254

each word in the syntax tree.255

Word Reordering. To introduce syntactic multi-256

modality, we consider multiple possible rules for257

“Sen”, “NP”, and “VP” in the target sentences.258

Specifically, we consider three options: 1) The259

word order of “Sen” is with probability P lo to be260

the same with the source sentence (i.e., NP VP)261

and with probability
(
1− P lo

)
to swap the “NP”262

and “VP” (i.e., VP NP), which represents for the263

long-range word order; 2) For the word order in264

“VP”, it is considered to be the same with the source265

sentence with probability P so
1 , place “RB” between266

“V” and “NP” with probability P so
2 , and place267

“RB” before “V” with probability (1− P so
1 − P so

2 ),268

which represents for the short-range word order;269

3) To introduce the syntactic multi-modality of op-270

tional words, we change the existence of “DT” in271

each “NP” of the source sentence with probabil-272

ity P op (i.e, remove “DT” if it exists in the source273

sentence and add “DT” if it does not exist in the274

Probability Default Effect

P lo 1 long-range word order

P so
1 1 short-range word order

P so
1 0 short-range word order

P op 0 optional words

Table 1: Default values of the probabilities to adjust the
syntactic multi-modality.

source sentence). 275

Word Translation. Same as in the source sen- 276

tences, we use different range of numbers to repre- 277

sent words with different POS in target sentences. 278

To do the word translation, we first randomly build 279

mappings between the source and target words 280

with different POS respectively. Since we focus on 281

studying the syntactic multi-modality, we consider 282

each source word is mapped to a single target word 283

to eliminate the lexical multi-modality. Then, we 284

replace the words in the source sentence based on 285

the mappings to generate the target sentence. An 286

illustration of “translation” is shown in Fig. 3. 287

3.2 Experiments and Analyses 288

We conduct experiments to compare existing loss 289

functions on different kinds of syntactic multi- 290

modality on the synthesized datasets, by changing 291

the probabilities (i.e., P op, P so
1 , P so

2 , and P lo) as 292

listed in Table 1. In the following, we first provide 293

the experimental settings, then show the results 294

on the long-range and short-range syntactic multi- 295

modalities, and finally conclude the key findings. 296

Experimental Settings. We consider two sep- 297

arate vocabularies for the source and target sen- 298
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tences, each containing 15K words. 0.3M, 5K,299

and 5K synthesized sentence pairs are generated as300

training, validation, and test sets respectively. We301

use the same hyper-parameters in the transformer-302

base model (Vaswani et al., 2017), which is com-303

monly used in the NAT models (Gu et al., 2018; Du304

et al., 2021; Saharia et al., 2020). All settings are305

trained on 4 Nvidia V100 GPUs with 16k tokens in306

a batch. For the model with OAXE loss, we train307

the first 50K updates with XE loss and the next 50K308

updates with OAXE loss (Du et al., 2021). For the309

other losses, we train the model for 100K updates.310

The length of the decoder input is set as twice the311

length of the source sequence for CTC loss (Sa-312

haria et al., 2020), while the golden target length313

is used for OAXE, AXE, and XE. To evaluate the314

accuracy of the predicted sequence, we first cal-315

culate the longest common sub-sequence between316

the predicted and the golden sequences, and then317

the accuracy is defined as the ratio between the318

length of the longest common sub-sequence and319

the golden sequence. The accuracy on the test set320

is calculated as the average accuracy among all the321

predicted sentences.322

Long-Range Syntactic Multi-modality. To con-323

sider the effect of long-range diversity, we change324

the corresponding probability P lo, while keeping325

the others unchanged to eliminate the short-range326

syntactic multi-modality. It is observed in Fig. 4a327

that CTC loss always performs better than AXE,328

and OAXE is the best with different degree of long-329

range multi-modality.330

Short-Range Syntactic Multi-modality. Simi-331

larly, we only change the probabilities P so
1 and332

P so
2 to adjust the degree of short-range word or-333

der diversity. The results are shown in Fig. 4b,334

where OAXE loss performs better than AXE loss,335

and CTC loss outperforms all the other losses with336

varied degree of short-range word order diversity.337

In order to study the effect of optional words, we338

vary the probability P op to change the existence of339

“DT”. As shown in Fig. 4c, OAXE loss is slightly340

better than AXE loss, and CTC loss performs the341

best, indicating that CTC loss is superior in the syn-342

tactic multi-modality problem caused by optional343

words.344

Analyses and Discussions. Based on the results345

in Fig. 4, we can get the following observations:346

• OAXE loss is superior in handling the long-range347

syntactic multi-modality (i.e., long-range word348
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(c) Effect of optional words.

Figure 4: The accuracy of different loss functions on
synthesized datasets.

order). OAXE loss is order-agnostic, which 349

is able to provide fully positive feedback to 350

the word in different positions compared to the 351

ground truth sequence. Accordingly, OAXE is 352

suitable for datasets with long-range word order 353

diversity. Though it can deal with high diversity 354

of word order, it may also incur wrong predic- 355

tions on word order, which may be why OAXE 356

is not suitable when the diversity only exists in 357

short-range. 358

• CTC loss is the best choice for dealing with short- 359

range syntactic multi-modality (i.e., short-range 360

word order and optional words). CTC loss is 361

generally considered to handle monotonic match- 362

ing, which seems not effective in handling the 363

multi-modality caused by word order (Saharia 364

et al., 2020). However, it is observed in Fig. 4a 365

and 4b that CTC loss outperforms AXE and XE 366

when dealing with long-range word order diver- 367

sity and performs the best on the multi-modality 368

caused by short-range word order. Since CTC 369

considers all the monotonic alignments, it can 370
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partially provide positive feedback to the words371

with different order through multiple monotonic372

alignments. As shown in Fig. 1c, all the words373

can be considered in the three alignments.374

Considering that AXE loss does not show superior-375

ity on any type of the syntactic multi-modality, we376

will only focus on CTC and OAXE losses in the377

following.378

4 Analyses on Real Datasets379

Though carefully designed, the synthesized sen-380

tence pairs consisting of numbers are still different381

from the real sentence pairs. Therefore, in this sec-382

tion, we validate the findings in Section 3 based on383

real datasets. Considering that different types of384

syntactic multi-modality are highly coupled in the385

real corpus, we conduct experiments on carefully386

selected sub-datasets from a corpus, to approxi-387

mately decompose the syntactic multi-modality. In388

the following, we first show the details of the ap-389

proach to decompose the syntactic multi-modality,390

and then provide the analytical results based on the391

real datasets.392

Analytical Approach. In order to decompose393

the long-range and short-range types of syntactic394

multi-modality, we select sentences that only con-395

tain subject and verb phrases from a corpus, and396

divide them into two sub-datasets according to the397

relative order of subject and verb (i.e., subject first398

that denoted as “SV”, or verb first that denoted as399

“VS”). Meanwhile, we only consider the declara-400

tive sentence pairs in the corpus to eliminate the401

word order difference caused by mood. Follow-402

ing this method, the long-range multi-modality403

is eliminated in each sub-dataset (i.e., “SV” and404

“VS”), which can be used to evaluate the effect of405

short-range multi-modality. To analyse the long-406

range multi-modality, we can adjust the degree of407

long-range word order diversity by sampling data408

from the two sub-datasets with varied ratios, while409

roughly keeping the degree of short-range word or-410

der diversity unchanged. Specifically, considering411

that Russian is flexible on word order (Kallesti-412

nova, 2007) and it is feasible to select sentences on413

both the “SV” and “VS” order, we use an English-414

Russian (EN-RU) corpus from Yandex2 that con-415

tains 1M EN-RU sentence pairs, from which we416

get 0.2M and 0.1M sentence pairs data with “SV”417

order and “VS” order respectively. For the models418

2https://translate.yandex.ru/corpus

Table 2: BLEU scores of models with CTC and OAXE
losses, where the models are evaluated on the WMT’19
EN-RU test set. The percentage of sentences with “RB
V” among the sentences with both “RB V” and “V RB”
orders are shown in column “RB V”. The percentage of
sentences with “JJ N” among the sentences with both
“JJ N” and “N JJ” orders are shown in column “JJ N”.

“SV”:“VS” CTC OAXE “RB V” “JJ N”

100% : 0% 17.7 16.5 68% 84%
75% : 25% 17.2 16.9 63% 82%
50% : 50% 16.8 17.3 70% 79%

with CTC loss, we train for 300K updates. For the 419

models with OAXE loss, we train with XE loss for 420

100K updates and then train with OAXE loss for 421

200K updates. 422

Analytical Results. We keep the total number 423

of sentence pairs in the training set as 0.2M (i.e., 424

the number of Russian sentences in the “VS” sub- 425

dataset), and change the ratio of sentence pairs sam- 426

pled from two sub-datasets (i.e., “SV” and “VS”). 427

The results are shown in Table 2, where the training 428

parameters are the same as that used in Section 3. 429

It is observed that CTC loss outperforms OAXE 430

loss when all data samples are from the “SV” sub- 431

dataset, which indicates that CTC loss performs 432

better on short-range syntactic multi-modality prob- 433

lem. When the ratio of the data sizes on the two sub- 434

datasets is changed to 75% : 25%, the gap between 435

the performance of CTC and OAXE losses dimin- 436

ished, while CTC loss still performs slightly better 437

than OAXE loss. When the ratio changed to 50% : 438

50%, model with OAXE loss becomes better than 439

that with CTC loss. In summary, OAXE loss is bet- 440

ter at handling long-range syntactic multi-modality 441

while CTC loss is better on short-range syntactic 442

multi-modality, which validates the key observa- 443

tions we obtained on the synthesized datasets in 444

Section 3. 445

In order to demonstrate whether we have decom- 446

posed the long- and short-range syntactic multi- 447

modalities, we verify whether the degree of short- 448

range multi-modality remains almost the same 449

when varying the degree of long-range multi- 450

modality. We evaluate the short-range syntactic 451

diversity based on the relative order between: 1) 452

adverb and verb (“RB V”); 2) adjective and noun 453

(“JJ N”). As shown in Table 2, when the ratio of 454

the data sizes on the two sub-datasets varied from 455

100% : 0% to 50% : 50% (i.e., the ratio between 456

“SV” and “VS” changes), the relative order on “RB 457
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V” and “RB V” (which can represent the degree458

of short-range word order diversity) does not vary459

much. These analyses verify the rationality of our460

analytical approach in this section.461

5 Better Solving the Syntactic462

Multi-Modality Problem463

As shown in previous sections, the CTC and the464

OAXE loss functions are good at dealing with short-465

and long-range syntactic multi-modalities respec-466

tively. While in real-world corpora, different types467

of multi-modalities usually occur together and vary468

in different languages. Accordingly, it may be bet-469

ter to use different loss functions for different lan-470

guages. In this section, we first introduce a new471

loss function named Combined CTC and OAXE472

(CoCO), which takes advantage of both CTC and473

OAXE to better handle the long-range and short-474

range syntactic multi-modalities simultaneously,475

and then provide a guideline on how to choose the476

appropriate loss function for different scenarios.477

5.1 CoCO Loss478

To obtain a general loss that performs well at both479

types of multi-modalities, it is natural to combine480

the two loss functions studied above. However, the481

output length is mismatched between the models482

using CTC and OAXE, where the output length483

is required to be longer than the target sequence484

with CTC loss, and is required to be the same as485

the target sequence with OAXE loss. To solve this486

length mismatch problem, we consider using the487

same output length as in CTC loss, and modify488

the OAXE loss to make it suitable on this output489

length by allowing consecutive tokens in the output490

to be aligned with the same token in the reference491

sequence. The details of the modified OAXE loss492

are provided in Appendix B. Then, the proposed493

CoCO loss is defined as a linear combination of the494

CTC and modified OAXE losses as:495

LCoCO = λLCTC + (1− λ)LM−OAXE , (1)496

where LM−OAXE denotes the modified OAXE497

loss and λ is a hyper-parameter that balances the498

two losses.499

5.2 Choosing Appropriate Loss Function500

The degree of different types of multi-modalities501

varies among different languages. In order to find502

the insight to choose the appropriate loss function503

for different languages, we conduct experiments on504
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Figure 5: Comparing different losses on different lan-
guage pairs.

several languages including Russian (RU), Finnish 505

(FI), German (DE), Romanian (RO), and English 506

(EN). These languages have different requirements 507

on the positions of subject (S), verb (V), and object 508

(O), which is one major influence factor on the 509

large-range syntactic multi-modality. Specifically, 510

the order in RU and FI is quite flexible, where 511

all the 6 possible orders of “S”, “V”, and “O” are 512

valid. In DE, the verb is required to be placed on 513

the second position, which is called verb-second 514

word order. Meanwhile, in RO and EN, the order 515

is restricted to “SVO”. 516

We evaluate the accuracy of different loss func- 517

tions (i.e., CTC, OAXE, and CoCO) on WMT’14 518

EN-RU, WMT’17 EN-FI, WMT’14 EN-DE, and 519

WMT’16 EN-RO datasets with 1.5M, 2M, 4M, 520

and 610K sentence pairs, respectively. The λ 521

in COCO loss is set as 0.1 so that λLCTC and 522

(1 − λ)LM−OAXE are in the same order of mag- 523

nitude. Following Du et al. (2021), for the models 524

with OAXE and CoCO loss, we first train with XE 525

or CTC loss for 100K updates and then train with 526

OAXE or CoCO loss for 200K updates, respec- 527

tively. For CTC loss, we train for 300K updates. 528

For decoding, we follow Gu and Kong (2020); 529

Huang et al. (2021) to use beam search with lan- 530

guage model scoring3 for CTC and CoCO. The 531

other training settings are the same as used in Sec- 532

tion 3. We report the tokenized BLEU score to 533

keep consistent with previous works. We show the 534

difference values of BLEU score in Fig. 5 and pro- 535

vide the corresponding absolute BLEU scores in 536

Appendix C. According to Fig. 5, we have several 537

observations: 1) The proposed CoCO loss consis- 538

tently improves the translation accuracy on all the 539

language pairs compared to OAXE loss; 2) The 540

CoCO loss outperforms CTC loss when the target 541

language is with flexible word order or verb-second 542

3https://github.com/kpu/kenlm
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Table 3: BLEU scores of NAT models.

Model WMT14 WMT16 WMT14 WMT17
EN-DE DE-EN EN-RO EN-RU EN-FI Speedup

Autoregressive
Transformer 27.48 31.39 33.70 27.2 28.12 1.0 ×

Non-Autoregressive
Vanilla NAT (Gu et al., 2018) 17.69 21.47 27.29 – – 15.0 ×
BoN (Shao et al., 2020) 20.90 24.60 28.30 – – 10.0 ×
AXE (Ghazvininejad et al., 2020) 23.53 27.90 30.75 – – 15.3 ×
Imputer (Saharia et al., 2020) 25.80 28.40 32.30 – – 18.6 ×
OAXE (CMLM) (Qian et al., 2020) 26.10 30.20 32.40 – – 15.6 ×
GLAT (Qian et al., 2020) 26.39 29.84 32.79 – – 14.6 ×
CTC (VAE) (Gu and Kong, 2020) 27.49 30.46 33.79 – – 16.5 ×
CTC (GLAT) (Gu and Kong, 2020) 27.20 31.39 33.71 – – 16.8 ×
CTC (DSLP) (Huang et al., 2021) 27.02 31.61 34.17 21.38 22.83 14.8 ×
CoCO (DSLP) 27.41 31.37 34.32 21.82 23.25 14.2 ×

word order (i.e., EN-RU, EN-FI, and EN-DE); 3)543

CTC loss performs the best when the target lan-544

guage is “SVO” language (i.e., DE-EN, RO-EN,545

and EN-RO).546

We would also like to evaluate the CoCO loss547

based on SOTA NAT models. Though the proposed548

CoCO loss can be used in both iterative and non-549

iterative models, we only show the results on non-550

iterative models in this paper and leave the iterative551

models as future work. We use CoCO loss on a552

recently proposed Deeply Supervised, Layer-wise553

Prediction-aware (DSLP) transformer (Huang et al.,554

2021), which achieves competitive results. The de-555

tails of how CoCO loss is applied on DSLP are556

provided in Appendix D. The results are shown in557

Table 3. Compared to DSLP with CTC loss (Huang558

et al., 2021), DSLP with CoCO loss consistently559

improves the BLEU scores on three language pairs,560

including EN-RU, EN-FI, and EN-DE. On the con-561

trary, DSLP with CTC loss is better or comparable562

to DSLP with CoCO loss when the target language563

is restricted to the “SVO” word order, including564

EN-RO and DE-EN.565

According to the experiments on language pairs566

with different kinds of requirements on word order,567

we suggest to: 1) use CoCO loss when the word568

order of the target language is relatively flexible (569

e.g., RU and FI, where word order on “S” “V” “O”570

is free, and DE, where the verb is required to be571

placed on the second position); 2) use CTC loss572

when the target language is with relatively strict573

word order (e.g., RO and EN, which are “SVO”574

languages).575

6 Conclusion 576

In this paper, we conduct a systematic study 577

on the syntactic multi-modality problem in non- 578

autoregressive machine translation. We first catego- 579

rize this problem into long-range and short-range 580

types and study the effectiveness of different loss 581

functions on each type. Considering the different 582

types are usually entangled in real-world datasets, 583

we design and construct synthesized datasets to 584

control the degree of one type of multi-modality 585

without changing another for analyses. We find that 586

CTC loss is good at short-range syntactic multi- 587

modality while OAXE loss is better at the long- 588

range one. These findings are further verified on 589

real-world datasets with our designed analytical 590

approach. Based on these analyses, we propose a 591

CoCO loss that can better handle the complicated 592

syntactic multi-modality in real-world datasets, and 593

a practical guide to use different loss functions for 594

different kinds of syntactic multi-modality: CoCO 595

loss is preferred when the word order of target 596

language is relatively flexible while CTC loss is 597

preferred when target language is with strict word 598

order. Our study in this paper can facilitate bet- 599

ter understanding of the multi-modality problem 600

and provide insights to better solve this problem in 601

non-autoregressive translation. Besides, there still 602

remain some open problems that need future inves- 603

tigation. For example, we generally consider long- 604

range and short-range types for syntactic multi- 605

modality, while there may be more fine-gained cat- 606

egorizations on the syntactic multi-modality due to 607

the complex syntax of natural language. 608
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Appendix711

A Number Ranges to Synthesis the712

Source and Target Sentences713

We use [1, 5000], [5001, 10000], [10001, 12500],714

[12501, 15000], and 15001, 15002, 15003 to rep-715

resent “N” “V” “JJ” “RB” “DT” in the source716

sentences, and [15004, 20003], [20004, 25003],717

[25004, 27503], [27504, 30003], and 30004, 30005,718

30006 to represent “N” “V” “JJ” “RB” “DT” in the719

target sentences.720

B Modified OAXE Loss721

Specifically, we consider one training pair (X ,Y ),722

where there are n tokens in the ground truth se-723

quence, denoted as Y = (y1, y2, . . . , yn). The724

corresponding output sequence has m tokens with725

probability distributions P1, P2, . . . , Pm, where726

m > n. According to OAXE, we first get the727

alignment between the ground truth sequence and728

the output sequence that minimizes the cross en-729

tropy loss based on maximum bipartite matching730

algorithm (Kuhn, 1955):731

α⋆ = argmin
α∈γ(α)

(
−
∑
i

logPα(i)(yi|X, θ)

)
, (2)732

where α denotes the alignment from the ground733

truth sequence to the output sequence, γ(α) is the734

set of all possible alignments, and yi is aligned with735

the α(i)-th token of the output. We consider each736

output token can only be aligned to one ground737

truth token (i.e., α(i) ̸= α(j) if i ̸= j). Then, we738

can get the alignment from the output sequence to739

the ground truth sequence, based on α⋆:740

β(k) =

{
i if α⋆(i) = k,

−1 if ∀i ∈ [1, n], α⋆(i) ̸= k,
(3)741

where the k-th token of the output is aligned to742

yβ(k) and β(k) = −1 denotes the token has not743

been aligned. We provide an illustration as the744

“step 1” in Fig. 6, where we consider 3 tokens745

in the target sequence and 6 tokens in the output746

and the best alignment is “A”-“P6”, “B”-“P4”, and747

“C”-“P1”. Since consecutive repetitive tokens are748

merged when decoding with CTC loss, we consider749

that consecutive tokens in the output can be aligned750

to the same ground truth token. Accordingly, we751

enumerate the end of each ground truth token in752

the output sequence respectively, and select the one753

that minimize the cross entropy loss. For example,754

Tokens Probability distribution of the output

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6

A 0.2 0.3 0.3 0.1 0.4 0.5

B 0.2 0.3 0.5 0.7 0.2 0.2

C 0.6 0.4 0.2 0.2 0.4 0.3

𝛼⋆

6

4

1

𝛽 3 -1 -1 2 -1 1

Possible end 
tokens of “A”

𝑃1 𝑃2 𝑃3

Select the best

Step 1

𝛽 3 3 2 2 -1 1

Possible end 
tokens of “B”

𝑃4 𝑃5

Select the best

𝛽 3 3 2 2 2 1

Step 2-1

Step 2-2

Figure 6: An illustration of the modified OAXE loss.

given β(k1) = i, β(k2) = j and β(k) = −1 when 755

k1 ≤ k ≤ k2, we select k⋆ according to: 756

k⋆ = argmin
k1≤k′<k2

(
−

∑
k1≤k≤k′

logPk(yi|X, θ)

−
∑

k′<k≤k2

logPk(yj |X, θ)

)
,

(4) 757

and align the (k1, k
⋆]-th output token to i and the 758

(k⋆, k2)-th output token to j as: 759

β(k) =

{
i if k ∈ (k1, k

⋆]

j if k ∈ (k⋆, k2).
(5) 760

As the illustration in Fig. 6, we enumerate all the 761

possible end tokens of ’A’ and ’B’ to find the best 762

one. Then, we get the modified OAXE loss as: 763

LM−OAXE = −
∑

1≤k≤m

logPk

(
yβ(k)|X, θ

)
.

(6) 764

765

C BLEU Scores of Different Losses on 766

Different Language Pairs. 767

The BLEU scores of models with CTC, OAXE and 768

CoCO loss on different languages pairs are shown 769

in Table 4. 770

D Use CoCO Loss in DSLP 771

Partially feeding ground truth tokens to the decoder 772

during training shows promising performance in 773
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Table 4: BLEU scores of models with different losses on different language pairs.

Loss EN-RU EN-FI EN-DE DE-EN RO-EN EN-RO

CTC 20.84 22.86 26.10 30.36 33.68 33.06
OAXE 21.23 23.13 26.16 30.07 33.25 32.31
CoCO 21.45 23.27 26.25 30.19 33.31 32.67

NAT (Ghazvininejad et al., 2019; Saharia et al.,774

2020; Qian et al., 2020; Huang et al., 2021). For the775

models training with golden length of the ground776

truth sentence using XE loss, the ground truth token777

embedding is placed to the position of the corre-778

sponding input (Qian et al., 2020). When using779

CTC loss, the inputs of the decoder are always780

longer than the ground truth sentences, where Gu781

and Kong (2020) proposes to use the best mono-782

tonic alignment between the ground truth and out-783

put sequences, and provides the ground truth to the784

corresponding input position of the decoder. With785

the proposed CoCO loss, we use the best align-786

ment which is not required to be monotonous. In787

addition, DSLP requires deep supervision on each788

layer of the decoder. We find that only replacing789

CTC loss with CoCO loss on the first layer is better790

than using CoCO loss on all layers. Accordingly,791

when using CoCO loss in DSLP transformer, we792

use CoCO loss in the first layer and CTC loss for793

all the other layers in the DSLP transformer.794
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