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Abstract— Object rearrangement is a key task for household
robots requiring personalization without explicit instructions,
meaningful object placement in environments occupied with
objects, and generalization to unseen objects and new environ-
ments. To facilitate research addressing these challenges, we
introduce PARSEC, an object rearrangement benchmark for
learning user organizational preferences from observed scene
context to place objects in a partially arranged environment.
PARSEC is built upon a novel dataset of 110K rearrangement
examples crowdsourced from 72 users, featuring 93 object cat-
egories and 15 environments. We also propose ContextSortLM,
an LLM-based rearrangement model that places objects in
partially arranged environments by adapting to user prefer-
ences from prior and current scene context while accounting
for multiple valid placements. We evaluate ContextSortLM
and existing personalized rearrangement approaches on the
PARSEC benchmark and complement these findings with a
crowdsourced evaluation of 108 online raters ranking model
predictions based on alignment with user preferences. Our
results indicate that personalized rearrangement models lever-
aging multiple scene context sources perform better than models
relying on a single context source. Moreover, ContextSortLM
outperforms other models in placing objects to replicate the
target user’s arrangement and ranks among the top two in all
three environment categories, as rated by online evaluators. Im-
portantly, our evaluation highlights challenges associated with
modeling environment semantics across different environment
categories and provides recommendations for future work.

I. INTRODUCTION

Consider a robot that assists users with tidying the home
by putting away objects, or what is known as the rearrange-
ment problem [1]. How should this robot determine the ap-
propriate location to put each object? The robot must develop
an object placement strategy based on a user’s organizational
preferences without detailed instructions or demonstrations,
as doing so would unnecessarily burden that user and would
need to be repeated for new objects or environments. Further-
more, the robot should ensure that its actions align with the
current arrangement of objects in the home (e.g., arrange new
pantry items in accordance with existing ones.) Critically,
these capabilities must apply to previously unseen objects
and new homes. Thus, personalized object rearrangement
presents three practical challenges: inferring user preferences
without explicit instruction to determine the desired goal,
meaningfully placing objects in pre-occupied environments,
and adapting to unseen objects and new environments.

Prior work has proposed various approaches to infer
rearrangement preferences without explicit instruction [2],
[3], [4], [5], [6], [7], [8]. Most methods rely on either prior
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scene context [2], [3], [4] derived from prior observations
of the user arranging objects, and within-scene context [5],
[6] from the positions of objects already placed in partially
arranged environments, to learn user preferences. However,
observation-based rearrangement models assume that the
current environment is empty, and within-scene based models
do not perform well in environments sparsely occupied with
objects. Few methods combined both context sources [7],
[8], but either require additional user interaction to infer
preferences [8] or fail to handle unseen objects and new
environments [7]. Overall, approaches in prior work do not
address all the aforementioned challenges.

To facilitate more research in personalized rearrangement,
we present PARSEC, an object tidying benchmark and
dataset addressing user personalization, object placement
in partially arranged environments, and generalization to
unseen objects and new environments. In this benchmark, a
robot learns user preferences by leveraging prior and within-
scene semantic context to determine object placements in
environments occupied with objects. Existing datasets fall
short of our objective, either due to lack of real-user data [9],
[6], omission of user preferences [10], or limited objects
and environments [11], [12]. To address this, we collect a
novel crowdsourced dataset of real users arranging various
household objects to complete organizational tasks, such as
stocking the kitchen pantry and organizing the fridge. We
evaluate existing rearrangement approaches across different
environment types and initial conditions in PARSEC and
complement these findings with a crowdsourced user eval-
uation, where online raters rank model predictions based
on alignment with the target user’s preference. Addressing
the gap in prior work, we also propose a Large Language
Model (LLM)-based approach that integrates scene context
from both prior and within-scene context to place objects in
partially arranged environments meaningfully.

Our work makes the following contributions. First, we
formalize the problem of personalized rearrangement in par-
tially arranged environments. Second, we introduce PARSEC
as an evaluation framework for the above problem. The
benchmark features a novel dataset of 110K rearrangement
examples collected from 72 real users, covering 93 house-
hold objects across 15 environment instances 1. Our dataset
captures more diverse and flexible preferences than prior
rule-based personas, as discussed in Section IV. Third, we
propose ContextSortLM, an LLM-based personalized rear-

1The code and data will be made available at
https://github.com/kartikvrama/parsec.
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Fig. 1: In the PARSEC benchmark, the robot adapts to a user’s organizational preferences when placing new objects XU in an partially
arranged, or pre-occupied, environment. The robot must jointly reason across prior observations of the user arranging objects, AO , and
the environment’s current object arrangement, AP , to meaningfully place objects.

rangement model that encodes prior scene context from mul-
tiple observations into a structured preference representation,
explicitly accounting for multiple valid placements, to then
place objects in a partially arranged environment without
disrupting the environment’s current arrangement. Lastly, we
evaluate ContextSortLM and existing personalized rearrange-
ment approaches on the PARSEC benchmark, complemented
by a crowdsourced user evaluation with 108 online raters
assessing the alignment of different model predictions to user
preferences. Our combined results demonstrate the superior
performance of models integrating multiple scene context
sources for personalized object placement while revealing
challenges in modeling environment semantics, which can
lead to discrepancies in inferred user preferences. Moreover,
ContextSortLM outperforms other models in computational
evaluations in all three environment categories and ranks
among the top two in all three environment categories, as
rated by online evaluators, emphasizing the advantage of its
structured preference representation. We summarize the key
takeaways from our evaluation experiments in Section VIII
to guide future work.

II. PROBLEM FORMULATION

We formalize personalized object rearrangement in par-
tially arranged environments as an extension of the rearrange-
ment problem formulation in previous work [6]. Given an
environment with placeable surfaces denoted by the set S,
we define an arrangement as a set of object-surface pairs
representing the contents of each surface: A = {(x, s)},
where x denotes an object placed on surface s. Object
x is not confined to a predetermined closed set and is
represented using natural language labels. The set of surfaces
S is fixed for a single environment but may change across
environments.

In this task, a robot must adapt to a user’s object rear-
rangement preferences by relying on observation instead of
explicit user input to then place objects in an environment
occupied with objects. The robot’s goal is to place a new set
of objects XU on surfaces S to transform the environment
from its current arrangement AP into AG. The environment
may be empty (AP = Φ) or partially arranged, meaning
that it already contains a few objects. Optionally, the robot

has access to prior observations of the environment, denoted
as AO = {A1

O,A2
O, . . . ,AN

O }, which may include various
object configurations. The length of observation history N
depends on the rearrangement technique; many rearrange-
ment models [4], [7], [12], [13] are not limited by the
number of observations, but some approaches only consider
a single observation (N = 1) [9], [3] or do not use any prior
observations (N = 0) [6], [5]. Similarly, some rearrangement
techniques [4], [12], [9] do not model the environment’s
current arrangement and assume the environment is empty,
or AP = Φ.

The robot has access to two sources of semantic scene
context. prior scene context is derived from passive obser-
vations of the user arranging objects, or AO, and within-
scene context is obtained from the placement of objects
in the initial state of the environment, or AP . Figure 1
illustrates how a robotic agent would combine both context
sources to place new objects. The core challenge in this
problem is attending to specific contextual cues from prior
and within-scene context to reason about the placement of
each unplaced object. For example, in Figure 1, the peanut
butter’s placement is ambiguous because it was observed
on multiple surfaces (marked with a red box). The peanut
butter is eventually placed on the bottom-left shelf, next to
the bread (black dotted box), as prior observations show the
user groups sandwich ingredients and snacks together. Re-
arrangement models must jointly reason across both context
sources to meaningfully place objects in partially arranged
environments.

III. PRIOR WORK IN PERSONALIZED REARRANGEMENT

In this section, we summarize prior work in personalized
rearrangement approaches, categorizing models based on
their input modality and reliance on prior or within-scene
context. We also assess their generalization capabilities to
new objects and environments and discuss relevant datasets
for our benchmark.

A. Vision and Graph Representations for Personalized Re-
arrangement

Prior work on inferring user preferences from observed ob-
ject arrangements falls under one of two categories, based on



the modality used to represent object arrangements: vision-
based rearrangement models that infer object placement
directly from visual observations [5], [3], [2], and graph-
based rearrangement models that determine object placement
from abstracted scene graphs of object arrangements [6],
[12], [9], [4], [7], [14]. The choice of modality influences the
precision of object placement and generalization capabilities
to new objects and unseen environments.

Vision-based rearrangement models infer object place-
ments directly from RGB or RGB-D observations. These
techniques achieve precise object placement by predicting
geometrical coordinates, either through a neural vision-to-
placement policy [5], a vision-language model [2] or a search
algorithm utilizing semantic-geometric maps [3]. Vision-
based approaches also adapt to new user preferences, either
through prior [2], [3] or within-scene [5] semantic context.
However, these methods have some trade-offs. Trabucco et
al. [3] cannot rearrange objects unobserved in prior observa-
tions, and Ramrakhya et al. [5] cannot rearrange new objects.
Newman et al. [2] generalizes to new objects through vision-
language models, but is restricted to performing table-top
rearrangement and does not generalize to more complex
environments.

Graph-based rearrangement approaches represent ob-
ject arrangements as scene graphs, where nodes correspond
to objects and placeable surfaces, and edges represent object-
surface placements. These methods infer object placement
from scene graph through neural network rearrangement
policies [12], [6], [14] or by transforming into alternate
representations, such as text [9], [8] or pairwise ranking
matrices [4], [7]. Graph-based rearrangement models gen-
eralize to unseen objects by leveraging semantic similarities
among objects, either through explicit knowledge graphs [4],
[7] or by using pre-trained semantic embeddings [12], [6].
However, most graph-based approaches trade off precise
placement, typically assigning objects to predefined surfaces
rather than outputting exact coordinates. Moreover, some
methods either disregard semantic information from the
environment [6], [4], or overfit to a single environment [12],
[7]. Wu et al. [9] and Wang et al. [8] provide notable
exceptions by incorporating LLMs, enabling generalization
to new environments.

While vision and graph-based rearrangement models have
complementary strengths in adapting to new users, graph-
based models excel at generalizing to unseen objects – an es-
sential capability for robots working in human environments.
Since directly comparing these model types is challenging,
we will focus exclusively on graph-based approaches for the
remainder of the paper.

Table I compares existing graph-based rearrangement
methods based on their use of semantic context for pref-
erence adaptation and the semantic information encoded by
each model. Few rearrangement models use both prior and
within-scene context for preference adaptation [7], [8], [14].
However, Brawner and Littman [7] fail to handle unseen ob-
jects and new environments, and Wang et al. [8] require user
interaction during each rollout to disambiguate prior scene

Scene Context Models Semantics about X
Rearrangement Model Observed Arrangements Current Environment Environment Objects
CF [4] ✓ ✓

NeatNet [12] ✓ ✓

TidyBot [9] ✓ ✓ ✓

ConSOR [6] ✓ ✓

CF+ [7] ✓ ✓

APRICOT [8] ✓ ✓ ✓ ✓

ContextSortLM (Ours) ✓ ✓ ✓ ✓

TABLE I: Comparison of existing rearrangement approaches that
adapt to new user preferences, categorized by their use of semantic
context for preference adaptation and the semantic information
encoded by the rearrangement model. Our proposed model, Con-
textSortLM, integrate scene context from prior and current observa-
tions via a unique preference representation to ensure user-aligned
object placements.
context. Sarch et al. [14] also leverages prior and within-
scene context to determine plausible object-receptacle pairs,
but memorize a single user’s preferences during training
and cannot adapt to new user preferences without retraining.
Our proposed approach, ContextSortLM, adapts to new user
preferences by integrating prior and within-scene context to
place objects in partially arranged environments without user
supervision. ContextSortLM also leverages LLM reasoning
to generalize to unseen objects and new environments. We
present the details of this model in Section V.

B. Personalized Rearrangement Datasets
Existing datasets for personalized object rearrangement

include rule-based [6], [9] and user-generated [12], [2]
datasets of object arrangements. Rule-based datasets [6],
[9] are generated from pre-defined organizational rules that
dictate object placement and grouping, such as ‘organize
objects by their affordance’ [6] or ‘put shirts on the sofa and
other clothes in the closet’ [9]. These rule-based datasets
scale well, but lack the nuances and diversity of real user
preferences, as we demonstrate in Section IV. Alternately,
user-generated datasets [12], [2] collected by online work-
ers performing grounded organizational tasks [13], [11],
[12], capture diverse placement preferences and record fine-
grained placements. However, the data is collected for very
specific organizational tasks in 1-2 fixed environments and
contains a limited number of object categories and environ-
ments. Addressing the limitations of prior datasets, we collect
a crowdsourced dataset of 432 object arrangements from real
users that spans 5 different organizational tasks and involves
various object categories and environments.

IV. PARSEC BENCHMARK AND DATASET

For the PARSEC benchmark, we seek a dataset that a) in-
corporates data from real people instead of rules, b) includes
multiple examples for each user, and c) spans a diverse set of
object categories and environments. Since existing datasets
do not meet our criteria, we collected our own data by hiring
online workers to arrange household objects in environments
resembling real homes 2. Each online worker separately
arranged six sets of objects in a single environment ac-
companied with short descriptions. The object sets were
sampled to include objects relevant to the environment type
and random household objects, and workers were instructed
to only arrange the objects they considered relevant.

2Data collection was IRB exempt. Workers were hired from Prolific.



Fig. 2: The environments in the PARSEC benchmark can be
categorized by the number of surface types and their position. A
and B illustrate some examples of real user arrangements from the
dataset.

In total, we collected 432 object arrangements, involving
93 household objects and spanning 72 users 3 and 15 envi-
ronment instances. We uniformly sampled the environments
from five household organizational tasks: stocking a kitchen
pantry, arranging a bathroom cabinet, rearranging a bedroom
dresser, stocking a fridge, and decorating a display shelf.
These environments fall under three semantic categories,
as shown in Figure 2: Environments with identical surface
types and surfaces positioned vertically, or Similar-1D;
environments with identical surface types, arranged in a
2D configuration, or Similar-2D; and environments with
more than one surface type, or Dissimilar.

Each category presents unique challenges for adapting to
user preferences. In environments with multiple identical
surfaces (Similar-1D and Similar-2D), users pay more
attention to which objects to group than the exact surface
to place them. For instance, in example A of Figure 2, a
user may prioritize grouping all types of mugs but place
them in the left or right shelves interchangeably. In contrast,
environments with multiple surface types (Dissimilar)
encourage users to assign objects to specific surfaces. How-
ever, these preferences become more nuanced when multiple
instances of each surface type exist. For example, in example
B, users assigns objects to separate surfaces (e.g., self-care
items on the table) while maintaining specific organizational
patterns among identical surfaces (e.g., mementos on the
left shelf and baskets on the right). Modeling the relative
positions of surfaces in two dimensions (Similar-2D and
Dissimilar) adds further complexity when generalizing
to unseen environments.

Dataset Generation: From the crowdsourced object arrange-
ments, we created a dataset of 110K examples. Each user
annotator m provided six object arrangements within the
same environment instance. Each object arrangement Ai =
{(x, s)} comprises objects x, represented by text labels of
its semantic category, and surfaces s, described as a tuple of
surface type and relative 2D position. Optionally, s can be
expressed as a templated language description, such as ‘top-
right shelf’. To create rearrangement examples, we iteratively
selected one arrangement as the target arrangement A∗

G = Ai

and designated the other five as observed user arrangements

3Out of 75 users, three were removed due to failed attention checks.

Fig. 3: To demonstrate the within-user variability and across-user
diversity of crowdsourced rearrangement data, we plot the average
WordNet similarity among both rule-based (S1, S2) and real user
object arrangements (U1-U5) of a fridge environment.

AO = {Aj |j ̸= i}, generating
(
5
2

)
pairs of (AO, A∗

G).
For each target arrangement A∗

G, we created several pairs
of partially arranged states AP and unplaced object sets XU

by randomly omitting objects from A∗
G, labeling the omitted

objects as the unplaced set. Empty environment states were
also constructed by removing all objects from AP . The
resulting dataset is represented as a set of tuples: D =
{(m,AO,AP ,XU )}. Given AO and AP , the rearrangement
model must place XU alongside AP while adhering to m’s
preferences.
Comparing Manually Defined and Real User Preferences:
We compared our crowdsourced data from a fridge in the
Dissimilar category with two rule-based user personas
resembling the sorting criteria from [9], with preference
rules such as ‘Put soda cans and eggs on the top door
shelf’ and ‘Put produce on the middle shelf’. Figure 3
visualizes the average WordNet similarity between rule-
based arrangements (S1, S2) and real user arrangements
(U1–U5). We find that real user arrangements exhibit lower
within-user similarity scores (Si, Si) compared to rule-based
arrangements (Uj, Uj) and show higher variance in between-
user similarity scores (Si, Sj) than rule-based arrangements
(Ui, Uj), indicating that object arrangements in PARSEC are
less rigid and more diverse than rule-based personas. The di-
versity and flexibility of preferences makes adaptation more
challenging, motivating our decision to collect crowdsourced
data.

V. ALGORITHM SELECTION

We include all the graph-based rearrangement algorithms
from Table I in our evaluation. Of these algorithms, the
CF [4], NeatNet [12], and TidyBot [9] techniques infer user
preferences from prior scene context, and ConSOR adapts
to preferences from within-scene context. TidyBot-Random
is a variant of TidyBot that samples a random arrangement
Ai

O from observed arrangements AO to generate preference
rules, since TidyBot requires a single example. In contrast,
the CF+ [7] and APRICOT [8] models combine prior and
within-scene context to place objects in partially arranged
environments. APRICOT-NonInteractive, adapted from the
‘Non-Interactive’ baseline in the work by Wang et al. [8],
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A. B.
4: We propose ContextSortLM, a personalized rear-

rangement approach that aligns context from previously
observed object arrangements with the environment’s
current state to ensure object placements respect user
placement preferences without disrupting the environ-
ment’s current arrangement.

infers a textual description of preferences from observed ar-
rangements AO at once to place objects in partially arranged
environments.

ContextSortLM: We propose ContextSortLM, shown in Fig-
ure 4, for personalized rearrangement from prior and within-
scene context. ContextSortLM models personalized object
placement as an LLM code completion problem to infer re-
arrangement preferences from multiple object arrangements
and place objects in partially arranged environments. Each
object arrangement in AO and AP is rewritten as Python-
style ‘pick-place’ commands, as shown in Figure 4A. For
each prior arrangement Ai

O in AO, an LLM rule generation
agent, similar to Wu et al. [9], generates a preference rule riO
defining where to place objects. ContextSortLM consolidates
these rules into a JSON-style meta preference MO via a
separate LLM agent using the prompt in Figure 4B. A key
difference in our approach over APRICOT-NonInteractive is
the use of a structured preference representation that accounts
for multiple valid object placements and grounds preferences
in the environment surfaces S, reducing ambiguity in encod-
ing user preferences. Objects are then placed by prompting
the LLM with a code completion prompt containing MO,
the environment’s current arrangement AP and the list of
objects and surfaces, shown in Figure 4A. In this manner,
ContextSortLM aligns prior context and within-scene context
to meaningfully place objects in an environment occupied
with objects, while enabling zero-shot generalization to new
objects and environments 4.

VI. EVALUATION ON PARSEC SCENARIOS

We utilize k-fold cross-validation to evaluate the rear-
rangement methods presented in Table I. Each fold in the
cross-validation set includes a training set Dtrain and test
set Dtest. We conduct two experiments – the KnownEnv and
NovelEnvCategory experiments – to evaluate adaptation to
user preferences in previously seen and unseen environments.
We generate each fold by excluding the examples from
one of five users per environment category and examples
of all users from one of three environment categories from
training respectively. On average, each fold in KnownEnv

4ContextSortLM, APRICOT-NonInteractive, and TidyBot-Random use
the gpt-4-0613 model.

Fig. 5: SED and IGO calculated between a hypothetical user
arrangement Atrue and two possible predicted arrangements Aa

and A2. Note how A2 has a high SED but a low IGO, since
most same-category objects are grouped together as in Atrue but
not placed on the correct surface.

contains 2806 Dtrain and 701 Dtest examples, and each fold
in NovelEnvCategory contains 2338 Dtrain and 1169 Dtest

examples. In each fold, we separate arrangement examples of
a random user from Dtrain as a validation set Dval, resulting
in approximately 85 Dval examples per fold. We performed
early-stopping when training models via the average SED
metric calculated on Dval examples.

CF+ and NeatNet are trained and evaluated on the same
environment instance in KnownEnv and do not generalize to
new environments. In contrast, TidyBot-Random, APRICOT-
NonInteractive, and ContextSortLM are neither trained nor
provided examples from this dataset and are always evaluated
on unseen users and environments.

Metrics: We define two measures of similarity between
the model’s predicted arrangement AG and the user’s true
arrangement A∗

G to assess model performance, shown in
Figure 5. The Scene Edit Distance, or SED, borrowed
from prior work [6], is the minimum number of objects
that must be moved in AG to perfectly match A∗

G. The
Number of Incorrectly Grouped Objects, or IGO, is the
minimum number of objects that must be moved in AG so
that the same sets of objects are placed together as in A∗

G,
while ignoring the exact surface on which the objects are
placed. Collectively, the SED and IGO measure deviation
from the preferred surface assignment and object grouping
respectively. We also compute the Placement Accuracy or
PA, as defined by Wu et al. [9], which is the average
number of object placements predicted for XU that match
the placements in A∗

G.



Model KnownEnv NovelEnvCategory
Similar-1D Similar-2D Dissimilar Average Similar-1D Similar-2D Dissimilar Average

ContextSortLM (Ours) † 0.54 0.57 0.65 0.59 0.54 0.57 0.65 0.59
APRICOT-NonInteractive † 0.50 0.50 0.56 0.53 0.50 0.50 0.56 0.53
TidyBot-Random † 0.46 0.40 0.46 0.44 0.46 0.40 0.46 0.44
ConSOR 0.36 0.41 0.35 0.37 0.32 0.38 0.27 0.31
CF 0.30 0.33 0.23 0.28 0.30 0.31 0.24 0.28
CFFM 0.23 0.22 0.23 0.23 - - - -
NeatNet 0.28 0.25 0.29 0.28 - - - -

TABLE II: Placement Accuracy (PA) calculated when adapting to new users in seen environments and unseen-category environments. The
† indicates models not trained on any example from the dataset, meaning that they perform identically in KnownEnv and NovelEnvCategory
conditions.

A. Results

We present the results of KnownEnv and NovelEnvCate-
gory experiments. We report PA as an aggregate measure
of rearrangement performance for each experiment. For the
KnownEnv, we also report SED and IGO scores across
different initial environment conditions to study how rear-
rangement performance changes over increasing within-scene
context.

Aggregate Performance: Table II presents the PA scores for
KnownEnv and NovelEnvCategory experiments. Across both
experiments, ContextSortLM and APRICOT-NonInteractive
achieve higher PA than TidyBot-Random and ConSOR,
demonstrating the benefit of integrating multiple seman-
tic context sources rather than relying on a single
source for preference adaptation. Moreover, ContextSortLM,
APRICOT-NonInteractive, and TidyBot-Random have a
higher PA than other methods without any pre-training or
using in-context examples from our dataset, highlighting
the importance of pre-trained commonsense reasoning in
adapting to new user preferences.

ContextSortLM outperforms APRICOT-NonInteractive in
all environment categories, emphasizing the benefit of a
structured preference representation over a textual pref-
erence description. Notably, the PA of ContextSortLM
and APRICOT-NonInteractive differs the most in the
Dissimilar category, which typically has more surfaces,
resulting in fewer objects per surface. This is likely be-
cause, unlike ContextSortLM, APRICOT-NonInteractive out-
puts the preference description from observed arrangements
AO all at once, over-grouping objects and overgeneralizing
user preferences.

Among non-LLM models, ConSOR considerably outper-
forms the bottom half of the table (CF, CFFM, and NeatNet).
NeatNet and CFFM struggle due to limited training data per
environment, but CF underperforms even after training across
environments. CF’s reliance on pairwise object similarity
misses broader contextual cues essential for rearranging
across different environments, resulting in lower placement
accuracy. CFFM’s performance also suffers due to both lim-
ited data and a lack of global semantic context, despite using
both scene context sources. Incorporating global semantic
context is, therefore, essential for modeling preferences
across environments.

CF’s PA remains relatively stable across KnownEnv and
NovelEnvCategory experiments compared to ConSOR’s PA,
particularly in the Dissimilar category, suggesting that
models leveraging prior scene context generalize better to

unseen environments than those relying on within-scene
context. However, more experiments are required.

Placement Error in Partially Arranged Environments:
Figure 6 shows the placement error (SED and IGO scores)
of the above models as a function of NP , the number of
objects in the environment’s current arrangement AP . NP =
0 represents an empty environment and NP = 12 a densely
populated one. ContextSortLM achieves the lowest mean
SED in both sparsely occupied (NP = {0, 4}) and densely
occupied environments (NP = {8, 12}), with APRICOT-
NonInteractive ranking second, which further supports inte-
grating multiple scene context sources for personalized rear-
rangement. However, ContextSortLM’s SED scores exhibit
high variance in densely occupied environment, indicating
that it struggles to place objects in such scenarios. Moreover,
ConSOR and TidyBot-Random have comparable mean SED
scores in densely occupied environments, indicating that
within-scene context is as effective as prior scene context
for object placement in partially arranged environments.

Across all models, the IGO scores are lower than SED
scores in sparsely occupied AP , suggesting that rearrange-
ment models are better at grouping similar objects than
selecting appropriate surfaces. This is likely because models
leverage common object similarities encoded in external
knowledge. Our finding also aligns with human tendencies to
agree strongly on object similarity [15]. The SED and IGO
scores converge in densely occupied environments (NP ≥
8), where limited empty surfaces make object placement
synonymous with grouping similar items.

VII. EVALUATION WITH ONLINE RATERS

To assess the alignment of computational metrics with
human judgment, we conducted a crowdsourced user eval-
uation where online raters ranked different rearrangement
models based on alignment with target user’s preferences.
We selected four top-performing models – ContextSortLM,
APRICOT-NonInteractive, TidyBot-Random, and ConSOR –
and chose examples from PARSEC where all four model
predictions differed. Online raters in our experiment first
examined the observed arrangements, AO, and wrote a
summary describing them. This summary serves as a quality
check, allowing us to filter out raters who submit irrelevant
summaries. Raters then reviewed the environment’s current
arrangement, objects to be placed, and the predicted object
arrangements from all four models. Raters identified which
predicted object arrangement perfectly matched the target
user’s preferences and ranked the arrangements based on



Fig. 6: Placement error metrics (SED and IGO) calculated as a function of the number of objects in the environment’s current
arrangement for the KnownEnv experiment. The ‘+’ sign denotes the mean value.

alignment to user preferences. To reduce bias, we counter-
balanced the order of model predictions and recruited three
independent raters per example. In total, we hired 108 raters 5

to evaluate 36 object arrangement examples, spanning 14
user preferences, each with 2–3 variations of AP .

Evaluation Metrics: We define two metrics to analyze rater
responses for each rearrangement model. Alignment Score,
or salign, is the percentage of raters who found the model’s
predicted object arrangement to perfectly align with the
target user’s preferences. Rank Score, or srank, is the average
rank raters give to a model’s predictions. A higher salign
indicates that the model frequently places objects to match
the target user’s preferences, and a lower srank signifies
better alignment with the user’s preferences compared to
other models.

A. Results

Alignment Score: Table III presents the salign metric,
which measures how well models match the target user’s
preferences.

Our results indicate that models incorporating prior
and within-scene context, ContextSortLM and APRICOT-
NonInteractive, achieve higher alignment scores than
TidyBot-Random and ConSOR across all three environ-
ment categories, further validating the use of multi-
ple sources of scene context for preference adaptation.
APRICOT-NonInteractive outperforms ContextSortLM in
Similar-1D and Similar-2D categories but under-
performs in the Dissimilar category, likely because
APRICOT-NonInteractive tends to over-cluster similar ob-
jects. ConSOR scores higher than TidyBot-Random in the
category Similar-1D but lags in the Similar-2D and
Dissimilar categories, possibly because Similar-1D
examples are densely occupied and offer richer semantic
context benefiting ConSOR.

Many raters found no model perfectly aligned with user
preferences, especially in Similar-2D examples, where 27.0%
chose ‘None.’ Similar-2D environments feature identical
surfaces in a 2D layout, which is challenging to represent
semantically, leading to preference mismatches and mis-
placed objects. This underscores the challenge of modeling

5Out of 110 raters, two were removed due to poor quality summaries.

Rater Response Similar-1D (%) Similar-2D (%) Dissimilar (%)

ContextSortLM (Ours) 40.5 37.8 60.7
APRICOT-NonInteractive 45.2 43.2 7.1
TidyBot-Random 21.4 27.0 25.0
ConSOR 26.2 24.3 28.6
None 16.7 27.0 3.6

TABLE III: Alignment scores (salign), measuring how often each
models matches the target user’s preference. ‘None’ corresponds to
the rater finding none of the model predictions aligning with the
target user’s preferences.

spatial information about previously unseen environments
such as relative surface positions. Notably, some raters who
selected ‘None’ explicitly mentioned in their summaries that
the target user’s preferences were unclear, which may have
hindered their ability to identify a perfect match.

Rank Score: Figure 7 presents the srank metric, derived
from rater-assigned model rankings and categorized by en-
vironment types. We use Friedman’s one-way test followed
by post-hoc Wilcoxon Signed-Rank tests 6 for statical anal-
ysis, marked in the figure. Friedman’s test indicates sta-
tistically significant differences in the Similar-1D and
Dissimilar category (p < 0.001), and post-hoc pairwise
comparisons with Wilcoxon Signed-Rank test reveal that
ContextSortLM has a significantly lower median rank than
TidyBot-Random in the Similar-1D category (p < 0.01)
and APRICOT-NonInteractive in the Dissimilar category
(p < 0.05), which is consistent with previous findings.

Surprisingly, there are few statistically significant dif-
ferences among models for the Similar-1D and
Dissimilar categories, suggesting that users tolerate rea-
sonable variations in object placement. The absence of
any significant differences in the Similar-2D category is
likely due to the challenges of accurately modeling spatial
information in these environments, resulting in discrepancies
in user preferences.

VIII. SUMMARY AND DISCUSSION

Our evaluation results strongly support integrating prior
and within-scene context for personalized rearrangement. To
guide future work in better integrating the two scene context
sources, we summarize key takeaways from evaluations and
highlight ContextSortLM’s limitations.

6Bonferroni correction of α = 6 was applied.



Fig. 7: Distribution of rank scores srank, derived from rater-
assigned model rankings, and categorized by environment type.
‘0.5’ on the x axis denotes the median rating. The acronyms TB, CS,
CR and AN represent TidyBot-Random, ContextSortLM, ConSOR
and APRICOT-NonInteractive respectively. ‘*’ and ‘**’ symbols
indicate p-values less than 0.05 and 0.01 respectively.

Among the models integrating dual context sources,
ContextSortLM outperforms APRICOT-NonInteractive
when comparing computational metrics, particularly in
Dissimilar environments, and achieves consistently
high alignment and low rank scores across environment
categories, highlighting the benefit of structured preference
representations that explicitly account for multiple valid
object placements over textual preference descriptions.

While salign scores align with trends seen in computa-
tional metrics, srank scores show few significant differences
among models, highlighting challenges in encoding semantic
information about the environment. Raters tolerated most
variations in object placements but penalized irrelevant object
placements in designated easy-access surfaces, such as the
cabinet’s bottom shelf, or purpose-specific locations, such as
the fridge’s top shelf or vegetable drawer. Encoding more
semantic information from the environment- such as better
spatial information about surfaces and knowledge of object
usage patterns- will improve preference adaptation.
Limitations of ContextSortLM ContextSortLM struggles
in environments occupied with many objects due to over-
reliance on its meta-preference MO, sometimes grouping
dissimilar objects. ConSOR’s success in the same setting
suggests a hybrid LLM/specialized-policy approach – fil-
tering noisy prior scene context with LLMs and resolving
conflicts with the current environment via learned policies
leveraging within-scene context. Moreover, ContextSortLM’s
meta preference MO is sensitive to noisy object placements
in the observed arrangements (e.g., a coffee mug randomly
placed in the fridge), and we aim to refine ContextSortLM
to ignore such outlier placements in future work.

IX. CONCLUSION

In conclusion, we introduced PARSEC, an object rear-
rangement benchmark where robots adapt to user organiza-
tional preferences from scene context for object placement in
partially arranged environments. PARSEC includes a novel
crowdsourced dataset of 110K evaluation examples collected
from 72 real users, covering 93 household objects across 15
environment instances. We also proposed ContextSortLM, an

LLM-based personalized rearrangement model that places
objects in partially arranged environments by adapting to
user preferences from prior and within-scene context while
accounting for multiple valid placements. We evaluated Con-
textSortLM and existing personalized rearrangement mod-
els on PARSEC and complemented these findings with a
crowdsourced user evaluation of 108 online raters ranking
model predictions based on alignment to user preferences.
Our results highlight the importance of integrating multiple
sources of scene context for personalized object placement
in partially arranged environments. However, there are chal-
lenges in modeling environment semantics – such as the
environment’s spatial layout and utility of different environ-
ment surfaces – leading to discrepancies in inferred user
preferences. Moreover, ContextSortLM outperforms other
models in computational evaluations due to its structured
preference representation, but struggles in densely occupied
environments, emphasizing the need for improved techniques
to integrate prior and within-scene context.

Finally, we note that the choice of using an LLM for our
proposed approach is based on the strong performance of
prior LLM-based object rearrangement models [9], [8], [2].
As LLM performance is highly dependent on the information
provided in the prompt, our work provides design guidelines
for future LLM-based rearrangement models.
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