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Abstract
Selective labels occur when label observations are
subject to a decision-making process; e.g., diag-
noses that depend on the administration of labora-
tory tests. We study a clinically-inspired selective
label problem called disparate censorship, where
labeling biases vary across subgroups and unla-
beled individuals are imputed as “negative” (i.e.,
no diagnostic test = no illness). Machine learn-
ing models naı̈vely trained on such labels could
amplify labeling bias. Inspired by causal models
of selective labels, we propose Disparate Cen-
sorship Expectation-Maximization (DCEM), an
algorithm for learning in the presence of disparate
censorship. We theoretically analyze how DCEM
mitigates the effects of disparate censorship on
model performance. We validate DCEM on syn-
thetic data, showing that it improves bias mitiga-
tion (area between ROC curves) without sacrific-
ing discriminative performance (AUC) compared
to baselines. We achieve similar results in a sepsis
classification task using clinical data.

1. Introduction
Selective labels occur when a decision-making process de-
termines access to ground truth (Lakkaraju et al., 2017). We
study a practical case of selective labels: disparate censor-
ship (Chang et al., 2022). Disparate censorship introduces
two challenges: different labeling biases across subgroups
and the assumption that unlabeled individuals have a neg-
ative label. For example, in healthcare, labels may depend
on laboratory test results only available in some patients.

Past work has trained ML models to predict outcomes based
on laboratory test results (e.g., sepsis (Seymour et al., 2016;
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Figure 1. Top: Causal model of disparate censorship (x: covari-
ates, y: ground truth, ỹ: observed label, t: testing/labeling in-
dicator, a: sensitive attribute). Shaded variables are fully ob-
served. Bottom: Disparate Censorship Expectation-Maximization
(DCEM). Dashed nodes are probabilistic estimates.

Rhee & Klompas, 2020)). In this setting, patients with no
test result are defined as negative (Hartvigsen et al., 2018;
Teeple et al., 2020; Jehi et al., 2020; McDonald et al., 2021;
Adams et al., 2022; Kamran et al., 2022). However, labora-
tory testing decisions may be biased. For example, women
are undertested and underdiagnosed for cardiovascular dis-
ease (Beery, 1995; Schulman et al., 1999). ML models
trained on such data may recommend women less often for
diagnostic testing than men, reinforcing inequity.

To address this bias, one option is to train only on tested
individuals. Such an approach may discard a large sub-
set of the data and may not generalize to untested patients.
Another option is semi-supervised approaches that do not
assume untested patients are negative, such as label propaga-
tion (Zhu & Ghahramani, 2002; Lee, 2013) or filtering (Li
et al., 2020; Nguyen et al., 2020), or noisy-label learning
methods (Blum & Stangl, 2020; Wang et al., 2021; Zhu
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et al., 2021). However, such methods do not leverage causal
models of label bias, a potential source of additional infor-
mation. We aim to develop an approach that leverages all
available signal while accounting for labeling biases.

Inspired by causal models of selective labeling (Laine et al.,
2020; Chang et al., 2022; Guerdan et al., 2023a), we pro-
pose a simple method for mitigating bias when training
models under disparate censorship: Disparate Censorship
Expectation-Maximization (DCEM; Fig. 1). First, we show
that DCEM regularizes model estimates to counterbalance
disparate censorship. We validate DCEM in a simulation
study and a sepsis classification task on clinical data. We
find that our method mitigates bias (area between ROC
curves) while maintaining competitive discriminative perfor-
mance (AUC), and is generally more robust than baselines
to changes in the data generation process.

2. Preliminaries: Disparate Censorship
We consider a dataset {x(i), ỹ(i), t(i), a(i)}Ni=1, with covari-
ates x(i) ∈ Rd, labeling/testing decision t(i) ∈ {0, 1}, sensi-
tive attribute a(i), and observed label ỹ(i) ∈ {0, 1}, a proxy
for ground truth y(i) ∈ {0, 1}. The proxy label ỹ(i) = y(i)

when t(i) = 1, and ỹ(i) = 0 otherwise (i.e., ỹ(i) = y(i)t(i)).

What is disparate censorship? Disparate censorship
models “double standards” in label collection decisions
(Fig. 1, top). It is a variation of selective labeling or out-
come measurement error (Lakkaraju et al., 2017; Guerdan
et al., 2023b). Disparate censorship uniquely assumes that
untested individuals are imputed as negative.

We consider disparate censorship in the context of binary
classification (Chang et al., 2022) (Fig. 1, top). We justify
the model by example. Consider a patient in an emergency
room with characteristics x and sensitive attribute a. This
patient may have some condition y (currently unobserved)
caused by x but not a. A clinician may order a diagnostic
test (set t to 1) to determine y. The decision is based on x,
but could be swayed by biases in a.

To simplify, suppose that tests are perfectly sensitive.1 Then,
we observe ground truth for tested individuals (t = 1 =⇒
ỹ = y). Otherwise, the patient’s label is imputed as negative
(t = 0 =⇒ ỹ = 0; i.e., untested patients are presumed
healthy). However, due to biases in testing decisions t, y
may only be available in a biased subset of the data. The
causal model of disparate censorship (Fig. 1, top) encodes
this decision-making pipeline. Beyond healthcare, disparate
censorship may arise whenever potentially biased decisions
affect data labeling.

1If not, we can define T to indicate whether a label is confirmed
correct. This definition captures differences in test sensitivity
across groups (i.e., spectrum bias (Mulherin & Miller, 2002)).

Learning under disparate censorship. We aim to learn
a mapping fθ : x → y parameterized by θ optimized for
discriminative performance (i.e., AUC), but only observe
proxy labels ỹ. The default approach for learning under
disparate censorship is to assume y = ỹ and proceed us-
ing supervised learning. However, such an fθ may encode
labeling biases: estimates of P (Ỹ | X) may be inflated
compared to P (Y | X) for those more likely to be labeled.
Thus, biased labeling could yield disproportionate impacts
on performance across different subgroups of the data.

Note that we can interpret the estimand of interest as the
causal effect of testing on the observed label, since, in the
language of do-calculus (Pearl, 2009),

E[Y | X] = E[Y | X,T = 1] = E[Ỹ | X,T = 1]

= E[Ỹ | X, do(T = 1)], (1)

which follows from standard causal identifiability deriva-
tions given the causal graph of Fig. 1 (Imbens & Rubin,
2015). Intuitively, testing an individual (do(T = 1)) reveals
their outcome. Thus, a model trained only on tested indi-
viduals could consistently estimate P (Y |X), but may not
correct for labeling bias. We discuss other approaches in
semi-supervised learning in Section 6.

3. Methodology
We propose Disparate Censorship Expectation-Maximiza-
tion (DCEM) as an approach for learning in the presence
of disparate censorship. We first build intuition for how
one could mitigate disparate censorship based on the causal
model (Section 3.1). We then derive DCEM (Section 3.2)
and show that it mitigates disparate censorship via a form
of regularization (Section 3.3). We consider alternative
designs and their limitations (Section 3.4). Detailed proofs
and definitions are in Appendix B.

3.1. Towards mitigating disparate censorship

Recalling the causal model of disparate censorship, suppose
that we are naively training a model fθ to predict ỹ. Define
groups a and a′ and x ∼ X . Consider some X ′ ⊆ X so that

P
x∈X ′

[T | X,A = a] << P
x∈X ′

[T | X,A = a′] (2)

for all x ∈ X ′. Define t̂ ≜ P (T | X = x, A = a) (e.g.,
probability of receiving a laboratory test) and ŷ ≜ P (Y |
X = x). By assumption, x is sufficient for predicting y (i.e.,
as in Fig. 1, top), such that the optimal ŷ should be similar
across a (within X ′). However, Eq. 2 states that group a is
undertested relative to group a′: they have a lower t̂ within
X ′. Equivalently, labeling bias favors group a′. Thus, our
naive model would underestimate ŷ in group a (lower t̂ than
group a′ in X ′) relative to group a′.
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Algorithm 1 Disparate Censorship Expectation-Maximiza-
tion. L: binary cross-entropy loss.

Input: {(x(i), ỹ(i), t(i), a(i))}Ni=1

Output: fθ : X → [0, 1]
fθ ← argmin

fθ

1
|{i:t(i)=1}|

∑
i:t(i)=1 L(ỹ(i), fθ(x(i)))

gζ∗ ← argmin
gζ

1
N

∑N
i=1 L(t(i), gζ(x(i), a(i)))

t̂(i) ← gζ∗(x(i), a(i))
while not converged do
Q(y(i))← t(i)ỹ(i) + (1− t(i))fθ(x(i)) // E-step
fθ ← argmin

fθ

1
N

∑N
i=1 L(Q(y(i)), fθ(x

(i)))

+Q(y(i))L(ỹ(i), fθ(x(i)) · t̂(i)) // M-step
end while
return fθ

To counterbalance this bias, one could increase ŷ (withinX ′)
where group a is more prevalent than group a′; i.e., lower-t̂
regions. Since we are interested in discriminative perfor-
mance, this is analogous to decreasing ŷ where t̂ is higher,
from which the proposed method follows. More broadly,
variables associated with labeling bias (A causally affects T )
but not the outcome of interest (A does not causally affect
Y ) may be useful for mitigating labeling bias.

Given our causal model with latent variable Y (Fig. 1,
top), we base our approach on expectation-maximization
(EM) (Dempster et al., 1977). We can write:

P (Ỹ , Y, T,X,A,U)

= P (Ỹ | Y, T )P (Y | X)P (T | X,A)P (X,A,U). (3)

Since y is not fully observed, Eq. 3 cannot be optimized via
standard supervised objectives. Dropping terms that do not
involve Y , we can write the maximization of Eq. 3 as

max P (Ỹ | Y, T )P (Y | X). (4)

Optimizing Eq. 4 proceeds via EM. We show that the result-
ing objectives align with reducing ŷ in higher-t̂ regions and
maintain discriminative performance on tested individuals.

3.2. Disparate Censorship Expectation-Maximization

Informal overview. EM alternates an expectation step
(E-step), which imputes guesses for the latent variable(s)
(i.e., Y in Eq. 4), and a maximization step that optimizes
likelihood given the imputed estimates (M-step, i.e., Eq. 4).
Our E-step imputes preliminary estimates of P (Y | X) for
untested individuals. Our M-step updates the estimates to
counteract labeling biases when t(i) = 0, and is equivalent
to full supervision when t(i) = 1. The E- and M-steps alter-
nate until convergence. Fig. 1 (bottom) shows a schematic
of DCEM, with pseudocode in Algorithm 1.

E-step. The posterior of y(i) given the observed data is:

Q(y(i)) ≜ E[y(i) | ỹ(i), t(i),x(i), a(i)]. (5)

We can rewrite Eq. 5 as follows:
Theorem 3.1 (E-step). The posterior distribution of y(i)

given the observed data is equivalent to

Q(y(i)) =

{
ỹ(i) t(i) = 1

E[y(i) = 1 | x(i)] otherwise
(6)

Intuitively, the E-step uses ỹ as the label when we have
complete label information (recall t(i) = 1 =⇒ ỹ(i) =
y(i)); otherwise, we use the posterior estimate fθ(x(i)) as
a smoothed label. Equivalently, the E-step imputes soft
pseudo-labels for unlabeled data, i.e., probabilistic estimates
ŷ(i) ∈ [0, 1]. Motivated by approaches that train a pseudo-
labeling model on labeled data (Arazo et al., 2020; Rizve
et al., 2021), we pre-train fθ on tested individuals.

M-step. The M-step maximizes the log-likelihood of Eq. 4
given E-step estimates Q(y(i)) (Eq. 6). There are two terms
to model, which is done via an estimator for y(i) trained us-
ing Q(y(i)) and an estimator for ỹ(i). The latter is obtained
by combining an estimate of t(i) with Q(y(i)). Concretely,
let ŷ(i) ≜ fθ(x

(i)), and let hϕ be a model of P (Ỹ | Y, T ).
Maximizing the log-likelihood of Eq. 4 reduces to

max
θ

N∑
i=1

Q(y(i)) log ŷ(i) + (1−Q(y(i))) log(1− ŷ(i))

+Q(y(i))
[
ỹ(i) log hϕ(ŷ

(i), t̂(i))

+(1− ỹ(i)) log(1− hϕ(ŷ(i), t̂(i)))
]
. (7)

This leads to the following result:
Theorem 3.2 (M-step, informal). Maximizing Eq. 7 also
maximizes the evidence-based lower bound of Eq. 3.

In practice, we set hϕ(ŷ(i), t̂(i)) ≜ ŷ(i)t̂(i), a smoothed
version of the assumption ỹ = yt. Defining L as binary
cross-entropy loss, we can rewrite Eq. 7:

min
θ

N∑
i=1

L(Q(y(i)), ŷ(i))+Q(y(i))L(ỹ(i), ŷ(i)t̂(i)). (8)

Eq. 8 can be interpreted as a regularized cross-entropy loss
with respect to pseudo-label Q(y(i)). The first term pushes
ŷ(i) towards Q(y(i)), while the second “encourages” ŷ(i)

to be consistent with the causal model. To obtain t̂, we
pre-train and freeze a binary classifier for t, and take the
probabilistic estimates as t̂.

3.3. DCEM counterbalances disparate censorship

We show that DCEM imposes a form of “causal regulariza-
tion” that lowers ŷ in untested individuals.
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DCEM is a form of causal regularization. By analogy
to regularized risk minimization, consider an objective

L(θ) + λr(θ), (9)

for λ ∈ R+ (regularization strength) and a regularizer r :
Θ→ R, where Θ is the parameter space of θ.

Without loss of generality, setting λ = 1 and match-
ing terms between Eq. 9 and Eq. 8 yields r(θ) =
Q(y(i))L(ỹ(i), ŷ(i)t̂(i)). While t̂(i) affects the optimization
of Eq. 8, it is not a multiplier (e.g., λ in Eq. 9). To in-
terpret the effect of t̂(i), we propose a definition of causal
regularization strength based how the optimal ŷ(i) changes.2

Definition 3.3 (Causal regularization strength, informal).
Let ŷ(i)OPT(Q(y(i)), t̂(i)) be the minimizer of Eq. 8. For L
finite & convex on ŷ(i) in [0, 1], the causal regularization
strength is R(·) ≜ |Q(y(i))− ŷ(i)OPT(Q(y(i)), t̂(i))|.

Definition 3.3 quantifies the tradeoff between matching ŷ(i)

to the E-step estimates and optimizing Eq. 8. While ŷ(i) is
not an optimization parameter, analyzing the optimal ŷ(i)

can clarify the inductive bias of the M-step. We proceed by
considering how causal regularization impacts untested vs.
tested individuals. When t(i) = 0, the M-step is

min
θ

N∑
i=1

L(Q(y(i)), ŷ(i))−Q(y(i)) log(1− ŷ(i)t̂(i)). (10)

Since− log(1− ŷ(i)t̂(i)) increases in ŷ(i), the regularization
term “encourages” ŷ(i) to decrease when t̂(i) > 0. The
regularization term is constant if t̂(i) = 0, such that the M-
step would not change the E-step estimate. This matches the
intuition that one cannot learn about y(i) from individuals
that are very different from labeled individuals (i.e., when
the overlap assumption in causal inference is violated). The
regularization strength depends on t̂(i) as follows:
Theorem 3.4 (informal). If t(i) = 0, causal regularization
strength increases in t̂(i).

The result implies that causal regularization counterbal-
ances disparate censorship. Recall that lowering ŷ(i) in
regions where t̂(i) is higher can mitigate bias. Equiva-
lently, causal regularization must strengthen as t̂(i) increases,
which follows from Theorem 3.4.

Causal regularization aligns with full supervision in
tested individuals. When t(i) = 1, the M-step is

min
θ

N∑
i=1

L(y(i), ŷ(i)) + y(i)L(y(i), ŷ(i)t̂(i)), (11)

substituting y(i) for Q(y(i)) and ỹ(i). Thus:

2“Causal regularization” has been defined in the context of
causal discovery (Bahadori et al., 2017; Janzing, 2019). Our usage
is unrelated: we use a causal model to regularize an estimator.

Proposition 3.5. Eq. 11 is minimized when ŷ(i) = y(i).

Proposition 3.5 states that causal regularization does not
change the M-step optimum from matching ground truth
when t(i) = 1 (i.e., regularization strength = 0). Thus, the
M-step objective aligns with fully-supervised loss.

Thus, the M-step (Eq. 8) counterbalances disparate censor-
ship by regularizing ŷ(i) towards 0 as t̂(i) increases. For
t(i) = 1, the M-step optimum stays constant, and DCEM
should maintain discriminative performance.

3.4. Alternative designs and their limitations

We consider two alternative designs and their limitations: di-
rectly using t(i) in DCEM and propensity score adjustment.

Why not use t(i) directly? We substitute t̂(i) = t(i) into
Eq. 8 and analyze one summand (without loss of generality):

L(y(i), ŷ(i)) + y(i)L(y(i), ŷ(i)) t(i) = 1 (12)

L(Q(y(i)), ŷ(i)) t(i) = 0 (13)

Both losses use the E-step estimate Q(y(i)) as supervision.
When t(i) = 1 (Eq. 12), the M-step adds y(i)L(y(i), ŷ(i)),
penalizing false negatives 2x as heavily as false positives.
This does not affect ranking metrics (e.g., AUC). When
t(i) = 0 (Eq. 13), the M-step drops causal regularization,
and thus cannot counterbalance disparate censorship. Di-
rectly using t(i) would only help if counterbalancing dis-
parate censorship is unnecessary for good estimation, i.e.,
when tested individuals are representative of the population.

Why not propensity score adjustment/related causal ap-
proaches? Recall that estimating the effect of T on the ob-
served label yields a consistent estimate of P (Y | X) (Eq. 1,
Section 2). Indeed, t̂(i) is an estimate of P (T | X,A), i.e.,
a propensity score, motivating the usage of causal effect
estimators that leverage t̂(i). However, propensity score ad-
justment (e.g., IPW (Rosenbaum & Rubin, 1983) or doubly-
robust variations (Robins et al., 1994; Van Der Laan & Ru-
bin, 2006; Hu et al., 2022)) require an “overlap” assumption
η < t̂(i) < 1− η for some η = (0, 12 ) and have asymptotic
variance of order O(1/(η · (1 − η)), which is sensitive to
extreme t̂(i) (e.g., as in AIPW (Glynn & Quinn, 2010)).

However, in finite-sample settings, “sharp” testing deci-
sions lead to weak overlap. Such extreme t̂(i) may arise in
threshold-based decisions (Djulbegovic et al., 2014; Pier-
son et al., 2018). For example, a patient either exhibits or
does not exhibit the requisite symptoms to warrant testing.
This is analogous to inducing covariate shift between tested
and untested individuals. In other words, “holes” in the
training data emerge when using only labeled examples.
Thus, systematic testing bias could exacerbate model perfor-
mance gaps across population subgroups. While low over-
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lap still impacts DCEM (since DCEM cannot learn when
t̂(i) = 0), our method instead leverages an evidence-based
lower bound to model y under disparate censorship. We fur-
ther discuss potential improvements in overlap-robustness
of the proposed approach in Appendix B.

4. Experimental Setup
We validate DCEM with synthetic data across different
data-generation processes on simulated binary classification
tasks (Section 4.1) and in a pseudo-synthetic sepsis classifi-
cation task using real clinical data (MIMIC-III) (Johnson
et al., 2016), across potential laboratory testing policies (Sec-
tion 4.2). We then discuss our chosen baselines (Section 4.3)
and evaluation metrics (Section 4.4).

4.1. Synthetic Datasets

By definition, y is not fully observed under disparate cen-
sorship. Thus, we design a simulation study in order to
evaluate various methods with respect to ground truth. The
data generation process follows from the assumed causal
model of disparate censorship (Fig. 1, top):

a(i) ∼ Ber(0.5),x(i) ∼ N (µa · 12, 0.03
2I2×2)

t(i) ∼ Ber(σ(30 · sT (x(i), a(i))))

y(i) ∼ Ber(σ(10 · sY (x(i))− cy)), ỹ(i) = y(i)t(i)

where I2×2 is the identity matrix, and sT : x, a→ R, sY :
x→ R, and µa ∈ R, cy ∈ R are simulation parameters. We
set P (A = 0) = 0.5 and induce confounding between x(i)

and a(i) by setting u(i) = a(i). We draw x(i) ∈ R2 from
group-specific Gaussians, and assume Bernoulli-distributed
t(i) and y(i) with parameters defined via sT : x, a → R
and sY : x→ R, respectively. Intuitively, sT (sY ) is a soft
“decision boundary” for T (Y ). Inspired by observations that
clinician testing is can be represented by simpler functions
than observed outcomes (Mullainathan & Obermeyer, 2022),
we choose a non-linear sY and a linear sT .

We simulate N = 20, 000 individuals for training, valida-
tion, and testing each (i.e., 60,000 total). We define set-
tings in terms of testing disparity qt = P (T |A=0)

P (T |A=1) , preva-

lence disparity qy = P (Y |A=0)
P (Y |A=1) , and testing multiple k =

P (T=1)
P (Y=1) . Intuitively, qt controls labeling biases, qy con-
trols differences between groups, and k controls testing
rate. We consider qt ∈ {1/4, 1/3, 1/2, 1, 2, 3, 4}, qy ∈
{1/4, 1/3, 1/2, 1}, and k ∈ {1/4, 1/3, 1/2, 1, 2, 3, 4}, and
set simulation parameters to yield the desired qt, qy, k.3

Since sY is unknown in practice, we replicate the main
experiments across various sY as a robustness check. The
simulation makes simplifying assumptions (e.g., low dimen-

3We skip settings where qt, qy, k yield infeasible testing rates.

sionality and P (A = 0) = 0.5) but allows full control over
y and t. Additional simulation details are in Appendix C.1.

4.2. Clinical data: MIMIC-III

Multiple sepsis definitions, such as Sepsis-3 (Singer et al.,
2016), are based on laboratory tests (blood culture) such
that patients without a test result are by definition negative.
Thus, sepsis classification is a potential real-world case of
disparate censorship. We curate a sepsis classification task
using the MIMIC-III Sepsis-3 cohort (Johnson et al., 2016;
2018), an electronic health record dataset.

We aim to distinguish patients who never develop sepsis
from those who develop sepsis within 8 hours of an initial
3-hour observation period. If a patient met the Sepsis-3
criteria between 3-11 hours of the first chart measurement,
we set y = 1, and y = 0 if the patient never develops
sepsis during their hospital stay. We exclude patients with
onset times outside this range and include only White and
Black patients to simplify the analysis of bias mitigation.
We choose x ∈ R13 following an existing sepsis prediction
model (Delahanty et al., 2019), and exclude patients where
all features are missing. This yields N = 5, 301 patients,
from which we create a 60-20-20 train-validation-test split.
This is a simplified version of a real clinical task, since
we exclude patients who develop sepsis later during their
hospitalization. Nonetheless, it is helpful for probing the
strengths and weaknesses of the proposed approach.

To evaluate model performance, we assume that the ob-
served y reflects ground truth, since ≈ 90% of patients
were tested (i.e., received a blood culture) in our cohort.
To generate label proxies ỹ, we simulate multiple poten-
tial labeling biases via a clinically-inspired testing function
sT . We specify a linear sT based on qSOFA, a score for
triaging patients at risk of sepsis (Seymour et al., 2016). In-
spired by observations that clinicians over-weight represen-
tative symptoms in diagnostic test decisions (Mullainathan
& Obermeyer, 2022), we create different versions of sT via
different weightings of qSOFA features. We examine k ∈
{1/4, 1/3, 1/2, 1, 2, 3, 4, 5} and qt ∈ {1/2, 2/3, 1, 3/2, 2}.
Details of the sepsis cohort are in Appendix C.2.

4.3. Models

As naive baselines, we test a y-obs model (training on ỹ)
and training on group a only. We select similarly-motivated
or applicable baselines from related settings:

• Noisy-label learning: Group peer loss (Wang et al., 2021)
(Appendix: Peer loss (Liu & Guo, 2020), truncated ℓq
loss (Zhang & Sabuncu, 2018) and generalized Jensen-
Shannon loss (Englesson & Azizpour, 2021)),

• Semi-supervised learning: SELF (Nguyen et al., 2020)
(Appendix: DivideMix (Li et al., 2020)),
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• Causal inference: tested-only (training on examples
where t = 1), and DragonNet (Shi et al., 2019), using
the treatment effect of the sensitive attribute on testing to
correct disparate censorship (i.e., learn a correction for
P (Y | X)− P (Ỹ | X,A)),

• Positive-unlabeled learning: Selected-At-Random EM
(SAREM) (Bekker et al., 2020).

As an oracle, we compare to training on y (“y-model”). We
use neural networks for all approaches. Training details,
such as hyperparameters, are in Appendix D.

4.4. Evaluation metrics

We consider bias mitigation and discriminative performance
metrics with respect to y, and measure the robustness of
both metrics to changes in the data-generation process.

Discriminative performance. We use the area under the
receiver operating characteristic curve (AUC), a standard
discriminative performance metric.

Mitigating bias. We use the ROC gap (also called ROC
fairness (Vogel et al., 2021) or ABROCA (Gardner et al.,
2019)), the absolute area between the ROC curves for each
group a. The ROC gap is in [0, 1]. Lower values indicate
better bias mitigation. Intuitively, the ROC gap is zero
when a classifier with some fixed false positive rate in each
group obtains equal true positive rates across groups. Under
disparate censorship, a zero ROC gap is achievable if a
model perfectly predicts y from x.

Robustness. We consider the median AUC and ROC gap
over all sY (synthetic data setting) or sT (sepsis classifica-
tion) and the empirical worst-case (AUC: min.; ROC gap:
max.) and range.

5. Experiments & Discussion
Our experiments aim to substantiate our main claims:

• In synthetic data, DCEM mitigates bias, maintains com-
petitive discriminative performance and improves robust-
ness, while achieving better tradeoffs between perfor-
mance and bias mitigation compared to baselines (Sec-
tion 5.1).

• On a sepsis classification task, DCEM improves discrimi-
native performance while maintaining good tradeoffs with
bias mitigation, and is more robust compared to baselines
(Section 5.2).

We also report full results (Appendix E.1) and an ablation
study of DCEM (Appendix E.2). We also benchmark causal
effect estimators (i.e., as alternatives to the tested-only

model) and their overlap robustness compared to DCEM
(Appendix E.3). Further sensitivity analyses can be found in
Appendix E.4 (smoothed t̂(i)) and E.5 (E-step initialization).

5.1. Results on simulated disparate censorship

Fig. 2 shows ROC gaps (left) and AUCs (right) of the base-
lines most competitive with our approach (DCEM, magenta)
at qy = 0.5, k = 1, qt = 2. In this setting, 25% (i.e.,
k · P (Y = 1)) of individuals are tested, and the base rate
of Y in group a = 0 is 1/2 that of group a = 1, but group
a = 0 is twice as likely to be tested. Each point is an ROC
gap/AUC value achieved under one decision boundary sY .
Results for the remaining baselines are in Appendix E.1.
The takeaways align with the main results.

DCEM mitigates bias more effectively than baselines.
DCEM achieves a median ROC gap of 0.030 (2nd-best,
SELF: 0.034), suggesting that it mitigates bias more effec-
tively than baselines (Fig. 2, left). We show similar trends
for qt ≥ 1, qy, and k ∈ [1/3, 2] (Appendix E.1). At low
testing rates, all models mitigate bias poorly. At high testing
rates, the tested-only model is sufficient.

For qt < 1 (Appendix E.1), DCEM mitigates bias com-
pared to the default approach (y-obs model) but no longer
dominates the baselines. We hypothesize that DCEM has
similar bias mitigation capabilities as baselines, since there
is less bias to mitigate. Recalling that qy < 1, since qt < 1,
testing probability, P (Y | X) and P (Ỹ | X) are correlated.
Learning to predict Ỹ would preserve ordering in P (Y | X),
reducing impacts on ranking metrics (e.g., ROC gap).4

DCEM is more robust than baselines to changes in the
data-generating process. Fig. 2 (left) shows that the max-
imum ROC gap is lower for DCEM compared to baselines
(ours: 0.060 vs. 2nd-best, tested-only: 0.083). We re-
port similar results for the minimum AUC (Fig. 2, right;
ours: 0.768 vs. 2nd-best, tested-only: 0.623). DCEM also
achieves a tighter ROC gap and AUC range. Fig. 2 also
shows that our method has the tightest ROC gap range (left,
DCEM: 0.048 vs. tested-only, 2nd-tightest: 0.063) and AUC
range (right, DCEM: 0.055 vs. DragonNet: 0.199).

The results suggest that DCEM maintains robust bias miti-
gation and discriminative performance across different data-
generation processes (sY ). This is expected, as DCEM
optimizes likelihood under the disparate censorship data-
generation process by design. In contrast, the baselines
may experience selection bias or misspecification, since
they discard data or assume certain noise structures/variable
dependencies that disparate censorship violates.

4Such settings are related to boundary-consistent noise; see
Proposition 1 of (Menon et al., 2018).
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sY . Our method (DCEM, magenta) mitigates bias while maintaining competitive AUC compared to baselines, with a tighter range and
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Figure 3. Relative frequencies of ROC gaps for DCEM vs. tested-only models at similar AUC (increasing to the right), pooling models
across all k, qy, qt tested. Dashed lines = mean ROC gap by model. DCEM improves bias mitigation among models with similar AUC.

DCEM maintains competitive discriminative perfor-
mance. Fig. 2 (right) shows that DCEM outperforms
all baselines except for the tested-only model, which our
approach lags by 0.028 AUC (DCEM: 0.787 vs. tested-
only: 0.815). Other causal estimators achieve similar dis-
criminative performance to the tested-only approach (Ap-
pendix E.3). However, our method improves on the “default”
y-obs model, increasing the median AUC by 0.130 (y-obs:
0.657). SELF, which has a similar median ROC gap to
DCEM, underperforms DCEM by 0.110 AUC (SELF: 0.677
vs. DCEM: 0.787). Other baselines also underperform.
This is expected, since some methods ignore label bias:
training on Ỹ alone is misspecified for E(Y | X), since it
incorrectly assumes that if T = 0, then Y = 0. The same
argument applies to Group 0/1 only approaches.

Some baselines account for label noise/bias, but are mis-
specified under disparate censorship since they make differ-
ent independence assumptions. Group peer loss assumes
T ⊥⊥ X | (Y,A), and SELF assumes T ⊥⊥ X | Y ,
ignoring the dependence of biased selective labeling on
X . DragonNet accounts for X by adding P (T | X,A =
1) − P (T | X,A = 0) to the default model’s estimates
(i.e., P (Ỹ | X)) as a “correction factor.” However, the
correction factor may be biased for true negatives: the
oracle is zero, because P (Ỹ | X) = P (Y | X), but
P (T | X,A = 1) − P (T | X,A = 0) ̸= 0 in general
under systematic labeling bias.

SAR-EM, which is most similar to the proposed approach,
models missingness at random (i.e., T ̸⊥⊥ X,Y ), but dis-

cards reliable negatives. In contrast, the proposed approach
incorporates reliable negatives in alignment with our as-
sumptions about labeling bias, allowing it to counterbalance
biased selective labeling. Trends are similar for other qt, qy
and k ∈ [1/2, 2]. Since the tested-only model is a strong
baseline, we now compare it directly to DCEM.

DCEM achieves better tradeoffs between discriminative
performance and bias mitigation. Among models with
similar AUC where AUC < 0.875, DCEM reduces ROC
gaps compared to the tested-only model (Fig. 3). For ex-
ample, for AUC ∈ (0.825, 0.875) (Fig. 3, 2nd from right),
DCEM improves the average ROC gap by 0.022 (0.028 vs.
0.050), with similar trends at lower AUCs. Among the best-
performing models (AUC > 0.875; Fig. 3, 1st from right),
both methods have similar ROC gaps.

The results suggest that DCEM is not trading discriminative
performance for bias mitigation. At a given AUC, DCEM
more often yields models with a lower ROC gap than the
tested-only model. Since the tested-only approach does
not account for label bias, it can achieve relatively high
AUC without mitigating bias. In contrast, DCEM explicitly
counteracts disparate censorship. A similar comparison to
SELF shows that, at low ROC gaps, DCEM likewise finds
higher-AUC solutions than SELF (Appendix E.6).

5.2. Results on sepsis classification in MIMIC-III

DCEM has better discriminative performance than base-
lines. Fig. 4 compares the ROC gap and AUC of DCEM
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to selected baselines at testing disparity qt = 1.5, and test-
ing rate multiplier k = 4. Each dot corresponds to one
variation of sT (laboratory testing policy). Our method
has the highest median AUC among baselines (ours: 0.620
vs. DragonNet: 0.593), nearing the oracle (y-model, 0.633).
Note that DCEM has better discriminative performance than
the tested-only approach, suggesting that extrapolation from
tested to untested individuals is more difficult on the sepsis
classification task than the fully synthetic tasks.

DCEM achieves good tradeoffs with bias mitigation.
DCEM achieves a smaller median ROC gap compared
to five of eight baselines tested. Group peer loss, Drag-
onNet and the Group 0 approach achieve lower median
ROC gaps of 0.070, 0.088 and 0.082, respectively (DCEM:
0.105). However, the Group 0 approach catastrophically
fails (median AUC: 0.342). Models may perform arbitrarily
poorly under disparate censorship if labeling biases suffi-
ciently “conceal” the true decision boundary. Group peer
loss (among many other baselines) also exhibits a much
wider AUC range than the proposed approach (Group peer
loss: 0.182 vs. DCEM: 0.065), suggesting that its discrim-
inative utility may be limited. DragonNet appears com-
petitive (0.027 AUC lower than DCEM), but would only
perform well when the effect of race on testing is close to
|P (Y | X) − P (Ỹ | X,A)|, which is violated if labeling
biases (large effect of race on testing) are present in negative
patients (P (Y | X) ≈ P (Ỹ | X,A)).
Many approaches, including DCEM, obtain a lower ROC
gap than training on y. Although the oracle obtains the high-
est median AUC, optimizing discriminative performance on
y is not always guaranteed to mitigate bias. DCEM uses
labeling probabilities to mitigate bias via causal regular-
ization, while DragonNet directly uses an estimate of the
labeling bias as a correction factor. Thus, the results validate
that the labeling bias can provide signal for bias mitigation.

DCEM is more robust than most baselines to changes in
sT . DCEM maintains robust bias mitigation capabilities
across sT ; i.e., differences in how labelers weigh features in
their decisions. Fig. 4 shows that DCEM attains a maximum

ROC gap of 0.133 (left; DragonNet: 0.144), and a mini-
mum AUC of 0.584 (right; DragonNet: 0.574). Fig. 4 also
shows that DCEM achieves the tightest ROC gap range (left;
DCEM: 0.094 vs. 2nd-best: 0.102) and 2nd-tightest AUC
range (right; DCEM: 0.065 vs. DragonNet: 0.018). Many
baselines also exhibit a bimodal empirical AUC distribution
and only perform well under specific labeling behaviors. We
examine the sensitivity of baselines to sT by plotting AUC
and ROC gaps against coefficients of sT (Appendix E.7).

While DragonNet is competitive on this dataset, its robust-
ness and performance capabilities may not generalize (e.g.,
simulation results, Fig. 2). DCEM is the only approach
tested that achieved competitive discriminative performance
and bias mitigation on both datasets. Trends in performance
and robustness are similar for other k, qt (Appendix E.1).

Overall takeaways. In a simulation study of disparate
censorship, DCEM mitigates bias while achieving similar
or better discriminative performance compared to baselines.
The proposed approach is empirically more robust than base-
lines to changes in the data-generating process. On a sepsis
classification task, DCEM mitigates bias while improving or
maintaining discriminative performance compared to base-
lines across different labeling behaviors. Thus, DCEM can
potentially mitigate bias with less impact on discriminative
performance than existing methods.

6. Related Work
Selective labeling/disparate censorship. Disparate cen-
sorship is a variation of selective labeling (Lakkaraju et al.,
2017; Kleinberg et al., 2018) and outcome measurement
error (Guerdan et al., 2023b). Selective labeling problems
have been studied in clinical settings (Farahani et al., 2020;
Shanmugam et al., 2024; Chang et al., 2022; Mullainathan
& Obermeyer, 2022; Balachandar et al., 2024), social/public
policy (Saxena et al., 2020; Kontokosta & Hong, 2021;
Laufer et al., 2022; Liu & Garg, 2022; Kiani et al., 2023),
and finance (Björkegren & Grissen, 2020; Henderson et al.,
2023), among other domains. For an extended literature
review of selective labeling problems, see Appendix A.

8



From Biased Selective Labels to Pseudo-Labels

Past work has trained ML models under disparate cen-
sorship, directly encoding untested individuals as nega-
tive (Henry et al., 2015; Jehi et al., 2020; McDonald et al.,
2021; Adams et al., 2022; Kamran et al., 2022). Previ-
ous approaches for learning under selective labels leverage
heterogeneity in human decisions to recover outcome esti-
mates (Lakkaraju et al., 2017; Kleinberg et al., 2018; Chen
et al., 2023), or use domain-specific adjustments (Gholami
et al., 2018; Balachandar et al., 2024). We propose DCEM, a
complementary approach for mitigating bias under disparate
censorship without such restrictions.

Semi-supervised learning. Semi-supervised approaches
do not assume labels for untested individuals. However,
many causally-motivated methods diverge from the causal
model of disparate censorship (Madras et al., 2019; Yao
et al., 2021; Garg et al., 2023; Guerdan et al., 2023a; Gong
et al., 2021; Kato et al., 2023; Sportisse et al., 2023) via
different independence/causal relationships between vari-
ables. Filtering methods (Han et al., 2018; Li et al., 2020;
Nguyen et al., 2020; Chen et al., 2020; Zhang et al., 2021;
Zhao et al., 2022) assume specific model behavior on noisy
examples (e.g.,, noise is learned late in training (Arpit et al.,
2017)) or labeling bias (randomness/class-dependence),
which disparate censorship violates. We also highlight his-
torical expectation-maximization approaches for learning
with missing data (Ghahramani & Jordan, 1993; Ghahra-
mani et al., 1996; Ambroise & Govaert, 2000), which place
parametric assumptions on the data-generation process. We
use neural networks to target the estimands of interest to
circumvent parametric assumptions.

Other alternatives include positive-unlabeled learning ap-
proaches that assume labeling depends on covariates (e.g.,
missing not at random) (Bekker et al., 2020; Furmańczyk
et al., 2022; Gerych et al., 2022; Wang et al., 2024). How-
ever, these methods do not leverage correctly-labeled neg-
atives, and naively-incorporating negative examples with-
out causal assumptions may potentially harm model perfor-
mance or bias mitigation. Other methods for noisy-label
learning make assumptions incompatible with our setting,
e.g. uniform noise within subgroups (Wang et al., 2021),
almost-surely clean & noisy examples (Liu & Tao, 2015; Pa-
trini et al., 2017; Tjandra & Wiens, 2023), different variable
independence/directionality relationships (Wu et al., 2022),
that noisy (i.e., out of distribution) examples are rare (Wald
& Saria, 2023), or other noise constraints (Li et al., 2021;
Zhu et al., 2021). Our approach complements existing work
by jointly modeling selective and biased labeling via causal
assumptions tailored to a biased decision-making pipeline.

7. Conclusion
When biased human decisions affect observations of ground
truth, applying standard supervised learning techniques to

data exhibiting disparate censorship can amplify the harm
of ML models to marginalized groups. We propose Dis-
parate Censorship Expectation-Maximization (DCEM), a
novel approach to classification, to mitigate such harm. In
a simulation study and a sepsis classification task, DCEM
mitigates bias and maintains competitive discriminative per-
formance compared to baselines. Limitations of DCEM
include potential slow convergence, since EM is iterative.
Model evaluation under disparate censorship is also inher-
ently difficult due to the difficulty of obtaining ground truth,
motivating future work in dataset curation. Furthermore,
DCEM does not learn a full generative model with all vari-
ables. While such a model could target a wider range of esti-
mands, it would also increase the number of terms that need
to be modeled. Ultimately, DCEM is a step towards miti-
gating the disproportionate impacts of disparate censorship.
Our work aims to raise awareness of disparate censorship
and motivate the study of bias mitigation methods.

Impact Statement
This paper addresses disparate censorship, a realistic source
of label bias in ML, and proposes a method that mitigates its
harms. Since the goal of the paper is aligned with reducing
inequity in decision-making, practical use cases of DCEM
are inherently high-stakes settings. Thus, we believe that the
ethical usage of DCEM (or any bias mitigation approach)
in the real-world requires prospective model evaluation in
the context of use (e.g., shadowing human decision-makers)
to assess unforeseen negative impacts. Our work provides a
general choice of bias mitigation (area between ROC curves)
and discriminative performance metrics (AUC), which are
motivated by clinical tasks where equitably ranking individ-
uals in terms of resource needs is important. Practitioners
should ensure their evaluation metrics align with domain-
specific criteria for bias mitigation and performance.
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A. Selective labeling in the literature
We enumerate domains in which our literature review found instances of selective label problems in the ML methods and
applications literature:

• Healthcare: Laboratory/diagnostic testing (Chang et al., 2022; Mullainathan & Obermeyer, 2022) and diagnosis (Fara-
hani et al., 2020; Shanmugam et al., 2024; Balachandar et al., 2024)

• Social & public policy: Child welfare assessment (Saxena et al., 2020; Kiani et al., 2023), urban planning/policy (Kon-
tokosta & Hong, 2021; Laufer et al., 2022; Liu & Tao, 2015), hiring pipelines (Peng et al., 2019; Sühr et al., 2021),
student placement (Bergman et al., 2021), and bias in policing (Rambachan & Roth, 2020; Pierson et al., 2020)

• Finance: Credit repayment (Björkegren & Grissen, 2020) and financial auditing (Henderson et al., 2023)

• Others/miscellaneous: Wildlife conservation (Gholami et al., 2018), social media content moderation (Binns et al.,
2017)

We note that this is not an exhaustive list of all papers in the selective labeling literature or related problem settings. However,
this list illustrates the broad applicability and relevance of our problem setting.

B. Omitted Proofs
For convenience, we restate all theorems and propositions here.

B.1. Theorem 3.1

Theorem (E-step derivation). The posterior conditional mean of y(i) = 1 given the observed data, Q(y(i)) ≜ E[y(i) = 1 |
t(i), ỹ(i), a(i),x(i)], is equal to

Q(y(i)) =

{
ỹ(i) t(i) = 1

E[y(i) = 1 | x(i)] otherwise
. (14)

Proof. We drop superscripts (·)(i) in the proof for clarity. Denote Q(y) as posterior distribution of y given the observed
data, E[y = 1 | t, ỹ, a,x] (i.e., the E-step estimate). First, we can write

Q(y) ≜ E[y = 1 | t, ỹ, a,x] = E[y = 1 | ỹ, x, t] = P (y = 1 | ỹ, x, t) (15)

for simplicity, where we use the fact that Y ⊥⊥ A | (T,X) and the fact that E[y = 1 | ỹ, x, t] is binary. Proceeding, we can
write:

= t · P (y = 1 | ỹ, x, t = 1) + (1− t) · P (y = 1 | ỹ, x, t = 0) (16)
= tỹ + (1− t)[ỹP (y = 1 | ỹ = 1, x, t = 0) + (1− ỹ)P (y = 1 | ỹ = 0, x, t = 0)] (17)
= tỹ + (1− t)(1− ỹ)P (y = 1 | ỹ = 0, x, t = 0) (18)

= tỹ + (1− t)(1− ỹ) · P (ỹ = 0 | y = 1, x, t = 0)P (y = 1 | x, t = 0)

P (ỹ = 0 | x, t = 0)
(19)

= tỹ + (1− t)(1− ỹ)P (y = 1 | x). (20)

The second equality follows since t = 1 =⇒ ỹ = y. The third equality holds since P (y = 1 | ỹ = 1, x, t = 0) = 0 by
construction, since ỹ = yt under disparate censorship. The final step follows from three facts: (1) P (ỹ = 0 | y = 1, x, t =
0) = 1 for all x, (2) P (ỹ = 0 | x, t = 0) = 1 for all x, and (3) Y ⊥⊥ T | X . This is more succinctly rewritten as E-step is:

Q(y) =

{
ỹ t = 1

E[y = 1 | x] otherwise (i.e., ỹ = 0 ∧ t = 0)
, (21)

which is what we wanted to show.

Remark B.1. Since y(i) is binary by assumption, this result fully determines the posterior distribution since E[y = 1 |
ỹ, x, t] = 1− E[y = 0 | ỹ, x, t].
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B.2. Theorem 3.2

Theorem (M-step derivation). Let P (U,A,X, T, Ỹ ; θ) be a model for the joint data distribution parameterized by some
arbitrary θ ∈ Θ in some parameter space Θ, which factorizes according to the disparate censorship DAG =(Fig. 1). Let
Q(y) ≜ E[y = 1 | t, ỹ, a,x] be the posterior expectation that y = 1 given the observed data. Then (replacing random
variables with their realized counterparts), we have

max
θ

1

N

N∑
i=1

logP (u(i), a(i),x(i), t(i), ỹ(i); θ) ≥max
θ

1

N

N∑
i=1

Q(y(i)) logP (y(i) | x(i); θY |X)

+ (1−Q(y(i))) log(1− P (y(i) | x(i); θY |X))

+Q(y(i)) logP (ỹ(i) | y(i), t(i); θỸ |Y,T ) (22)

where θ = [θY |X θỸ |Y,T ]
⊤.

Proof. We first construct the evidence-based lower bound (ELBO) of the LHS in the theorem statement. First, for a single
example indexed by i, we can write:

logP (u(i), a(i),x(i), t(i), ỹ(i); θ) = log
∑

y(i)∈{0,1}

Q(y(i))
P (u(i), a(i),x(i), t(i), ỹ(i), y(i); θ)

Q(y(i))
(23)

≥
∑

y(i)∈{0,1}

Q(y(i)) log
P (u(i), a(i),x(i), t(i), ỹ(i), y(i); θ)

Q(y(i))
(24)

via Jensen’s inequality. Then, we note that

max
θ

1

N

N∑
i=1

∑
y(i)∈{0,1}

Q(y(i)) log
P (u(i), a(i),x(i), t(i), ỹ(i), y(i); θ)

Q(y(i))

= max
θ

1

N

N∑
i=1

∑
y(i)∈{0,1}

Q(y(i)) logP (u(i), a(i),x(i), t(i), ỹ(i), y(i); θ), (25)

dropping Q(y(i)) logQ(y(i)), which is constant with respect to θ, after expanding the log term. We can then use the DAG to
factorize the joint distribution of all variables (including latent variable Y ), which is given by

P (Ỹ , Y, T,X,A,U) = P (Ỹ | Y, T )P (Y | X)P (T | X,A)P (X,A,U). (26)

Note that we need only model the first two terms for estimation of y(i). The first two terms do not involve y(i), are not
parameterized, and can be dropped from the maximization problem. Hence, we proceed to write

= max
θ

1

N

N∑
i=1

∑
y(i)∈{0,1}

Q(y(i)) logP (y(i) | x(i); θỸ |X)P (ỹ(i) | t(i), y(i); θỸ |Y,T ) (27)

where θ = [θY |X θỸ |Y,T ]
⊤. This can be rewritten as

= max
θ

1

N

N∑
i=1

∑
y(i)∈{0,1}

Q(y(i)) logP (y(i) | x(i); θỸ |X) +Q(y(i))P (ỹ(i) | t(i), y(i); θỸ |Y,T ), (28)

at which point we note that it is sufficient to show that

(1−Q(y(i))) log(1− P (ỹ(i) | y(i), t(i); θỸ |Y,T )) (29)

is constant in θ. We can rewrite the above as

(1−Q(y(i)))[ỹ(i) log(P (ỹ(i) = 1 | y(i) = 0, t(i); θỸ |Y,T )) + (1− ỹ(i)) log(P (ỹ(i) = 0 | y(i) = 0, t(i); θỸ |Y,T ))]. (30)
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First, note that the event {ỹ(i) = 1 | y(i) = 0} occurs with probability zero by definition (recall ỹ(i) = y(i)t(i)). Thus,
P (ỹ(i) = 1 | y(i) = 0, t(i); θỸ |Y,T )) cannot change with respect to θ; we drop it from the maximization problem. Similarly,
P (ỹ(i) = 0 | y(i) = 0, t(i)) = 0 by definition, so (1−Q(y(i))) log(1−P (ỹ(i) | y(i), t(i))) = 0 which is constant as needed,
from which the theorem follows.

Remark B.2. In the theorem statement, replacing P (y(i) | x(i); θY |X) with ŷ(i) and P (ỹ(i) | y(i), t(i); θỸ |Y,T ) with hϕ(·),
assuming y(i) and ỹ(i) are binary, and writing the explicit form of negative binary cross-entropy (e.g., y log y+(1−y) log ŷ)
recovers the form of the M-step objective seen in Eq. 7. Note that the optimization problem flips from a maximization to a
minimization due to the relationship between maximizing log-likelihood of binary variable(s) and minimizing cross-entropy
loss.

B.3. Theorem 3.4

Theorem (Strength of the causal regularizer in t̂(i)). For an example indexed by i, Q(y(i)) ∈ [0, 1), and J (i) defined as in
Eq. 88, R(J (i)) is monotonically increasing in t̂(i) on (0, 1].

Proof. As a proof outline, we first show the closed-form of ŷ(i)OPT(Q(y(i)), t̂(i)) by solving the first-order optimality condition
of Eq. 88. Then, we show that ŷ(i)OPT(Q(y(i)), t̂(i)) is decreasing in t̂(i), and attains a maximum of Q(y(i)) as t̂(i) → 0+. We
conclude by showing that the preceding implies that R(J (i)) is monotonically increasing in t̂(i) on (0, 1], as desired.

The first-order optimality condition of Eq. 88 is

−
(
Q(y(i))

ŷ(i)
− 1−Q(y(i))

1− ŷ(i)
)
+
t̂(i)Q(y(i))

1− ŷ(i)t̂(i) = 0. (31)

By assumption (convexity of L), the minimizer is unique. Some algebra yields

−Q(y(i))(1− ŷ(i))(1− ŷ(i)t̂(i)) + (1−Q(y(i)))ŷ(i)(1− ŷ(i)t̂(i)) + t̂(i)Q(y(i))ŷ(i)(1− ŷ(i)) = 0 (32)

⇐⇒ (t̂(i) +Q(y(i))t̂(i))ŷ(i)2 − (2Q(y(i))t̂(i) + 1)ŷ(i) +Q(y(i)) = 0, (33)

from which we can apply the quadratic formula. Define B(Q(y(i)), t̂(i)) ≜ 2Q(y(i))t̂(i) + 1 and D(Q(y(i)), t̂(i)) ≜
(−B(Q(y(i)), t̂(i)))2 − 4Q(y(i))(Q(y(i))t̂(i) + t̂(i)).5 The quadratic formula yields solutions

ŷ
(i)
OPT(Q(y(i)), t̂(i)) =

B(Q(y(i)), t̂(i))±
√
D(Q(y(i), t̂(i))

2(t̂(i) +Q(y(i))t̂(i))
. (34)

We use the fact that ŷ(i) must be in [0, 1] and the constraints that t̂(i) ∈ (0, 1] and Q(y(i)) ∈ [0, 1) to determine which
branch of Eq. 34 yields real solutions in [0, 1]. By Lemma 1, D(Q(y(i), t̂(i)) ≥ 0, so the solutions are real. Then, by
Lemma 2,

B(Q(y(i)), t̂(i)) +
√
D(Q(y(i), t̂(i))

2(t̂(i) +Q(y(i))t̂(i))
≥ 1, (35)

eliminating that branch. By elimination,

ŷ
(i)
OPT(Q(y(i)), t̂(i)) =

B(Q(y(i)), t̂(i))−
√
D(Q(y(i), t̂(i))

2(t̂(i) +Q(y(i))t̂(i))
. (36)

5We use letter B(·) because it corresponds to coefficient b in the conventional quadratic formula:

x =
−b±

√
b2 − 4ac

2a

for a quadratic polynomial ax2 + bx+ c = 0. We choose letter D(·) since it corresponds to the discriminant.
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Lemma 3 verifies that the resulting ŷ
(i)
OPT(Q(y(i)), t̂(i)) are in [0, 1], as needed. To proceed, it suffices to show that

ŷ
(i)
OPT(Q(y(i)), t̂(i)) is decreasing in t̂(i) and attains a maximum of Q(y(i)) as t̂(i) → 0+.

Applying Lemma 4, to prove that ŷ(i)OPT(Q(y(i)), t̂(i)) decreases in t̂(i), it is sufficient to show

1− 2t̂(i)Q(y(i))2 −
√
D(Q(y(i)), t̂(i))) < 0 (37)

because 1− 2t̂(i)Q(y(i))2 −
√
D(Q(y(i), t̂(i)) has the same sign as the derivative of ŷ(i)OPT(Q(y(i)), t̂(i)) for the values of

(t̂(i), Q(y(i))) of interest.

For values of t̂(i) ∈ (0, 1] and Q(y(i)) ∈ [0, 1) such that 1− 2t̂(i)Q(y(i))2 < 0, Lemma 1 yields the desired result. For the
remaining values of (t̂(i), Q(y(i))), we can write

1− 4Q(y(i))2t̂(i) + 4Q(y(i))4t̂(i)2 < D(Q(y(i)), t̂(i)) (38)

⇐⇒ 1− 4Q(y(i))2t̂(i) + 4Q(y(i))4t̂(i)2 < 1− 4Q(y(i))2t̂(i) + 4Q(y(i))2t̂(i)2 (39)

⇐⇒ Q(y(i))2 < 1 (40)

which holds for all feasible values of Q(y(i)) ∈ [0, 1). Lastly, due to the monotonicity of ŷ(i)OPT(Q(y(i)), t̂(i)) in t̂(i), the
following one-sided limit is the maximum:

lim
t̂(i)→0+

ŷ
(i)
OPT(Q(y(i)), t̂(i)) = max

t̂(i)∈(0,1]
ŷ
(i)
OPT(Q(y(i)), t̂(i)). (41)

We want to show that the limit is Q(y(i)). Note that, since L is finite and convex, it is continuous (Corollary 10.1.1, (Rock-
afellar, 1970)); hence, this limit exists. Since substituting t̂(i) = 0 yields the indeterminate form 0/0, we appeal to
L’Hôpital’s rule:

lim
t̂(i)→0+

ŷ
(i)
OPT(Q(y(i)), t̂(i)) = lim

t̂(i)→0+

2Q(y(i))− 4t̂(i)Q(y(i))2−2Q(y(i))2√
D(Q(y(i)),t̂(i))

2(Q(y(i)) + 1)
=

2Q(y(i)) + 2Q(y(i))2

2(Q(y(i)) + 1)
= Q(y(i)). (42)

Note that
√
D(Q(y(i)), t̂(i))

∣∣∣∣
t̂(i)=0

= 1. Since Q(y(i))− ŷ(i)OPT(Q(y(i)), t̂(i)) > 0,

R(J (i)) = |Q(y(i))− ŷ(i)OPT(Q(y(i)), t̂(i))| = Q(y(i))− ŷ(i)OPT(Q(y(i)), t̂(i)). (43)

Furthermore, since ŷ(i)OPT(Q(y(i)), t̂(i)) is decreasing in t̂(i), R(J (i)) must increase in t̂(i), from which the theorem follows.

Remark B.3. We comment on the potential for DCEM to improve robustness to low overlap. To do so, we analyze the
sensitivity of the M-step optimum to extreme t̂(i). While analyzing the asymptotic variance of consistent estimators is a
common approach, asymptotic guarantees for DCEM are unclear due to the inherently non-convex (with respect to the
parameters) objective function. Thus, we analyze the Lipschitzness of the M-step optimum versus other causal effect
estimators. First, note that

d

dt̂
ŷOPT (Q(y), t̂) =

1− 2Q(y)2t̂2 −
√
C

2(Q(y) + 1)t̂2
√
C

(44)

where C = 4Q(y)2t̂2 − 4Q(y)2t̂+ 1. For all Q(y(i)) < 1 and all ˆt(i), this derivative is bounded (e.g., see Figure 5), and is
O(1)−Lipschitz in t̂(i). However, consider the expression for an inverse-propensity-weighted estimator, which sums terms
of the form

y(i)t(i)

t̂(i)
− y(i)(1− t(i))

1− t̂(i) (45)

to obtain a final estimate. Eq. 45 has O(t̂(i)2)-Lipschitz terms with respect to t̂(i). Thus, in a Lipschitz sense, DCEM may
be less sensitive to extreme propensity scores than causal effect estimators such as IPW.
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Figure 5. Contour plot of ŷ(i)
OPT(Q(y(i)), t̂(i)) with respect to t̂(i) (x-axis) and Q(y(i)) (y-axis). ŷ(i)

OPT(Q(y(i)), t̂(i)) scales with Q(y(i))
but decreases in t̂(i).

Corollary B.4. For an example indexed by i, Q(y(i)) = 1, and J (i) defined as in Eq. 88, R(J (i)) is monotonically
non-decreasing in t̂(i) on (0, 1].

Proof. The proof is identical to that of Theorem 3.4, except we find that

∂

∂t̂(i)
ŷ
(i)
OPT(Q(y(i)), t̂(i)) ≤ 0, (46)

instead of being strictly less than zero, from which the corollary follows.

Remark B.5. For intuition, we show a contour plot of ŷ(i)OPT(Q(y(i)), t̂(i)) in Fig. 5. We verify the result in CVXPY.

B.4. Proposition 3.5

Proposition (Minimizer of M-step when t(i) = 1). Suppose that t(i) = 1, let Q(y(i)) ≜ E[y = 1 | t, ỹ, a,x], and let ŷ(i) be
some estimate of y(i). Use L : [0, 1]2 → R+ be shorthand for binary cross-entropy loss. Then, the minimization problem

min
ŷ

1

N

N∑
i=1

L(Q(y(i)), ŷ(i)) +Q(y(i))L(ỹ(i), ŷ(i)t̂(i)) (47)

admits the solution ŷ(i) = y(i) for all i ∈ {1, . . . , N}.

Proof. We briefly verify the convexity of the objective, which follows from the convexity of binary cross-entropy loss
and the closure of convexity under addition and positive scalar multiplication (Q(y(i)) ≥ 0). Thus, any minimizer of the
objective is unique.

We proceed by cases. First, suppose that y(i) = 1. Substituting the definition of Q(y(i)), and using the fact that
t(i) = 1 =⇒ y(i) = ỹ(i)), the objective function for a single example becomes

L(1, ŷ(i)) + L(1, ŷ(i)t̂(i)), (48)

which, by inspection, is maximized for ŷ(i) = 1. Similarly, for y(i) = 0, the objective function for a single example is

L(0, ŷ(i)) (49)

which reduces to binary cross-entropy loss, and ŷ(i) = 0 minimizes the objective. Combining the two cases, the minimizer
of the M-step objective when t(i) = 1 is ŷ(i) = y(i) as desired.
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B.5. Causal identifiability

For completeness, we provide the derivation of the causal identifiability results, though it follows directly from existing
results (Imbens & Rubin, 2015).

Proposition. Suppose that conditional exchangeability, or Ỹ (t) ⊥⊥ T | X , holds. Then E[Y | X] = E[Ỹ | X, do(T = 1)],
which is identifiable as E[Ỹ | X,T = 1].

Proof. We can write

E[Y | X] = E[Y | X,T = 1] = E[Ỹ | X,T = 1] = E[Ỹ | X, do(T = 1)] (50)

where the first equality is due to Y ⊥⊥ T | X , the second equality results from T = 1 =⇒ Y = Ỹ , and the final equality
applies conditional exchangeability. Since E[Y | X] = E[Ỹ | X, do(T = 1)] = E[Ỹ | X,T = 1], the theorem follows.

B.6. Lemmas used

Below are the lemmas and proofs referenced in the preceding theorem and proposition proofs.

Lemma 1. Define B(Q(y(i)), t̂(i)) ≜ 2Q(y(i))t̂(i) + 1 and D(Q(y(i)), t̂(i)) ≜ (−B(Q(y(i)), t̂(i)))2 −
4Q(y(i))(Q(y(i))t̂(i) + t̂(i)) on Q(y(i)) ∈ [0, 1] and t̂(i) ∈ (0, 1]. Then, D(Q(y(i)), t̂(i)) ≥ 0.

Proof. Choose any Q(y(i)) ∈ [0, 1] and t̂(i) ∈ (0, 1]. We can write:

D(Q(y(i), t̂(i)) ≥ 0 (51)

⇐⇒ B(Q(y(i)), t̂(i))2 ≥ 4Q(y(i))(Q(y(i))t̂(i) + t̂(i)) (52)

⇐⇒ 4Q(y(i))2t̂(i)2 + 4Q(y(i))t̂(i) + 1 ≥ 4Q(y(i))(Q(y(i))t̂(i) + t̂(i)) (53)

⇐⇒ 4Q(y(i))2t̂(i)2 − 4Q(y(i))2t̂(i) + 1 ≥ 0. (54)

The final LHS is convex (by inspection) in t̂(i), such that

min
t̂(i)

4Q(y(i))2t̂(i)2 − 4Q(y(i))2t̂(i) + 1 = 1−Q(y(i)) ≥ 0 (55)

where the minimum is attained at t̂(i) = 1
2 , and concave (by inspection) in Q(y(i)), such that it suffices to evaluate the final

LHS at Q(y(i)) ∈ {0, 1}:6

4Q(y(i))2t̂(i)2 − 4Q(y(i))2t̂(i) + 1
∣∣∣
Q(y(i))=0

= 1 ≥ 0 (56)

4Q(y(i))2t̂(i)2 − 4Q(y(i))2t̂(i) + 1
∣∣∣
Q(y(i))=1

= 4(t̂(i)2 − t̂(i)) + 1 ≥ 4 ·
(
−1

4

)
+ 1 = 0, (57)

such that for all other Q(y(i)) ∈ (0, 1), 4Q(y(i))2t̂(i)2 − 4Q(y(i))2t̂(i) + 1 ≥ 0 as needed.

Lemma 2. Define B(Q(y(i)), t̂(i)) and D(Q(y(i), t̂(i)) as in Lemma 1. Then, for Q(y(i)) ∈ [0, 1] and t̂(i) ∈ (0, 1],

B(Q(y(i)), t̂(i)) +
√
D(Q(y(i), t̂(i))

2(t̂(i) +Q(y(i))t̂(i))
≥ 1. (58)

6Recall that, for a concave function f , f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y) for α ∈ [0, 1] with equality for α = 0 or 1. Thus,
via the extreme value theorem, the minimum of f on [x, y] is achieved at x or y.
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Proof. Choose any Q(y(i)) ∈ [0, 1] and t̂(i) ∈ (0, 1]. First, we rewrite

B(Q(y(i)), t̂(i)) +
√
D(Q(y(i), t̂(i))

2(t̂(i) +Q(y(i))t̂(i))
≥ 1 (59)

⇐⇒ 2Q(y(i))t̂(i) + 1 +

√
D(Q(y(i), t̂(i)) ≥ 2(t̂(i) +Q(y(i))t̂(i)) (60)

⇐⇒
√
D(Q(y(i), t̂(i)) ≥ 2t̂(i) − 1. (61)

For t̂(i) ∈ (0, 12 ), Lemma 1 yields the desired conclusion. For t̂(i) ∈ [ 12 , 1], we can write√
D(Q(y(i), t̂(i)) ≥ 2t̂(i) − 1 (62)

⇐⇒ 4Q(y(i)2)t̂(i)2 − 4Q(y(i)2)t̂(i) + 1 ≥ 4t̂(i)2 − 4t̂(i) + 1 (63)

⇐⇒ Q(y(i)2)(t̂(i) − 1) ≥ t̂(i) − 1 (64)

⇐⇒ Q(y(i)2) ≤ 1 (65)

which all Q(y(i)2) ∈ [0, 1] satisfy. This completes the proof.

Lemma 3. Define B(Q(y(i)), t̂(i)) and D(Q(y(i), t̂(i)) as in Lemma 1. Then, for Q(y(i)) ∈ [0, 1] and t̂(i) ∈ (0, 1],

0 ≤
B(Q(y(i)), t̂(i))−

√
D(Q(y(i), t̂(i))

2(t̂(i) +Q(y(i))t̂(i))
≤ 1. (66)

Proof. Choose any Q(y(i)) ∈ [0, 1] and t̂(i) ∈ (0, 1]. Equivalently, we can show

0 ≤ B(Q(y(i)), t̂(i))−
√
D(Q(y(i), t̂(i)) ≤ 2(t̂(i) +Q(y(i))t̂(i)). (67)

For the first inequality, note that√
D(Q(y(i), t̂(i)) =

√
(−B(Q(y(i)), t̂(i)))2 − 4Q(y(i))(Q(y(i))t̂(i) + t̂(i)) ≤

√
(−B(Q(y(i)), t̂(i)))2 (68)

= |B(Q(y(i)), t̂(i)))| = B(Q(y(i)), t̂(i))) (69)

which rearranges to 0 ≤ B(Q(y(i)), t̂(i))−
√
D(Q(y(i), t̂(i)) as desired. For the second inequality, note that

B(Q(y(i)), t̂(i))−
√
D(Q(y(i), t̂(i)) ≤ 2(t̂(i) +Q(y(i))t̂(i)) (70)

⇐⇒ 1−
√
D(Q(y(i), t̂(i)) ≤ 2t̂(i) (71)

⇐⇒ 1− 2t̂(i) ≤
√
D(Q(y(i), t̂(i)). (72)

For t̂(i) ∈ [ 12 , 1], Lemma 1 yields the desired conclusion. For t̂(i) ∈ (0, 12 ), the proof proceeds similarly to Lemma 2:√
D(Q(y(i), t̂(i)) ≥ 1− 2t̂(i) (73)

⇐⇒ 4Q(y(i)2)t̂(i)2 − 4Q(y(i))2t̂(i) + 1 ≥ 4t̂(i)2 − 4t̂(i) + 1 (74)

⇐⇒ Q(y(i)2)(t̂(i) − 1) ≥ t̂(i) − 1 (75)

⇐⇒ Q(y(i)2) ≤ 1 (76)

which all Q(y(i)2) ∈ [0, 1] satisfy. This completes the proof.
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Lemma 4. Define B(Q(y(i)), t̂(i)) and D(Q(y(i), t̂(i)) as in Lemma 1, and define ŷ(i)OPT(Q(y(i)), t̂(i)) as in Definition 88.
Then,

sign
(

∂

∂t̂(i))
ŷ
(i)
OPT(Q(y(i)), t̂(i))

)
= sign

(
1− 2t̂(i)Q(y(i))2 −

√
D(Q(y(i)), t̂(i)))

)
(77)

where sign(x) : R→ {−1, 0, 1} is the sign function:

sign(x) ≜


−1 x < 0

0 x = 0

1 x > 0

. (78)

Proof. The proof is largely algebraic simplification based on sign-preserving operations. Taking derivatives:

∂

∂t̂(i)
ŷ
(i)
OPT(Q(y(i)), t̂(i)) =

Q(y(i))− 2t̂(i)Q(y(i))2−Q(y(i))2√
D(Q(y(i)),t̂(i))

t̂(i) +Q(y(i))t̂(i)
−

(
B(Q(y(i)), t̂(i))−

√
D(Q(y(i)), t̂(i)))

)
(Q(y(i)) + 1)

2(t̂(i) +Q(y(i))t̂(i))2

(79)
via the quotient rule of derivatives and cancelling terms. We can apply sign-preserving operations, namely, positive scalar
multiplication, canceling additive zeroes, and commuting additive terms, as follows:

∂

∂t̂(i)
ŷ
(i)
OPT(Q(y(i)), t̂(i)) ∝ (t̂(i) +Q(y(i))t̂(i))

2Q(y(i))− 4t̂(i)Q(y(i))2 − 2Q(y(i))2√
D(Q(y(i)), t̂(i))


−
(
B(Q(y(i)), t̂(i))−

√
D(Q(y(i)), t̂(i)))

)
(Q(y(i)) + 1) (80)

∝ t̂(i)
2Q(y(i))− 4t̂(i)Q(y(i))2 − 2Q(y(i))2√

D(Q(y(i)), t̂(i))

−B(Q(y(i)), t̂(i)) +

√
D(Q(y(i)), t̂(i)))

(81)

=

2t̂(i)Q(y(i))2 − 4t̂(i)2Q(y(i))2√
D(Q(y(i)), t̂(i))

− 1 +

√
D(Q(y(i)), t̂(i))) (82)

∝ 2t̂(i)Q(y(i))2 − 4t̂(i)2 −
√
D(Q(y(i)), t̂(i))) +D(Q(y(i)), t̂(i)) (83)

= 1− 2t̂(i)Q(y(i))2 −
√
D(Q(y(i)), t̂(i))) (84)

which completes the proof.

B.7. Definition 3.3: causal regularization strength

We expand on our definition of causal regularization strength here. Conventionally, regularization strength is operationalized
in terms of a regularization parameter λ ∈ R+, given a loss ℓ(θ) and a regularizer r(θ) (e.g., r(θ) = ∥θ∥22 for some objective
J(θ) of the form

J(θ) ≜ ℓ(θ) + λr(θ). (85)

Eq. 85 is an instance of regularized risk minimization (Shalev-Shwartz & Ben-David, 2014). It is also identical to linear
scalarization, a technique for characterizing tradeoffs in multi-objective optimization. The equivalence between regularized
risk minimization and linear scalarization simply reflects that regularization can impose tradeoffs in optimizing J(θ) between
minimizing ℓ(θ) versus r(θ). Regularized risk minimization treats r(θ) as a “penalty” term, while linear scalarization treats
r(θ) as merely another objective. As λ increases, the tradeoff increasingly favors r(θ), and vice versa.

Now, consider our M-step objective example-wise:

L(Q(y(i)), ŷ(i)) +Q(y(i))L(ỹ(i), ŷ(i)t̂(i)). (86)
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The M-step objective can similarly be interpreted as variation of a regularized risk minimziation problem, where ℓ(θ) =
L(Q(y(i), ŷ(i)), and Q(y(i))L(ỹ(i), ŷ(i), t̂(i)) = r(θ), λ = 1. However, t̂(i) is a constant that can affect regularization
strength, but is not a multiplier like λ. The purpose of our result is to characterize the impact of t̂(i) on the tradeoff between
the two terms of the M-step objective.

Thus, motivated by the tradeoff/multi-objective perspective of regularization, we define regularization strength in terms of a
tradeoff between optimizing L(Q(y(i), ŷ(i)) and Q(y(i))L(ỹ(i), ŷ(i)t̂(i)). We observe that

Q(y(i)) = argmin
ŷ(i)

L(Q(y(i)), ŷ(i)) (87)

and define causal regularization strength as the absolute distance between Q(y(i)), the minimizer of L(Q(y(i)), ŷ(i)), and
the optimum of the example-wise M-step objective.

Definition B.6 (Causal regularization strength). Given an example indexed by i, and a finite loss function L : [0, 1]2 → R
convex in ŷ(i) on [0, 1] for all i, define

ŷ
(i)
OPT(Q(y(i)), t̂(i)) ≜ argmin

ŷ(i)

J (i)(ŷ(i), . . . ) ≜ argmin
ŷ(i)

L(Q(y(i)), ŷ(i)) +Q(y(i))L(ỹ(i), ŷ(i)t̂(i)). (88)

The causal regularization strength of objective J (i) is defined as R(J (i)) = |Q(y(i))− ŷ(i)OPT(Q(y(i)), t̂(i))|.

Intuitively, we define causal regularization strength in terms of the absolute distance between the optimum of each term
of the M-step objective, which captures some notion of a tradeoff between the two terms. Note that this definition does
not relate to convergence to ŷ(i)OPT(Q(y(i)), t̂(i)); we are largely interested in how much the solution to min L(Q(y(i)), ŷ(i))
shifts after adding the causal regularization term.

C. Additional experimental setup
For both settings, we set random seeds to 42 to facilitate reproducibility.

C.1. Additional details for fully synthetic dataset

We choose sY as follows:

SY (x) = (sY 1 ◦ sY 2)(x)

sY 1(x) = x1 −
1

4
sin(8πx0 + ψ) sY 2(x) = Rπ/6x+ 0.5

where ψ is a simulation parameter, and Rπ/6 is a 2D rotation matrix. Intuitively, sY (x) rotates and translates x, then applies
a sinewave-based function that yields a similarly rotated, sinewave-shaped decision boundary.

We choose sT as follows:
sT (x

(i), a(i)) = 1⊤x(i) − τa(i)

where τa is a simulation parameter. For demonstration, we set cy such that P (Y = 1) = 0.25 to allow for sufficiently-sized
performance gaps across groups to emerge.7 As a sensitivity analysis, we also replicate all experiments on fully synthetic
data across ψ ∈ [0, π/6, π/3, . . . , 11π/6], representing the “phase” of the decision boundary.

Computing simulation parameters. We discuss how we find simulation parameters for each value of qy, qt, and k. Given
qy and P (A = 0) = P (A = 1) = 0.5, we have:

qy =
P (Y = 1 | A = 0)

P (Y = 1 | A = 1)

P (Y = 1) =
1

4
=
P (Y = 1 | A = 0) + P (Y = 1 | A = 1)

2

7Empirically, at extreme values of P (Y = 1), we found artificially small performance gaps. This is because model errors tend to
concentrate near the true decision boundary, which lies in the tails of the covariate distributions defining X | A = a. In those tail regions,
the difference between the densities X | A = a across values of A is smaller in our two-Gaussian simulation design.
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Figure 6. Cohort diagram for our Sepsis-3 cohort (N = 5301). *: Further details are provided in (Johnson et al., 2018). ˆ: Our cohort size
differs slightly from that reported in (Johnson et al., 2018) due to an apparent pre-processing error in defining Sepsis-3 (Singer et al.,
2016); our reported cohort size applies the relevant correction.

which yields, by substitution,

qy
2(qy + 1)

= P (Y = 1 | A = 0)

1

2(qy + 1)
= P (Y = 1 | A = 1),

from which we use a binary search algorithm (bisection) evaluated using simulated versions of X | A = a with the current
estimate of the mean µa to solve for the requisite values of µa. Given values of µa, we can then solve for τa using qt and k
identically:

qt =
P (T = 1 | A = 0)

P (T = 1 | A = 1)

P (T = 1) = kP (Y = 1) =
k

4
=
P (T = 1 | A = 0) + P (T = 1 | A = 1)

2

which yields, again by substitution,

qtk

2(qt + 1)
= P (T = 1 | A = 0)

k

2(qt + 1)
= P (T = 1 | A = 1),

and we can again use binary search to solve for τa.

C.2. Additional details for pseudo-synthetic sepsis risk-stratification task

Cohort description. Our cohort follows from the MIMIC-III Sepsis-3 cohort (Johnson et al., 2018). Their cohort exclusion
criteria are publicly available.8 We corrected an apparent Sepsis-3 definition bug that erroneously labeled individuals with
suspicion of infection if they received a blood culture at any time after an antibiotic before re-running their pipeline. In
contrast, the Sepsis-3 (Singer et al., 2016) definition requires the blood culture to occur within 24 hours of the antibiotic
time for suspicion of infection.9 In practice, this stricter condition affects < 1% of rows in their original cohort: their cohort
size is N = 11, 791, while ours is N = 11, 705.

Feature extraction. Following the Risk of Sepsis model (Delahanty et al., 2019), we extract the following 13 summary
statistics over the initial 3-hour observation period:

1. Maximum lactic acid measurement,
8https://github.com/alistairewj/sepsis3-mimic
9There are multiple “paths” for meeting the criteria for suspicion of infection; for a full enumeration, see Table 2 of (Singer et al.,

2016).
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2. first shock index times age (years),

3. last shock index times age (years),

4. maximum white blood cell count,

5. change in lactic acid (last - first),

6. maximum neutrophil count,

7. maximum blood glucose,

8. maximum blood urea nitrogen,

9. maximum respiratory rate,

10. last albumin measurement,

11. minimum systolic blood pressure,

12. maximum creatinine, and

13. maximum body temperature (Fahrenheit).

The shock index is defined as the ratio of heart rate (beats per minute) and systolic blood pressure. Missing features are
replaced with -9999 following the original manuscript.

Testing decision boundary. We define sT as

β · RRmax − 22

RRσ
+ (1− β) · SBPmin − 100

SBPσ
− τa, (89)

where RRmax and SBPmin are maximum respiratory rate and minimum systolic blood pressure, respectively, and
RRσ, SBPσ are their corresponding standard deviations on the training split (RRσ = 9.8, SBPσ = 21.8). The pa-
rameter β allows us to examine different testing decisions. Thus, we replicate all experiments over β ∈ {0, 0.1, . . . , 1}.

D. Hyperparameters & additional model details
All hyperparameters were selected using a validation set of examples. Hyperparameters for the sepsis simulation task were
chosen such that all approaches attained similar performance when using y. We reimplement all existing methods following
the original papers, using the code repository as a reference if applicable. We set random seeds to 42 for all models (used for
initialization), unless otherwise noted.

D.1. Default hyperparameters

Fully synthetic. All models use a two-layer neural network with layer sizes (64, 64), trained for 1000 epochs via
Adam (Kingma & Ba, 2015) with learning rate 10−3 and no weight decay unless specified. EM approaches are trained up to
50 iterations with early stopping on validation loss (patience 3) and warm starts (initialized with solution from the previous
iteration).

Sepsis classification. All predictors are three-layer neural networks with sizes (128, 128, 16) trained for 10000 epochs
using Adam with learning rate 10−5 and weight decay 10−3. The DCEM propensity model (gζ) is trained for 20000 epochs
with learning rate 10−5 and early stopping with patience 1000, and the DCEM model (fθ) uses learning rate and weight
decay 5× 10−7 and 10−6, respectively.

D.2. Simulation study

Peer loss & group peer loss: Both peer loss methods depend on a hyperparameter α, for which the optimal value depends
on y. To show the peer loss methods in the best light, we manually calculate the optimal value for usage in training.
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ITE corrected model (DragonNet): Our estimand of interest is the conditional average treatment effect (CATE) of the
sensitive attribute A on testing T , which is identifiable via

CATEA→T (x) ≜ E[T (1) | X = x]− E[T (0) | X = x] = E[T | X = x, A = 1]− E[T | X = x, A = 0] (90)

under assumptions of consistency (T (a) = T ) and conditional exchangeability (T (a) ⊥⊥ A | X). We then apply the CATE
as a correction factor to the default model:

ŷ ≜ ˆ̃y − CATEA→T (x); (91)

i.e., counterbalancing disparate censorship by “subracting out” the labeling bias. Note that this is an alternative to the
counterbalancing approach of DCEM. We train and conduct inference with targeted regularization.

Truncated LQ: We searched across k ∈ {0.1, 0.2, . . . , 1} and q ∈ {0.1, 0.2, . . . , 1} (using the notation of the original
paper), using k = 0.1, q = 0.1 for the final results.

SELF: We were unable to obtain convergence with Adam, so we used SGD with learning rate 0.01, momentum 0.9, noise
parameter 0.05 (for input augmentation), consistency regularization parameter 1, and weight decay 1× 10−6 as used for one
of the experiments in the original paper. Weight decay was selected from {0, 10−6, 10−5, 10−4, 10−3, 10−2}. The ensem-
bling/mean teacher parameters were chosen from {0.9, 0.99, 0.999}. The noise was chosen from {0, 0.005, 0.01, 0.05, 0.1}.
The regularization parameter was chosen from {1, 5, 10, 50}. SELF proceeds for a maximum of 50 iterations with patience
1 with respect to validation AUC. We set ensembling momentum to 0.9 and the mean teacher moving average parameter to
0.9. To show SELF in the best light, we prevented SELF from filtering tested positive individuals.

DivideMix: We use 20 warmup epochs, with α = 4 as the Beta parameter for the MixMatch step, T = 0.5, λu = 50,
λr = 1, and τ = 0.5, and weight decay 5× 10−4. We also experimented with preventing DivideMix from filtering tested
positive individuals, but DivideMix was unstable in both settings. Ultimately, we did not prevent DivideMix from filtering
tested positive individuals.

EM-based methods (SAREM, DCEM): We tested SAREM and DCEM with and without the usage of warm starts in the
M-step.

D.3. Sepsis risk-stratification

For all baselines, the setup matches the fully synthetic setting except as specified below.

DCEM: The learning rates under consideration were [10−7, 5× 10−7, 10−6, 5× 10−6, 10−5, 10−4, 10−3]. The weight
decay was selected from [0, 10−6, 2× 10−6].

SELF: For the sepsis classification experiments, weused SGD and set the learning rate to 10−8, the highest learning rate
tested that did not result in NaN loss. We tested learning rates of the form {10−d, 5× 10−d} for d ∈ {2, 3, 4, 5, 6, 7, 8}.

E. Additional empirical results and discussion
E.1. Full results

Here, we report empirical results for all baselines and settings. Due to the large number of empirical settings tested
(simulation: 224, sepsis classification: 45), we include a representative subset of the figures, and report the raw numbers
used for these results and results not shown in the Appendix via CSV files in the code appendix.

For the simulated task, we show results for k ∈ [1/3, 3], qt ∈ [0.5, 2], and qy = 0.5. Empirically, changing qy did not affect
the general trends, but amplified/dampened the scale. Increasing qt beyond the selected range has similar impacts. For lower
values of k, all methods perform poorly. For the sepsis classification task, we show results for k ∈ [1/3, 5] and qt = 1.5.

Summary of results. We summarize when our method (DCEM) empirically performed the best, when it performed
similarly to baselines, and when it underperformed baselines.
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DCEM is best where...

• (Both metrics) The higher-prevalance group is undertested (qy < 1 but qt > 1) and

• (Both metrics) testing rates are sufficiently high (k ≥ 0.5).

DCEM is similar to baselines when...

• (Both metrics) Testing rates are moderately low (1/3 ≤ k ≤ 1/2), or sufficiently high that it is easier to extrapolate
from labeled data (k ≥ 3).

DCEM underperforms baselines when...

• (ROC gap only) when testing rates are low (k ≤ 1/2) and

• (ROC gap only) the testing disparity aligns with the prevalence disparity (e.g., qt and qy < 1 such that learning to
predict ỹ preserves ranking in y), or

• (both metrics) testing rates are extremely low (k < 1/3).

The strongest alternatives to DCEM in our experiments were SELF (both datasets, bias mitigation), DragonNet (sepsis only,
both metrics), and the tested-only model (simulation only, discriminative performance).

Index of figures. We provide here a list of all result figures in the Appendix, indexed by problem parameters k (overall
testing rate multiplier), qt (testing disparity), and qy (prevalence disparity; simulation only).

Fully-synthetic data

• Figure 11: qy = 1/2, k = 1/3, qt = 1/2

• Figure 12: qy = 1/2, k = 1/3, qt = 1

• Figure 13: qy = 1/2, k = 1/3, qt = 2

• Figure 14: qy = 1/2, k = 1/2, qt = 1/2

• Figure 15: qy = 1/2, k = 1/2, qt = 1

• Figure 16: qy = 1/2, k = 1/2, qt = 2

• Figure 17: qy = 1/2, k = 1, qt = 1/2

• Figure 18: qy = 1/2, k = 1, qt = 1

• Figure 19: qy = 1/2, k = 1, qt = 2

• Figure 20: qy = 1/2, k = 2, qt = 1/2

• Figure 21: qy = 1/2, k = 2, qt = 1

• Figure 22: qy = 1/2, k = 2, qt = 2

• Figure 23: qy = 1/2, k = 3, qt = 1/2

• Figure 24: qy = 1/2, k = 3, qt = 1

• Figure 25: qy = 1/2, k = 3, qt = 2
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Table 1. Sensitivity analysis of DCEM components with respect to AUC and ROC gap (min, max across sT in parentheses) for
qy = 0.5, k = 1, qt = 2. Maximum (minimum) median AUC (ROC gap) in bold.

Method ↑ AUC ↓ ROC gap

Imputation-only .676 [.644, .715] .063 [.036, .086]
No causal regularization .767 [.733, .813] .056 [.016, .086]

DCEM (ours) .791 [.763, .820] .031 [.019, .072]

Sepsis classification

• Figure 26: k = 1/4, qt = 3/2

• Figure 27: k = 1/3, qt = 3/2

• Figure 28: k = 1/2, qt = 3/2

• Figure 29: k = 1, qt = 3/2

• Figure 30: k = 2, qt = 3/2

• Figure 31: k = 3, qt = 3/2

• Figure 32: k = 4, qt = 3/2

• Figure 33: k = 5, qt = 3/2

E.2. DCEM ablation study

To understand how DCEM design choices impact performance, we conduct an ablation study of repeated iterations and
causal regularization:

• Imputation-only: This approach trains a model on the tested-only (labeled) examples, imputes pseudo-labels for the
remaining, then trains a model on both the pseudo-labeled and labeled data. This is equivalent to a single EM iteration
without causal regularization.

• No causal regularization: This approach runs multiple EM iterations, but without causal regularization.

The results (Table 1) suggest that both repeated iterations and causal regularization are essential to the bias mitigation and
discriminative capabilities of DCEM. The imputation-only approach fails due to low overlap between the tested vs. untested
regions. Consequently, the imputed outcomes could be arbitrarily inaccurate. If we keep imputing and retraining (without
causal regularization), we recover a form of pseudo-labeling (Lee, 2013). The empirical improvement in performance
suggests that repeated supervision from reliably labeled examples helps improve discriminative performance. However, this
approach does not adjust for labeling bias (e.g., by using A), and indeed the ROC gap does not improve. Incorporating causal
regularization recovers the DCEM M-step. Adding causal regularization guarantees that DCEM locally maximizes log-
likelihood, and allows it to mitigate labeling bias by incorporating A into a propensity score-like term (causal regularization;
see Theorem B.3).

E.3. Sensitivity analysis of causally-motivated approaches

Here, we conduct a sensitivity analysis of causally-motivated approaches under disparate censorship. The causally-motivated
approaches are theoretically consistent estimators of P (Y | X), which we can interpret at the conditional average treatment
effect of testing (T ) on the observed outcome (Ỹ ; see Appendix B.5). We examine the following causally-motivated
estimators:

• Tested-only: training models on tested individuals only, using X as covariates,

• Tested-only + group: training models on tested individuals only, using X and A as covariates,
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Table 2. Sensitivity analysis of causal effect estimators for estimating P (Y | X) compared to DCEM with respect to AUC and ROC gap
(min, max across sT in parentheses) for qy = 0.5, k = 1, qt = 2. Maximum (minimum) median AUC (ROC gap) in bold.

Method ↑ AUC ↓ ROCGap

Tested-only .808 [.623, .876] .052 [.020, .093]
Tested-only + group .764 [.675, .863] .078 [.025, .278]

IPW .829 [.598, .874] .048 [.020, .104]
DR-Learner .643 [.558, .769] .117 [.080, .216]

DCEM (ours) .791 [.763, .820] .031 [.019, .072]
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C

Discriminative performance 

Sensitivity analysis of causal effect estimators vs. DCEM under varying levels of random overlap violations
(qy = 0.5, qt = 2, k = 1)

Models
Tested-only Tested-only + group Reweighted DR-Learner DCEM (ours)

Figure 7. Sensitivity analysis of causal effect estimators with respect to AUC and ROC gap (min, max across sT in parentheses) for
qy = 0.5, k = 1, qt = 2 across varying levels of overlap. Causally-motivated methods are shown in green, while DCEM is shown in
magenta. Empirically, DCEM improves robustness to overlap violations.

• Inverse propensity weighting (IPW): an IPW-based (Rosenbaum & Rubin, 1983) version of the tested-only approach,
and

• Doubly-robust estimator (DR-Learner): a doubly-robust estimator of P (Y | X) (Kennedy, 2023).

Models are evaluated for qy = 0.5, k = 1, qt = 2 (i.e., same setting as Fig. 2). Under disparate censorship, low overlap is
common due to the “sharpness” of the testing boundary. To validate this hypothesis, we also evaluate causal effect estimators
versus DCEM at varying levels of overlap (1/4x, 1/2x, 1x, 2x, and 4x of the original setting). Overlap is controlled by the
coefficient inside the sigmoid for generating t(i) (i.e., 30 in the original experiments).10 For the DR-learner, we trimmed
propensity scores (threshold: 0.05) to obtain estimates that were in [0, 1] (the possible values of P (Y | X)).

DCEM has better bias mitigation capabilities than causal approaches, and a tighter range of discriminative perfor-
mance. Table 2 shows that, empirically, DCEM exhibits lower variance under overlap violations than causally-motivated
approaches. Notably, DCEM achieves the lowest median ROC gap, and maintains competitive (but not necessarily best)
median AUC. Causally-motivated methods generally have good median discriminative performance, but poor bias miti-
gation properties. Furthermore, the wide performance ranges of causally-motivated approaches may be unacceptable for
safety-critical/high-stakes domains. We note that the DR-learner may underperform in this setting due if the propensity score
trimming introduces sufficient bias: recall that, although double-robustness only requires one correctly-specified model, the
asymptotic properties may still depend on the asymptotics of each model (e.g., as shown in (Wager, 2020)).

DCEM is empirically more robust to overlap violations. Figure 7 shows that, empirically, as overlap violations increase,
DCEM degrades more slowly than causally-motivated approaches in terms of both bias mitigation and discriminative
performance. Furthermore, DCEM maintains similarly tight performance ranges across levels of overlap, while the

10Recall that t(i) is generated as a Bernoulli random variable with parameters of the form σ(ax+ b).
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Table 3. Sensitivity analysis of softmax temperature scaling parameter (T ) with respect to DCEM AUC and ROC gap (min, max across
sT in parentheses) for qy = 0.5, k = 1, qt = 2. Maximum (minimum) median AUC (ROC gap) in bold.

τ ↑ AUC ↓ ROC gap

0.01 .778 [.737, .815] .051 [.020, .104]
0.1 .791 [.762, .818] .025 [.014, .057]

1 (default) .791 [.763, .820] .031 [.019, .072]
10 .800 [.730, .858] .051 [.021, .096]

100 .762 [.667, .835] .071 [.032, .097]
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Figure 8. Calibration plot of t̂ for (from left to right) τ ∈ {0.1, 1, 10}. While t̂ is well-calibrated for τ = 1, changing τ in either direction
(< 1 vs. > 1) induces miscalibration error.

performance ranges of causal approaches widens as overlap violations increase. At low overlap, causally-motivated
approaches have similarly tight performance ranges as DCEM.

E.4. Sensitivity analysis of softmax temperature scaling

We can further tune the smoothness of t̂(i) via the softmax temperature τ of the binary classifier for t̂(i):

t̂(i) :=
exp(zt/τ)

exp(zt/τ) + exp(z1−t/τ)
(92)

where zt is the logit outputted by gζ for each t ∈ {0, 1}. Lower values of τ sharpen t̂(i) towards {0, 1}, while larger values
smooth t̂(i) toward 1

2 . Note that τ = 1 recovers the standard softmax function. Thus, adjusting τ allows us to control the
smoothness of the ỹ(i) = t(i)y(i) constraint.

Table 3 shows full results (median AUC and ROC gap, plus minima and maxima across sY ) for DCEM across various
values of temperature scaling parameter τ . Empirically, our results suggest that temperature scaling does not significantly
change the AUC, and may trade off with bias mitigation since t̂(i) may no longer be calibrated. Furthermore, even though
median AUC improves in one case (τ = 10), the range of AUC is much larger (0.057 vs. 0.128), and τ = 1 still yields the
maximum empirical worst-case AUC (0.763).

Values of τ away from 1 tend to yield larger ROC gaps. We find that t̂(i) is well-calibrated for τ = 1, but not so for values of
τ (Figure 8). Since t̂(i) is critical to counterbalancing disparate censorship, miscalibration error in t̂(i) could result in larger
ROC gaps by reducing the effectiveness/correctness of the causal regularization term. Thus, we opt to maintain τ = 1.

E.5. Sensitivity analysis of E-step initialization

We compare random initialization to using a tested-only model as initialization (the final approach). Empirically, Table 4
shows trivial changes to performance when using a model trained on labeled data to initialize the E-step. This suggests that
DCEM is able to overcome poor initialization in the settings studied; i.e., the gains from tested-only initialization may be
marginal, if nonzero.
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Table 4. Sensitivity analysis of E-step initialization with respect to DCEM AUC and ROC gap (min, max across sY in parentheses) for
qy = 0.5, k = 1, qt = 2. Maximum (minimum) median AUC (ROC gap) in bold.

Initialization scheme AUC ROC gap

random .787 [.768, .822] .031 [.011, .060]
tested-only .791 [.763, .820] .031 [.019, .072]
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Figure 9. Relative frequencies of AUC for DCEM vs. SELF at similar ROC gaps, pooling models across all k, qy, qt tested. Dashed lines
= mean AUC by model. DCEM improves AUC among models with similar ROC gaps when the ROC gap is below 0.04.

E.6. Tradeoffs between bias mitigation and discriminative performance: SELF

We compare instances of DCEM to SELF, controlling for ROC gap. We find that DCEM optimizes discriminative
performance more effectively than SELF. Fig. 9 shows a histogram of AUC for SELF and DCEM models with similar ROC
gaps across qt, qy, k and sY , increasing in ROC gap to the right. For models with ROC gaps < 0.04 (Fig. 9, 1st and 2nd
from left), DCEM improves AUC compared to instances of SELF with similar ROC gaps. At larger ROC gaps, DCEM
and SELF obtain similar AUCs (Fig. 9, 1st and 2nd from right). Similarly to the comparison with tested-only models, the
results suggest that DCEM is not simply trading improved bias mitigation for performance, but is also able to optimize
discriminative performance. Since SELF is a filtering approach that does not account for the causal structure of disparate
censorship, its estimates of label bias are likely skewed. In contrast, DCEM explicitly uses the causal structure of disparate
censorship to counterbalance label bias.

E.7. Sepsis classification and robustness to shifts in labeling decisions

Fig. 10 shows the performance of DCEM vs. models with bimodial behavior across different sT , indexed by different
feature weightings in sT . Our results suggest that the baselines require specific sT to perform above random. The baselines
catastrophically underperform (AUC below 0.5) otherwise. Trends are analogous for the ROC gap.

Specifically, baseline performance improves when one feature is more heavily weighted than the other in the labeling
decision (x-axis near 0 or 1). However, when both features feature in labeling decisions (x-axis near 0.5), the baselines
catastrophically fail, while DCEM performance stays high. As seen in Fig. 4, DCEM AUC and ROC gap also exhibit less
variation across the different sT .

Determining which sT is appropriate is a clinical problem that requires domain expertise, and we make no claims as to
the clinical appropriateness of sT . Thus, ML practitioners should not assume that their data will be representative of any
particular decision-making pattern. DCEM is an alternative approach that is more robust than baselines to shifts in sT , and
thus warrants consideration when narrow assumptions about labeling biases are undesirable.

F. Computing Infrastructure
Hardware. We parallelize experiments across 4 A6000 GPUs and 256 AMD CPU cores (4x AMD EPYC 7763 64-Core
processors), though the memory requirements of each model are under 2GB of VRAM.
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Figure 10. ROC gaps (left) and AUC (right) of selected models on sepsis classification task as weighting of systolic blood pressure (BP)
and respiratory (resp.) rate (sT ) for testing changes (“0.0”/left: consider systolic BP only; “1.0”/right: consider resp. rate only) at
qt = 1.5, k = 4. If a feature is “more salient,” it is weighted higher than the other in the testing decision function sT .
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Figure 11. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 1/3, qt = 1/2. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.

Software. All experiments are run on a distribution of Ubuntu 20.04.5 LTS (Focal Fossa) with Python 3.9.16 managed
by conda 23.3.1. We use Pytorch 1.13.1 with CUDA 11.6 for all experiments (Paszke et al., 2019), with scikit-learn
1.2.2 (Pedregosa et al., 2011), scipy 1.10.1 (Virtanen et al., 2020), numpy 1.25.0 (Harris et al., 2020) and pandas 1.5.3 (The
pandas development team, 2020) for data processing/analysis. Matplotlib 3.7.1 was used to generate figures. Additionally,
torch ema 0.3 was used in our implementation of SELF. For the simulation study, we use a modified version of the official
disparate censorship repository at https://github.com/MLD3/disparate_censorship (Chang et al., 2022),
which is included with our code repository.

G. Code
Code will be released at the MLD3 Github repository at https://github.com/MLD3/DCEM. We redact the data-
processing code for the sepsis task only where necessary to ensure compliance with the terms of use for MIMIC-III (Johnson
et al., 2016).
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Figure 12. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 1/3, qt = 1. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 13. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 1/3, qt = 2. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 14. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 1/2, qt = 1/2. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 15. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 1/2, qt = 1. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 16. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 1/2, qt = 2. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 17. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 1, qt = 1/2. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 18. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 1, qt = 1. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 19. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 1, qt = 2. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 20. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 2, qt = 1/2. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.

35



From Biased Selective Labels to Pseudo-Labels

0.00

0.05

0.10

R
O

C
G

ap

↓ Bias mitigation

0.25

0.50

0.75

A
U

C

↑ Discriminative performance

Comparison of ROC Gap and AUC across models, qy = 0.5, k = 2, qt = 1

y-model (oracle)

y-obs model

Group 0 only

Group 1 only

Tested-only

SELF

DivideMixBasedModel

Generalized JS

Truncated LQ

DragonNet

Peer loss

Group peer loss

SAREM

DCEM (ours)

Figure 21. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 2, qt = 1. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 22. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 2, qt = 2. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 23. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 3, qt = 1/2. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 24. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 3, qt = 1. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 25. ROC gap (left) and AUC (right) of baselines on simulated data at qy = 1/2, k = 3, qt = 2. “-”: median, “△”: worst-case
ROC gap, “▽”: worst-case AUC.
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Figure 26. ROC gap (left) and AUC (right) of baselines on sepsis classification at k = 1/4, qt = 1.5. “-”: median, “△”: worst-case ROC
gap, “▽”: worst-case AUC.
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Figure 27. ROC gap (left) and AUC (right) of baselines on sepsis classification at k = 1/3, qt = 1.5. “-”: median, “△”: worst-case ROC
gap, “▽”: worst-case AUC.
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Figure 28. ROC gap (left) and AUC (right) of baselines on sepsis classification at k = 1/2, qt = 1.5. “-”: median, “△”: worst-case ROC
gap, “▽”: worst-case AUC.
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Figure 29. ROC gap (left) and AUC (right) of baselines on sepsis classification at k = 1, qt = 1.5. “-”: median, “△”: worst-case ROC
gap, “▽”: worst-case AUC.
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Figure 30. ROC gap (left) and AUC (right) of baselines on sepsis classification at k = 2, qt = 1.5. “-”: median, “△”: worst-case ROC
gap, “▽”: worst-case AUC.
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Figure 31. ROC gap (left) and AUC (right) of baselines on sepsis classification at k = 3, qt = 1.5. “-”: median, “△”: worst-case ROC
gap, “▽”: worst-case AUC.
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Figure 32. ROC gap (left) and AUC (right) of baselines on sepsis classification at k = 4, qt = 1.5. “-”: median, “△”: worst-case ROC
gap, “▽”: worst-case AUC.
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Figure 33. ROC gap (left) and AUC (right) of baselines on sepsis classification at k = 5, qt = 1.5. “-”: median, “△”: worst-case ROC
gap, “▽”: worst-case AUC.
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