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Abstract

Cardiovascular disease is a leading cause of death in the Western world. The exploration
of strategies to enhance the regenerative capacity of the mammalian heart is therefore of
great interest. One approach is the treatment of isolated transgenic mouse cardiomyocytes
(CMs) with potentially cell cycle-inducing substances and assessment if this results in
atypical cell cycle activity or authentic cell division. This requires the tedious and cost
intensive manual analysis of microscopy images. Recent advances have led to an increasing
use of deep learning (DL) algorithms in cellular image analysis. While developments in
image or single-cell classification are well advanced, multi-cell classification in crowded
image scenarios remains a challenge. This is reinforced by typically smaller dataset sizes
in such laboratory-specific analyses. In this paper, we propose a modular DL-based image
analysis pipeline for multi-cell classification of mononuclear and binuclear CMs in confocal
microscopy imaging data. We trisect the pipeline structure into preprocessing, modelling
and postprocessing. We perform semantic segmentation to extract general image features,
which are further analyzed in postprocessing. In total, we conduct 173 experiments. We
benchmark 18 encoder-decoder model architectures, perform hyperparameter optimization
across 28 runs, and conduct 127 experiments to evaluate dataset-related effects. The results
show that our approach has great potential for automating specific cell culture analyses
even with small datasets.
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1. Introduction

Cardiovascular disease is a leading cause of death in the Western world. Since the regen-
erative capacity of the adult mammalian heart is limited, we are exploring novel strategies
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Figure 1: Confocal microscope image and individual 2D-projected fluorescent channels
DAPI (blue, cell nuclei), Cy3 (red, CM nuclei), Cy5 (gray, α-actinin) and EGFP (green,
cell cycle activity)

to enhance endogeneous cardiac repair. One approach is to reactivate the cell cycle ac-
tivity and the cell division of cardiomyocytes (CMs). Cardiac cell biology is complex, as
within a few days after birth, CMs switch from hyperplastic to hypertrophic growth. This
is accompanied by atypical cell cycle activity, namely acytokinetic mitosis (mitosis without
cytokinesis), resulting in binucleated CMs, and endoreplication (mitosis without cytokinesis
and karyokinesis), leading to increase in DNA content (polyploid) CMs. In the literature,
some reports (Hosoda et al., 2009; Senyo et al., 2013) claim very high rates of CM prolifer-
ation and division, and this appears to be due to the technical difficulties to discriminate
between atypical cell cycle activity and cell division.

To distinguish between these variations of the cell cycle and authentic cell division, we have
established a test system based on double transgenic αMHC-H2BmCherry/CAG-eGFP-
anillin mice. αMHC-H2BmCherry labels CM nuclei by the red fluorescent protein mCherry,
whereas eGFP-anillin enables to monitor cell cycle activity and progression with high spatial
and temporal resolution in M-phase (Hesse et al., 2012). This double transgenic system
enables to unequivocally identify CM nuclei and cell cycle variations (Raulf et al., 2015;
Hesse et al., 2018). Isolated CMs from hearts of this double transgenic mouse line can be
used to screen for substances that are able to bring adult CMs back into the cell cycle
and to promote cell division. Such substances would have a strong translational impact as
they could increase the regeneration potential of the heart upon injury. Cellular readouts
are the number of nuclei for distinguishing mononuclear and binuclear CMs (recognized
by mCherry expression), and their cell cycle status, identified by eGFP-anillin+ signals.
CMs are isolated by heart dissociation, cultured and treated with several potentially cell
cycle-inducing substances for three days followed by fixation and staining with an antibody
against α-actinin and Hoechst nuclear dye. Images of CMs are generated by using an inverse
confocal fluorescence microscope (Nikon Eclipse Ti2/A1R HD25) with 20x air objective
(CFI90 20XC) and four channels for DAPI, EGFP, Cy3 and Cy5 (see Figure 1). The
resulting dataset consists of 32 images in 1024 × 1024 pixels resolution. Each 3D input
image is composed of four fluorescent channels, with six z-layers sampling the image channel
in 0.8 µm steps, which are transformed into a 2D representation using maximum intensity
projection for dimensionality reduction. The input data comprises four test series with eight
images per series (4 × 8 = 32). Each series represents a set of images of postnatal CMs,
that have been induced with various substances (DMSO, SB63, SB80, WS6), which may
effect the cell cycle activity.
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Such analysis tasks are monotonous, cost intensive and subjectivity impairs the compa-
rability of the results. In recent years, deep learning (DL) has been increasingly used to
automate biomedical image analysis. However, research laboratories often deal with a va-
riety of such specific analysis tasks. Small experiment scales and high costs for manual
expert labeling result in small dataset sizes. Varying imaging techniques and microscope
models further affect data comparability across laboratories. Oftentimes, the evaluation of
multiple metrics is required (e.g., cell number, distribution, activity, size). A data-intensive
end-to-end approach is therefore not only ill-suited but also too inflexible for the diversity
of cell culture analysis. In this paper, we therefore develop a modular, data-efficient and
flexible DL-based pipeline for analysing CMs in complex multi-cell classification scenarios.
We trisect its structure into preprocessing, modelling and postprocessing. The pipeline
sequentially performs data preprocessing, semantic segmentation, classification and quan-
tification to determine the distribution of mononuclear and binuclear CMs. To identify the
best-performing pipeline configuration and to investigate dataset-related effects, we bench-
mark 18 encoder-decoder model architectures, perform hyperparameter optimization, and
conduct 127 data-centric experiments.

2. Related Work

High-throughput analysis of microscopic images has long been an investigative topic in
cell biology. Applications comprise image classification, image segmentation and object
tracking. Early approaches to image segmentation include the morphological analysis and
pattern recognition of hand-crafted features. Relevant work includes the edge-based (Marie-
Pierre Dubuisson et al., 1994), threshold-based (J.B. Xavier et al., 2001), and the region-
based approach for automatic segmentation of cellular structures (E F Battenberg and Ilka
Bischofs-Pfeifer, 2006). Due to the advances in recent years, DL algorithms are increas-
ingly replacing traditional image processing techniques. An overview of the state-of-the-art
DL-based cell culture analysis is provided by (Moen et al., 2019; Erik Meijering, 2020;
Cheng et al., 2021; Deshpande et al., 2021; Wang et al., 2018). For analyzing images with
multiple cell instances, one approach is to transform the multi-cell classification problem
into a single-cell one. For this, the original image is segmented so that there is only one
cell instance on each subimage. Single-cell classifiers are trained on these subimages in a
supervised manner. (Shifat-E-Rabbi et al., 2020) compare numerical feature extraction,
end-to-end classification with neural networks, and transport-based morphometry on differ-
ent cell types. (Oei et al., 2019) propose the application of convolutional neural networks
(CNN) in single-cell classification based on actin-labeled fluorescence microscopy images
that outperform human experts. Another approach to both single and multi-cell analysis
is to perform pixel-level classification to semantically segment different cell types or areas.
Most studies on this approach use end-to-end encoder-decoder model architectures, such
as UNet for biomedical image segmentation (Olaf Ronneberger et al., 2015; Falk et al.,
2019), Feature Pyramid Networks (FPN) for object detection (Tsung-Yi Lin et al., 2016)
or LinkNet (Abhishek Chaurasia and Eugenio Culurciello, 2017). (van Valen et al., 2016)
perform single-cell image segmentation by converting it into an image classification problem
and thereby show that CNNs can accurately segment the cytoplasms of bacterial cells and
mammalian cell nuclei from fluorescent images. In contrast, instance segmentation tries to
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identify each instance of a cell in an image (Moen et al., 2019). Instance segmentation builds
upon DL-based object detection techniques such as Faster R-CNN (Ren et al.), RetinaNet
(Lin et al.) and Mask R-CNN (He et al.). Furthermore, conditional generative adversarial
networks show promising results in nuclei instance segmentation (Mahmood et al.) and cell
tissue segmentation (Häring et al., 2018). However, the present cell structures of CMs are
characterized by a large number of intermixed mononuclear and binuclear cells with identi-
cal nuclei geometry. Because the determination of binuclear cells requires the consideration
of multiple nuclei, single-cell classification is not applicable.

3. Methodology

We develop a modular DL-based pipeline and explicitly trisect its structure into preprocess-
ing, modelling and postprocessing (see Figure 2). Data preprocessing, semantic segmenta-
tion, classification and quantification are sequentially performed to determine the distribu-
tion of mononuclear and binuclear CMs. The modular design enables the implementation of
application-specific postprocessing procedures with minimal effort and thereby introduces
a considerable level of flexibility. Raw microscopy images are preprocessed and enhanced

Figure 2: Modular image analysis pipeline constituted of preprocessing, modelling and
postprocessing with the corresponding data properties

to achieve optimal modeling results. First, raw images and annotations are converted from
the proprietary file format into four-dimensional arrays. Image enhancement includes the
selection of n out of four fluorescence channels, processing and stacking the z-layers of each
image channel into normalized 2D grayscale images. We design all subsequent operations to
be conditional on these dimensions, so that the pipeline can cope with varying image dimen-
sions. On the advice of the experts, only 2D-projected Cy3 and Cy5 channels are used, as
they contain the relevant spatial features. Images and annotations are split into quadratic
patches of subordinate size. Thereby, no informational content is lost due to dimensionality
reduction while an efficient network size can be maintained. After sequencing the cached
patches for efficient memory usage, oversampling and image augmentation techniques can
be applied to artificially increase the amount of data. Augmentation encompasses randomly
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sampled spatial and pixelwise transformations, such as vertical and horizontal flips, random
rotations, random zoom, random brightness, random blur, and Gaussian noise.

In the modeling step, we use a symmetrical convolutional encoder-decoder model architec-
ture for semantic segmentation and choose the intersection over union (IoU) as evaluation
metric and optimization criterion. In postprocessing, the patches are stitched back together
to obtain the dimension of the input image. Based on the segmentation image, postpro-
cessing functions aim to extract analysis-specific information. For the quantification of CM
cell nuclei, we first apply a combination of morphological opening and closing operations
to remove pixel misclassifications. Subsequently, we classify the nucleus types by detecting
continuous points along the cell boundary within the inferred segmentation masks. A set
of specific postprocessing steps is required to assess the correct instance count of binuclear
CMs (i.e., CMs in the final mitotic phase before cytokinesis), as binuclear instances during
cell mitosis are represented either as a single eight-shaped contour or two separate nuclei
within the same cell body (see Appendix A, Figure 6). This leads to a distortion of the
quantification result, as some binuclear contours are counted as one instance, while oth-
ers are incorrectly counted as two. First, we connect binuclear instances composed of two
shapes, utilizing a kd-Tree algorithm (Bentley, 1975) to list all pairs of contours within the
range of a defined distance threshold. Next, we apply a repetitive redundancy filtering to
ensure that each contour is part of only one binuclear instance. In case of redundancy, we
obtain only the connection with the smallest distance in between the two contours. We
repetitively execute the filtering procedure until all contours meet the criteria.

4. Experiments

To identify the best performing pipeline, to investigate data-related effects and to evaluate
the performance on CM classification, we conduct a series of experiments (see Figure 3).
We benchmark 18 different randomly initialized encoder-decoder model architectures for
semantic segmentation. Having identified a best-performing configuration, we perform a
hyperparameter study. In 127 concluding experiments, we investigate data-related effects
by synthetically influencing the number of images and their qualitative appearance before
training. Hereby we seek to gain an understanding about the minimum required dataset
size and the relation between dataset size and model performance. In the model-centric

Figure 3: Overview of the conducted experiments with corresponding parameter sets

benchmarking, we train and evaluate 18 different convolutional encoder-decoder model ar-
chitectures by considering three different model architectures including UNet (Olaf Ron-
neberger et al., 2015), Feature Pyramid Network (FPN) (Tsung-Yi Lin et al., 2016) and
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LinkNet (Abhishek Chaurasia and Eugenio Culurciello, 2017) as well as six backbone im-
plementations including VGG16 (Simonyan and Zisserman), ResNet18 (Kaiming He et al.,
2015), DenseNet121 (Gao Huang et al., 2016), InceptionV3 (Christian Szegedy et al., 2015),
SEResNet18 (Jie Hu et al., 2017), SEResNeXt50 (Saining Xie et al., 2016). All model-centric
configurations are trained with an input patch-size of 256× 256, Adam optimizer, learning
rate of 0.0001, categorical cross-entropy loss (CCE) and a batch-size of 4 for a total of 100
training epochs. Due to the small nuclei sizes of 130 pixels on average in comparison to the
overall background, precisely tuning patch-sizes and receptive fields is decisive. In prelim-
inary experiments, we therefore investigated different network architectures with a variety
of different receptive fields and patch sizes. We perform hyperparameter optimization for
the best-performing model by conducting 28 experiments in accordance to Figure 3. As
optimization criterion, we choose the test IoU-score (t-IoU). In the concluding data-centric
analysis, we analyse model performances with regard to data-related parameters including
image counts, sample-rates and data augmentation techniques.

5. Results

Figure 7 in Appendix C shows the results of the model-centric benchmarking. Overall,
FPN-VGG16 achieves the highest t-IoU of 0.62 for both mononuclear and binuclear CMs,
with a prediction time of 14.4 seconds per image. UNet-DenseNet121 yields a t-IoU of 0.60,
with 4.0 seconds per image. The LinkNet-ResNet18 performs best achieving a t-IoU of 0.52,
with 2.4 seconds per image. The results of the hyperparameter study that was conducted

Figure 4: Benchmarking results of the model-centric and data-centric experiments, as well
as the hyperparameter study

using FPN-VGG16 as best-performing configuration are shown in Figure 4. Larger patch
sizes enhance model performance (see Appendix C, Table 1), but require more training
time. A patch size of 512 × 512 leads to an t-IoU of 0.65, a patch size of 32 × 32 to an
t-IoU of 0.51. The study of different batch sizes shows, that a batch size of 2 achieves the
highest t-IoU of 0.63 (see Appendix C, Table 3). Generally, different batch sizes do not
show a notable effect on the model performance. However, the required training epochs
until convergence is positively correlated to the batch size.
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The results of the data-centric analysis include the segmentation performance (see Appendix
C, Table 5) and final CM classification accuracy (see Appendix C, Table 6) for the specific
pipeline (see Figure 2). For each training configuration, the number of full-size input images
is iteratively decreased. The row index of each configuration in Table 5 and Table 6 refers
to the total number of full-size images (with a training and validation split of 0.70/0.30).
Each entry in Table 5 represents the mean t-IoU of the respective configuration across the
test set of eight full-size images. Each entry in Table 6 respectively represents the final clas-
sification result for all test images, compared to the nuclei count provided by the domain
experts from Bonn University. For each augmentation method, the best model performance
is highlighted in bold while the best performance across all configurations is underlined.
Intuitively, the t-IoU scores in Table 5 are positively correlated with the amount of input
images. The highest t-IoU scores across all augmentation methods are in between 23 and 24
input images, with an t-IoU from 0.62 to 0.64. Configurations with six to 22 input images
represent 70 % of all model configurations. Notably, several configurations with an input
quantity of only twelve full-size images achieve t-IoU scores of up to 0.62, without data
augmentation. For 79 % of the input quantity model configurations (19 out of 24 in Table
5), the mean t-IoU for one of the augmentation methods is higher than the t-IoU for the
same configuration without data augmentation. For 29 % of the input quantity model con-
figurations (7 out of 24 in Table 5), each of the four augmentation configurations reaches a
higher t-IoU than the respective configuration without augmentation. However, the positive
effect of augmentation lies within the relative range of 1 - 5 %. For some configurations the
performance even decreases with the application of data augmentation.

Figure 5 shows the final classification results of a specimen induced with the WS6 1:10 A
nutrient, predicted by FPN-VGG16, patch size of 256×256, Adam optimizer with a learning
rate of 0.0001, CCE loss, a batch size of 4 and 100 training epochs. The classification
example in Figure 5 includes two missing classifications (red) and two misclassifications
(yellow). All other nuclei instances are classified correctly. However, it is important to
mention that despite the relatively satisfactory classification result of the example in Figure
5, a notable share of test images across several datasets still showed reasonable divergences
compared to the expert labels. Nevertheless, several pipeline configurations in Table 6
achieved averaged test accuracies of up to 0.82 for the classification of nucleus types.

Figure 5: Exemplary end-to-end classification result with FPN-VGG16 model architecture
for a specimen treated with WS6
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6. Discussion

The results show that our proposed modular DL-based pipeline for multi-cell image analysis
enables biomedical experts to accelerate their research efforts by automating monotonous
evaluation tasks. Despite the additional complexity due to the modularity of the pipeline,
its modular interchangeability enables easy adoption to new applications. Of all encoder-
decoder model architectures, FPN-VGG16 achieves the best t-IoU of 0.62. However, UNet-
DenseNet121 achieves an IoU of 0.60, while increasing prediction efficiency by a factor of 3.
Although the application of different augmentation methods improves the performance of
many models, a distinct correlation cannot be observed. This is reflected in configuration
[24, n] in Table 5, where the highest t-IoU of 0.64 is achieved without any augmentation.
For all other configurations of that quantity, data augmentation does effect or even dete-
riorates the performance. Also, the t-IoU scores for different input quantities in Figure 4
show fluctuation but no convergence with the application of augmentation. As expected,
input data quantity is positively correlated with segmentation performance. However, con-
figurations with eleven to 14 input images yield only insignificantly lower performances.
This indicates the ability of FPN-VGG16 to perform well with limited data. We therefore
assume that an increase in training data for this specific application does not necessarily
lead to improvements in performance. The t-IoU scores in Figure 4 affirm this assumption,
as configurations with input data quantities of twelve images and more do not result in
better performance. The final classification results in Table 6 correlate with the IoU scores
in Table 5, as the classification is part of the analysis-specific postprocessing. However, this
does not apply in cases where a share of the nuclei instances is classified but defectively
segmented. This is as a subset of correctly segmented pixels per nuclei is already sufficient
for a subsequent classification. A similar IoU score is achieved in scenarios where the ma-
jority of instances is correctly segmented and localized, while some instances are missing
completely. However, missing instances negatively influence classification accuracy.

7. Conclusion

In our work, we propose a modular DL-based image analysis pipeline for multi-cell clas-
sification of mononuclear and binuclear CMs. Due to the modularity and tripartition of
the pipeline into preprocessing, modelling and postprocessing, we expect it to be easily
adaptable to other image modalities and cell analysis tasks. By separating general seman-
tic feature extraction and task-specific postprocessing, we do not pursue a data-intensive
holistic end-to-end approach. In an extensive benchmarking of 173 experiments, we investi-
gate the correlations between segmentation model, hyperparameters, dataset properties and
analysis accuracy. Thereby, we provide a guideline for the DL-based automation of com-
plex cell culture analyses that can cope with a small number of images and annotations. In
future work, we will investigate the transferability of our pipeline and its automatic config-
urability across various analysis tasks. To further improve the results in the investigation of
CM proliferation for cardiovascular research, next steps will consider image transformers,
postprocessing optimization and cell activity tracking using the eGFP-anillin fluorescence
signal. This would provide a novel and important tool to screen for substances that have
the potential to increase the number of CMs and thus can be used in the long term for
heart repair upon injury.
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Appendix A. Methodology

Figure 6: Cardiomyocyte nuclei types in semantic segmentation mask

Appendix B. Experiments

We train all models on a Xeon E7 remote server, running on Ubuntu 4.15.0-154-generic with
2 x Intel Xeon CPU E5-2680v4 at 2.40GHZ, 264 GB RAM and 2 x 12 GB Titan X GPUs,
with CUDA 11.2. All predictions are inferred on a local machine, running on Windows10Pro
with Intel Core i5-7300U CPU at 2.60GHz - 2.71 GHz and 8 GB RAM.

Appendix C. Results

Figure 7: t-IoU scores, average prediction time and number of model parameters of each
encoder-decoder model architecture

Table 1: t-IoU scores of FPN-VGG16 network architecture backbone combination for dif-
ferent patch sizes

patch size t-IoU both t-IoU mono t-IoU bi training time [min]

512 x 512 0.65 0.59 0.71 15.75
256 x 256 0.62 0.60 0.65 17.13
128 x 128 0.60 0.54 0.66 25.50
64 x 64 0.57 0.53 0.62 67.12
32 x 32 0.51 0.50 0.52 242.28
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Table 2: t-IoU scores of FPN-VGG16 network architecture backbone combination with a
patch size of 256× 256 for different batch sizes

batch size t-IoU both t-IoU mono t-IoU bi training time [min]

32 0.60 0.55 0.64 14.64
16 0.58 0.54 0.63 14.65
8 0.62 0.60 0.64 15.93
4 0.61 0.58 0.64 17.09
2 0.63 0.59 0.67 20.10
1 0.62 0.57 0.67 25.39

Table 3: t-IoU scores of FPN-VGG16 network architecture backbone combination for dif-
ferent optimizers and losses

loss / optimizer t-IoU Adam t-IoU SGD

categorical crossentropy (CCE) 0.63 0.38
categorical focal loss (γ = 2) (CF) 0.60 0.42
jaccard distance (JD) 0.63 0.33

Table 4: t-IoU scores of FPN with VGG16 for different augmentations and fixed input
quantity

augmentation sample rate t-IoU both t-IoU mono t-IoU bi training time [min]

none 1 0.62 0.59 0.64 17.18
spatial 2 0.61 0.57 0.65 33.71
pixel 2 0.62 0.58 0.65 33.81
both 2 0.64 0.59 0.68 33.64
both 4 0.65 0.62 0.68 66.80
both 8 0.63 0.59 0.67 133.50
both 16 0.63 0.60 0.67 266.84
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Table 5: Data-centric test segmenta-
tion IoU score (FPN/VGG16) for differ-
ent augmentations and input quantities
(in: input, n: none, s: spatial, p: pixel,
z: zoom, r: rotate)

in n s p s+p z+r

1 0.16 0.47 0.45 0.47 0.48
2 0.44 0.47 0.47 0.46 0.45
3 0.43 0.45 0.44 0.40 0.37
4 0.40 0.33 0.40 0.41 0.40
5 0.46 0.47 0.47 0.48 0.43
6 0.52 0.54 0.48 0.50 0.51
7 0.50 0.52 0.50 0.52 0.50
8 0.52 0.53 0.54 0.54 0.54
9 0.52 0.58 0.56 0.44 0.59
10 0.49 0.54 0.58 0.55 0.57
11 0.50 0.59 0.62 0.58 0.59
12 0.60 0.57 0.59 0.59 0.60
13 0.62 0.62 0.61 0.62 0.60
14 0.56 0.62 0.62 0.61 0.59
15 0.59 0.62 0.61 0.59 0.59
16 0.57 0.60 0.63 0.63 0.62
17 0.61 0.59 0.61 0.60 0.60
18 0.60 0.59 0.62 0.60 0.58
19 0.60 0.60 0.60 0.59 0.58
20 0.60 0.61 0.60 0.62 0.61
21 0.60 0.62 0.62 0.58 0.60
22 0.61 0.62 0.60 0.61 0.61
23 0.62 0.63 0.64 0.63 0.62
24 0.64 0.63 0.63 0.64 0.62

Table 6: Data-centric test classifica-
tion accuracy (FPN/VGG16) for differ-
ent augmentations and input quantities
(in: input, n: none, s: spatial, p: pixel,
z: zoom, r: rotate)

in n s p s+p z+r

1 0.27 0.57 0.69 0.62 0.71
2 0.43 0.62 0.62 0.64 0.48
3 0.63 0.66 0.61 0.48 0.45
4 0.64 0.58 0.66 0.66 0.70
5 0.69 0.66 0.74 0.70 0.62
6 0.76 0.73 0.70 0.80 0.74
7 0.72 0.78 0.68 0.72 0.73
8 0.68 0.70 0.69 0.75 0.76
9 0.75 0.74 0.77 0.65 0.68
10 0.74 0.67 0.77 0.74 0.76
11 0.74 0.75 0.78 0.68 0.76
12 0.77 0.78 0.77 0.75 0.76
13 0.78 0.82 0.78 0.79 0.74
14 0.76 0.76 0.77 0.73 0.73
15 0.76 0.80 0.74 0.71 0.71
16 0.75 0.81 0.79 0.79 0.78
17 0.78 0.82 0.80 0.79 0.81
18 0.79 0.78 0.77 0.80 0.80
19 0.77 0.80 0.79 0.82 0.79
20 0.81 0.79 0.77 0.78 0.79
21 0.77 0.80 0.78 0.75 0.78
22 0.82 0.80 0.77 0.77 0.80
23 0.79 0.77 0.77 0.74 0.76
24 0.80 0.79 0.78 0.82 0.78
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