
Published as a conference paper at ICLR 2025

LARGE LANGUAGE MODELS ARE INTERPRETABLE
LEARNERS

Ruochen Wang∗
UCLA

Si Si
Google

Felix Yu
Google

Dorothea Wiesmann
Google

Cho-Jui Hsieh
Google, UCLA

Inderjit Dhillon
Google

ABSTRACT

The trade-off between expressiveness and interpretability remains a core challenge
when building human-centric models for classification and decision-making. While
symbolic rules offer interpretability, they often lack expressiveness, whereas neu-
ral networks excel in performance but are known for being black boxes. This
paper shows a combination of Large Language Models (LLMs) and symbolic
programs can bridge this gap. In the proposed LLM-based Symbolic Programs
(LSPs), the pretrained LLM with natural language prompts provides a massive set
of interpretable modules that can transform raw input into natural language con-
cepts. Symbolic programs then integrate these modules into interpretable decision
rules. To train LSPs, we develop a divide-and-conquer approach to incrementally
build the program from scratch, where the learning process of each step is guided
by LLMs. To evaluate the effectiveness of LSPs in extracting interpretable and
accurate knowledge from data, we introduce IL-Bench, a collection of diverse
tasks, including both synthetic and real-world scenarios across different modalities.
Empirical results demonstrate LSP’s superior performance compared to traditional
neurosymbolic programs and vanilla automatic prompt tuning methods. Moreover,
as the knowledge learned by LSP is a combination of natural language descrip-
tions and symbolic rules, it is easily transferable to humans (interpretable), and
other LLMs, and generalizes well to out-of-distribution samples. Our code and
benchmark will be released for future research.

1 INTRODUCTION

Learning interpretable predictive models from annotated data remains a key challenge in human-
centric AI. Given input-output pairs {(xi, yi)}, the objective is to learn a function f : x→ y that not
only fits the data accurately but is also interpretable. In this context, a strong form of "interpretable"
means that human with no prior domain knowledge can understand and apply the decision rules
demonstrated by f , facilitating the transfer of knowledge from AI to humans. This is crucial not
only for enhancing the transparency of AI systems but also for enabling humans to learn from these
models, empowering various human-in-the-loop applications such as scientific discovery, material
synthesis, and automatic data annotation (Chaudhuri et al., 2021).

Definition 1.1 A predictive model is considered interpretable if its decision rules can be understood
and applied by a human judger without prior domain knowledge.

Consider an exemplar task of classifying species in Palworld (Pair, 2024) - a newly released Pokemon-
style game - based on a few image-label pairs, as illustrated in Figure 1. The ultimate goal is that
even humans unfamiliar with Palworld can replicate AI’s decisions by following the same predictive
rules after examining the model trained on the data. This task effectively represents the challenge
of extracting interpretable knowledge, such as species characteristics, from data. The algorithm we
propose in this paper learns a model following the decision rule illustrated in Figure 1, which is
designed to be easily understood and reproduced by humans. In essence, this problem can be viewed
as discovering interpretable knowledge (e.g., the properties of a species in Palworld) from the data.

∗Work completed during internship at Google.

1

Published as a conference paper at ICLR 2025

Despite extensive research, the problem of developing a fully interpretable predictive model has
not been fully addressed. Traditional methods often face a trade-off between expressiveness and
interpretability: Deep neural networks, for instance, are powerful yet operate as "black boxes".
Although post-hoc explanation methods attempt to make these models more transparent by identifying
influential features (Zintgraf et al., 2017; Petsiuk et al., 2018; Dabkowski & Gal, 2017; Shrikumar
et al., 2017; Sundararajan et al., 2017; Ancona et al., 2017), they do not clarify the underlying decision-
making processes and have no control over the learning process. Directly learning interpretable
models like (locally) linear (Ribeiro et al., 2016), tree-based (Lundberg, 2017) often falls short in
expressiveness, especially with complex inputs like images.

To address this challenge, Neurosymbolic Programs (NSPs) (Chaudhuri et al., 2021; Shah et al.,
2020; Cui & Zhu, 2021; Nauta et al., 2021b) offer a promising solution by modeling the decision
rule as a program incorporating both symbolic operations and neural network modules. Despite this,
the inherent trade-off between expressiveness and interpretability persists. While the integration of
neural modules enhances expressiveness, it also compromises the program’s overall interpretability.
Additionally, designing effective symbolic operators requires significant expertise and is critical
for the performance of the resulting program, necessitating careful customization for each specific
dataset (Chaudhuri et al., 2021; Shah et al., 2020; Cui & Zhu, 2021).

Is it possible to harness the power of neural networks within Neurosymbolic Programs without
compromising interpretability? This paper presents an affirmative answer. Our key insight is that
(Multimodal) LLMs encompass a variety of powerful, conditional probabilistic sub-models. These
models share a unified parametric architecture with the unconditional parent LLM (Super Model), yet
distinctive defined by their respective prompts. Therefore, crafting prompts (by either Human or meta-
LLMs) for LLM is equivalent to searching over the hypothesis space spanned by these submodels.
This yields an infinite set of neural network-based operations that are inherently interpretable and can
serve as fundamental “learnable” building blocks within Neurosymbolic Programs.

Building on this insight, we introduce a novel framework termed LLM-Symbolic Programs (LSPs),
defined and learned through LLMs. Our approach leverages a minimal Domain-Specific Language
(DSL) set with only two operators: prompted-LLM and conditional branching, yielding a classic
decision-making process structured as trees. We then propose a learning algorithm to incrementally
learn the tree using LLMs with prompt optimization. To thoroughly evaluate the efficacy of LSPs,
we construct the Interpretable-Learning-Benchmark of diverse predictive tasks, containing both
synthetic and real-world data across vision and text modalities. Our empirical findings show that LSPs
surpass the accuracy of both traditional XAI methods and LLMs prompted with automatically learned
instructions, all while maintaining human interpretability. These results highlight the potential of LSPs
to significantly enhance the performance and utility of Multimodal LLMs in various applications.

2 BACKGROUND AND RELATED WORK

Taxonomy Interpretable learning (IL) is a central aspect of Explainable AI (XAI). The taxonomy
closely follows that of discriminative tasks: for a given dataset (x, y), the objective is to construct
a model that not only predicts accurately but also provides insight into its predictions. Here, the
knowledge required for making accurate predictions is not inherent to the model; rather, it must
be distilled from the data into compact, interpretable rules. In this work, we use a strong form of
"interpretability" defined as follows:

Traditional IL methods The pursuit of interpretable model predictions divides into two primary
methodologies: post-hoc and intrinsic. Post-hoc methods explain the behavior of pre-trained models
by identifying salient features, yet they fall short of fully recovering the neural decision-making
process. In contrast, intrinsic methods, such as Neuro-Symbolic Programming (NSP) (Chaudhuri
et al., 2021; Shah et al., 2020; Cui & Zhu, 2021; Nauta et al., 2021b), integrate interpretability directly
into the model architecture. However, NSP faces a fundamental trade-off between expressiveness
(requiring more neural network modules) and interpretability (favoring symbolic modules). Addition-
ally, training NSP models is often computationally expensive due to the need for co-optimizing both
program architecture and neural network parameters (Shah et al., 2020; Cui & Zhu, 2021).

Interpretable Learning in the era of (M)LLMs The vast corpus of knowledge encoded during the
web-scale pretraining of (M)LLMs has empowered (M)LLMs with remarkable zero-shot capabilities

2

Published as a conference paper at ICLR 2025

across diverse tasks, including math, coding, creative writing, etc. However, IL tasks pose a unique
challenge for these models, as they are inherently not zero-shot solvable (Table 1). Specifically,
LLMs must utilize knowledge acquired from labeled examples rather than relying solely on input
data and its prior knowledge (including external knowledge retrieved via RAG).

(1). Can existing prompting methods apply to IL tasks? Most LLM prompting methods, such as Tree-
of-Thoughts (Yao et al., 2024) or augmenting LLMs with various tools (calculator, symbolic solver,
etc) (Dong et al., 2023; Fang et al., 2024; Yang et al., 2023b), do not involve any learning and are thus
incompatible with IL tasks. Generic Prompt Optimization (PO) methods, which aim to automatically
configure instructions for LLMs, could be applied to any task, including IL in principle (Zhou et al.,
2022; Pryzant et al., 2023; Yang et al., 2023a; Singh et al., 2023; Wang et al., 2023). However, PO
methods are predominantly designed for instruction induction task - inferring optimal task descriptions
- rather than extracting concrete predictive rules from data (Zhou et al., 2022; Zhang et al., 2023).
Consequently, most PO approaches focus on rewriting prompts to enhance performance (Pryzant
et al., 2023; Hsieh et al., 2023), which is insufficient for deriving interpretable knowledge from
data. Additionally, while recent developments have introduced capabilities for correcting prompts
using error examples (Pryzant et al., 2023; Wang et al., 2023), they remain inadequate for extracting
complex decision rules, such as conditional branching required for classification. These rules, often
applicable to only a subset of samples, are challenging to recover when considering the entire training
set. Our experiments show that directly applying existing methods fails to effectively address these
complex decision rules. These limitations motivate the proposed LSP framework, which integrates
prompt optimization with symbolic programs to overcome these challenges.

(2). Can existing benchmarks measure (M)LLM’s IL ability? Despite the extensive study of IL in the
pre-LLM era, there lacks of benchmarks suitable for evaluating such methods on modern (M)LLMs.
Traditional XAI Datasets are often image-centric and inadequate for evaluating the text capabilities
of LLMs. Furthermore, the inclusion of popular vision datasets like CUB within MLLM training
corpuses leads to data contamination, making it difficult to determine if performance improvements
are due to enhanced rule learning or mere retrieval of prior knowledge. LLM Benchmarks, such as Big-
Bench (Suzgun et al., 2022), SuperNatural Instructions (Wang et al., 2022), and Math datasets (Cobbe
et al., 2021; Trieu & Luong, 2024; Wei et al., 2024), measures various language ability of the model,
ranging from prompt optimization, reasoning tasks, to summarization. However, all these tasks are all
zero-shot solvable, allowing LLMs to make predictions without additional rule learning. Therefore,
these benchmarks are unsuitable for evaluating IL tasks.

A Comprehensive literature review on the previous XAI methods, Neuro-Symbolic Programming,
and Prompt Optimization methods can be found in Appendix A.1.

Interpretable Learning Common LLM tasks

Zero-shot solvable? × - Solving the task requires
extracting rules from labeled
training data.

✓ - LLMs can in principle solves
these tasks without seen any labeled
examples.

Representative tasks Palword classification; Symbolic
classification tasks

Big-Bench-Hard, Abstract Reasoning,
Math, Coding, Agent, Summarization,
RAG.

Example data
Input which creature in
the Palworld-dex is this?
Output: creature_1

Input: Do you return to the
starting point? Take 8 steps. Turn
around. Take 8 steps.
Output: Yes

Table 1: Comparison between the taxonomy of Interpretable Learning and common LLM tasks.

3 IL-BENCH: 1ST INTERPRETABLE-LEARNING BENCHMARK FOR (M)LLMS

To address the lack of suitable benchmarks for evaluating the interpretable learning capabilities of
(M)LLMs, we introduce the Interpretable-Learning Benchmark (IL-Bench). This new benchmark
comprises a series of challenging tasks that are not solvable through zero-shot methods by even the
most advanced (M)LLMs, such as GPT-4 and Gemini-1.5. IL-Bench includes 16 new symbolic and
real-context tasks unseen to the current model lineup. These tasks range across vision and language
modalities, providing a comprehensive and extensible evaluation framework. Below, we provide a
high-level summary of the key data curation methods; Concrete examples, data curation, statistics,
and how to extend this benchmark can be found in the Appendix A.2 (Table 8).

3

Published as a conference paper at ICLR 2025

Figure 1: Illustration of LLM-Symbolic vs. Neuro-Symbolic Program on interpretable learning task. The
goal is to develop a model that allows humans with no prior knowledge to replicate AI’s decisions by following
the same rules as the model. While NSP (Top right) offers a certain level of interpretability, it heavily relies on
manually designing operators, and the inclusion of neural operators often reduces interpretability. In contrast,
LSP (Bottom right) generates fully interpretable programs with the help of versatile LLM modules.

Symbolic tasks Drawing inspiration from language-independent IQ tests, we generate set of
synthetic datasets to evaluate the interpretable learning capabilities of the models. These datasets
utilize symbols to denote input variables and their values; The input values are randomly assigned,
and mapped to their labels based on a predefined set of rules (See Figure 8 for a concrete example).
We also vary the number of variables, values, and labels to generate datasets of increasing complexity.
These symbolic tasks enjoy several key benefits: (1). Known oracle rules, enabling precise evaluation
of learning ability. (2). Context independence, forcing the models to depend solely on learned rules,
without relying on external context. (3). Scalability, allowing for the automated creation of an
unlimited number of tasks with arbitrary difficulty levels.

Textual classification tasks: converting vision dataset to text inputs To evaluate model pro-
ficiency in intricate real-world scenarios, we utilize Fine-Grained Visual Classification (FGVC)
datasets (Maji et al., 2013; Wah et al., 2011; Kramberger & Potočnik, 2020; Nilsback & Zisserman,
2008; Van Horn et al., 2015), such as CUB commonly used in XAI research. These datasets comprise
of objects within narrowly-defined, visually-similar categories that are particularly challenging for
the model to distinguish. To adapt these visual datasets for textual evaluation, we convert them into
text-based datasets using a captioning model. In order for the task to be well-defined, the generated
caption must cover all visual features required for classification, which are usually very subtle for
FGVC datasets (e.g. the particular shape of a bird’s beak). To ensure the captions capture all essential
visual features, we also provide contrastive examples to the captioner (details in Appendix). The
class names (e.g. Sea_Albatross) are also anonymized by symbols (e.g., class_1) to prevent the
model from using label names to “shortcut” the prediction process. Empirical results indicate that the
performance of existing text-based LLMs approximates that of random guessing in zero-shot setting.

Visual classification Tasks: distinguishing novel visual concepts Due to the extensive coverage
of (M)LLM training data, evaluating models in a multi-modal setting presents a unique challenge.
Despite our best efforts, all existing image classification datasets we tested were already seen by
at least one (M)LLM, which can predict labels in a zero-shot manner. To address this, we curate
seven new datasets using screenshots from "Palworld," a recently released regional game featuring
various creature species similar to Pokémon (examples in Table 8). As this game was released after
the knowledge cut-off dates of the tested (M)LLMs, the models lack prior information about these
creatures, requiring them to rely solely on the knowledge extracted from the dataset for predictions.

4 INTERPRETABLE LEARNING WITH LLM-SYMBOLIC PROGRAMMING
This section explains our proposed framework: LLM-Symbolic Programs. Section 4.1 reviews
Neurosymbolic Learning method. Section 4.2 discusses utilizing LLM to implement interpretable
programs, including a connection between prompted-LLM and interpretable unit (Section 4.2.1), the
Domain Specific Language (Section 4.2.2) and learning algorithm (Section 4.2.3).

4

Published as a conference paper at ICLR 2025

4.1 PRELIMINARIES ON CLASSICAL NEUROSYMBOLIC LEARNING

NeuroSymbolic Programming (NSP) (Chaudhuri et al., 2021; Shah et al., 2020; Cui & Zhu, 2021;
Frosst & Hinton, 2017) represents an innovative method for combining classical symbolic learning
with contemporary neural networks, with the goal of building expressive and interpretable models.
NSP often consists of two main components: (1) a Domain Specific Language (DSL) that specifies
available operations of the program (akin to a "search space") and (2) a learning algorithm for
finding the best program. The resulting programs are structured, neuro-symbolic terms that follow
the syntax specified by the DSL.

Domain-Specific Language (DSL) DSL in NSPs comprises manually defined operators, including
interpretable symbolic (e.g. if-then-else) and expressive neural components (e.g. cnn(x,
θ)). These operators can be chained to construct various tree-structured programs, a.k.a. computation
graphs. equation 1 presents an example DSL used to construct the program for predicting the creature
species in Figure 1. Here, x and c represents inputs and constants, and α denotes a sub-program:
α = x | c | Add(α1, α2) | Mul(α1, α2) | If α1 Then α2 Else α3 | cnn(x, θ) | Dist(α1, α2). (1)

Co-optimization of program structure and learnable parameters In NSPs, the construction of
a program involves solving a combinatorial optimization problem for both the program structure
and the parameters of its learnable operators (e.g. neural components). As the number of DSL
operators increases, the complexity of this task grows exponentially. To make the search process
more tractable, existing research employs various approximation techniques to efficiently identify
viable candidates, including greedy tree search (Shah et al., 2020), continuous relaxation (Cui & Zhu,
2021), distillation (Frosst & Hinton, 2017) and meta-learning (Chaudhuri et al., 2021).

Limitations While the integration of symbolic and neural components in NSPs represents a promis-
ing innovation, the incorporating of neural modules inevitably introduces black-box components and
makes the program non-interpretable. Researchers have attempted to address this issue through two
primary approaches: restricting the DSL to only interpretable operators (Shah et al., 2020; Cui &
Zhu, 2021), or employing prototype learning to derive relatively interpretable neural modules (Nauta
et al., 2021b; Ming et al., 2019; Nauta et al., 2021a). However, the DSL approach is not automatic,
heavily relies on domain expertise, and potentially overlooking crucial information not identified by
experts; Conversely, prototype learning aims to represent the concept of each neural module by a set
of representative samples, which is not guaranteed to success.

4.2 LLM-SYMBOLIC PROGRAMS

This section explores how LLMs can effectively be utilized to implement NSPs’ modules that are
expressive, interpretable, and straightforward to learn with LLMs.

4.2.1 PROMPTED-LLM AS AN INTERPRETABLE UNIT

The trade-off between interpretability and expressiveness presents a fundamental limitation in machine
learning. Machines perceive images and text as raw binary signals, and transforming these into
interpretable concepts; this inevitably requires complex and non-interpretable components, such
as neural networks. Even human perception remains non-interpretable, as we lack a complete
understanding of how the brain processes signals. However, the following analysis suggests that
pretrained LLM offer a potential avenue to bridge this gap: it shows that powerful LLM can be used
to define a wide range of interpretable functions via prompting.

Connection between interpretable learning and prompting LLMs pretrained on the next-token
prediction task model the following joint distribution of a sequence of tokens {wt}Tt=1

P (w1, w2, . . . , wT) =
∏T

t=1
P (wt | wt−1, wt−2, . . . , 1) = fθ(wt | w1, w2, . . . , wt−1),

where the conditional probabilities are parameterized by an auto-regressive model f(·; θ) (e.g.
Transformer) and each word wt is predicted given all the preceding tokens. The pretraining objective
minimizes the following negative log-likelihood:

min
θ
L(θ) = −

∑T

t=1
log fθ(wt | wt−1, . . . , w1). (2)

5

Published as a conference paper at ICLR 2025

Figure 2: Learning Algorithm for LSPs. The learning algorithm for LSPs contains two parts: (1) program
structure search (Left): This process is akin to constructing a traditional decision tree. Starting from the root, the
algorithm traverses down the tree, iteratively splitting the training dataset based on the current node’s predictions
and expanding the leaf node with the highest prediction errors. (2) LLM module optimization (Right): Here, a
learner LLM is instructed to summarize rules based on the observed data at its node.

A key observation from Eq. equation 2 is that the training process optimizes a “SuperNet" of
conditional probabilistic models (CPM), each defined by an instruction s: fs,θ(y|x) = fθ(y | x, s),
where x is the input and s is the instruction for a particular task. Therefore, with a fixed LLM,
the set of natural language prompts, denoted as S, provides a massive set of interpretable neural
network modules for the task. For a given dataset {(xi, yi)}ni=1, finding the best prompt to minimize
the empirical loss, mins∈S

∑n
i=1 L((fs,θ(yi | xi))), can be viewed as a form of learning, and the

resulting model is inherently interpretable, as the prompt s is expressed in natural language.

This connection reveals that prompt within the natural language space offers a form of interpretable
learning that simultaneously achieves both expressiveness and interpretability. The key to bridging
this gap lies in leveraging LLMs to handle the non-interpretable processing of raw signals into
high-level concepts, much like how neurons in the human brain transform signals into information.
This allows learning to occur within an interpretable space.

4.2.2 DOMAIN-SPECIFIC LANGUAGE OF LSPS

Traditional NSPs require manually designing a comprehensive DSL. However, with LLM’s ability to
represent a wide range of functions via different prompts, we can significantly streamline the grammar
required to build expressive and interpretable models. Specifically, for predictive models, we can
build powerful LSPs from a minimalist DSL with only three components: the input, conditional
branching, and LLM module:

α ::= x | switch({α == yi : αi}ki=1) | LLM(x, s). (3)
Here, input x represents the input data (text, image, etc); the conditional branching switch({yi :
αi}ki=1) forms the backbone of the program structure. Each switch can be viewed as a node in a
decision tree tree with k branches. It will branch to αi if the sub-program α predicts yi. The LLM
Module LLM(x, s) serves as the inference engines. It means to prompting LLM to make a prediction
on input x under the instruction s.

Figure 1 (Bottom Right) shows an example program generated from above DSL. During inference
time, given a test query, we traverse the tree-structured program in a top-down manner, assigning
data to specific child node based on the parent node’s predictions, until the leaf node is reached and
the final response is returned.

4.2.3 LEARNING ALGORITHM

After defining the search space for program construction, we proceed to describe the algorithm used
to identify the optimal program. Similar to Neuro-Symbolic Programming (NSP), our approach
involves optimizing two key components:

• LLM module optimization: Generating the rules from data for each LLM module.
• Program structure search: Determining how to expand the program tree.

Figure 2 illustrates the entire search process. The following sections will describe these two compo-
nents respectively.

6

Published as a conference paper at ICLR 2025

LLM modules optimization via summarizing predictive rules In Large Symbolic Programs
(LSPs), each LLM module is responsible for making decisions on its designated data subset. While
traditional NSPs optimize neural modules through empirical risk minimization, LSPs can derive
predictive rules directly from observed data, a method we termed RuleSum. To achieve this, we
leverage the LLM’s powerful summarization capabilities (Adams et al., 2023; Goyal et al., 2022;
Zhang et al., 2024; Pu & Demberg, 2023), and instruct a learner LLM to observe patterns from the
data samples and summarize them into concrete rules. The process is visualized in Figure 2 (right).

Program Structure Search LSP produces a tree-structured program where each path represents a
complete decision-making process. To discover the optimal program, we employ a top-down tree
traversal approach to expand the tree from scratch. Starting from the root node of an empty program
with the entire training dataset:

• Step 1: Add an LLM(x, s) module to the root node.
• Step 2: Optimize LLM(x, s) using the RuleSum algorithm.
• Step 3: Create child nodes for the root by adding a switch operator to the program.
• Step 4: Assign training data to child nodes based on LLM(x, s)’s predictions.
• Step 5: Move to the highest-scoring child node, and repeat Steps 1–4 until max_iter is reached.

In essence, this search algorithm uses a divide-and-conquer strategy: it progressively partitions the
training dataset into sub-branches based on the parent node’s predictions, enabling the child LLM
modules to further refine the prediction. This approach simplifies the learning process for each LLM
module and makes the overall system more error-tolerant: the RuleSum algorithm only needs to
derive rules for a subset of the data, and any inaccuracies can be corrected by subsequent child nodes.

Node scoring function for node selection During program structure search, we prioritize the
expansion of the node with the highest potential for program improvement. Since nodes with a higher
frequency of errors have greater room for enhancement, we use error count as the scoring function.
This metric, which considers both the error rate and the size of the data subset handled by each node,
offers a straightforward yet empirically effective approach. Section 6 provides empirical evidence
demonstrating the efficacy and robustness of this metric against alternatives.

Complete Algorithm The above outline the learning process of a single program (visualized in
Figure 2). To enhance the full search pipeline, we integrate beam search (Pryzant et al., 2023) to
avoid getting trapped in local minima. Specifically, each iteration of the learning algorithm maintains
and expands B trees, where B represents the beam size. Algorithm 2 in Appendix A.7 summarizes
the entire process.

5 EXPERIMENTAL RESULTS

We adopt a comprehensive approach to extensively evaluate the effectiveness of LSPs against various
baselines under different settings. Our empirical study is designed to validate the benefits of LSPs
over alternative methods by addressing the following research questions:

• Q1: How does LSP compare against traditional NSPs in expressiveness and interpretability? We
assess this through both quantitative and qualitative evaluations (human studies). (Section 5.2)

• Q2: Does LSP generalize better than traditional NSPs under domain shifts? This question is
explored in detail in (Section 5.2).

• Q3: Is the incorporation of explicit structures beneficial to LSPs? We compare the structured LSP
with vanilla prompt optimization, which exemplifies a special case of LSP with a single LLM
module. (Section 5.3)

• Q4: How effective are different LLMs in implementing LSP? We conduct cross-model experiments
to evaluate the performance of various LLMs as the computational backbone for learning and
inference in LSP. (Section A.5.1)

5.1 GENERAL SETTINGS

Evaluation For language tasks, we test popular LLMs, including GPT-3.5
(turbo-1104) (Ouyang et al., 2022), GPT-4 (1106-preview) (Achiam et al., 2023), and
Gemini-M (1.0-pro) (Team et al., 2023). For vision tasks, GPT-4V (1106-vision-preview)
and Gemini-Vision (1.5-flash) are utilized. All experiments are repeated with 3 seeds.

7

Published as a conference paper at ICLR 2025

Table 2: Classification accuracy comparison with XAI methods on IL-Bench-Vision. Here, all numbers for
LSP are obtained with Gemini-Vision as the learner and inference LLM, except for LSP (GPT-4V) which uses
the larger GPT-4V as the learner; Decision Tree, operating directly on pixel data, lacks human interpretability.
Key findings include: (1) Our method outperforms XAI baselines with an average accuracy of 95.67%, which is
over 10% higher than the nearest competitor. (2) The program generated by LSP also demonstrates superior
transferability to human raters, as they are able to reproduce the predictions following rules learned by LSP.

IL-Bench-Vision Palworld

MLLM Method Mean Fire-1 Fire-2 Dragon-1 Dragon-2 Electric-1 Electric-2 Water-1

Gemini-M

Decision Tree (Chen & Guestrin, 2016) 68.20 91.11 ± 12.57 32.00 ± 9.80 68.33 ± 10.27 48.33 ± 20.95 82.67 ± 6.80 65.33 ± 13.60 66.67 ± 8.50

ProtoTree (Nauta et al., 2021b) 84.33 100.00 ± 0.00 62.67 ± 12.36 98.33 ± 2.36 85.00 ± 4.08 100.00 ± 0.00 82.67 ± 9.98 61.67 ± 25.93

LSP 96.83 93.33 ± 0.00 92.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 95.00 ± 5.00 97.50 ± 2.50
LSP (GPT-4V) 95.67 96.67 ± 3.33 90.00 ± 6.00 90.00 ± 10.00 97.50 ± 2.50 100.00 ± 0.00 98.00 ± 2.00 97.50 ± 2.50

Human Rater ProtoTree (Nauta et al., 2021b) 72.74 83.33 ± 16.67 50.0 ± 10.0 100.0 ± 0.0 75.0 ± 0.0 83.33 ± 16.67 80.0 ± 0.0 37.5 ± 12.5

LSP (GPT-4V) 90.36 100.00 ± 0.00 70.00 ± 10.00 100.00 ± 0.00 87.5 ± 12.5 100.00 ± 0.00 100.00 ± 0.00 75.00 ± 25.00

Implementation details of LSP Our default model of choice is GPT-3.5 for language tasks and
Gemini-Vision for vision tasks for cost efficiency, but also examine cross-(M)LLM performance
in Appendix. All LLM modules are initialized with an empty instruction “none”. More detailed
hyperparameters can be found in Appendix A.8, which is kept fixed throughout the experiments.

5.2 COMPARISON WITH TRADITIONAL INTERPRETABLE LEARNING METHODS

0.4 0.6 0.8 1.0
Percentage of Accuracy Pertained

DT

ProtoTree

LSP

LSP-GPT4

Figure 3: Accuracy retention rate on Out-
Of-Distribution variants of IL-Bench-Vision.
We compute the ratio of test accuracy evaluated
on OOD datasets to the original test accuracy.
LSP shows strong transferability to OOD data.
Notably, LSP with GPT-4V as the learner retains
90-100% of the original test accuracy.

We compare LSP with two established models - Pro-
toTree (Nauta et al., 2021b) and Decision Tree (Chen
& Guestrin, 2016) - both organize prediction process in
tree-structured formats. Among existing NSP methods,
the closest to ours is ProtoTree - a highly interpretable
NSP that learns a discrete binary tree end-to-end, where
each node stores an image patch ("prototype") and the
edges determine whether the prototype exists within
the query image. Note that ProtoTree does not rely on
an explicit DSL - we could not compare with meth-
ods based on explicit DSL since they require domain
experts to design those operation, while our goal is to
automate the whole process. Since ProtoTree only im-
plements image tasks, this comparison also focus on
the vision tasks in IL-Bench.

Expressiveness The expressiveness of the learned
programs is evaluated in Table 2. LSP (GPT4) outperforms ProtoTree with an average accuracy of
95.67% - over 10% gain. Considering that GPT/Gemini has never observed the images in our datasets
before (curated after their knowledge cutoff), this result suggests LSP is capable of formulating
effective predictive rules from previously unseen examples.

Interpretability We measure the interpretability of LSPs and NSPs by having human raters make
predictions based on visualizations of the learned programs (See Appendix for evaluation protocols).
This process essentially "transfers" knowledge from models back to human. Notably, many XAI
methods fall short of achieving this level of interpretability, with ProtoTree being a rare exception.
As summarized in Table 2, the program generated by LSP also demonstrates stronger transferability
to human raters, as they are able to largely reproduce the predictions following rules learned by LSP.

Generalization under Domain Shift In contrast to traditional NSP models that rely on parametric
memory, LSP utilizes language instructions to encode knowledge. This strategy significantly enhances
robustness against variations in visual attributes (domain shifts). To verify this advantage, we examine
the transferability of the learned programs to Out-of-Distribution (OOD) data, constructed using
GPT-4V (See Appendix for details) As shown in Figure 3, LSP demonstrates exceptional resilience
to domain shifts, compared with ProtoTree.

5.3 COMPARISON WITH PROMPT OPTIMIZATION METHODS

Since there exists a variety of PO method that primarily differ in the search algorithm, we select one
most representative method from each major category: Monte Carlo sampling (APE) (Zhou et al.,

8

Published as a conference paper at ICLR 2025

Table 3: Classification accuracy comparison with Prompt Optimization methods on IL-Bench-Language.
Key findings: (1) LSP achieves ∼ 6% accuracy gain over the second best method, PromptAgent, with comparable
search and inference costs. (2) Across synthetic Decision Tree datasets categorized by increasing complexity of
oracle decision rules (Easy, Medium, Hard), LSP consistently outperforms other methods in maintaining high
accuracy levels, demonstrating its superior ability to reverse-engineer complex rules from observed data.

Text Benchmark Symbolic Caption

Method Mean Acc Search Cost Infer Cost DT-Easy DT-Medium DT-Hard Waxwing Waterthrush Jaeger Albatross Blackbird Swallow

APE (Zhou et al., 2022) 67.42 270.60s 0.11s 100.00 ± 0.00 85.00 ± 4.42 75.67 ± 4.52 50.00 ± 2.72 45.00 ± 3.60 66.11 ± 2.83 48.89 ± 3.14 80.00 ± 3.12 56.11 ± 2.39

OPRO (Yang et al., 2023a) 55.48 257.86s 0.14s 50.00 ± 1.08 50.17 ± 3.06 30.33 ± 2.62 57.22 ± 2.08 57.22 ± 4.16 76.67 ± 4.71 40.37 ± 3.43 78.06 ± 2.83 55.28 ± 1.04

APO (Pryzant et al., 2023) 70.67 270.85s 0.08s 100.00 ± 0.00 96.67 ± 4.71 77.83 ± 11.90 56.11 ± 4.78 48.89 ± 4.16 70.00 ± 5.93 54.07 ± 9.70 74.17 ± 2.97 58.33 ± 1.36

TreePrompt†(Singh et al., 2023) 65.64 301.52s 0.34s 100.00 ± 0.00 83.50 ± 6.68 57.83 ± 5.89 55.00 ± 7.20 53.33 ± 4.91 73.89 ± 1.57 47.78 ± 1.57 65.56 ± 0.39 53.89 ± 2.08

PromptAgent (Wang et al., 2023) 72.40 220.95s 0.11s 97.67 ± 3.30 88.50 ± 8.44 64.33 ± 20.27 60.56 ± 4.78 56.67 ± 6.24 75.00 ± 3.60 74.44 ± 6.54 74.17 ± 1.36 57.22 ± 0.79

LSP (Ours) 78.53 232.54 0.13s 99.83 ± 0.24 99.00 ± 0.82 96.83 ± 0.85 65.83 ± 4.17 62.50 ± 0.83 80.00 ± 1.67 61.11 ± 1.11 78.75 ± 0.42 62.92 ± 0.42

† TreePrompt is a pre-LLM era prompt optimization methods. We adapt this method to support LLMs. See Appendix A.8 for more details.

Table 4: Classification accuracy comparison with Prompt Optimization methods on IL-Bench-Vision.
LSP achieves an average accuracy of 96.83%, which is ∼ 20% higher than the 2nd best method (APO).

Vision Benchmark Palworld

Method Mean Fire-1 Fire-2 Dragon-1 Dragon-2 Electric-1 Electric-2 Water-1

APE (Zhou et al., 2022) 47.45 60.00 ± 0.00 38.00 ± 18.00 43.33 ± 3.33 42.50 ± 7.50 53.33 ± 0.00 25.00 ± 15.00 70.00 ± 15.00

OPRO (Yang et al., 2023a) 28.09 13.33 ± 0.00 20.00 ± 0.00 30.00 ± 10.00 25.00 ± 0.00 53.33 ± 20.00 25.00 ± 0.00 30.00 ± 0.00

APO (Pryzant et al., 2023) 76.38 70.00 ± 16.67 58.00 ± 10.00 96.67 ± 3.33 77.50 ± 2.50 90.00 ± 10.00 67.50 ± 2.50 75.00 ± 5.00

TreePrompt (Singh et al., 2023) 67.20 60.00 ± 0.00 50.00 ± 6.00 93.33 ± 6.67 77.50 ± 2.50 53.33 ± 0.00 65.00 ± 20.00 70.00 ± 0.00
PromptAgent (Wang et al., 2023) 66.33 53.33 ± 40.00 56.00 ± 4.00 96.67 ± 3.33 72.50 ± 17.50 63.33 ± 16.67 55.00 ± 20.00 67.50 ± 27.50

LSP (Ours) 96.83 93.33 ± 0.00 92.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 95.00 ± 5.00 97.50 ± 2.50

2022), evolutionary search (ORPO) (Yang et al., 2023a), beam search (APO) (Pryzant et al., 2023),
and tree search (PromptAgent) (Wang et al., 2023). We also adapt TreePrompt (Singh et al., 2023) - a
pre-LLM method that fits a classic decision tree to a set of pre-defined prompts - to LLMs. Since the
main bottleneck for PO methods is the candidate evaluation, we follow existing works and set the
same maximum number of candidate proposals for all methods (100 candidates).

Results The empirical results indicate that incorporating explicit structures significantly enhances
performance of the programs on predictive tasks: LSP consistently outperforms all vanilla prompt
optimization methods, with a considerable margin of 20.09% and 4.89% over the 2nd best methods on
vision and language tasks respectively. The advantages of integrating structured learning are twofold:
(1) It simplifies the learning process: LSP benefits from a divide-and-conquer approach where each
LLM-module node focuses solely on extracting predictive rules for a specific subset of the data.
(2) It streamlines the inference process: We observe that LLMs tend to exhibit hallucination as the
complexity of the instructions increases (e.g., multiple conditional clauses. In contrast, LSP mitigates
this issue by ensuring that each LLM module contains simpler, more manageable instructions.

Search cost analysis A key advantage of the structured prediction approach in LSP is that theo-
retically, it can reduce inference costs when executing oracle decision rules. This efficiency arises
because, during prediction, only a small subset of branches is executed for a given test input, and
the prompt on each branch is also much simpler due to divide-and-conquer. Consequently, we
observe empirically that LSP’s search and inference costs are comparable to those of various prompt
optimization baselines (Table 3). For a more detailed analysis, please refer to Appendix A.4.

6 ABLATION STUDY

Convergence of LLM-Symbolic Program LSP LSP organizes instructions into a tree-based
structure. Such divide-and-conquer strategy simplifies the learning process. To verify this, we also
plot the training trajectories for LSP across various tasks. The training trajectory indicates the how
fast a model fits the observed examples. As Figure 5 demonstrates, LSP not only converges faster but
also achieves higher final accuracy compared to models that use unstructured prompting techniques.

Different node scoring functions Table 5 summarizes the performance of LSP using three different
node scoring functions: (1). Error count. (2). Prediction accuracy. (3). Random scoring. The results
suggest that error count performs more consistently across different tasks.

9

Published as a conference paper at ICLR 2025

DT-Hard Waxwing Waterthrush
0

20

40

60

80

100

Te
st

Ac
cu

ra
cy

 (%
)

Optimizer
GPT-3.5
GPT-4

(a) Language Tasks

Fire_1 Fire_2 Electric_1
0

20

40

60

80

100

Te
st

Ac
cu

ra
cy

 (%
)

Optimizer
Gemini-V
GPT-4V

(b) Vision Tasks

2 3 40.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
eq

ue
nc

y

(c) Program Depth

0.1 0.2 0.3 0.4 0.50

1

2

3

4

5

Fr
eq

ue
nc

y

(d) Program Sparsity

Figure 4: (a, b): Stronger LLMs as better LSP learners. In these experiments, we keep the inference
LLM fixed (GPT-3.5 for text and Gemini-V for images) while swapping the learner LLM with GPT-4. With its
larger parameter count, GPT-4 consistently achieves better performance in learning LSPs. (c, d): Statistics of
discovered programs. Averaged from the IL-Bench-Language tasks, the resulting LSPs are generally shallow
and sparse, indicating that the final prediction can be reached within only a few steps.

1 2 3 4 5
Round

0.55

0.60

0.65

0.70

0.75

0.80

To
p-

1
Ac

cu
ra

cy

LSP (Ours)
APO

(a) CUB-Waxwing

1 2 3 4 5
Round

0.50

0.55

0.60

0.65

0.70

0.75

0.80

To
p-

1
Ac

cu
ra

cy

LSP (Ours)
APO

(b) CUB-Waterthrush

1 2 3 4 5
Round

0.70

0.75

0.80

0.85

0.90

To
p-

1
Ac

cu
ra

cy

LSP (Ours)
APO

(c) CUB-Blackbird

1 2 3 4 5
Round

0.2

0.4

0.6

0.8

To
p-

1
Ac

cu
ra

cy

LSP (Ours)
APO

(d) DT-Hard

Figure 5: Convergence of different algorithms across time. We plot the trajectory of training accuracy against
the number of optimization rounds. The API model is GPT-3.5. (1). LSP converges substantially faster than
vanilla prompting; (2). The search process does not introduce extra variances.

Robustness to meta-prompts LLM’s behavior is highly sensitive to prompt formulation, where
even minor variations in prompts might lead to significantly different outcomes. To assess the
robustness of LSP’s performance against variations in the meta-prompt - the prompt used by the
learner LLM to generate rules - we conducted experiments with three alternative prompts. These
prompts were paraphrased versions generated by distinct LLMs (visualized in Appendix A.5). The
results, presented in Table 5, indicate that LSP’s performance remains consistent across all meta-
prompt variants, demonstrating robustness to prompt formulation.

Table 5: Comparison of Different Node Scoring
Functions on three tasks from IL-Bench-Language. De-
spite its simplicity, error count achieves more consistent
performance compared to alternative metrics.

Node Scoring DT-Hard Waxwing Waterthrush

Random 70.50 ± 11.01 62.22 ± 4.78 61.67 ± 1.36
Accuracy 80.33 ± 18.27 66.11 ± 7.86 54.44 ± 0.70
Error Count (LSP) 96.83 ± 0.85 65.83 ± 4.17 62.50 ± 0.83

Meta Prompt DT-Hard Waxwing Waterthrush

Paraphrase-1 97.50 ± 2.12 65.00 ± 4.91 66.11 ± 3.14
Paraphrase-2 98.50 ± 0.71 61.67 ± 2.36 62.22 ± 3.93
Paraphrase-3 99.33 ± 0.62 62.78 ± 2.83 63.89 ± 0.79
Original (LSP) 96.83 ± 0.85 65.83 ± 4.17 62.50 ± 0.83

Complexity of discovered programs We
found that the complexity of programs devel-
oped by LSP is fairly manageable: Most pro-
grams can reach a final prediction within just
three steps, as illustrated in Figure 4c, and the
tree structures tend to be sparse, as shown in
Figure 4d. These observations confirm that
although theoretical maximum tree expansion
could grow exponentially with depth, in prac-
tice, LSPs operate effectively without requiring
overly complex structures.

7 CONCLUSION

This work aims at revitalizing the concept of Neuro-Symbolic Programming in the era of Large
Language Models. We demonstrate that pretrained LLMs can implement powerful symbolic programs
that are expressive, interpretable, and easy to train. Additionally, we introduce the Instruction Learning
Benchmark (IL-Benchmark), which consists of a suite of vision and language datasets designed to
evaluate instruction learning algorithms. We hope that our proposed framework will inspire new
developments in interpretable learning methods during the LLM era. We regard our study as an initial
step in the research on LLM-Symbolic Programs. Accordingly, we acknowledge the limitations of
the current method in Appendix Section A.11.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENT

This work is partially supported by NSF 2048280 and 2331966.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Griffin Adams, Alexander Fabbri, Faisal Ladhak, Eric Lehman, and Noémie Elhadad. From sparse to
dense: Gpt-4 summarization with chain of density prompting. arXiv preprint arXiv:2309.04269,
2023.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understanding of
gradient-based attribution methods for deep neural networks. arXiv preprint arXiv:1711.06104,
2017.

Andrew Bai, Chih-Kuan Yeh, Pradeep Ravikumar, Neil YC Lin, and Cho-Jui Hsieh. Concept gradient:
Concept-based interpretation without linear assumption. In ICLR, 2023.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong
Yue, et al. Neurosymbolic programming. Foundations and Trends® in Programming Languages,
7(3):158–243, 2021.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Guofeng Cui and He Zhu. Differentiable synthesis of program architectures. Advances in Neural
Information Processing Systems, 34:11123–11135, 2021.

Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. In Advances in
Neural Information Processing Systems, pp. 6967–6976. NeurIPS, 2017.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548, 2022.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam,
and Payel Das. Explanations based on the missing: Towards contrastive explanations with pertinent
negatives. In Advances in Neural Information Processing Systems, pp. 592–603. NeurIPS, 2018.

Yijiang River Dong, Lara J Martin, and Chris Callison-Burch. Corrpus: Code-based structured prompt-
ing for neurosymbolic story understanding. In Findings of the Association for Computational
Linguistics: ACL 2023, pp. 13152–13168, 2023.

Meng Fang, Shilong Deng, Yudi Zhang, Zijing Shi, Ling Chen, Mykola Pechenizkiy, and Jun Wang.
Large language models are neurosymbolic reasoners. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 17985–17993, 2024.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
täschel. Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784, 2017.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. News summarization and evaluation in the era of
gpt-3. arXiv preprint arXiv:2209.12356, 2022.

11

Published as a conference paper at ICLR 2025

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counterfactual visual
explanations. In International Conference on Machine Learning, pp. 2376–2384. ICML, 2019.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

Trevor Hastie and Robert Tibshirani. Generalized additive models. Chapman and Hall/CRC, 1990.

Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and Zeynep Akata. Grounding visual explana-
tions. In ECCV. ECCV, 2018.

Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Kumar Ravikumar, Seungyeon Kim,
Sanjiv Kumar, and Cho-Jui Hsieh. Evaluations and methods for explanation through robustness
analysis. In International Conference on Learning Representations. ICLR, 2021. URL https:
//openreview.net/forum?id=4dXmpCDGNp7.

Cho-Jui Hsieh, Si Si, Felix X Yu, and Inderjit S Dhillon. Automatic engineering of long prompts.
arXiv preprint arXiv:2311.10117, 2023.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International Conference on Machine Learning, pp. 2673–2682. ICML, 2018.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338–5348. PMLR, 2020.

Tin Kramberger and Božidar Potočnik. Lsun-stanford car dataset: enhancing large-scale car image
datasets using deep learning for usage in gan training. Applied Sciences, 10(14):4913, 2020.

Max Losch, Mario Fritz, and Bernt Schiele. Interpretability beyond classification output: Semantic
bottleneck networks. arXiv preprint arXiv:1907.10882, 2019.

Scott Lundberg. A unified approach to interpreting model predictions. arXiv preprint
arXiv:1705.07874, 2017.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. Interpretable and steerable sequence learning via
prototypes. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 903–913, 2019.

Meike Nauta, Annemarie Jutte, Jesper Provoost, and Christin Seifert. This looks like that, because...
explaining prototypes for interpretable image recognition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 441–456. Springer, 2021a.

Meike Nauta, Ron Van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-grained
image recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 14933–14943, 2021b.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck
models. arXiv preprint arXiv:2304.06129, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Pocket Pair. Palworld, 2024. URL https://en.wikipedia.org/wiki/Palworld.

12

https://openreview.net/forum?id=4dXmpCDGNp7
https://openreview.net/forum?id=4dXmpCDGNp7
https://en.wikipedia.org/wiki/Palworld

Published as a conference paper at ICLR 2025

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
black-box models. arXiv preprint arXiv:1806.07421, 2018.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with" gradient descent" and beam search. arXiv preprint arXiv:2305.03495, 2023.

Dongqi Pu and Vera Demberg. Chatgpt vs human-authored text: Insights into controllable text
summarization and sentence style transfer. arXiv preprint arXiv:2306.07799, 2023.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144. ACM, 2016.

Ameesh Shah, Eric Zhan, Jennifer Sun, Abhinav Verma, Yisong Yue, and Swarat Chaudhuri. Learn-
ing differentiable programs with admissible neural heuristics. Advances in neural information
processing systems, 33:4940–4952, 2020.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980, 2020.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. International Conference on Machine Learning, 2017.

Chandan Singh, John Morris, Alexander M Rush, Jianfeng Gao, and Yuntian Deng. Tree prompting:
Efficient task adaptation without fine-tuning. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 6253–6267, 2023.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning, pp. 3319–3328. PMLR, 2017.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

T Trieu and Thang Luong. Alphageometry: An olympiad-level ai system for geometry, 2024.

Jasper van der Waa, Marcel Robeer, Jurriaan van Diggelen, Matthieu Brinkhuis, and Mark Neerincx.
Contrastive Explanations with Local Foil Trees. In 2018 Workshop on Human Interpretability in
Machine Learning (WHI). WHI, 2018.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 595–604, 2015.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Ruochen Wang, Sohyun An, Minhao Cheng, Tianyi Zhou, Sung Ju Hwang, and Cho-Jui Hsieh. One
prompt is not enough: Automated construction of a mixture-of-expert prompts. In International
Conference on Machine Learning, 2024a.

Ruochen Wang, Ting Liu, Cho-Jui Hsieh, and Boqing Gong. On discrete prompt optimization for
diffusion models. In International Conference on Machine Learning, 2024b.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level
prompt optimization. arXiv preprint arXiv:2310.16427, 2023.

13

Published as a conference paper at ICLR 2025

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705, 2022.

Chenrui Wei, Mengzhou Sun, and Wei Wang. Proving olympiad algebraic inequalities without human
demonstrations. arXiv preprint arXiv:2406.14219, 2024.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, and Zhilin Yang. Gps:
Genetic prompt search for efficient few-shot learning. arXiv preprint arXiv:2210.17041, 2022.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023a.

Sen Yang, Xin Li, Leyang Cui, Lidong Bing, and Wai Lam. Neuro-symbolic integration brings causal
and reliable reasoning proofs. arXiv preprint arXiv:2311.09802, 2023b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. arXiv
preprint arXiv:2205.15480, 2022.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gonzalez. Tempera:
Test-time prompting via reinforcement learning. arXiv preprint arXiv:2211.11890, 2022.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024.

Zhihan Zhang, Shuohang Wang, Wenhao Yu, Yichong Xu, Dan Iter, Qingkai Zeng, Yang Liu,
Chenguang Zhu, and Meng Jiang. Auto-instruct: Automatic instruction generation and ranking for
black-box language models. arXiv preprint arXiv:2310.13127, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neural network
decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595, 2017.

14

Published as a conference paper at ICLR 2025

A SUPPLEMENTAL MATERIAL

Organization The appendix file is organized as follows:

• A.1 - More details on related work.
• A.2 - More details on IL-Bench.
• A.3 - Qualitative analysis of discovered programs.
• A.4 - Analysis on the inference efficiency advantage of LSP.
• A.5 - Additional ablation study on cross model performance.
• A.7 - Complete learning algorithm used in LSP.
• A.8 - Implementation details.
• A.9 - Construction of Out-of-distribution data for Palworld datasets.
• A.10 - Human evaluation protocols.
• A.11 - Known limitations of LSP.
• A.12 - Social impact statement.
• A.13 - License statement.
• Table 8 - Overview of all tasks in IL-Bench.

A.1 MORE DETAILS ON RELATED WORK

Interpretable machine learning Although neural networks are immensely expressive, they provide
no insights into its internal decision making mechanism. In the quest of making model predictions
interpretable, research has broadly categorized methods into two main types: post-hoc and intrinsic.
Post-hoc methods provide insights into how a pretrained model behaves, usually by highlighting
important features used for decision making (Zintgraf et al., 2017; Petsiuk et al., 2018; Dabkowski
& Gal, 2017; Shrikumar et al., 2017; Sundararajan et al., 2017; Ancona et al., 2017) or provide
counterfactual explanations (Dhurandhar et al., 2018; Hendricks et al., 2018; van der Waa et al., 2018;
Goyal et al., 2019; Hsieh et al., 2021). Beyond attribution in the feature space, some methods can also
be generalized to the space of higher level concepts (Kim et al., 2018; Bai et al., 2023). However, all
these methods aim to highlight important features while not being able to recover the entire decision
making process of neural networks.

On the other hand, intrinsic methods integrate interpretability directly into the model’s architecture,
making them naturally interpretable by design. Traditional Methods include Decision Trees (Chen &
Guestrin, 2016) and Generalized Additive Models (GAMs) (Hastie & Tibshirani, 1990) offer strong
interpretability, yet often not expressive enough. Concept bottleneck model adds a hidden layer in
neural network, where neurons represent some predefined concepts to gain interpretability (Koh et al.,
2020; Losch et al., 2019; Yuksekgonul et al., 2022; Oikarinen et al., 2023). While this approach
facilitates attribution of concepts, it does not provide a comprehensive decision rule, and the concepts
need to be predefined by human experts. In contrast, LSP directly learns all interpretable modules
(LLM prompts) from data without relying on human prior knowledge. Furthermore, LSP fully
reveals its decision process through learned prompts and program structure, while concept-based
methods only partially expose the decision process. Neurosymbolic Programming (NSP) (Chaudhuri
et al., 2021; Shah et al., 2020; Cui & Zhu, 2021; Nauta et al., 2021b) represents an innovative
blend, combining deep learning’s data handling capabilities with symbolic reasoning to foster both
performance and transparency. Despite early promises, NSP suffers from an inherit trade-off between
expressiveness (more NN modules) and interpretability (more symbolic modules). Moreover, they
are often expensive to train due to co-optimization of program architecture and parameters of the NN
modules (Shah et al., 2020; Cui & Zhu, 2021).

Prompt Optimization The essence of utilizing a generative language model lies in crafting effective
prompts. Recent advancements have aimed to automate this process, reducing the need for human
effort through prompt optimization (Shin et al., 2020; Zhou et al., 2022). While pioneering efforts
were mainly directed towards various discrete optimization algorithms (Shin et al., 2020; Deng et al.,
2022; Zhang et al., 2022; Wang et al., 2024b), it has been noted that advanced LLMs can revise
prompts similarly to human engineers (Zhou et al., 2022; Pryzant et al., 2023; Wang et al., 2024a).

15

Published as a conference paper at ICLR 2025

Since these initial efforts, a significant body of research has emerged, exploring various search
algorithms including Monte Carlo Sampling (Zhou et al., 2022), beam search (Pryzant et al., 2023),
evolutionary search (Yang et al., 2023a; Fernando et al., 2023; Xu et al., 2022; Guo et al., 2023; Hsieh
et al., 2023), and tree search (Wang et al., 2023). However, existing methods often treat the prompt as
a single entity without explicit structure. From this perspective, prompt optimization methods can be
seen as simplified instances of LSPs, where the program consists solely of one LLM module. While
this simplification has shown promising results, as task complexity increases, the explicit structuring
within LSPs allows them to encode knowledge from data. This provides substantial advantages over
conventional prompt optimization methods. The only exception is TreePrompt (Singh et al., 2023),
developed before the LLM era. TreePrompt first pre-generates a set of prompts as attributes and fits a
decision tree on top of them. On the other hand, LSP aims at establishing a principled hybrid between
LLMs and NeuroSymbolic Programming, which substantially differs from traditional decision tree
algorithms in program structure search, module definition, module learning method, and extendability.
Concretely, LSP uses progressive tree search algorithm to search for program structures; Moreover,
all LLM modules are fully optimized by LLMs using the proposed rule learning prompting method;
The LLM module on each node are trained to fit subset of data assigned to it instead of capturing the
full data distribution, making the learning task much simpler. Similar to NSP, LSP framework also
enjoys great extendability, allowing us to seamlessly incorporate extra modules (either learned or
manually defined) to the search space to include more complex and tailored programs for new tasks.
Empirical results also suggest that LSP achieves substantial gain over previous prompt optimization
method.

Augmenting LLMs with Neural-Symbolic Solvers Symbolic AI encompasses a diverse set of
methods and tools suitable for various applications. Although prior work has explored combining
symbolic approaches with LLMs, these efforts target distinct tasks compared to LSP (Dong et al.,
2023; Fang et al., 2024; Yang et al., 2023b). For instance, Dong et al. (2023) focuses on enhancing
LLMs’ story comprehension ability by converting storylines into code, while Fang et al. (2024); Yang
et al. (2023b) augment LLMs with external symbolic solvers to improve accuracy. These approaches
are not applicable to the Intepretable Learning task that our work addresses.

A.2 MORE DETAILS ON IL-BENCH

A.2.1 DATA CURATION AND STATISTICS

Symbolic tasks For symbolic tasks, we use xi
M
i=1 to represent input variables, with values denoted

by Aj , Bj , Cj , The label for each data point takes values from 0, 1, 2, . . . , N − 1. Inspired by the
natural alignment of many decision-making processes with tree structures, we use synthetic decision
trees to generate labels for each data point.

Each level of the decision tree processes one variable, and leaf nodes are assigned so that labels are
evenly distributed. The dataset is generated by randomly sampling a value for each variable and then
passing the resulting example through the decision tree. The parameters M and N are predefined to
control task difficulty: more variables increase the complexity of the underlying rules, making the
task more challenging for the model. This setup allows for automatic generation of symbolic tasks
that can be extended to arbitrarily high levels of difficulty.

Language tasks For the initial version of IL-Bench, we primarily use the CUB dataset (Wah
et al., 2011) to construct text classification tasks, though the curation method presented here can
be readily applied to convert any visual classification dataset (e.g., Stanford Cars, Dog Breeds,
Food Items (Maji et al., 2013)), which we plan to add in future releases. CUB is a fine-grained
visual classification dataset comprising visually similar bird subspecies, making it widely used in
pre-LLM-era interpretability research.

To convert this dataset into text classification tasks, we use GPT-4 as the captioner. Since an
image contains far richer information compared to a text modality, captioning images individually
risks missing fine-grained details that are crucial for distinguishing between bird subspecies, which
could render the task ill-defined. To address this, we generate contrastive captions: for each target
image, we sample images from other classes as contrastive examples. This contrastive approach
is applied for every class, and all resulting captions are concatenated to form the input for the new
text classification dataset. To avoid information leakage through label names, class names (e.g.,
North_American_Waterthrush) are replaced with symbols (e.g., class_1).

16

Published as a conference paper at ICLR 2025

Empirically, we confirmed that the curated datasets are not solvable in a zero-shot setting: all tested
LLMs in our experiments could not outperform random guessing without learning the underlying
rules.

Vision tasks To curate images that are unfamiliar to the MLLMs, we use a regional Pokémon-style
video game called "Palworld," which contains approximately 150 creatures ("Pals") of different types
(e.g., water, fire, electric). To make the task challenging, we group visually similar Pals into the
same dataset. Since these visually similar Pals often belong to the same type, we name each dataset
according to the type (e.g., fire_1). All images are collected via screenshots of publicly available
in-game footage on YouTube. Similar to the language tasks, Pal names are replaced with symbols to
prevent information leakage.

A.2.2 TASK DESCRIPTIONS AND EXAMPLES

Table 8 provides an overview of each task in IL-Bench, including task name, input modality, descrip-
tions, and example data points.

A.3 QUALITATIVE ANALYSIS OF DISCOVERD PROGRAMS

Figure 6: Example program discovered by LSP on DT-Hard task.

In this section, we provide qualitative analysis of the discovered programs. We use programs
discovered from DT-Hard task as illustrating example, as knowing the oracle rules for this task allows
us to precisely identify the reasons for both success and failure.

The data for the DT-Hard task are generated using the following rules:

• Label = foo when x1=A1, x2=B1, x3=C1 or x1=A2, x2=B2, x3=C1
• Label = bar when x1=A1, x2=B1, x3=C2 or x1=A2, x2=B2, x3=C2
• Label = sin when x1=A1, x2=B2, x3=C1 or x1=A2, x2=B1, x3=C1
• Label = han when x1=A1, x2=B2, x3=C2 or x1=A2, x2=B1, x3=C2

Figure 6 visualizes an example program discovered by LSP, which achieves 96% test accuracy. Here,
nodes are LLM modules with rules, and edges denote the prediction from the parent node. If the
rule on a specific node cannot cover a test query, it will simply return its parent’s prediction. By
examining the program, we can observe that it learns to "divide-and-conquer" a test query: Take
the rules at the root node as an example, it first summarizes a few rules for label sin, bar and han,
but decide to classify every other situations as foo; This is clearly not accurate, so its child node
further refines the rules. Let us use the data point "x1=A1, x2=B2, x3=C1" as an example. At
the root node, the rule states "Otherwise, the label is foo", which sends this example

17

Published as a conference paper at ICLR 2025

to the child node. At this child node, the rule becomes "if x1=A1 and x3=C1, label as
sin", which sends this example to the left child node. At this leaf node, the rule is "if x2=B2,
x3=C1, the the label is sin", resulting in the final prediction of sin, which is correct.

From this representative example, the following observations can be made:

• The root node initially misclassifies the example as "sin", demonstrating that current LLMs can
still make errors when generating predictive rules.

• However, this error is corrected by the child node, resulting in an accurate final prediction.
• The rules at each node need not be complete, as child nodes are responsible for correctly predicting

the subset of data assigned to them.
• There exists redundancy between the rules at different nodes, this suggests that the learned program

could be further simplified using post-hoc algorithms.

A.4 DETAILED COMPLEXITY ANALYSIS OF LSP

LSP follows a multi-step decision-making process, akin to a decision tree. While this might initially
suggest an increase in inference time, in-depth complexity analysis demonstrates that LSP actually
improves inference efficiency.

Inference cost depends on total token count, not number of prompts Assuming network speed
is not a bottleneck, the inference cost is primarily determined by the total token count rather than
the number of prompts. Although LSP necessitates multiple LLM calls for a final prediction, the
individual prompts are significantly simpler and shorter, due to the divide-and-conquer strategy.
While LSP requires multiple LLM calls to reach a final prediction, each prompt is significantly
simpler and shorter due to LSP’s divide-and-conquer strategy.

Tree structure of LSP reduces theoretical inference cost Consider an oracle rule represented
with N tokens. If represented in a traditional prompt, the inference LLM must process O(N) tokens.
By contrast, using LSP’s complete binary tree structure, the LLM processes only O(N/ logD)
tokens per test query, where D represents the program depth (with some minor template overhead in
practice). This is because only one path in the LSP tree are executed for a given test input, thereby
substantially reduces the inference cost of oracle rules.

Oracle rules are naturally complex and lengthy The oracle rules underlying many datasets,
particularly those from IL-Bench, tend to be inherently complex. Such rules are often composed of
simpler sub-rules, resulting in longer token sequences. As the complexity of an oracle rule increases,
the minimal description length (measured by token count) also grows, naturally raising the inference
cost. Importantly, no token limit was imposed on any of the baselines, allowing them to introduce
more rules if beneficial. However, unstructured learning methods often produce relatively simple
prompts that perform worse. In practice, LSP only uses comparable or slightly more tokens than
previous SOTA, while is substantially more accurate in captures the complex oracle decision rules.

A.5 ADDITIONAL ABLATION EXPERIMENTS

A.5.1 USING DIFFERENT LLMS TO IMPLEMENT LSPS

The role of LLMs in LSPs is twofold: they serve both as the inference and learning engine of the
LLM-modules in the grammar. The learning engine is responsible for summarizing and organizing
patterns from observed data samples into clear predictive rules, whereas the inference engine follows
the learned program to make predictions on test examples. Natural questions arise: (1). how effective
are different LLMs at optimizing LSPs? (2). Is the learned programs interpretable to different LLMs?

LLM as LSP learner We replace the learning engine used in optimizing LSP with various LLMs -
GPT-3.5, Gemini, and GPT-4 - while keeping all other settings consistent with the main experiment.
As shown in Figure 4, GPT-4 consistently outperforms other LLMs on both text and vision tasks,
while Gemini and GPT-3.5 show similar performance with each other. This reflects their respective
capabilities. For specific examples of instructions generated by different LLM optimizers, please see
the Appendix.

18

Published as a conference paper at ICLR 2025

Table 6: Transferring LSPs learned from one LLM to another. The learned LSPs are generally interpretable
across various LLMs. However, larger LLMs (e.g., GPT-4) demonstrate a slightly higher consistency in
understanding LSPs learned by other LLMs.

Source Model Task Evaluator

GPT3.5 Gemini-M GPT4

GPT3.5

DT-Hard 89.75 ± 1.25 72.67 ± 6.91 87.50 ± 1.22

Waxwing 65.83 ± 4.17 52.22 ± 1.57 56.67 ± 3.60

Waterthrush 62.50 ± 0.83 64.44 ± 0.79 59.44 ± 3.93

Gemini-M

DT-Hard 75.50 ± 2.04 80.83 ± 1.03 79.17 ± 11.45

Waxwing 52.78 ± 3.42 58.33 ± 4.91 61.11 ± 10.57

Waterthrush 50.56 ± 4.16 54.44 ± 5.50 52.22 ± 0.79

GPT4

DT-Hard 74.50 ± 9.35 57.67 ± 3.01 99.50 ± 0.00

Waxwing 59.44 ± 5.15 62.22 ± 7.49 63.33 ± 4.91

Waterthrush 66.67 ± 6.80 68.33 ± 2.72 62.78 ± 9.06

LLM as LSP interpreter We then test if LSPs created by one LLM could be interpreted by other
LLMs. Table 6 summarizes the performance. The results suggest that LSPs are interpretable across a
diverse range of inference models; Larger and stronger LLMs (e.g. GPT-4) demonstrates a slight more
consistent ability in interpreting LSPs, which aligns their superior instruction-following capacities.

A.6 DIFFERENT PARAPHRASING OF THE META-PROMPT

Here, we visualize the different paraphrased version of the meta-prompt used in Table 5.

Version Prompt

Paraphrasing-1 Begin by outlining the patterns visible in these examples; Next, formulate
one well-defined rule that successfully predicts the labels for these
examples using these patterns.

Paraphrasing-2 Start by identifying and explaining the patterns found in these examples;
Then, propose one robust rule that can accurately predict the labels based
on the identified patterns.

Paraphrasing-3 Start by identifying the patterns in these examples; then, develop a clear
rule that accurately forecasts the labels for these examples based on these
patterns.

Original First explain the patterns you observe from the above examples; Then
provide 1 high-quality rule that can correctly predict the labels of those
examples based on those patterns.

Table 7: Different variants of the meta-prompt used by the learner LLM when building LSP. The
variants are produced by asking different LLMs to paraphrase the original meta-prompt.

A.7 LEARNING ALGORITHM FOR LSP

The complete pipeline for constructing LSP is summarized in Algorithm 1 and Algorithm 2.

Remarks

• Although initially, the complexity of the program expansion might seem exponential to the tree
depth, a closer examination reveals otherwise: (1). In practice, the trees are typically sparse,
meaning that expanding only a few branches is often sufficient to achieve good performance
(Figure 4d). (2). The divide-and-conquer approach ensures that each tree level processes the same
amount of data making the evaluation complexity linear to tree depth.

• The above arrangement of the search process does not compromise generality of LSP: For more
sophisticated DSL designs, program structure search can be conducted similarly to traditional
NSPs, using top-down tree traversal Chaudhuri et al. (2021); Cui & Zhu (2021).

19

Published as a conference paper at ICLR 2025

Algorithm 1 learn_llm_module: Learning LLM Module by summarizing predictive rules

1: Input: Proposal size m, data sample B, learner LLMMl

2: Initialize an empty list of LLM modules Φ
3: for i = 1 to m do
4: Randomly sample b ∼ B
5: ϕnew ← summarize(Ml, b)
6: Φ← Φ ∪ {ϕnew}
7: end for
8: return Φ

Algorithm 2 Complete pipeline of optimizing LSPs

1: Input: Dataset D, beam size d, number of iterations T , inference LLMMi, learner LLMMl,
expand ratio K, proposal size m

2: Initialize p0 as an empty program
3: Initialize candidate program set P = {p0}
4: for t = 1 to T do
5: for each program p in P do
6: ▷ Batch evaluation
7: Sample a batch B ∼ D
8: Evaluate p on B usingMi

9: ▷ Selecting the most promising node n to expand
10: Assign B to the leaf nodes of p
11: Identify the most error-prone leaf node n with assigned subset Bn
12: ▷ Extend program p to K new programs by adding top-K LLM modules to node n
13: Φ← learn_llm_module(n,Bn,Ml,m)
14: ΦtopK ← evaluate and retain top-K Φ on Bn
15: Pnew ← extend p by assigning each ϕ ∈ ΦtopK to node n on program p.
16: P ← P ∪ Pnew

17: end for
18: Evaluate and retain the top-d programs from P on D
19: end for
20: return The best program from P

20

Published as a conference paper at ICLR 2025

Table 8: Overview of Interpretable-Learning Benchmark. We provide task names, types, sum-
maries, number of labels, and one example data point for each task.

Task Type Summary Labels Example

DT-Easy Symbolic Predict labels based on symbolic in-
puts. Rules generated by a small
decision tree

2 "input": "x1=A2; x2=B1", "output": "bar"

DT-Medium Symbolic Predict labels based on symbolic in-
puts. Rules generated by a medium
decision tree

2 "input": "x1=A3; x2=B2", "output": "bar"

DT-Hard Symbolic Predict labels based on symbolic in-
puts. Rules generated by a large de-
cision tree

4 "input": "x1=A1; x2=B1; x3=C1", "output": "foo"

Waxwing Caption Classify Waxwing species based on
its text description.

2 "input": "Tan to light brown head and upper body, black m̈askäcross eyes, lighter cream
underparts, bright red tips on secondary wing feathers, small black bill, yellow band on tail.",
"output": "Cedar Waxwing"

Waterthrush Caption Classify Waterthrush species based
on its text description.

2 "input": "Light gray crown, white supercilium, dark eyestripe extending behind eye, olive-brown
wings with faint wingbars, white throat, pale underparts, long, slender bill, relatively short tail,
orange legs.", "output": "Louisiana Waterthrush"

Jaeger Caption Classify Jaeger species based on its
text description.

2 "input": "Light greyish-brown plumage on the underside, distinct narrow white band across
the nape, wings with a M-shaped pattern when spread, tail slightly forked but mostly straight
across.", "output": "Long tailed Jaeger"

Albatross Caption Classify Albatross species based on
its text description.

3 "input": "Dark brown upperparts and paler brown underparts, elongated and narrow wings with a
white trailing edge and distinct finger-like tips, hooked beak with a pale base, light-colored head
with a dark eye patch and bill, wings held straight in gliding flight, gliding above water surface.
Uniform dark brown plumage, long slender wings, distinct white pattern on underwings, white
band near the tips of the underwings, pale or white head, dark eye patch.", "output": "Black
footed Albatross"

Blackbird Caption Classify Blackbird species based on
its text description.

4 "input": "Bright yellow head, black body, sharp conical beak, perched on reed-like vegetation.
Bright yellow head, yellow chest, solid black body excluding head and chest, perched on a thin
branch. Black body, bright yellow head, sturdy bill, perched on a reed.", "output": "Yellow
headed Blackbird"

Swallow Caption Classify Swallow species based on
its text description.

4 "input": "Light brown head, pale throat, light brown upperparts, long pointed wings, short tail,
white underparts, sitting on wire. Light brown head and upper body, white underparts, sitting on
a wire, sky background, short beak, sleek body shape. Brown and white plumage, perched on a
wire, stout body, short and thick neck, medium-length tail with a straight edge, compact size,
unmarked lighter underparts, darker wings and upperparts.", "output": "Bank Swallow"

Fire-1 Vision Distinguish visually-similar fire-
type pals from Palworld.

3 "input": , "output:" "Arsox"

Fire-2 Vision Distinguish visually-similar fire-
type pals from Palworld.

5 "input": , "output:" "Pyrin"

Dragon-
Blue-1

Vision Distinguish visually-similar blue-
colored dragon-type pals from Pal-
world.

3 "input": , "output:" "Elphidran Aqua"

Dragon-
Blue-2

Vision Distinguish visually-similar blue-
colored dragon-type pals from Pal-
world.

4 "input": , "output:" "Jetragon"

Electric-1 Vision Distinguish visually-similar electric-
type pals from Palworld.

3 "input": , "output:" "Grizzbolt"

Electric-2 Vision Distinguish visually-similar electric-
type pals from Palworld.

4 "input": , "output:" "Univolt"

Water-1 Vision Distinguish visually-similar water-
type pals from Palworld.

4 "input": , "output:" "Celaray"

A.8 IMPLEMENTATION DETAILS

LSP Throughout our main experiment, we use an expansion ratio of 4, batch size of 64, a maximum
number of four iterations, and a maximum of 8 candidate (LLM module) proposals for each iteration.
The settings for beam search follows that of APO, which uses a beam size of 4 and deploys UCBBan-
dits algorithm with a sample size of 32 to speedup the candidate ranking Pryzant et al. (2023). The
only exception is that for vision tasks, we use a batch size of 4 for cost reduction. The temperature
for all API models are set to their default (0.7).

Baselines For all prompt optimization baselines, we set the maximum budget (measured by the
number of candidate proposals) to the same number.

• For Decision Tree, we use XGBoost library’s standard implementation, which operates on
raw pixels.

21

Published as a conference paper at ICLR 2025

• For ProtoTree, we directly run the original implementation, but reduce the maximum depth
from 9 to 5, as it is faster to train yet achieves better performance on our datasets.

• For TreePrompt, we swap the GPT-2 model used in its implementation with the more capable
gpt-3.5-turbo for fair comparison with other more recent baselines.

We align the evaluation our baselines.

A.9 CONSTRUCTING OUT-OF-DISTRIBUTION DATASET FOR IL-BENCH-VISION TASKS

(a) Beakon Original (b) Celaray Original (c) Incineram Original (d) Jolthog Original

(e) Beakon Generated (f) Celaray Generated (g) Incineram Generated (h) Jolthog Generated

Figure 7: Comparison between original images (top row) and Out-Of-Distribution images
(botton row) generated by GPT-4V. All images are resized to an unified resolution of 128.

Our OOD dataset is constructed by feeding the original image from the training set to GPT-4 (web
version), and ask GPT to generate a variant of the input image. The prompt we used is shown below.
Figure 7 shows a comparison of some example OOD images generated by GPT-4 with original image.

Generate an image variant containing the creature in
the provided image. keep the key features of this
creature unmodified. You must show the full body view
of this creature.

A.10 HUMAN EVALUATION PROTOCOL

We conduct user study to access the interpretability of our method and ProtoTree. For both methods,
we send (1) the original image datasets and (2) visualizations of the discovered programs to the
human raters, and as the human rater to make predictions based on those programs. We then compute
the accuracy of their predictions, and report the mean and standard deviations. We select the group of
human raters so that they have no background in machine learning research.

A.11 LIMITATIONS

We acknowledge the following limitations, which merit further exploration in future studies. It is
important to note that these limitations pertain to the specific, simplified instantiation of the algorithms
used in this preliminary study, rather than to the LSP framework itself:

22

Published as a conference paper at ICLR 2025

(a) Celaray (b) Gobfin (c) Kelpsea (d) Penking
0

1

Absent

32

Present

2

Absent

17

Present

3

Absent

10

Present

4

Absent
7

Present

Celaray

Absent

Kelpsea

Present

Kelpsea

Absent

Kelpsea

Present

11

Absent
14

Present

Penking

Absent

Kelpsea

Present

Kelpsea

Absent

Kelpsea

Present

18

Absent

25

Present

19

Absent
22

Present

Penking

Absent

Penking

Present

Penking

Absent

Penking

Present

26

Absent
29

Present

Penking

Absent

Penking

Present

Penking

Absent

Penking

Present

33

Absent

48

Present

34

Absent

41

Present

35

Absent
38

Present

Gobfin

Absent

Kelpsea

Present

Kelpsea

Absent

Kelpsea

Present

42

Absent
45

Present

Kelpsea

Absent

Kelpsea

Present

Kelpsea

Absent

Kelpsea

Present

49

Absent

56

Present

50

Absent
53

Present

Kelpsea

Absent

Kelpsea

Present

Kelpsea

Absent

Kelpsea

Present

57

Absent
60

Present

Kelpsea

Absent

Kelpsea

Present

Kelpsea

Absent

Kelpsea

Present

(e) ProtoTree

(f) LSP

Figure 8: Example programs discovered by LSP (bottom) and ProtoTree (middle). While
ProtoTree offers some interpretability by displaying prototype image patches to the user, it can be
misleading as there is no guarantee that the prototypes are meaningful (e.g. many patches miss the
key regions, and there also exists entire branches that overfit to the background). In contrast, the
programs discovered by LSP accurately capture the characteristics of the creatures and guide the
decision-making process step by step.

23

Published as a conference paper at ICLR 2025

• Domain-Specific Language Design: A common practice in NSp is to design DSLs suitable for
specific tasks. This work presents only a basic example of a DSL designed for predictive tasks.
Investigating a variety of DSL designs could enable LSPs to excel across a broader range of
applications.

• Program Complexity: Our search algorithm prioritizes accuracy without considering the complex-
ity of the resulting programs, potentially leading to redundancies. The complexity of the learned
programs could be reduced either through post-processing (akin to code cleaning) or by integrating
complexity regularization during the search process.

A.12 SOCIETAL IMPACT

The development and deployment of interpretable predictive models using Large Language Models
(LLMs) have significant societal implications. By enhancing the transparency and interpretability of
AI systems, our approach addresses critical concerns related to trust, accountability, and fairness of
the decision making process. These improvements are particularly valuable in high-stakes domains
such as healthcare, finance, and legal decision-making, where understanding the rationale behind AI
decisions is crucial for gaining user trust and ensuring ethical outcomes.

However, as with any AI technology, careful consideration must be given to the potential risks of
misuse or unintended consequences. It is essential to continue developing comprehensive guidelines
and regulatory frameworks to ensure that the deployment of these models aligns with societal values
and ethical standards. By promoting transparency and interpretability, our approach paves the way
for more responsible and beneficial integration of AI into society.

A.13 LICENSE

The open-source code from GitHub used in this paper adheres to various licenses like MIT, Apache
2.0, and GPL, ensuring the code’s free use, modification, and distribution under specific conditions.
The ChatGPT API from OpenAI and the Gemini API from Google are used in compliance with their
respective terms of service, which include usage restrictions, attribution requirements, and provisions
for commercial use. By following these licenses and terms, we maintain ethical and legal standards
in utilizing both open-source code and proprietary APIs in our research.

24

	Introduction
	Background and related work
	IL-Bench: 1st Interpretable-Learning Benchmark for (M)LLMs
	Interpretable Learning with LLM-Symbolic Programming
	Preliminaries on classical Neurosymbolic Learning
	LLM-Symbolic Programs
	Prompted-LLM as an interpretable unit
	Domain-Specific Language of LSPs
	Learning algorithm

	Experimental Results
	General settings
	Comparison with traditional interpretable learning methods
	Comparison with prompt optimization methods

	Ablation Study
	Conclusion
	Supplemental Material
	More details on related work
	More details on IL-Bench
	Data curation and statistics
	Task descriptions and examples

	Qualitative analysis of discoverd programs
	Detailed complexity analysis of LSP
	Additional ablation experiments
	Using different LLMs to implement LSPs

	Different paraphrasing of the Meta-Prompt
	Learning algorithm for LSP
	Implementation details
	Constructing Out-Of-Distribution dataset for IL-Bench-Vision tasks
	Human Evaluation Protocol
	Limitations
	Societal Impact
	License

