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Abstract

While instruction fine-tuned LLMs are effec-001
tive text generators, sensitivity to prompt con-002
struction makes performance unstable and sub-003
optimal in practice. Relying on a single ‘best’004
prompt cannot capture all differing approaches005
to a generation problem. Using this observa-006
tion, we propose multi-prompt decoding, where007
many candidate generations are decoded from008
a prompt bank at inference-time. To ensem-009
ble candidates, we use Minimum Bayes Risk010
(MBR) decoding, which selects a final output011
using a trained value metric. We show multi-012
prompt improves MBR across a comprehensive013
set of conditional generation tasks (Figure 1),014
and show this is a result of estimating a more015
diverse and higher quality candidate space than016
that of a single prompt. Our experiments con-017
firm multi-prompt improves generation across018
tasks, models and metrics.1019

1 Introduction020

Minimum Bayes Risk (MBR) decoding (Bickel and021

Doksum, 1977) has been shown to improve gen-022

eration quality of large language models (LLMs)023

compared to typical single-output decoding meth-024

ods, such as beam search and sampling, across025

NLP tasks (Shi et al., 2022; Suzgun et al., 2023). A026

special case of MBR, self-consistency (Wang et al.,027

2023), has been widely-used to improve LLM rea-028

soning capabilities by ensembling reasoning paths.029

MBR leverages a set of candidates and selects the030

one with the highest expected utility, using all other031

hypotheses as references (see Fig. 2, left), follow-032

ing a simple intuition that a desirable output should033

be highly probable and consistent with others.034

A central question to improve MBR is how to035

balance between diversity and adequacy within the036

candidate set. Prior work has found success using037

sampling-based decoding to generate hypotheses038

1Our experiment code, data and prompts are available at
https://anonymized_url
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Figure 1: Multi-prompt and single prompt MBR results
for code generation on HUMANEVAL, text simplifica-
tion on SIMPEVAL, and translation on WMT ’22 EN-CS
generated with open-source 7B LLMs (details in §4).

from a given input (Eikema and Aziz, 2020; Freitag 039

et al., 2022a, 2023). However, naively increasing 040

the sampling temperature eventually degrades the 041

quality of the candidates. Recently, instruction fine- 042

tuned LLMs (Ouyang et al., 2022; Chung et al., 043

2022) has opened up the possibility of writing the 044

“prompts” in various formats to elicit more diverse 045

and high quality outputs, as these models are ob- 046

served to be sensitive to prompt design, where a 047

slight change in phrasing or the inclusion of more 048

relevant example can significantly impact model 049

outputs (Srivastava et al., 2023; White et al., 2023). 050

Taking advantage of the prompt sensitivity of 051

LLMs, we introduce multi-prompt MBR decoding, 052

which samples candidates using a bank of human- 053

or model-written prompts (see Figure 2, right). In- 054

tuitively, exploring a variety of prompts enables the 055

generation of diverse, high quality hypotheses that 056

provide a closer representation of the true output 057

distribution. By guiding the model towards dif- 058

ferent modes or regions of the output space, each 059

prompt captures unique sequences that are coherent 060

and relevant to the input. 061

We experiment with three distinct generation 062

tasks: text simplification (Maddela et al., 2023), 063

machine translation (Kocmi et al., 2022), and code 064

generation (Chen et al., 2021). Each task assess the 065

impact of different prompt components on multi- 066
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prompt MBR, such as instance-level prompts for067

code, task descriptions for simplification, and in-068

context examples for translation. To account for069

the relative quality between prompts, we develop070

different strategies for selecting prompts that signif-071

icantly improve over random choice. These strate-072

gies include sampling prompts from a large prompt073

bank based on their usage on a training set and se-074

lecting prompts using embedding-based heuristics075

when a training set is unavailable.076

We evaluate multi-prompt MBR on a broad077

range of LLMs including both open-source models078

like Llama 2 (Touvron et al., 2023) and state-of-the-079

art closed-source models such as GPT-4 (Achiam080

et al., 2023). The results show that multi-prompt081

MBR consistently improves single-prompt MBR082

across all three tasks and model scales, with gains083

of up to 14% on HumanEval (Chen et al., 2021) and084

8 points of LENS on SIMPEVAL (Maddela et al.,085

2023). Figure 1 displays the results for models at086

the 7B scale. Additionally, we study the dynam-087

ics between different utility and evaluation metrics,088

revealing that multi-prompt MBR with one metric089

improves performance universally across metrics.090

2 Preliminaries091

Instruction fine-tuned LLMs are trained to follow092

arbitrary natural language task descriptions (Wei093

et al., 2022). Given an input x and prompt ρ, an au-094

toregressive language model πθ parameterized by095

θ estimates an output sequence y ∼ πθ(x, ρ) using096

an decoding algorithm by sampling the next token097

conditioned on the input πθ(yi|y<i, x, ρ). The de-098

coding algorithm aims to generate y by maximizing099

the sequence likelihood over the language model100

distribution πθ(y|x, ρ) = ΠT
i=1πθ(yi|y<i, x, ρ).101

Minimum Bayes Risk Decoding. As often ob-102

served in practice (Freitag et al., 2022a), unfor-103

tunately, the highest likelihood generation is not104

necessarily the highest quality (Jaeger and Levy,105

2006). Building on this observation, MBR decod-106

ing (Bickel and Doksum, 1977; Eikema and Aziz,107

2020) first samples a set of hypotheses H from108

the model πθ, approximating the true distribution109

of output space Y , then selects the output ŷMBR110

that maximizes the expected utility (or minimizes111

the expected loss in traditional formulation) with112

respect to a set of references R:113

ŷMBR = argmax
y∈H

(EH∼πθ
[U(y,R)]) , (1)114

where U(y,R) = Ey′∼R[u(y, y
′)] and u(y, y′) is a115

You are an artificial 
intelligence designed to 
simplify human written I would like you to 

simplify the following 
sentence such that the Write a simpler version 

such that a non-English 
speaker or an individu... 

Multi-Prompt
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Single Prompt

Figure 2: Multi-prompt MBR generates candidates us-
ing a human- or model-written prompt bank and selects
the highest pairwise score with a trained value metric.

utility function that evaluates hypothesis y against 116

a reference y′. In practice, R is also sampled from 117

the same model πθ under the assumption that the 118

model produces reliable outputs in expectation, and 119

is usually set as identical to hypothesis set H. 120

Bertsch et al. (2023) show that some successful 121

techniques that improve LLMs’ performance such 122

as self-consistency (Wang et al., 2023) and out- 123

put ensemble (Kobayashi, 2018) are special cases 124

of MBR. For example, self-consistency, which 125

takes the majority vote among answers extracted 126

from multiple sampled reasoning chains, can be 127

viewed as MBR with utility function as u(y, y′) = 128

1 [ans(y) = ans(y′)], where ans(y) is the answer 129

extracted from the reasoning path y. 130

3 Multi-Prompt MBR Decoding 131

Prior work on MBR decoding explores models 132

trained for specific tasks, where the hypothesis set 133

is generated given a single input x (Freitag et al., 134

2022a; Fernandes et al., 2022). With instruction 135

fine-tuned LLMs, the input x is contained within 136

a structured prompt ρ, consisting of task instruc- 137

tion and/or in-context examples. Earlier studies 138

have extensively documented that the design of the 139

prompt has a dramatic impact on overall perfor- 140

mance (Mishra et al., 2022; Khashabi et al., 2022; 141

Lu et al., 2022; Sclar et al., 2023). 142

To investigate these phenomena, we show in 143

Figure 3a (bottom) the likelihoods and quality of 144

samples from 10 prompts of varying performance 145

for a text simplification task, measuring quality 146
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Figure 3: (a) LENS score and sequence probability for 1000 generations on a single text simplification example decoded from
Llama 2 7B Chat with temperatures τ = [0, 0.1, 0.5] using a single prompt (top) and multiple prompts (bottom). As the
temperature increases, we find each prompt estimates candidate sequences centered at different modes. (b) LENS scores of the
best generation per-prompt for the first 20 sentences in SIMPEVAL, showing no single prompt produces the best overall output.
(c) Dataset-level LENS performance of each prompt when performing single prompt MBR vs. multi-prompt MBR.

as the LENS metric score against a set of gold147

references. Greedy sampling (τ = 0) estimates148

different sequences for each instruction, with sin-149

gle prompt (Figure 3a, top) generating a single se-150

quence. As we increase temperature τ , generations151

from a single prompt simply exhibit noise centered152

around the mode of the highest likelihood sequence,153

while multi-prompt estimates a generations around154

modes uniquely defined by each prompt. For in-155

stance, one of the prompts (i.e., Prompt 9 high-156

lighted in green) produces the highest quality gen-157

eration for this one input sentence, despite having158

a low performance over the entire dataset. In fact,159

no prompt consistently produces the highest qual-160

ity sequences, as illustrated in Figure 3b, rather161

prompts are most effective at different inputs.162

Building upon these insights, we propose Multi-163

Prompt MBR decoding, depicted in Figure 2,164

where the MBR hypothesis set H consists of out-165

puts sampled from n distinct prompts ρ:166

H =

n⋃
i=1

Hi, whereHi = {y|y ∼ πθ(x, ρi)}. (2)167

Bertsch et al. (2023) show that MBR seeks the168

mode of some distribution q over a quality feature169

ϕ(y) applied to the output space rather than the170

mode of the model’s distribution:171

ŷMBR ≈ argmax
y∈H

q(ϕ(y)|x). (3)172

We hypothesize, in expectation, the mode of ϕ(y) 173

across outputs from multiple prompts has higher 174

downstream performance compared to that derived 175

from a single prompt. This is empirically sup- 176

ported by our example, where Figure 3c shows that 177

multi-prompt MBR outperforms individual single- 178

prompt MBR across the full task dataset. 179

Although multi-prompt ensembles hypothesis 180

spaces between prompts, some notion of objective 181

quality still exists when constructing the prompt 182

bank. As shown in Figure 3c, the majority of the 10 183

human-written prompts fall within a 10-point range 184

of LENS scores when evaluated on the task dataset 185

but a few prompts consistently produce low-quality 186

generation. Therefore, to account for the hierar- 187

chy in prompt quality, we propose two methods for 188

choosing the prompts used at generation time from 189

a prompt bank P: sampling from a learned distri- 190

bution of prompts, based on a small unlabeled train 191

set (§3.1); and selecting a subset of prompts based 192

on heuristics in the absence of a train set (§3.2). 193

3.1 Prompt Sampling 194

In this approach, we first calculate the probability 195

of each prompt p(ρ) as the proportion of times that 196

prompt generates the highest scoring output on a 197

separate training set. At inference time, prompts 198

are sampled with replacements from this learned 199

probability distribution, and candidate outputs are 200
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then generated given these prompts.201

Top-p Prompt Sampling. Inspired by the principle202

of nucleus sampling (Holtzman et al., 2020), our203

goal is to keep the prompts with high probability204

and truncate the least used prompts by setting their205

probabilities to zero. We define the top-p prompt206

set as the minimal set Ptop-p ⊆ P such that:207

|Ptop-p|∑
i=0

p(ρi) ≥ p. (4)208

We then re-normalize the distribution of Ptop-p and209

sample prompts from the new distribution:210

p′(ρ) =


p(ρ)∑

ρ∈Ptop-p
p(ρ) if ρ ∈ Ptop-p

0 otherwise.
(5)211

3.2 Prompt Selection212

Prompt selection chooses a fixed subset Pbest ⊂ P213

of |Pbest| = k prompts based on heuristics. Com-214

pared to sampling, this does not require an ad-215

ditional training set to evaluate prompt efficacy.216

We consider the following heuristics for select-217

ing Pbest: prompts that have the closest similarity218

and greatest dissimilarity with others, and prompts219

that are randomly selected from each k-NN cluster,220

which is also useful when a training set is presented,221

allowing the selection of high-performing prompts222

within each cluster. In our experiments, we calcu-223

late the semantic (dis)similarity of prompts based224

on their SentenceBERT (Reimers and Gurevych,225

2019) embeddings.226

4 Experiment Setup227

In this section, we describe the experimental details228

for evaluating the efficacy of multi-prompt MBR229

decoding across tasks, prompt setups, models, and230

utility metrics, with results and analyses in §5.231

4.1 Tasks & Datasets232

Unlike previous work applying MBR to a single233

generation task (Shi et al., 2022; Eikema and Aziz,234

2022), we deliberately select three unique tasks235

to demonstrate the universality of multi-prompt:236

text simplification with task-level instructions, code237

generation with example-level instructions, and ma-238

chine translation with in-context examples.239

Code Generation. We use HumanEval (Chen240

et al., 2021) benchmark, where models are tasked241

with generating a Python program given a descrip-242

tion with unit tests. Since each example is a unique243

coding task, we generate a unique prompt bank for 244

each input. Following Zhang et al. (2023), we re- 245

ject empty, degenerate (e.g., pass, return None), 246

or non-compiling programs before applying MBR. 247

Text Simplification. We use the SIMPEVAL2022 248

test set (Maddela et al., 2023), containing com- 249

plex sentences from Wikipedia, paired with human- 250

written simplifications. The prompt bank is gen- 251

erated based on author-written examples (Table 4) 252

and are used for the entire dataset. 253

Machine Translation. We purposely choose the 254

EN → CS language pair from the WMT 22 (Kocmi 255

et al., 2022) newstest corpus, ensuring its exclu- 256

sion from the training data of recent translation 257

LLMs or metrics (Xu et al., 2024). Results on 258

additional language pairs are in Appendix C.2. 259

4.2 Constructing the Prompt Bank 260

Following existing work studying prompt sensi- 261

tivity (Mizrahi et al., 2023; Gonen et al., 2023), 262

our experiments rely on a small set of manually 263

written seed prompts, and use an LLM to gener- 264

ate diverse paraphrases of prompts. Model-written 265

prompts are generated using GPT-4 Turbo. For 266

seed prompts, the authors manually write 10 for 267

text simplification (Table 4) and use the original 268

HUMANEVAL instruction from each example as the 269

seed prompt for code generation. The translation 270

prompts consist of randomly sampled in-context 271

examples from previous WMT shared tasks. 272

For experiments, we select from the prompt bank 273

with top-p prompt sampling (§5.2) using p=0.6, 274

where the prompt usage p(ρ) is calculated using a 275

held-out 20% split of each dataset. Human-written 276

prompts and prompt generation instructions are 277

included in Appendix A. 278

4.3 Models 279

Our main experiments are performed with Llama 280

2-7B Chat (Touvron et al., 2023) for simplification, 281

ALMA-7B-R (Xu et al., 2024) for translation and 282

CodeLLaMA-13B Instruct (Roziere et al., 2023) 283

for code generation, all fine-tuned to follow instruc- 284

tions. In §5.3 we further explore a wide range of 285

model architectures and sizes, including state-of- 286

the-art and task-specific fine-tuned models. Unless 287

otherwise specified, we generate the hypothesis 288

set using nucleus sampling (Holtzman et al., 2020) 289

with τ = 0.9, p= 0.95. We include a detailed re- 290

view of all models in this work in Appendix B.2. 291
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Figure 4: Candidate set diversity and LENS scores
across temperatures for simplification task. At low tem-
peratures, the increased candidate diversity from multi-
prompt directly translates to improved performance.

4.4 Utility Metrics & Evaluation292

Our core experiments use the trained LENS (Mad-293

dela et al., 2023) for simplification and COMET294

(Rei et al., 2020) for translation as the candidate se-295

lection metric. For code generation, we use MBR-296

EXEC (Shi et al., 2022), which executes each can-297

didate program against a set of test cases, selecting298

the program with the highest agreement over all299

test cases’ outputs. As in Zhang et al. (2023), we300

use the docstring examples as test cases for MBR-301

EXEC and evaluate with pass@1. Given the grow-302

ing body of work on metric development, we verify303

our multi-prompt results across a broad range of304

utility and evaluation metrics in §5.4.305

5 Experiment Results306

We compare multi-prompt decoding to traditional307

MBR (§5.1), ablate the prompt sampling mecha-308

nism (§5.2), vary model architectures (§5.3), evalu-309

ate across utility metrics (§5.4) and finally evaluate310

multi-prompt on efficient MBR alternatives (§5.5).311

5.1 How does multi-prompt MBR perform?312

Multi-prompt Improves MBR. We report our313

main results in Figure 1 and Table 2, comparing314

single prompt and multi-prompt performance as315

the number of generated candidates increases, with316

detailed results in Figure 7 in Appendix. Multi-317

prompt MBR consistently outperforms traditional318

MBR for all tasks.319

Candidate Diversity ⇏ Quality. To measure the320

impact of temperature on the candidate set quality,321

we report performance and diversity, as measured322

by novel bi-grams, across temperatures in Figure323

4. For low temperatures, we find that multi-prompt324

generates a consistently more diverse candidate325

space, which directly translates to higher-quality326

generation. While single prompt MBR perfor-327

mance improves with temperature τ > 1, despite328

pass@1 LENS COMET

Single Prompt (|H|=100) 48.78 69.45 90.14

Multi-Prompt + Prompt Sampling (|P|=100)
Random Selection – 74.91 89.98
Prompt Sampling – 78.29 90.33
Top-p Prompt Random – 78.61 90.11
Top-p Prompt Sampling – 79.08 90.36

Single Prompt (|H|=10) 41.55 51.64 87.54

Multi-Prompt + Prompt Selection (Pbest ⊂P , |Pbest|=10)
Random Selection 39.63 60.00 87.81
k-NN Cluster Random 40.24 58.73 87.80
Farthest Similarity 44.51 58.32 88.14
Closest Similarity 37.80 61.53 87.73
Highest Performance – 62.43 87.65
k-NN Cluster Performance – 66.12 87.73

Table 1: Results for prompt sampling using 100 prompts
(top) and subset selection using 10 of 100 prompts (bot-
tom). Sampling from a weighted, truncated distribution
improves multi-prompt across candidate set sizes.

generating an equal or greater diversity set than 329

multi-prompt, multi-prompt MBR still produces 330

higher quality candidates. As τ → 2, the quality of 331

single and multi-prompt MBR begins to degrade 332

as their candidate sets become too noisy to gener- 333

ate high-quality sequences. Framing the decoding 334

process as each prompt estimating a unique distri- 335

bution of candidate generations (§3), the ability of 336

multi-prompt to achieve higher quality generation 337

as a result of candidate set diversity is intuitively 338

the byproduct of combining multiple candidate dis- 339

tributions defined by each instruction. 340

5.2 What is the impact of the prompt bank? 341

Sampling Prompts Improves Candidate Quality. 342

Table 1 (top) reports results for multi-prompt across 343

different prompt sampling methods for text simpli- 344

fication and translation. Note that, code generation 345

is excluded as a unique set of prompts is generated 346

for each HumanEval example, rather than the same 347

prompts used across the entire dataset. We find 348

sampling prompts by usage and truncating the top- 349

p prompts improves multi-prompt over a random 350

selection baseline, with top-p prompt sampling per- 351

forming the best on both tasks. 352

Multi-prompt is Sensitive to the Prompt Bank. 353

Table 1 (bottom) reports results for different prompt 354

subset selection methods, which use heuristics to 355

select a smaller set of prompts for multi-prompt to 356

maximize performance. This includes the 10 clos- 357

est and furthest prompt embeddings, the 10 highest 358

performing prompts, and a k-NN cluster of prompt 359

embeddings where a single prompt is selected from 360
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Single Prompt Multi-prompt

Text Simplification (n = 100) – SIMPEVAL (LENS)
Ctrl T5 3B 72.6 —
Ctrl T5 11B 74.4 —
GPT-3.5 75.37 80.09 (+4.72)
GPT-4 73.27 80.60 (+7.33)
LLaMA 2 7B Chat 70.51 76.29 (+5.78)
LLaMA 2 13B Chat 71.29 77.93 (+6.64)
LLaMA 2 70B Chat 75.09 80.53 (+5.44)

Translation (n = 100) – WMT ’22 EN-CS (COMET)
WMT ’22 Winners 91.9 —
MS Translate API 90.6 —
GPT-3.5 91.89 92.39 (+0.50)
GPT-4 91.57 91.92 (+0.35)
ALMA 7B R 90.14 90.36 (+0.22)
ALMA 13B R 90.56 90.97 (+0.41)

Code Generation (n = 20) – HUMANEVAL (pass@1)
StarCoder 2 15B 44.51 45.73 (+1.22)
GPT-3.5 66.46 73.17 (+6.71)
GPT-4 71.34 85.36 (+14.0)
CodeLLaMA 7B 35.97 39.68 (+3.71)
CodeLLaMA 13B 43.29 48.17 (+4.88)
CodeLLaMA 34B 47.56 53.65 (+6.09)
CodeLLaMA 70B 60.97 68.29 (+7.32)

Table 2: Metric scores for state-of-the-art systems com-
pared to multi-prompt LLMs using n candidates. Trans-
lation and simplification baselines are as reported in
Hendy et al. (2023) and Maddela et al. (2023).

each cluster. Each selection method had a signifi-361

cant impact on performance when compared to a362

random selection of 10 prompts (+0.03 pass@1,363

+14 LENS and +0.6 COMET). For text simplifi-364

cation, decoding with the 10 highest performing365

prompts is further improved by selecting prompts366

from a k-NN clustering of prompt embeddings,367

which enforces a dis-similarity between prompts.368

Translation does not benefit from clustering, and369

instead both translation and code generation ben-370

efit from simply generating with farthest similar-371

ity, or semantically distant prompts. These results372

highlight multi-prompt’s sensitivity to the prompt373

construction, and shows that enforcing both diver-374

sity via multi-prompt and performance via prompt375

selection improves candidate generation.376

5.3 Does multi-prompt MBR apply across377

model scale and architecture?378

Increasing Returns as Models Scale. To argue379

multi-prompt improves generation across instruc-380

tion fine-tuned models and at scale, we experiment381

with widely used LLMs. Figure 5 reports improve-382

ment of multi-prompt over single prompt as a ∆383

change in score, with analysis of per-model results384

in Appendix C.3. On text simplification, instruc-385

tion fine-tuned models appear to converge to a +5386
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Figure 5: ∆ metric improvement from single prompt
to multi-prompt across model sizes and architectures,
reported with a 95% CI bootstrapped over 5 iterations.
For absolute performance, see Figure 9.

improvement in LENS score as candidate set size 387

increases, consistent across model sizes and types, 388

while code generation models saw increasing re- 389

turns using multi-prompt as candidate set size in- 390

creased. We find the same trend of convergence to 391

a score improvement for translation, but saw incon- 392

sistent results, which may be a result of the vast 393

difference in training data for translation LLMs. 394

LLMs with Multi-prompt Outperform Fine- 395

tuned Models. Whether general instruction fine- 396

tuned LLMs can outperform an LLM trained or 397

fine-tuned on a conditional generation task is still 398

an active question (Chung et al., 2022), so we com- 399

pare state-of-the-art models in each task to instruc- 400

tion fine-tuned LLMs using multi-prompt. In Table 401

2, we report previous SOTA results for each task: 402

an 11B T5-based text simplification model trained 403

using control tokens corresponding to simplifica- 404

tion operations (Sheang and Saggion, 2021), the 405

EN-CS results for the WMT ’22 winning submis- 406

sion (Kocmi et al., 2022) and StarCoder 15B, a 407

code infilling and generation LLM (Li et al., 2023), 408

not explicitly trained to follow natural language 409

instructions. For text simplification model of com- 410
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Text Simplification (LLaMA 7B Chat)

SARI

BERTSCORE
LENS

LENS-SALSA RF
SLE RF

SARI +1.08∗ +1.06∗ +7.24∗ +4.33∗ +0.38∗

BERTSCORE +1.44∗ +1.09∗ +6.18∗ +3.11∗ +0.45∗

LENS -0.67 -0.05 +5.78∗ +4.69∗ +0.82∗

LENS-SALSARF -0.83 +0.35∗ +8.10∗ +4.65∗ +0.97∗

SLERF -5.25 -4.71 +2.39∗ -4.51 +1.05∗

Translation (ALMA 7B)

BERTSCORE

COMET-22

COMETKIWI RF

XCOMET

METRICX

METRICX-QE RF

BLEU +0.34∗ +0.47∗ +0.67∗ -0.14 +0.04 +0.11∗

BERTSCORE +0.51∗ +1.59∗ +1.68∗ +2.48∗ +0.22∗ +0.29∗

COMET-22 +0.71∗ +0.89∗ +1.72∗ +3.29∗ +0.13∗ +0.18∗

COMETKIWIRF +0.80∗ +1.03∗ +1.06∗ +2.87∗ +0.07∗ +0.08∗

XCOMET +0.14 +0.85∗ +0.84∗ +3.34∗ +0.09∗ +0.04∗

METRICX +0.36∗ +0.81∗ +0.36 +3.93∗ +0.07∗ -0.04
METRICX-QERF +0.60∗ +1.68∗ +2.11∗ +5.31∗ +0.08∗ +0.03∗

Evaluation Metric
M

B
R

U
til

ity
M

et
ri

c

Table 3: ∆ metric improvement from single prompt
to multi-prompt across metrics. RF = Reference-free
reranker. * = Statistically significant improvement with
p < 0.05. For absolute performance, see Table 6.

parable size only surpass fine-tuned performance411

when using multi-prompt, with LLaMA 13B show-412

ing a +5 LENS over fine-tuned T5 11B.413

5.4 Is multi-prompt MBR over-fitting to the414

utility metric?415

An inherent challenge of evaluating MBR is that416

the utility metric used to select candidates is typ-417

ically also used for the final evaluation, in such418

cases it is difficult to attribute the metric improve-419

ment to higher quality generation (Bertsch et al.,420

2023). Given growing attention to metric devel-421

opment, we leverage various trained metrics to422

test whether multi-prompt using one utility met-423

ric improves performance cross all other utility424

metrics. We experiment with traditional overlap-425

based metrics, (BLEU, SARI), embedding simi-426

larity (BERTSCORE), small (∼100M parameter)427

trained metrics with references (LENS, COMET-428

22) and without references (COMETKIWI, LENS-429

SALSA, SLE), and large (3B+ parameter) trained430

metrics (XCOMET, METRICX, METRICX-QE).431

These metrics represent diverse text evaluation ap-432

proaches and encompass the full state of evaluation433

in both tasks. We include a full description of met-434

ric architectures in Appendix B.1.435

Multi-prompt MBR Improves Across Metrics.436

Table 3 reports results for cross-metric evaluation,437

with the diagonal reflecting the traditional MBR 438

evaluation setup (i.e., calculate MBR and evalu- 439

ate using the same metric) and other cells indicate 440

generalization from one metric to all others. We 441

also perform a hypothesis test for the statistical 442

significance of multi-prompt outperforming single 443

prompt using bootstrap sampling (Berg-Kirkpatrick 444

et al., 2012) with b = 103. Multi-prompt improves 445

performance on most evaluation setups, with a few 446

notable exceptions such as disagreement between 447

trained and overlap-based metrics for simplification 448

and COMET-based metrics for translation. For sim- 449

plification, trained metrics’ failure when evaluated 450

by SARI and BERTSCORE may be a byproduct of 451

the test set size, as these metrics typically require 452

a substantial number of references for stable eval- 453

uation (Alva-Manchego et al., 2020), more than 454

what are provided in SIMPEVAL. Interestingly, the 455

magnitude of performance improvement is highly 456

variable to the specific utility metric, with no clear 457

relationship between the metric architecture and im- 458

provement of multi-prompt, but typically a lower 459

baseline performance indicates multi-prompt per- 460

forms better (Table 6 in Appendix for more details). 461

5.5 How does the metric type impact 462

multi-prompt MBR? 463

As discussed by Fernandes et al. (2022), the MBR 464

operation requires each candidate evaluate against 465

every other candidate (i.e., O(n2) comparisons), 466

this becomes inefficient in practice for a large n, es- 467

pecially when using a trained utility metric. There- 468

fore, we explore multi-prompt MBR alternatives 469

using reference-free utility metrics: 470

• Reranker. Re-ranking directly estimates the 471

quality of each candidate using a reference-free 472

metric: ŷMBR=argmaxy∈H [U(y)]. We use the 473

trained LENS-SALSA for simplification (Heine- 474

man et al., 2023) and COMET-MQM (Rei et al., 475

2021) for translation. For code generation, we 476

use Code Reviewer (Shi et al., 2022), which cal- 477

culates agreement between the per-token prob- 478

ability of the generation given the docstring 479

and the original docstring given the generation. 480

Reference-free re-ranking simply requires O(n) 481

metric calculations as it directly estimates gener- 482

ation quality. 483

• Reranker + MBR. We use a two-stage MBR 484

selection where we first rerank all candidates and 485

select the top m to use for MBR, where the re- 486

ranker can distill the candidate set and the expen- 487

sive MBR metric can perform the final selection. 488
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Figure 6: Alternative MBR formulations for multi-prompt across candidate set sizes for code generation, text
simplification and translation. Efficient MBR methods show inconsistent results, dependent on task and metric.

• Multi-turn MBR. Similar to the previous ap-489

proach, we select the top m MBR candidates and490

re-compute MBR using the smaller candidate set.491

Results. We report results across candidate se-492

lection methods in Figure 6, finding the multi-493

prompt achieves performance improvement across494

reference-based and reference-free metrics, yet the495

relative performance of methods varies between496

tasks. With text simplification, we find the more497

expensive MBR performs better than the reference-498

free alternatives. For translation, both using a re-499

ranker first to narrow the candidate set (MBR +500

Rerank) and iteratively performing MBR (Multi-501

turn MBR) outperform vanilla MBR, despite these502

methods being more computationally efficient. We503

speculate the first pass may prune the lowest quality504

generations such that the second pass only consid-505

ers a distilled candidate set, which better informs506

the MBR calculation. For code generation, we507

find the re-ranker performs relatively poorly com-508

pared to MBR, which may be reflective of the per-509

formance of Code Reviewer compared to MBR-510

EXEC, as the latter has access to multiple test cases.511

6 Related Work512

Prompt Selection. Current work on prompting for513

text generation has instead focused on optimiza-514

tion, such as in-context example selection (Min515

et al., 2022), example ordering (Lu et al., 2022)516

and prompt selection (Gonen et al., 2023). Notably,517

Agrawal et al. (2023) show selecting in-context ex-518

amples for MT by maximizing n-gram overlap be-519

tween the source and examples improves few-shot520

performance. Zhou et al. (2023) experiment with521

LLMs as prompt generators, and Yang et al. (2023)522

show using LLMs to iteratively rewrite prompts523

on a development set can distill a single, high-524

performant prompt. Our work uses LLM-written525

prompts and basic heuristics to distill the prompt526

bank, further improving multi-prompt.527

Output Selection. Ensembling outputs under a 528

candidate space has become a popular technique for 529

improving LLM performance in classification tasks, 530

such as majority vote over prompt chains (Wang 531

et al., 2023), or merging outputs from multiple 532

models (Kobayashi, 2018; Martínez Lorenzo et al., 533

2023). To our knowledge this work is the first to 534

apply a multi-prompt approach to text generation. 535

MBR Decoding. Automatic evaluators have been 536

incorporated into the training signal for task- 537

specific models (Shen et al., 2016), used to improve 538

the decoding process (Shen et al., 2004) and even 539

evaluate the metrics themselves (Amrhein and Sen- 540

nrich, 2022). MBR decoding has been explored ex- 541

tensively in improving translation quality (Kumar 542

and Byrne, 2004; Eikema and Aziz, 2020; Müller 543

and Sennrich, 2021) and has been proposed for text 544

simplification (Maddela et al., 2023), summariza- 545

tion and style transfer (Suzgun et al., 2023). While 546

our work is the first to propose generating the MBR 547

hypothesis space using a prompt bank, Farinhas 548

et al. (2023) perform preliminary experiments with 549

paraphrases of a single sentence prompt, but found 550

no difference in performance. Recent work argues 551

sampling strategies like nucleus (Eikema and Aziz, 552

2022) or epsilon (Freitag et al., 2023) offer slightly 553

better performance over beam search for MBR, 554

with this work extending their findings by attribut- 555

ing candidate set quality to sampling diversity. 556

7 Conclusion 557

In this work, we propose multi-prompt, a gener- 558

alized case of MBR for conditional text genera- 559

tion. Multi-prompt successfully ensembles outputs 560

of instruction fine-tuned language models across 561

prompt constructions and in-context examples. We 562

highlight the importance of prompt selection and 563

sampling when constructing the prompt bank with 564

top-p prompt sampling and further verify our re- 565

sults across tasks, models and utility metrics. 566
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Limitations567

We limit our study of the prompt bank to a basic568

set of seed prompts and GPT-written paraphrases569

for each task. Notably, we do not study the impact570

of prompt formats (e.g., passage:{}\n answer{}571

vs. Passage::{} Answer::{}, Sclar et al., 2023),572

in-context example ordering (Lu et al., 2022) or573

example selection (Agrawal et al., 2023) on multi-574

prompt performance, although multi-prompt may575

extend to such methods. We leave the question of576

exhaustively constructing a prompt bank to future577

work, perhaps by extending work in prefix tuning578

(Li and Liang, 2021).579

An inherent limitation of MBR is the increase580

in inference time, where we generate up to 100581

samples in our experiments, and use a neural utility582

metric with either linear or quadratic comparisons583

between candidates. While recent work has low-584

ered the number of metric comparisons (Cheng585

and Vlachos, 2023), MBR remains prohibitively586

expensive for use in compute-limited scenarios.587
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Human-Written Text Simplification Prompt

Rewrite the following complex sentence in order to make it easier to understand by
non-native speakers of English. You can do so by replacing complex words with simpler
synonyms (i.e. paraphrasing), deleting unimportant information (i.e. compression),
and/or splitting a long complex sentence into several simpler ones. The final simplified
sentence needs to be grammatical, fluent, and retain the main ideas of its original
counterpart without altering its meaning.

Simplify the sentence please.

You are an artificial intelligence designed to simplify human written text. The text you
are given will contain complex ideas, phrases or concepts and your job is to rewrite that
text in a simple and easy to understand way. Your simplification should be completely
fluent and retain the ideas of the simplification.

I would like you to simplify the following sentence such that the text is as concise and
easy to read as possible.

Text simplification is an operation used in natural language processing to change, en-
hance, classify, or otherwise process an existing body of human-readable text so its
grammar and structure is greatly simplified while the underlying meaning and infor-
mation remain the same. Text simplification is an important area of research because
of communication needs in an increasingly complex and interconnected world more
dominated by science, technology, and new media. But natural human languages pose
huge problems because they ordinarily contain large vocabularies and complex construc-
tions that machines, no matter how fast and well-programmed, cannot easily process.
However, researchers have discovered that, to reduce linguistic diversity, they can use
methods of semantic compression to limit and simplify a set of words used in given texts.
Please simplify the following sentence.

Please simplify the below sentence by using a combination of these three operations.

Elaboration. An addition of meaningful, relevant and correct information, such as
clarifying vague terminology, providing background information on an entity or subject,
or explicating general world knowledge unknown to the audience.

Generalization. A deletion of unnecessary, irrelevant or complicated concepts.

Paraphrase. Swapping complex spans with equivalent, simpler alternatives.

The final sentence should be grammatical, concise and easier to read compared to the
original sentence.

You are an AI assistant that writes text simplification. Text simplification can be defined
as any process that reduces the syntactic or lexical complexity of a text while attempting
to preserve its meaning and information content. The aim of text simplification is to
make text easier to comprehend for a human user, or process by a program. Please
simplify the following sentence.

Simplify.

You are to act as a text simplification bot. As a text simplification bot, you will simplify
the following sentence such that it is syntactically easier to read and semantically easier
to understand. Please do not make the text more complex, longer or difficult for a reader.

I am writing a sentence, please take a look at this sentence and write a simpler version
such that a non-English speaker or an individual with disabilities could better understand
the sentence.

Table 4: Text simplification prompts used for the de-
coding experiment in Figure 3 and used as examples to
write GPT-4 prompts for experiments in §5.

A Prompt Bank Construction1084

Table 4 contains the human-written prompts for1085

text simplification. These human-written prompts1086

are provided as examples to GPT-4 when automat-1087

ically generating prompts for large-scale experi-1088

ments in §5. For code generation, we extract the1089

docstring in the original HUMANEVAL examples1090

as the human-written prompt, and provide it as an1091

example prompt to GPT-4. For machine translation,1092

our few-shot examples were sampled randomly1093

from the WMT newstest19 test corpus (Barrault1094

et al., 2019).1095

B Detailed System Descriptions1096

In this section, we include a full description of the1097

generation models and utility metrics used in exper-1098

iments throughout §5.3 and §5.4. All experiments1099

were inference-based and were run on up to 4xN-1100

Prompt-Generation Instruction

Please write a variation of the following instruction for a coding task. You may be
creative in proposing potential solutions, or explaining the nature of the task. Please do
not write any examples.

Example: {example_prompt}

Prompt:

Create a prompt for a language model to simplify a sentence, this prompt will explain the
text simplification task and instructions for how to perform the task. The prompt should
be diverse, include a description of simplification and clearly state what is expected of
the language model.

Example: {example_prompt_1}

Example: {example_prompt_2}

Prompt:

Table 5: Instruction templates provided to GPT-4 when
generating task instructions for code generation (top)
and text simplification (bottom).

VIDIA A40 GPUs, depending on the requirements 1101

of the specific model or utility metric. The use of 1102

models, metrics and datasets in this project follows 1103

their respective licenses and intended use. 1104

B.1 Utility Metrics 1105

B.1.1 Simplification 1106

SARI (Xu et al., 2016) is an n-gram overlap based 1107

metric that compares edits on inputs, outputs and a 1108

bank of references. 1109

BERTSCORE (Zhang et al., 2020) calculates a 1110

word-level cosine similarity of BERT embeddings. 1111

Alva-Manchego et al. (2021) find BERTSCORE is 1112

an adequate measure of quality generation, but that 1113

it does not correlate with simplicity. 1114

LENS (Maddela et al., 2023) is a RoBERTa-based 1115

metric trained using human ratings of text simpli- 1116

fication model outputs. The authors train on an 1117

adaptive loss to allow a high score for generations 1118

was close to any references, encouraging the metric 1119

to consider different simplification types. 1120

LENS-SALSA (Heineman et al., 2023) extends 1121

the LENS architecture by fine-tuning on a dual 1122

sentence- and word-level quality objective. The 1123

authors show LENS-SALSA is more sensitive to 1124

specific edit operations, while not requiring any 1125

reference simplifications. 1126

SLE (Cripwell et al., 2023) is a RoBERTa-based 1127

metric trained to estimate the simplicity of text, 1128

with the simplicity score defined as the difference 1129

in simplicity between the complex and simplified 1130

sentences. SLE was trained on 0-4 readability 1131

scores of news articles in the Newsela corpus (Xu 1132

et al., 2015), with an additional label softening for 1133

individual sentences in the corpus. 1134
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B.1.2 Translation1135

BLEU (Papineni et al., 2002) is an n-gram overlap1136

based metric comparing a translation to a bank of1137

references. BLEU remains a widely-used standard1138

for automatic evaluation, despite lower correlation1139

to human judgement compared to learned metrics1140

(Freitag et al., 2022b). We use the ScareBLEU1141

implementation (Post, 2018).1142

COMET (Rei et al., 2020) is a widely used1143

RoBERTa-based metric, trained on direct assess-1144

ments of simplification quality. For reference-free1145

evaluation, we use the CometKiwi-XXL variant1146

(Rei et al., 2022, 2023), trained to predict sentence-1147

and word-level scores simultaneously.1148

XCOMET (Guerreiro et al., 2023) is a fine-tuned1149

XLM-R model (Goyal et al., 2021) based on the1150

CometKiwi architecture, but scaling the model size1151

and training data, including with synthetic data1152

created by randomly swapping n-grams or entire1153

sentences with unrelated translations. We use the1154

11B XCOMET-XXL in our experiments.1155

METRICX (Juraska et al., 2023) is a recent fine-1156

tuned 11B mT5-XXL (Xue et al., 2021) trained on1157

DA data from 2015-20, MQM data from 2020-211158

(Freitag et al., 2021) and synthetic data based on1159

the MQM and DEMETR (Karpinska et al., 2022)1160

taxonomies of translation errors. Notably, the Met-1161

ricX architecture encodes both candidates and ref-1162

erences together, while COMET encodes both sep-1163

arately and combines the outputs to calculate the1164

final score. We also use the QE variant METRICX-1165

QE trained without references. The WMT ’22 test1166

data used in this work is not included in the training1167

data of any translation metrics we considered.1168

B.1.3 Code Generation1169

MBR-EXEC (Shi et al., 2022) executes candidate1170

generations on a series of test cases, and selects the1171

candidate with the highest agreement on its output1172

with all other candidates. While the authors do not1173

evaluate on HUMANEVAL, we replicate the setup1174

in Zhang et al. (2023) by using the test cases in1175

the docstring to calculate the agreement. We use a1176

soft loss over all test cases, as many HUMANEVAL1177

docstring examples are trivial or edge cases. If two1178

candidates have the same MBR score, we break ties1179

using the candidate with higher probability under1180

the language model.1181

Code Reviewer (Zhang et al., 2023) attempts to1182

find a consensus between the likelihood of the gen-1183

erated program p(y|x) and the original docstring1184

using a minified version of the generation p(x|y). 1185

We use their implementation for rejecting degen- 1186

erate samples, minifying code and calculating the 1187

reviewer score. We use the same models for gener- 1188

ation and re-ranking. 1189

B.2 Model Architectures 1190

B.2.1 Simplification 1191

Instruction Fine-tuned Models. We experiment 1192

with widely used instruction fine-tuned LLMs, aim- 1193

ing for a broad coverage of current models: Llama 1194

2 Chat (Touvron et al., 2023), Gemma (Team et al., 1195

2024) and Mistral (Jiang et al., 2023). 1196

Fine-tuned Control T5 (Sheang and Saggion, 1197

2021) is a T5-based text simplification model fine- 1198

tuned on the Wiki-Auto (Jiang et al., 2020) dataset 1199

of aligned English-Simple English Wikipedia ar- 1200

ticles. We use their same control token setup: 1201

<NC_0.95> <LS_0.75> <DR_0.75> <WR_0.75>. 1202

B.2.2 Translation 1203

ALMA-R (Xu et al., 2024) is a class of transla- 1204

tion LLMs. The base ALMA (Xu et al., 2023) is a 1205

fine-tuned LLaMA model with text in each target 1206

language and then parallel translation data. ALMA- 1207

R is an extension trained on a contrastive preference 1208

loss to incorporate ratings of translation quality. 1209

TowerInstruct (Alves et al., 2024) is a fine-tuned 1210

Llama 2 model on multi-lingual instructions, aim- 1211

ing to incorporate tasks beyond translation, such 1212

as paraphrasing, post editing and grammar error 1213

correction. 1214

Aya 101 (Üstün et al., 2024) is an mT5-based 1215

model fine-tuned on multi-lingual data in 101 lan- 1216

guages. While mT5 is instruction-following model, 1217

Aya is not fine-tuned on instruction data. 1218

Additionally, we provide results from the WMT 1219

’22 winning submission, and the Microsoft Trans- 1220

late API, as reported in Hendy et al. (2023). 1221

B.2.3 Code Generation 1222

StarCoder 2 (Li et al., 2023) is trained from- 1223

scratch on 4T tokens from 600+ programming lan- 1224

guages. Although the model is not instruction fine- 1225

tuned, we see a slight performance improvement 1226

with multi-prompt, likely because comments and 1227

code descriptions are included in its pre-training. 1228

CodeLLaMA (Roziere et al., 2023) is a fine-tuned 1229

Llama 2 model on 500B-1T tokens of code-related 1230

datasets, including Python, substantially outper- 1231

forming the base Llama 2 model on HumanEval. 1232
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Figure 7: Multi-prompt, single prompt and beam search MBR decoding performance across candidate set sizes for
code generation, text simplification and translation. Results averaged over 5 bootstrap iterations.

C Further Results1233

C.1 Beam Search & Oracle Performance1234

Following related work in MBR, we report upper-1235

bound ‘oracle’ results (similar to Shi et al., 2022)1236

and a lower-bound beam search baseline (similar1237

to Freitag et al., 2023) in comparison to our main1238

results (Figure 1) in Figure 7.1239

Beam Search. The MBR candidate set historically1240

has consisted of the top beam search candidates, but1241

as language models have become better generators1242

recent work has argued sampling leads to a better1243

estimation of the hypothesis space (Freitag et al.,1244

2023). For this reason, we exclusively use nucleus1245

sampling in §5, but we report beam search as a1246

baseline in Figure 7, with a ‘candidate set size’ of1247

n corresponding to the top n beam candidates, or n1248

candidates with nucleus sampling for other results.1249

Oracle. As the final MBR performance can be1250

impacted both by the quality of the candidate set1251

and the choice of utility metric, we report an upper-1252

bound performance by deliberately selecting the1253

best candidate generations. Given a test set with1254

gold-standard references R, we define the oracle1255

performance as the set of the highest scoring possi-1256

ble selection of candidates:1257

Oracle(R∗) =
∑
r∈R∗

max
y∈H

[U(y, r)] (6)1258

Since code generation is evaluated using pass@1,1259

its oracle uses expected pass@k (Shi et al., 2022),1260

which measures whether at least one candidate1261

within the candidate set passes all unit tests T :1262

ExPass@K = E
|H|=K

[
max
y∈H

min
t∈T

1[t(y)]

]
(7)1263

Results. As oracle performance measures candi-1264

date set quality independent of the utility metric,1265

we find an increase in oracle performance coincides 1266

with an improvement when using multi-prompt, in- 1267

dicating that a utility metric can naturally select 1268

candidates when the candidate set is higher qual- 1269

ity. This suggests improving utility metrics may 1270

be a promising direction to bridge the gap between 1271

candidate quality and candidate selection. Beam 1272

search was a particularly strong baseline for small 1273

candidate set sizes, particularly for code generation, 1274

but beam search is not as sensitive to improvement 1275

as the candidate set size increases. Additionally, 1276

as code generation is evaluated using the binary 1277

pass@1 metric, rather than a scalar quality metric 1278

as used by translation and simplification, there is a 1279

large gap between MBR and oracle performance, 1280

also observed by Shi et al. (2022). 1281

C.2 En-XX Translation Results 1282

For brevity, we limit our multi-prompt experiments 1283

to only the English-Czech language pair, but report 1284

results across the full ALMA test set, including 1285

WMT ’22 test data and a subset of NTREX (Feder- 1286

mann et al., 2022), in Figure 8, where we observe 1287

improvement with multi-prompt is dependent on 1288

the language pair. Generally, high resource lan- 1289

guages (such as French, German, Russian) do not 1290

have a substantial difference, which may be a result 1291

of the low prompt sensitivity for such pairs. 1292

C.3 Detailed Multi-Model Results 1293

See Figure 9 contains separated results for multi- 1294

prompt and single prompt for each model, as re- 1295

ported in Figure 5 and discussed in §5.3. 1296
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Figure 9: Results of multi-prompt across model sizes and architectures bootstrapped over 5 iterations with a 95%
CI. Multi-prompt consistently improves performance across architectures and as models scale.
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C.4 Detailed Cross Metric Evaluation1297

Table 6 contains the full results for the MBR exper-1298

iments across metrics as discussed in §5.4. While1299

evaluating on the same metric used for MBR clearly1300

improves performance the most (see entries on1301

the diagonal), we find multi-prompt performed1302

on any metric universally improves performance1303

when evaluated on any other metric. Recent neu-1304

ral metrics, which achieve higher correlation with1305

human judgements, also have a higher overall per-1306

formance. Note, METRICX scores translations on1307

a [0, 25] scale corresponding to an MQM rating,1308

where lower is better and SLE scores simplifica-1309

tions on a [0, 4] corresponding to a Newsela simpli-1310

fication rating, where higher is better. For clarity,1311

we negate the METRICX results in Table 3 such that1312

all the green cells indicate a metric improvement.1313
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Text Simplification (LLaMA 7B Chat)

SARI

BERTSCORE
LENS

LENS-SALSA RF
SLE RF

SARI 44.33 92.64 58.73 72.31 1.42
BERTSCORE 45.46 93.71 60.86 71.47 1.37
LENS 39.98 92.18 76.29 79.55 2.30
LENS-SALSARF 38.55 91.29 73.31 84.59 2.47
SLERF 33.57 85.36 52.33 64.74 3.84

Translation (ALMA 7B)

BERTSCORE

COMET-22

COMETKIWI RF

XCOMET

METRICX

METRICX-QE RF

BLEU 90.91 87.12 81.16 72.43 1.15 1.24
BERTSCORE 91.41 88.11 82.15 73.59 1.10 1.15
COMET-22 90.45 91.18 86.17 76.71 0.61 0.63
COMETKIWIRF 90.67 90.56 85.64 81.16 0.51 0.57
XCOMET 90.15 90.03 83.19 86.73 0.70 0.79
METRICX 89.35 89.07 82.00 69.26 0.47 0.69
METRICX-QERF 89.58 89.29 83.93 68.78 0.43 0.25

Evaluation Metric
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Text Simplification (LLaMA 7B Chat)

SARI

BERTSCORE
LENS

LENS-SALSA RF
SLE RF

SARI 43.25 91.58 51.49 67.97 1.04
BERTSCORE 44.02 92.62 54.68 68.36 0.92
LENS 40.64 92.24 70.51 74.86 1.49
LENS-SALSARF 39.38 90.94 65.21 79.93 1.51
SLERF 38.82 90.07 49.94 69.26 2.79

Translation (ALMA 7B)

BERTSCORE

COMET-22

COMETKIWI RF

XCOMET

METRICX

METRICX-QE RF

BLEU 90.57 86.65 80.49 72.57 1.20 1.35
BERTSCORE 90.90 86.52 80.48 71.10 1.31 1.44
COMET-22 89.74 90.28 84.44 73.42 0.74 0.81
COMETKIWIRF 89.87 89.53 84.58 78.29 0.58 0.65
XCOMET 90.01 89.18 82.35 83.39 0.79 0.83
METRICX 88.99 88.26 81.63 65.32 0.54 0.66
METRICX-QERF 88.98 87.61 81.82 63.47 0.50 0.27

Evaluation Metric

Table 6: Multi-prompt and single prompt performance across metrics. RF = Reference-free reranker.
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