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Abstract

While instruction fine-tuned LLMs are effec-
tive text generators, sensitivity to prompt con-
struction makes performance unstable and sub-
optimal in practice. Relying on a single ‘best’
prompt cannot capture all differing approaches
to a generation problem. Using this observa-
tion, we propose multi-prompt decoding, where
many candidate generations are decoded from
a prompt bank at inference-time. To ensem-
ble candidates, we use Minimum Bayes Risk
(MBR) decoding, which selects a final output
using a trained value metric. We show multi-
prompt improves MBR across a comprehensive
set of conditional generation tasks (Figure 1),
and show this is a result of estimating a more
diverse and higher quality candidate space than
that of a single prompt. Our experiments con-
firm multi-prompt improves generation across
tasks, models and metrics.'

1 Introduction

Minimum Bayes Risk (MBR) decoding (Bickel and
Doksum, 1977) has been shown to improve gen-
eration quality of large language models (LLMs)
compared to typical single-output decoding meth-
ods, such as beam search and sampling, across
NLP tasks (Shi et al., 2022; Suzgun et al., 2023). A
special case of MBR, self-consistency (Wang et al.,
2023), has been widely-used to improve LLLM rea-
soning capabilities by ensembling reasoning paths.
MBR leverages a set of candidates and selects the
one with the highest expected utility, using all other
hypotheses as references (see Fig. 2, left), follow-
ing a simple intuition that a desirable output should
be highly probable and consistent with others.

A central question to improve MBR is how to
balance between diversity and adequacy within the
candidate set. Prior work has found success using
sampling-based decoding to generate hypotheses

'Our experiment code, data and prompts are available at
https://anonymized_url
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Figure 1: Multi-prompt and single prompt MBR results
for code generation on HUMANEVAL, text simplifica-
tion on SIMPEVAL, and translation on WMT ’22 EN-Cs
generated with open-source 7B LLMs (details in §4).

from a given input (Eikema and Aziz, 2020; Freitag
et al., 2022a, 2023). However, naively increasing
the sampling temperature eventually degrades the
quality of the candidates. Recently, instruction fine-
tuned LLMs (Ouyang et al., 2022; Chung et al.,
2022) has opened up the possibility of writing the
“prompts” in various formats to elicit more diverse
and high quality outputs, as these models are ob-
served to be sensitive to prompt design, where a
slight change in phrasing or the inclusion of more
relevant example can significantly impact model
outputs (Srivastava et al., 2023; White et al., 2023).

Taking advantage of the prompt sensitivity of
LLMs, we introduce multi-prompt MBR decoding,
which samples candidates using a bank of human-
or model-written prompts (see Figure 2, right). In-
tuitively, exploring a variety of prompts enables the
generation of diverse, high quality hypotheses that
provide a closer representation of the true output
distribution. By guiding the model towards dif-
ferent modes or regions of the output space, each
prompt captures unique sequences that are coherent
and relevant to the input.

We experiment with three distinct generation
tasks: text simplification (Maddela et al., 2023),
machine translation (Kocmi et al., 2022), and code
generation (Chen et al., 2021). Each task assess the
impact of different prompt components on multi-
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prompt MBR, such as instance-level prompts for
code, task descriptions for simplification, and in-
context examples for translation. To account for
the relative quality between prompts, we develop
different strategies for selecting prompts that signif-
icantly improve over random choice. These strate-
gies include sampling prompts from a large prompt
bank based on their usage on a training set and se-
lecting prompts using embedding-based heuristics
when a training set is unavailable.

We evaluate multi-prompt MBR on a broad
range of LLMs including both open-source models
like Llama 2 (Touvron et al., 2023) and state-of-the-
art closed-source models such as GPT-4 (Achiam
et al., 2023). The results show that multi-prompt
MBR consistently improves single-prompt MBR
across all three tasks and model scales, with gains
of up to 14% on HumanEval (Chen et al., 2021) and
8 points of LENS on SIMPEVAL (Maddela et al.,
2023). Figure 1 displays the results for models at
the 7B scale. Additionally, we study the dynam-
ics between different utility and evaluation metrics,
revealing that multi-prompt MBR with one metric
improves performance universally across metrics.

2 Preliminaries

Instruction fine-tuned LLMs are trained to follow
arbitrary natural language task descriptions (Wei
et al., 2022). Given an input x and prompt p, an au-
toregressive language model 7g parameterized by
6 estimates an output sequence y ~ mg(x, p) using
an decoding algorithm by sampling the next token
conditioned on the input 7y (y;|y<;, z, p). The de-
coding algorithm aims to generate y by maximizing
the sequence likelihood over the language model
distribution 7y (y|z, p) = I 7 (yi|y<i, , p)-
Minimum Bayes Risk Decoding. As often ob-
served in practice (Freitag et al., 2022a), unfor-
tunately, the highest likelihood generation is not
necessarily the highest quality (Jaeger and Levy,
2006). Building on this observation, MBR decod-
ing (Bickel and Doksum, 1977; Eikema and Aziz,
2020) first samples a set of hypotheses H from
the model 7y, approximating the true distribution
of output space ), then selects the output 4y/Br
that maximizes the expected utility (or minimizes
the expected loss in traditional formulation) with
respect to a set of references R:

ymBr = argmax (Eyor, [U(y,R)]), (1)
yeH

where U(y, R) = Eyor[u(y,y’)] and u(y,y’) isa
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Figure 2: Multi-prompt MBR generates candidates us-
ing a human- or model-written prompt bank and selects
the highest pairwise score with a trained value metric.

utility function that evaluates hypothesis ¢ against
areference /. In practice, R is also sampled from
the same model 7 under the assumption that the
model produces reliable outputs in expectation, and
is usually set as identical to hypothesis set H.

Bertsch et al. (2023) show that some successful
techniques that improve LLMs’ performance such
as self-consistency (Wang et al., 2023) and out-
put ensemble (Kobayashi, 2018) are special cases
of MBR. For example, self-consistency, which
takes the majority vote among answers extracted
from multiple sampled reasoning chains, can be
viewed as MBR with utility function as u(y,y’) =
1 [ans(y) = ans(y’)], where ans(y) is the answer
extracted from the reasoning path y.

3 Multi-Prompt MBR Decoding

Prior work on MBR decoding explores models
trained for specific tasks, where the hypothesis set
is generated given a single input x (Freitag et al.,
2022a; Fernandes et al., 2022). With instruction
fine-tuned LLMs, the input x is contained within
a structured prompt p, consisting of task instruc-
tion and/or in-context examples. Earlier studies
have extensively documented that the design of the
prompt has a dramatic impact on overall perfor-
mance (Mishra et al., 2022; Khashabi et al., 2022;
Lu et al., 2022; Sclar et al., 2023).

To investigate these phenomena, we show in
Figure 3a (bottom) the likelihoods and quality of
samples from 10 prompts of varying performance
for a text simplification task, measuring quality
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Figure 3: (a) LENS score and sequence probability for 1000 generations on a single text simplification example decoded from
Llama 2 7B Chat with temperatures 7 = [0,0.1,0.5] using a single prompt (top) and multiple prompts (bottom). As the
temperature increases, we find each prompt estimates candidate sequences centered at different modes. (b) LENS scores of the
best generation per-prompt for the first 20 sentences in SIMPEVAL, showing no single prompt produces the best overall output.
(c) Dataset-level LENS performance of each prompt when performing single prompt MBR vs. multi-prompt MBR.

as the LENS metric score against a set of gold
references. Greedy sampling (7 = 0) estimates
different sequences for each instruction, with sin-
gle prompt (Figure 3a, top) generating a single se-
quence. As we increase temperature 7, generations
from a single prompt simply exhibit noise centered
around the mode of the highest likelihood sequence,
while multi-prompt estimates a generations around
modes uniquely defined by each prompt. For in-
stance, one of the prompts (i.e., Prompt 9 high-
lighted in green) produces the highest quality gen-
eration for this one input sentence, despite having
a low performance over the entire dataset. In fact,
no prompt consistently produces the highest qual-
ity sequences, as illustrated in Figure 3b, rather
prompts are most effective at different inputs.

Building upon these insights, we propose Multi-
Prompt MBR decoding, depicted in Figure 2,
where the MBR hypothesis set H consists of out-
puts sampled from n distinct prompts p:

n
H= U H;, where H; = {yly ~ mp(z, pi)}. (2)
i=1
Bertsch et al. (2023) show that MBR seeks the
mode of some distribution ¢ over a quality feature
¢(y) applied to the output space rather than the
mode of the model’s distribution:

YMmBR ~ arg max q(é(y)|z). 3)

yeH

We hypothesize, in expectation, the mode of ¢(y)
across outputs from multiple prompts has higher
downstream performance compared to that derived
from a single prompt. This is empirically sup-
ported by our example, where Figure 3c shows that
multi-prompt MBR outperforms individual single-
prompt MBR across the full task dataset.
Although multi-prompt ensembles hypothesis
spaces between prompts, some notion of objective
quality still exists when constructing the prompt
bank. As shown in Figure 3c, the majority of the 10
human-written prompts fall within a 10-point range
of LENS scores when evaluated on the task dataset
but a few prompts consistently produce low-quality
generation. Therefore, to account for the hierar-
chy in prompt quality, we propose two methods for
choosing the prompts used at generation time from
a prompt bank P: sampling from a learned distri-
bution of prompts, based on a small unlabeled train
set (§3.1); and selecting a subset of prompts based
on heuristics in the absence of a train set (§3.2).

3.1 Prompt Sampling

In this approach, we first calculate the probability
of each prompt p(p) as the proportion of times that
prompt generates the highest scoring output on a
separate training set. At inference time, prompts
are sampled with replacements from this learned
probability distribution, and candidate outputs are



then generated given these prompts.

Top-p Prompt Sampling. Inspired by the principle
of nucleus sampling (Holtzman et al., 2020), our
goal is to keep the prompts with high probability
and truncate the least used prompts by setting their
probabilities to zero. We define the top-p prompt
set as the minimal set Pyop, € P such that:

[Prop-p]
> plpi) > p. )
i=0
We then re-normalize the distribution of Py,p., and
sample prompts from the new distribution:

p(p) :
ZPGPlop-p P(p) if Pe PtOP-p (5)

0 otherwise.

P'(p) =

3.2 Prompt Selection

Prompt selection chooses a fixed subset Ppest C P
Of |Ppest| = k prompts based on heuristics. Com-
pared to sampling, this does not require an ad-
ditional training set to evaluate prompt efficacy.
We consider the following heuristics for select-
ing Ppest: prompts that have the closest similarity
and greatest dissimilarity with others, and prompts
that are randomly selected from each k-NN cluster,
which is also useful when a training set is presented,
allowing the selection of high-performing prompts
within each cluster. In our experiments, we calcu-
late the semantic (dis)similarity of prompts based
on their SentenceBERT (Reimers and Gurevych,
2019) embeddings.

4 Experiment Setup

In this section, we describe the experimental details
for evaluating the efficacy of multi-prompt MBR
decoding across tasks, prompt setups, models, and
utility metrics, with results and analyses in §5.

4.1 Tasks & Datasets

Unlike previous work applying MBR to a single
generation task (Shi et al., 2022; Eikema and Aziz,
2022), we deliberately select three unique tasks
to demonstrate the universality of multi-prompt:
text simplification with task-level instructions, code
generation with example-level instructions, and ma-
chine translation with in-context examples.

Code Generation. We use HumanEval (Chen
et al., 2021) benchmark, where models are tasked
with generating a Python program given a descrip-
tion with unit tests. Since each example is a unique

coding task, we generate a unique prompt bank for
each input. Following Zhang et al. (2023), we re-
ject empty, degenerate (e.g., pass, return None),
or non-compiling programs before applying MBR.

Text Simplification. We use the SIMPEVALgg29
test set (Maddela et al., 2023), containing com-
plex sentences from Wikipedia, paired with human-
written simplifications. The prompt bank is gen-
erated based on author-written examples (Table 4)
and are used for the entire dataset.

Machine Translation. We purposely choose the
EN — CS language pair from the WMT 22 (Kocmi
et al., 2022) newstest corpus, ensuring its exclu-
sion from the training data of recent translation
LLMs or metrics (Xu et al., 2024). Results on
additional language pairs are in Appendix C.2.

4.2 Constructing the Prompt Bank

Following existing work studying prompt sensi-
tivity (Mizrahi et al., 2023; Gonen et al., 2023),
our experiments rely on a small set of manually
written seed prompts, and use an LLM to gener-
ate diverse paraphrases of prompts. Model-written
prompts are generated using GPT-4 Turbo. For
seed prompts, the authors manually write 10 for
text simplification (Table 4) and use the original
HUMANEVAL instruction from each example as the
seed prompt for code generation. The translation
prompts consist of randomly sampled in-context
examples from previous WMT shared tasks.

For experiments, we select from the prompt bank
with top-p prompt sampling (§5.2) using p = 0.6,
where the prompt usage p(p) is calculated using a
held-out 20% split of each dataset. Human-written
prompts and prompt generation instructions are
included in Appendix A.

4.3 Models

Our main experiments are performed with Llama
2-7B Chat (Touvron et al., 2023) for simplification,
ALMA-7B-R (Xu et al., 2024) for translation and
CodeLLLaMA-13B Instruct (Roziere et al., 2023)
for code generation, all fine-tuned to follow instruc-
tions. In §5.3 we further explore a wide range of
model architectures and sizes, including state-of-
the-art and task-specific fine-tuned models. Unless
otherwise specified, we generate the hypothesis
set using nucleus sampling (Holtzman et al., 2020)
with 7 =0.9,p = 0.95. We include a detailed re-
view of all models in this work in Appendix B.2.
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Figure 4: Candidate set diversity and LENS scores
across temperatures for simplification task. At low tem-
peratures, the increased candidate diversity from multi-
prompt directly translates to improved performance.

4.4 Utility Metrics & Evaluation

Our core experiments use the trained LENS (Mad-
dela et al., 2023) for simplification and COMET
(Rei et al., 2020) for translation as the candidate se-
lection metric. For code generation, we use MBR-
EXEC (Shi et al., 2022), which executes each can-
didate program against a set of test cases, selecting
the program with the highest agreement over all
test cases’ outputs. As in Zhang et al. (2023), we
use the docstring examples as test cases for MBR-
EXEC and evaluate with pass@1. Given the grow-
ing body of work on metric development, we verify
our multi-prompt results across a broad range of
utility and evaluation metrics in §5.4.

5 Experiment Results

We compare multi-prompt decoding to traditional
MBR (§5.1), ablate the prompt sampling mecha-
nism (§5.2), vary model architectures (§5.3), evalu-
ate across utility metrics (§5.4) and finally evaluate
multi-prompt on efficient MBR alternatives (§5.5).

5.1 How does multi-prompt MBR perform?

Multi-prompt Improves MBR. We report our
main results in Figure 1 and Table 2, comparing
single prompt and multi-prompt performance as
the number of generated candidates increases, with
detailed results in Figure 7 in Appendix. Multi-
prompt MBR consistently outperforms traditional
MBR for all tasks.

Candidate Diversity - Quality. To measure the
impact of temperature on the candidate set quality,
we report performance and diversity, as measured
by novel bi-grams, across temperatures in Figure
4. For low temperatures, we find that multi-prompt
generates a consistently more diverse candidate
space, which directly translates to higher-quality
generation. While single prompt MBR perfor-
mance improves with temperature 7 > 1, despite

pass@1 LENS COMET

Single Prompt (|H|=100) 48.78  69.45 90.14
Multi-Prompt + Prompt Sampling (|P|=100)

Random Selection - 74.91 89.98
Prompt Sampling - 78.29 90.33
Top-p Prompt Random - 78.61 90.11
Top-p Prompt Sampling - 79.08 90.36
Single Prompt (|H|=10)  41.55 51.64 87.54

Multi-Prompt + Prompt Selection (Poest C P, | Poest| = 10)

Random Selection 39.63  60.00 87.81
k-NN Cluster Random 40.24 58.73 87.80
Farthest Similarity 44.51 58.32 88.14
Closest Similarity 37.80 61.53 87.73
Highest Performance - 62.43 87.65
k-NN Cluster Performance - 66.12 87.73

Table 1: Results for prompt sampling using 100 prompts
(top) and subset selection using 10 of 100 prompts (bot-
tom). Sampling from a weighted, truncated distribution
improves multi-prompt across candidate set sizes.

generating an equal or greater diversity set than
multi-prompt, multi-prompt MBR still produces
higher quality candidates. As 7 — 2, the quality of
single and multi-prompt MBR begins to degrade
as their candidate sets become too noisy to gener-
ate high-quality sequences. Framing the decoding
process as each prompt estimating a unique distri-
bution of candidate generations (§3), the ability of
multi-prompt to achieve higher quality generation
as a result of candidate set diversity is intuitively
the byproduct of combining multiple candidate dis-
tributions defined by each instruction.

5.2 What is the impact of the prompt bank?

Sampling Prompts Improves Candidate Quality.
Table 1 (top) reports results for multi-prompt across
different prompt sampling methods for text simpli-
fication and translation. Note that, code generation
is excluded as a unique set of prompts is generated
for each HumanEval example, rather than the same
prompts used across the entire dataset. We find
sampling prompts by usage and truncating the top-
p prompts improves multi-prompt over a random
selection baseline, with top-p prompt sampling per-
forming the best on both tasks.

Multi-prompt is Sensitive to the Prompt Bank.
Table 1 (bottom) reports results for different prompt
subset selection methods, which use heuristics to
select a smaller set of prompts for multi-prompt to
maximize performance. This includes the 10 clos-
est and furthest prompt embeddings, the 10 highest
performing prompts, and a k-NN cluster of prompt
embeddings where a single prompt is selected from



Single Prompt Multi-prompt

Text Simplification (n = 100) — SIMPEVAL (LENS)

Ctrl T5 3B 72.6 —

Ctrl T5 11B 74.4 —

GPT-3.5 75.37 80.09 (+4.72)
GPT-4 73.27 80.60 (+7.33)
LLaMA 2 7B Chat 70.51 76.29 (+5.78)
LLaMA 2 13B Chat 71.29 77.93 (+6.64)
LLaMA 2 70B Chat 75.09 80.53 (+5.44)

Translation (n = 100) — WMT *22 EN-Cs (COMET)

WMT ’22 Winners 91.9 —
MS Translate API 90.6 —
GPT-3.5 91.89 92.39 (+0.50)
GPT-4 91.57 91.92 (+0.35)
ALMA 7B R 90.14 90.36 (+0.22)
ALMA 13BR 90.56 90.97 (+0.41)

Code Generation (n = 20) —- HUMANEVAL (pass@1)

StarCoder 2 15B 4451 45.73 (+1.22)
GPT-3.5 66.46 73.17 (+6.71)
GPT-4 71.34 85.36 (+14.0)
CodeLLaMA 7B 35.97 39.68 (+3.71)
CodeLLaMA 13B 43.29 48.17 (+4.88)
CodeLLaMA 34B 47.56 53.65 (+6.09)
CodeLLaMA 70B 60.97 68.29 (+7.32)

Table 2: Metric scores for state-of-the-art systems com-
pared to multi-prompt LLMs using n candidates. Trans-
lation and simplification baselines are as reported in
Hendy et al. (2023) and Maddela et al. (2023).

each cluster. Each selection method had a signifi-
cant impact on performance when compared to a
random selection of 10 prompts (+0.03 pass@1,
+14 LENS and +0.6 COMET). For text simplifi-
cation, decoding with the 10 highest performing
prompts is further improved by selecting prompts
from a k-NN clustering of prompt embeddings,
which enforces a dis-similarity between prompts.
Translation does not benefit from clustering, and
instead both translation and code generation ben-
efit from simply generating with farthest similar-
ity, or semantically distant prompts. These results
highlight multi-prompt’s sensitivity to the prompt
construction, and shows that enforcing both diver-
sity via multi-prompt and performance via prompt
selection improves candidate generation.

5.3 Does multi-prompt MBR apply across
model scale and architecture?

Increasing Returns as Models Scale. To argue
multi-prompt improves generation across instruc-
tion fine-tuned models and at scale, we experiment
with widely used LL.Ms. Figure 5 reports improve-
ment of multi-prompt over single prompt as a A
change in score, with analysis of per-model results
in Appendix C.3. On text simplification, instruc-
tion fine-tuned models appear to converge to a +5
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Figure 5: A metric improvement from single prompt
to multi-prompt across model sizes and architectures,
reported with a 95% CI bootstrapped over 5 iterations.
For absolute performance, see Figure 9.

improvement in LENS score as candidate set size
increases, consistent across model sizes and types,
while code generation models saw increasing re-
turns using multi-prompt as candidate set size in-
creased. We find the same trend of convergence to
a score improvement for translation, but saw incon-
sistent results, which may be a result of the vast
difference in training data for translation LLMs.

LLMs with Multi-prompt Outperform Fine-
tuned Models. Whether general instruction fine-
tuned LLMs can outperform an LLM trained or
fine-tuned on a conditional generation task is still
an active question (Chung et al., 2022), so we com-
pare state-of-the-art models in each task to instruc-
tion fine-tuned LLMs using multi-prompt. In Table
2, we report previous SOTA results for each task:
an 11B T5-based text simplification model trained
using control tokens corresponding to simplifica-
tion operations (Sheang and Saggion, 2021), the
EN-Cs results for the WMT °22 winning submis-
sion (Kocmi et al., 2022) and StarCoder 15B, a
code infilling and generation LLM (Li et al., 2023),
not explicitly trained to follow natural language
instructions. For text simplification model of com-
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BERTSCORE +0.51* +1.59* +1.68* +2.48* +0.22* +0.29*
COMET-22 +0.71* +0.89* +1.72* +3.29* +0.13* +0.18*
COMETKIWIRF  +0.80* +1.03* +1.06* +2.87* +0.07* +0.08*
XCOMET +0.14 +0.85* +0.84* +3.34* +0.09* +0.04*
METRICX +0.36* +0.81* +0.36 +3.93* +0.07* -0.04
METRICX-QERF  +0.60* +1.68* +2.11* +5.31* +0.08* +0.03*

Y

Table 3: A metric improvement from single prompt
to multi-prompt across metrics. RF = Reference-free
reranker. * = Statistically significant improvement with
p < 0.05. For absolute performance, see Table 6.

parable size only surpass fine-tuned performance
when using multi-prompt, with LLaMA 13B show-
ing a +5 LENS over fine-tuned TS5 11B.

5.4 Is multi-prompt MBR over-fitting to the
utility metric?

An inherent challenge of evaluating MBR is that
the utility metric used to select candidates is typ-
ically also used for the final evaluation, in such
cases it is difficult to attribute the metric improve-
ment to higher quality generation (Bertsch et al.,
2023). Given growing attention to metric devel-
opment, we leverage various trained metrics to
test whether multi-prompt using one utility met-
ric improves performance cross all other utility
metrics. We experiment with traditional overlap-
based metrics, (BLEU, SARI), embedding simi-
larity (BERTSCORE), small (~100M parameter)
trained metrics with references (LENS, COMET-
22) and without references (COMETKIWI, LENS-
SALSA, SLE), and large (3B+ parameter) trained
metrics (XCOMET, METRICX, METRICX-QE).
These metrics represent diverse text evaluation ap-
proaches and encompass the full state of evaluation
in both tasks. We include a full description of met-
ric architectures in Appendix B.1.

Multi-prompt MBR Improves Across Metrics.
Table 3 reports results for cross-metric evaluation,

with the diagonal reflecting the traditional MBR
evaluation setup (i.e., calculate MBR and evalu-
ate using the same metric) and other cells indicate
generalization from one metric to all others. We
also perform a hypothesis test for the statistical
significance of multi-prompt outperforming single
prompt using bootstrap sampling (Berg-Kirkpatrick
et al., 2012) with b = 103. Multi-prompt improves
performance on most evaluation setups, with a few
notable exceptions such as disagreement between
trained and overlap-based metrics for simplification
and COMET-based metrics for translation. For sim-
plification, trained metrics’ failure when evaluated
by SARI and BERTSCORE may be a byproduct of
the test set size, as these metrics typically require
a substantial number of references for stable eval-
uation (Alva-Manchego et al., 2020), more than
what are provided in SIMPEVAL. Interestingly, the
magnitude of performance improvement is highly
variable to the specific utility metric, with no clear
relationship between the metric architecture and im-
provement of multi-prompt, but typically a lower
baseline performance indicates multi-prompt per-
forms better (Table 6 in Appendix for more details).

5.5 How does the metric type impact
multi-prompt MBR?

As discussed by Fernandes et al. (2022), the MBR
operation requires each candidate evaluate against
every other candidate (i.e., O(n?) comparisons),
this becomes inefficient in practice for a large n, es-
pecially when using a trained utility metric. There-
fore, we explore multi-prompt MBR alternatives
using reference-free utility metrics:

* Reranker. Re-ranking directly estimates the
quality of each candidate using a reference-free
metric: Jvpr = arg max, 4 [U(y)]. We use the
trained LENS-SALSA for simplification (Heine-
man et al., 2023) and COMET-MQM (Rei et al.,
2021) for translation. For code generation, we
use Code Reviewer (Shi et al., 2022), which cal-
culates agreement between the per-token prob-
ability of the generation given the docstring
and the original docstring given the generation.
Reference-free re-ranking simply requires O(n)
metric calculations as it directly estimates gener-
ation quality.

* Reranker + MBR. We use a two-stage MBR
selection where we first rerank all candidates and
select the top m to use for MBR, where the re-
ranker can distill the candidate set and the expen-
sive MBR metric can perform the final selection.
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Figure 6: Alternative MBR formulations for multi-prompt across candidate set sizes for code generation, text
simplification and translation. Efficient MBR methods show inconsistent results, dependent on task and metric.

¢ Multi-turn MBR. Similar to the previous ap-
proach, we select the top m MBR candidates and
re-compute MBR using the smaller candidate set.

Results. We report results across candidate se-
lection methods in Figure 6, finding the multi-
prompt achieves performance improvement across
reference-based and reference-free metrics, yet the
relative performance of methods varies between
tasks. With text simplification, we find the more
expensive MBR performs better than the reference-
free alternatives. For translation, both using a re-
ranker first to narrow the candidate set (MBR +
Rerank) and iteratively performing MBR (Multi-
turn MBR) outperform vanilla MBR, despite these
methods being more computationally efficient. We
speculate the first pass may prune the lowest quality
generations such that the second pass only consid-
ers a distilled candidate set, which better informs
the MBR calculation. For code generation, we
find the re-ranker performs relatively poorly com-
pared to MBR, which may be reflective of the per-
formance of Code Reviewer compared to MBR-
EXEC, as the latter has access to multiple test cases.

6 Related Work

Prompt Selection. Current work on prompting for
text generation has instead focused on optimiza-
tion, such as in-context example selection (Min
et al., 2022), example ordering (Lu et al., 2022)
and prompt selection (Gonen et al., 2023). Notably,
Agrawal et al. (2023) show selecting in-context ex-
amples for MT by maximizing n-gram overlap be-
tween the source and examples improves few-shot
performance. Zhou et al. (2023) experiment with
LLMs as prompt generators, and Yang et al. (2023)
show using LLMs to iteratively rewrite prompts
on a development set can distill a single, high-
performant prompt. Our work uses LLM-written
prompts and basic heuristics to distill the prompt
bank, further improving multi-prompt.

Output Selection. Ensembling outputs under a
candidate space has become a popular technique for
improving LLM performance in classification tasks,
such as majority vote over prompt chains (Wang
et al., 2023), or merging outputs from multiple
models (Kobayashi, 2018; Martinez Lorenzo et al.,
2023). To our knowledge this work is the first to
apply a multi-prompt approach to text generation.

MBR Decoding. Automatic evaluators have been
incorporated into the training signal for task-
specific models (Shen et al., 2016), used to improve
the decoding process (Shen et al., 2004) and even
evaluate the metrics themselves (Amrhein and Sen-
nrich, 2022). MBR decoding has been explored ex-
tensively in improving translation quality (Kumar
and Byrne, 2004; Eikema and Aziz, 2020; Miiller
and Sennrich, 2021) and has been proposed for text
simplification (Maddela et al., 2023), summariza-
tion and style transfer (Suzgun et al., 2023). While
our work is the first to propose generating the MBR
hypothesis space using a prompt bank, Farinhas
et al. (2023) perform preliminary experiments with
paraphrases of a single sentence prompt, but found
no difference in performance. Recent work argues
sampling strategies like nucleus (Eikema and Aziz,
2022) or epsilon (Freitag et al., 2023) offer slightly
better performance over beam search for MBR,
with this work extending their findings by attribut-
ing candidate set quality to sampling diversity.

7 Conclusion

In this work, we propose multi-prompt, a gener-
alized case of MBR for conditional text genera-
tion. Multi-prompt successfully ensembles outputs
of instruction fine-tuned language models across
prompt constructions and in-context examples. We
highlight the importance of prompt selection and
sampling when constructing the prompt bank with
top-p prompt sampling and further verify our re-
sults across tasks, models and utility metrics.



Limitations

We limit our study of the prompt bank to a basic
set of seed prompts and GPT-written paraphrases
for each task. Notably, we do not study the impact
of prompt formats (e.g., passage:{}\n answer{}
vs. Passage: :{} Answer::{}, Sclar et al., 2023),
in-context example ordering (Lu et al., 2022) or
example selection (Agrawal et al., 2023) on multi-
prompt performance, although multi-prompt may
extend to such methods. We leave the question of
exhaustively constructing a prompt bank to future
work, perhaps by extending work in prefix tuning
(Li and Liang, 2021).

An inherent limitation of MBR is the increase
in inference time, where we generate up to 100
samples in our experiments, and use a neural utility
metric with either linear or quadratic comparisons
between candidates. While recent work has low-
ered the number of metric comparisons (Cheng
and Vlachos, 2023), MBR remains prohibitively
expensive for use in compute-limited scenarios.
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Human-Written Text Simplification Prompt

Prompt-Generation Instruction

Rewrite the following complex sentence in order to make it easier to understand by
non-native speakers of English. You can do so by replacing complex words with simpler
synonyms (i.e. paraphrasing), deleting unimportant information (i.e. compression),
and/or splitting a long complex sentence into several simpler ones. The final simplified
sentence needs to be grammatical, fluent, and retain the main ideas of its original
counterpart without altering its meaning.

Simplify the sentence please.

You are an artificial intelligence designed to simplify human written text. The text you
are given will contain complex ideas, phrases or concepts and your job is to rewrite that
text in a simple and easy to understand way. Your simplification should be completely
fluent and retain the ideas of the simplification.

I would like you to simplify the following sentence such that the text is as concise and
easy to read as possible.

Text simplification is an operation used in natural language processing to change, en-
hance, classify, or otherwise process an existing body of human-readable text so its
grammar and structure is greatly simplified while the underlying meaning and infor-
mation remain the same. Text simplification is an important area of research because
of communication needs in an increasingly complex and interconnected world more
dominated by science, technology, and new media. But natural human languages pose
huge problems because they ordinarily contain large vocabularies and complex construc-
tions that machines, no matter how fast and well-programmed, cannot easily process.
However, researchers have discovered that, to reduce linguistic diversity, they can use
methods of semantic compression to limit and simplify a set of words used in given texts.
Please simplify the following sentence.

Please simplify the below sentence by using a combination of these three operations.

Elaboration. An addition of meaningful, relevant and correct information, such as
clarifying vague terminology, providing background information on an entity or subject,
or explicating general world knowledge unknown to the audience.

Generalization. A deletion of unnecessary, irrelevant or complicated concepts.
Paraphrase. Swapping complex spans with equivalent, simpler alternatives.

The final sentence should be grammatical, concise and easier to read compared to the
original sentence.

You are an Al assistant that writes text simplification. Text simplification can be defined
as any process that reduces the syntactic or lexical complexity of a text while attempting
to preserve its meaning and information content. The aim of text simplification is to
make text easier to comprehend for a human user, or process by a program. Please
simplify the following sentence.

Simplify.

You are to act as a text simplification bot. As a text simplification bot, you will simplify
the following sentence such that it is syntactically easier to read and semantically easier
to understand. Please do not make the text more complex, longer or difficult for a reader.

T am writing a sentence, please take a look at this sentence and write a simpler version
such that a non-English speaker or an individual with disabilities could better understand
the sentence.

Table 4: Text simplification prompts used for the de-
coding experiment in Figure 3 and used as examples to
write GPT-4 prompts for experiments in §5.

A Prompt Bank Construction

Table 4 contains the human-written prompts for
text simplification. These human-written prompts
are provided as examples to GPT-4 when automat-
ically generating prompts for large-scale experi-
ments in §5. For code generation, we extract the
docstring in the original HUMANEVAL examples
as the human-written prompt, and provide it as an
example prompt to GPT-4. For machine translation,
our few-shot examples were sampled randomly
from the WMT newstest19 test corpus (Barrault
et al., 2019).

B Detailed System Descriptions

In this section, we include a full description of the
generation models and utility metrics used in exper-
iments throughout §5.3 and §5.4. All experiments
were inference-based and were run on up to 4xN-
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Please write a variation of the following instruction for a coding task. You may be
creative in proposing potential solutions, or explaining the nature of the task. Please do
not write any examples.

Example: {example_prompt}
Prompt:

Create a prompt for a language model to simplify a sentence, this prompt will explain the
text simplification task and instructions for how to perform the task. The prompt should
be diverse, include a description of simplification and clearly state what is expected of
the language model.

Example: {example_prompt_1}
Example: {example_prompt_2}

Prompt:

Table 5: Instruction templates provided to GPT-4 when
generating task instructions for code generation (top)
and text simplification (bottom).

VIDIA A40 GPUs, depending on the requirements
of the specific model or utility metric. The use of
models, metrics and datasets in this project follows
their respective licenses and intended use.

B.1 Utility Metrics

B.1.1 Simplification

SARI (Xu et al., 2016) is an n-gram overlap based
metric that compares edits on inputs, outputs and a
bank of references.

BERTSCORE (Zhang et al., 2020) calculates a
word-level cosine similarity of BERT embeddings.
Alva-Manchego et al. (2021) find BERTSCORE is
an adequate measure of quality generation, but that
it does not correlate with simplicity.

LENS (Maddela et al., 2023) is a RoBERTa-based
metric trained using human ratings of text simpli-
fication model outputs. The authors train on an
adaptive loss to allow a high score for generations
was close to any references, encouraging the metric
to consider different simplification types.

LENS-SALSA (Heineman et al., 2023) extends
the LENS architecture by fine-tuning on a dual
sentence- and word-level quality objective. The
authors show LENS-SALSA is more sensitive to
specific edit operations, while not requiring any
reference simplifications.

SLE (Cripwell et al., 2023) is a RoBERTa-based
metric trained to estimate the simplicity of text,
with the simplicity score defined as the difference
in simplicity between the complex and simplified
sentences. SLE was trained on 0-4 readability
scores of news articles in the Newsela corpus (Xu
et al., 2015), with an additional label softening for
individual sentences in the corpus.



B.1.2 Translation

BLEU (Papineni et al., 2002) is an n-gram overlap
based metric comparing a translation to a bank of
references. BLEU remains a widely-used standard
for automatic evaluation, despite lower correlation
to human judgement compared to learned metrics
(Freitag et al., 2022b). We use the ScareBLEU
implementation (Post, 2018).

COMET (Rei et al.,, 2020) is a widely used
RoBERTa-based metric, trained on direct assess-
ments of simplification quality. For reference-free
evaluation, we use the CometKiwi-XXL variant
(Rei et al., 2022, 2023), trained to predict sentence-
and word-level scores simultaneously.

XCOMET (Guerreiro et al., 2023) is a fine-tuned
XLM-R model (Goyal et al., 2021) based on the
CometKiwi architecture, but scaling the model size
and training data, including with synthetic data
created by randomly swapping n-grams or entire
sentences with unrelated translations. We use the
11B XCOMET-XXL in our experiments.

METRICX (Juraska et al., 2023) is a recent fine-
tuned 11B mT5-XXL (Xue et al., 2021) trained on
DA data from 2015-20, MQM data from 2020-21
(Freitag et al., 2021) and synthetic data based on
the MQM and DEMETR (Karpinska et al., 2022)
taxonomies of translation errors. Notably, the Met-
ricX architecture encodes both candidates and ref-
erences together, while COMET encodes both sep-
arately and combines the outputs to calculate the
final score. We also use the QE variant METRICX -
QE trained without references. The WMT ’22 test
data used in this work is not included in the training
data of any translation metrics we considered.

B.1.3 Code Generation

MBR-EXEC (Shi et al., 2022) executes candidate
generations on a series of test cases, and selects the
candidate with the highest agreement on its output
with all other candidates. While the authors do not
evaluate on HUMANEVAL, we replicate the setup
in Zhang et al. (2023) by using the test cases in
the docstring to calculate the agreement. We use a
soft loss over all test cases, as many HUMANEVAL
docstring examples are trivial or edge cases. If two
candidates have the same MBR score, we break ties
using the candidate with higher probability under
the language model.

Code Reviewer (Zhang et al., 2023) attempts to
find a consensus between the likelihood of the gen-
erated program p(y|z) and the original docstring
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using a minified version of the generation p(x|y).
We use their implementation for rejecting degen-
erate samples, minifying code and calculating the
reviewer score. We use the same models for gener-
ation and re-ranking.

B.2 Model Architectures
B.2.1 Simplification

Instruction Fine-tuned Models. We experiment
with widely used instruction fine-tuned LLMs, aim-
ing for a broad coverage of current models: Llama
2 Chat (Touvron et al., 2023), Gemma (Team et al.,
2024) and Mistral (Jiang et al., 2023).

Fine-tuned Control T5 (Sheang and Saggion,
2021) is a T5-based text simplification model fine-
tuned on the Wiki-Auto (Jiang et al., 2020) dataset
of aligned English-Simple English Wikipedia ar-
ticles. We use their same control token setup:
<NC_0.95> <LS_0.75> <DR_0.75> <WR_0.75>.

B.2.2 Translation

ALMA-R (Xu et al., 2024) is a class of transla-
tion LLMs. The base ALMA (Xu et al., 2023) is a
fine-tuned LLaMA model with text in each target
language and then parallel translation data. ALMA-
R is an extension trained on a contrastive preference
loss to incorporate ratings of translation quality.

TowerlInstruct (Alves et al., 2024) is a fine-tuned
Llama 2 model on multi-lingual instructions, aim-
ing to incorporate tasks beyond translation, such
as paraphrasing, post editing and grammar error
correction.

Aya 101 (Ustiin et al., 2024) is an mT5-based
model fine-tuned on multi-lingual data in 101 lan-
guages. While mTS5 is instruction-following model,
Aya is not fine-tuned on instruction data.

Additionally, we provide results from the WMT
’22 winning submission, and the Microsoft Trans-
late API, as reported in Hendy et al. (2023).

B.2.3 Code Generation

StarCoder 2 (Li et al., 2023) is trained from-
scratch on 4T tokens from 600+ programming lan-
guages. Although the model is not instruction fine-
tuned, we see a slight performance improvement
with multi-prompt, likely because comments and
code descriptions are included in its pre-training.

CodeLLaMA (Roziere et al., 2023) is a fine-tuned
Llama 2 model on 500B-1T tokens of code-related
datasets, including Python, substantially outper-
forming the base Llama 2 model on HumanEval.
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Figure 7: Multi-prompt, single prompt and beam search MBR decoding performance across candidate set sizes for
code generation, text simplification and translation. Results averaged over 5 bootstrap iterations.

C Further Results

C.1 Beam Search & Oracle Performance

Following related work in MBR, we report upper-
bound ‘oracle’ results (similar to Shi et al., 2022)
and a lower-bound beam search baseline (similar
to Freitag et al., 2023) in comparison to our main
results (Figure 1) in Figure 7.

Beam Search. The MBR candidate set historically
has consisted of the top beam search candidates, but
as language models have become better generators
recent work has argued sampling leads to a better
estimation of the hypothesis space (Freitag et al.,
2023). For this reason, we exclusively use nucleus
sampling in §5, but we report beam search as a
baseline in Figure 7, with a ‘candidate set size’ of
n corresponding to the top n beam candidates, or n
candidates with nucleus sampling for other results.

Oracle. As the final MBR performance can be
impacted both by the quality of the candidate set
and the choice of utility metric, we report an upper-
bound performance by deliberately selecting the
best candidate generations. Given a test set with
gold-standard references R, we define the oracle
performance as the set of the highest scoring possi-
ble selection of candidates:

Oracle(R*) = (6)

Since code generation is evaluated using pass@1,
its oracle uses expected pass@k (Shi et al., 2022),
which measures whether at least one candidate
within the candidate set passes all unit tests 7 :

ExPass@K — E {maxminnwy)]

|H|=K | yeH teT

} (N

Results. As oracle performance measures candi-
date set quality independent of the utility metric,
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we find an increase in oracle performance coincides
with an improvement when using multi-prompt, in-
dicating that a utility metric can naturally select
candidates when the candidate set is higher qual-
ity. This suggests improving utility metrics may
be a promising direction to bridge the gap between
candidate quality and candidate selection. Beam
search was a particularly strong baseline for small
candidate set sizes, particularly for code generation,
but beam search is not as sensitive to improvement
as the candidate set size increases. Additionally,
as code generation is evaluated using the binary
pass@ 1 metric, rather than a scalar quality metric
as used by translation and simplification, there is a
large gap between MBR and oracle performance,
also observed by Shi et al. (2022).

C.2 En-XX Translation Results

For brevity, we limit our multi-prompt experiments
to only the English-Czech language pair, but report
results across the full ALMA test set, including
WMT ’22 test data and a subset of NTREX (Feder-
mann et al., 2022), in Figure 8, where we observe
improvement with multi-prompt is dependent on
the language pair. Generally, high resource lan-
guages (such as French, German, Russian) do not
have a substantial difference, which may be a result
of the low prompt sensitivity for such pairs.

C.3 Detailed Multi-Model Results

See Figure 9 contains separated results for multi-
prompt and single prompt for each model, as re-
ported in Figure 5 and discussed in §5.3.
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most high resource pairs (e.g., French, German, Russian).
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Figure 9: Results of multi-prompt across model sizes and architectures bootstrapped over 5 iterations with a 95%
CI. Multi-prompt consistently improves performance across architectures and as models scale.
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C.4 Detailed Cross Metric Evaluation

Table 6 contains the full results for the MBR exper-
iments across metrics as discussed in §5.4. While
evaluating on the same metric used for MBR clearly
improves performance the most (see entries on
the diagonal), we find multi-prompt performed
on any metric universally improves performance
when evaluated on any other metric. Recent neu-
ral metrics, which achieve higher correlation with
human judgements, also have a higher overall per-
formance. Note, METRICX scores translations on
a [0, 25] scale corresponding to an MQM rating,
where lower is better and SLE scores simplifica-
tions on a [0, 4] corresponding to a Newsela simpli-
fication rating, where higher is better. For clarity,
we negate the METRICX results in Table 3 such that
all the green cells indicate a metric improvement.

18



Evaluation Metric > Evaluation Metric ——

MBR Utility Metric

Text Simplification (LLaMA 7B Chat) Text Simplification (LLaMA 7B Chat)
£ £
8, Ly, 8 &
hpg . 8, s hpg, (%‘9«1 s
S‘I@ y OO{PG @\/S Sq 45w &4@ % OO&)G GA{S‘ Sq an L& tn
SARI 44.33 92.64 58.73 72.31 1.42 SARI 43.25 91.58 51.49 67.97 1.04
BERTSCORE 45.46 93.71 60.86 71.47 1.37 BERTSCORE 44.02 92.62 54.68 68.36 0.92
LENS 39.98 92.18 76.29 79.55 2.30 LENS 40.64 92.24 70.51 74.86 1.49
LENS-SALSA®" 138.55 91.29 73.31 84.59 2.47 LENS-SALSA®  39.38 90.94 65.21 79.93 1.51
SLE®* 33.57 85.36 52.33 64.74 3.84 SLE®" 38.82 90.07 49.94 69.26 2.79
Translation (ALMA 7B) Translation (ALMA 7B)
4y,
8 47, P
Sp, C % Af ®; o C % A{
zs,, % 7%, *q “x. €25, Oy, Tk, Yo, ey,
k Wy Of'f@ "Rz, v O Oy “r 924» Wrwe Vi, ’Pfo b O@@p
BLEU 90.91 87.12 81.16 72.43 1.15 1.24  BLEU 90.57 86.65 80.49 72.57 1.20 1.35

BERTSCORE 9141 88.11 82.15 73.59 1.10 1.15  BERTSCORE 90.90 86.52 80.48 71.10 1.31 1.44
COMET-22 90.45 91.18 86.17 76.71 0.61 0.63  COMET-22 89.74 90.28 84.44 73.42 0.74 0.81
COMETKIWI®"  [90.67 90.56 85.64 81.16 0.51 0.57 CoOMETKIWI® 89.87 89.53 84.58 78.29 0.58 0.65
XCOMET 90.15 90.03 83.19 86.73 0.70 0.79  XCOMET 90.01 89.18 82.35 83.39 0.79 0.83
METRICX 89.35 89.07 82.00 69.26 0.47 0.69  METRICX 88.99 88.26 81.63 65.32/ 0.54 0.66
METRICX-QE®" 89.58 89.29 83.93 68.78[0.43 0.25, METRICX-QE"" 88.98 87.61 81.82 63.47 0.50 0.27

Table 6: Multi-prompt and single prompt performance across metrics. RF = Reference-free reranker.

19



	Introduction
	Preliminaries
	Multi-Prompt MBR Decoding
	Prompt Sampling
	Prompt Selection

	Experiment Setup
	Tasks & Datasets
	Constructing the Prompt Bank
	Models
	Utility Metrics & Evaluation

	Experiment Results
	How does multi-prompt MBR perform?
	What is the impact of the prompt bank?
	Does multi-prompt MBR apply across model scale and architecture?
	Is multi-prompt MBR over-fitting to the utility metric?
	How does the metric type impact multi-prompt MBR?

	Related Work
	Conclusion
	Prompt Bank Construction
	Detailed System Descriptions
	Utility Metrics
	Simplification
	Translation
	Code Generation

	Model Architectures
	Simplification
	Translation
	Code Generation


	Further Results
	Beam Search & Oracle Performance
	En-XX Translation Results
	Detailed Multi-Model Results
	Detailed Cross Metric Evaluation


