
Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement
Learning

Huaicheng Zhou 1 Zifeng Zhuang 1 Donglin Wang 1

Abstract
The integration of Deep Neural Networks in Re-
inforcement Learning (RL) systems has led to
remarkable progress in solving complex tasks
but also introduced challenges like primacy bias
and dead neurons. Primacy bias skews learning
towards early experiences, while dead neurons
diminish the network’s capacity to acquire new
knowledge. Traditional reset mechanisms aimed
at addressing these issues often involve maintain-
ing large replay buffers to train new networks or
selectively resetting subsets of neurons. However,
these approaches either incur prohibitive compu-
tational costs or reset network parameters without
ensuring stability through recovery mechanisms,
ultimately impairing learning efficiency. In this
work, we introduce the novel concept of neuron
regeneration, which combines reset mechanisms
with knowledge recovery techniques. We also pro-
pose a new framework called Sustainable Backup
Propagation(SBP) that effectively maintains plas-
ticity in neural networks through this neuron re-
generation process. The SBP framework achieves
whole network neuron regeneration through two
key procedures: cycle reset and inner distillation.
Cycle reset involves a scheduled renewal of neu-
rons, while inner distillation functions as a knowl-
edge recovery mechanism at the neuron level. To
validate our framework, we integrate SBP with
Proximal Policy Optimization (PPO) and propose
a novel distillation function for inner distillation.
This integration results in Plastic PPO (P3O), a
new algorithm that enables efficient cyclic regen-
eration of all neurons in the actor network. Ex-
tensive experiments demonstrate the approach ef-
fectively maintains policy plasticity and improves
sample efficiency in reinforcement learning.

1School of Engineering, Westlake University, Hangzhou,
China. Correspondence to: Donglin Wang <wang-
donglin@westlake.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Deep reinforcement learning has advanced significantly
through the integration of deep neural networks, resulting in
notable achievements across various domains (Singh et al.,
2022; Arulkumaran et al., 2017; Yu et al., 2021). Despite
these advancements, a critical issue that has emerged is the
loss of plasticity, as detailed in (Lyle et al., 2023; Abbas
et al., 2023). This refers to the diminishing ability of a
network to learn and adapt over time. As network neurons
become saturated, they “become full”, losing the capacity
to incorporate new information effectively. This reduction
in plasticity primarily affects the neurons in the network,
leading to decreased effectiveness and eventually causing
neurons to become dead (Lu et al., 2019; Shin & Karni-
adakis, 2020) or dormant (Sokar et al., 2023b). Addition-
ally, the problem of overfitting in deep learning, known as
primacy bias (Nikishin et al., 2022), further causes this loss
of plasticity. Consequently, there is an urgent imperative to
develop mechanisms for the repair or revitalization of neu-
rons affected by primacy bias or those that have lapsed into
dormancy, with the objective of reawakening their “hunger”
for novel information.

Reset mechanisms have been proven to be effective mea-
sures for addressing the loss of plasticity in neural networks.
However, existing reset approaches have demonstrated vari-
ous limitations. Early studies (Nikishin et al., 2022; D’Oro
et al., 2022; Kim et al., 2024) proposed resetting either
the final layer or all neurons to revitalize learning capabili-
ties, but these methods often led to a performance-resource
trade-off, requiring additional training to recover lost per-
formance. More targeted approaches, such as CBP (Dohare
et al., 2021) and ReDo (Sokar et al., 2023b), focused on
selectively resetting non-contributing neurons. While this
strategy reduced information loss, it only partially restored
plasticity and achieved limited performance improvements.
A fundamental challenge across these methods is that neu-
rons reaching critical importance become either irresetable
or damaging when reset, creating a dilemma that renders
the reset strategy ineffective and potentially limiting the
network’s overall potential. This limitation underscores the
need for a more sophisticated approach that can enhance
network plasticity while maintaining critical knowledge.

1

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

epoch=20 epoch=40 epoch=80 epoch=100

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

400

600

Av
er

ag
e

R
et

ur
n

(a) Humanoid

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(b) Hopper

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(c) Walker2d

Figure 1. Performance of PPO across varying numbers of training epochs of actor network per batch. Increasing training epochs impedes
performance improvement.

Inspired by regenerative processes in human cells (Carlson,
2011), we propose the concept of neuron regeneration, a
biomimetic approach that aims to recover plasticity while
preserving crucial knowledge within the network. Simi-
lar to how biological cells maintain their vitality through
regeneration, our neuron regeneration mechanism enables
the renewal of neural network components while retaining
essential learned information. This process enables neu-
ral networks to maintain long-term learning capabilities
without performance degradation. To implement neuron
regeneration, we introduce the Sustainable Backup Prop-
agation (SBP) approach, which integrates reset and distil-
lation mechanisms into traditional backpropagation(Hecht-
Nielsen, 1992). Drawing inspiration from natural cellular
regeneration cycles(Sender & Milo, 2021), SBP employs a
cyclic reset strategy to mitigate neuron plasticity degrada-
tion and primacy bias. The key innovation lies in our inner
distillation process, which facilitates knowledge transfer
from reset neurons to others, ensuring effective regeneration
without performance loss. This approach not only maintains
the network’s capacity to absorb new information but also
perpetuates its learning process, maximizing its potential
for continuous growth.

As shown in Figure 1, Proximal Policy Optimization (PPO)
(Schulman et al., 2017) exhibits significant primacy bias,
where early training experiences disproportionately influ-
ence the final policy, leading to performance degradation
as training progresses. This degradation stems from the
loss of neuron plasticity, limiting the network’s ability to
adapt to new experiences. To address this limitation, we
integrated our SBP approach with PPO by incorporating
neuron regeneration into the policy network. We devel-
oped a novel α-weighted Double KL divergence (α-DKL)
loss function that dynamically balances knowledge preserva-
tion and update flexibility. This loss function employs two
KL terms with an weighting mechanism to effectively fil-
ter out harmful information while retaining valuable policy
knowledge during the regeneration process. The resulting
Plastic PPO (P3O) algorithm implements neuron regenera-
tion within the actor network to maintain learning efficiency
and achieve sustainable plasticity. Extensive experiments

were conducted across diverse environments, including Mu-
JoCo (Todorov et al., 2012), DeepMind Control Suite (Tassa
et al., 2018), and a specially designed MuJoCo variant called
Cycle Friction that tests adaptation to changing dynamics.
Results demonstrate that P3O consistently outperforms stan-
dard PPO, achieving both higher average returns and more
stable learning curves, validating the effectiveness of our
neuron regeneration mechanism in maintaining policy plas-
ticity while enhancing sample efficiency. Our contributions
in this work can be summarized as follows:

• Neuron Regeneration: We introduce the concept of
neuron regeneration, a biomimetic approach inspired
by cellular regeneration processes. This novel mecha-
nism maintains neural network plasticity while preserv-
ing learned knowledge, enabling continuous learning
without performance degradation.

• Sustainable Backup Propagation (SBP): We propose
SBP, a systematic framework that implements neu-
ron regeneration through cyclic reset strategies and in-
ner distillation mechanisms. By effectively addressing
dead neurons and primacy bias, SBP ensures sustain-
able plasticity throughout the network’s lifecycle.

• Plastic PPO (P3O): We introduce P3O, an enhanced
version of PPO that integrates SBP and a novel α-
weighted Double KL divergence (α-DKL) loss func-
tion. P3O overcomes the primacy bias problem in stan-
dard PPO, maintaining plasticity and improved sample
efficiency across various reinforcement learning tasks.

2. Preliminaries and Related Work
2.1. On-policy Reinforcement Learning

Reinforcement learning is formalized as a Markov decision
process (MDP) (Puterman, 2014). An MDP consists of a
tuple ⟨S,A,R, P, γ⟩, where S denotes the set of states, A
the set of actions, R : A × S → R a reward function, P :
S ×A → P (S) a possibly stochastic transition probability
function, γ ∈ [0, 1) the discount factor. In reinforcement
learning, the goal is to seek an optimal policy π∗ : S →
P (A) which maximizes the expected accumulated returns
with discounted.

2

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

In on-policy reinforcement learning, the Proximal Policy
Optimization (PPO) algorithm (Schulman et al., 2017) is
utilized to update policies during interaction with the en-
vironment. The core objective function of PPO, denoted
as Lclip(θ), includes a clipping operation that sets gradi-
ents to zero when the probability ratio rt(θ) falls outside
[1−ϵ, 1+ϵ]. This prevents the policy from learning from ad-
vantages that would push it further outside the trust region,
thereby enforcing trust region constraints in a computation-
ally efficient manner. This operation ensures that the policy
does not deviate excessively from the previous policy. The
objective function is expressed as:

Lclip(θ) = Et[min(rt(θ) · Ât, clip(rt(θ), 1− ϵ, 1+ ϵ) · Ât)]
(1)

Here, rt(θ) = πθ(at|st)
πθold (at|st) represents the probability ratio

between new and old policies, and Ât is the estimated ad-
vantage function. The advantage function measures the
value of the current policy relative to a baseline policy, cal-
culated from trajectory data acquired during interactions
with the environment. In on-policy training environments
with dynamic data, where both input data and target values
are nonstationary, network plasticity may be compromised,
leading to suboptimal performance.

2.2. Plasticity in Reinforcement Learning

Plasticity, the ability of neural networks to adapt to new
information, gradually declines over time, posing a critical
challenge. This issue has prompted extensive research(Lyle
et al., 2023; Abbas et al., 2023; Nikishin et al., 2022; Nau-
man et al., 2024; Dohare et al., 2024; Juliani & Ash, 2024;
Lewandowski et al.) into methods for preserving neural
network plasticity, with two main categories of approaches
emerging to address this problem. The first involves vari-
ous training techniques such as regularization, adjustments
in activation functions, weight decay, and normalization
strategies (Kumar et al., 2023; Delfosse et al., 2021; Lee
et al., 2024a; Lyle et al., 2024; Elsayed et al., 2024). These
methods delay plasticity loss by reducing overfitting and
preventing large parameters.

The second category of approaches involves resetting the
network (Nikishin et al., 2022; Schwarzer et al., 2023; Nik-
ishin et al., 2024; Lee et al., 2024b) to recover the plasticity.
This reset-based methodology addresses both neuron dor-
mancy and primacy bias. Typically implemented by reinitial-
izing weights of specific layers or the entire network, resets
have been shown to effectively scale replay ratios, con-
tributing to performance improvements (Kim et al., 2024;
Xu et al., 2023). However, while resets can revive learn-
ing capabilities, they might lead to temporary performance
degradation and require additional training to restore pre-
viously learned information. To mitigate these drawbacks,
methods like CBP (Dohare et al., 2021) and ReDo (Sokar

et al., 2023b) selectively reinitialize neurons deemed less
useful based on certain metrics, minimizing the impact on
overall performance. This approach highlights the delicate
balance between recovering plasticity and maintaining net-
work efficiency. However, there remains a need for more
sophisticated methods that can effectively regenerate neu-
rons while preserving learned knowledge, which is the focus
of our proposed approach.

Maintaining neural plasticity represents a fundamental chal-
lenge in reinforcement learning, as agents must persistently
adapt to dynamic environments. Recent studies(D’Oro et al.,
2022; Schwarzer et al., 2023; Lee et al., 2024a; Ma et al.,
2023; Nauman et al., 2024) have demonstrated that enhanc-
ing neural plasticity can lead to significant improvements
in sample efficiency. Furthermore, both offline RL (Zhuang
et al., 2023; 2024) and lifelong RL (Ahn et al., 2024) criti-
cally depend on maintained plasticity, though they present
divergent challenges: static data exploitation in the former
versus continual adaptation in the latter.

2.3. Policy Distillation in Reinforcement Learning

Policy distillation transfers knowledge from an RL agent
to a smaller network for improved efficiency (Rusu et al.,
2015). Prior research (Igl et al., 2020; Lyle et al., 2022)
has highlighted its utility in addressing potential general-
ization loss in deep reinforcement learning agents due to
nonstationarity and overfitting. This suggests that policy
distillation serves two main functions: transferring knowl-
edge and enhancing generalization, aligning well with the
goals of plasticity recovery such as preserving knowledge
and mitigating primacy bias. A critical aspect of effectively
implementing policy distillation is quantifying the quality
of knowledge transfer, which necessitates appropriate diver-
gence measures.

A study by (Martins et al., 2021) discusses two types of
Kullback-Leibler (KL) divergence measures: Forward KL
(FKL) and Reverse KL (RKL). The Forward KL divergence,
D→KL, weights the state space according to the teacher’s pol-
icy, prioritizing learning in states where the teacher’s policy
is more probable. Conversely, the Reverse KL divergence,
D←KL, weights according to the student’s policy, promot-
ing exploration and robustness but risking neglect of some
teacher-favored behaviors. Their expressions are:

D→KL(π1 ∥ π2) =
∑
s∈S

π1(s) log

(
π1(s)

π2(s)

)
(2)

D←KL(π2 ∥ π1) =
∑
s∈S

π2(s) log

(
π2(s)

π1(s)

)
(3)

To tackle the performance degradation challenge in plastic-
ity recovery, we devise a weighted integration scheme that
leverages the complementary characteristics of forward and
reverse KL divergence.

3

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

3. Neuron Regeneration
Maximizing neural network capacity utilization during train-
ing is challenged by diminishing plasticity, a consumable
resource that depletes as networks learn. This depletion
stems from suboptimal configurations such as inappropriate
activation functions(Abbas et al., 2023), poor data quality
(Lee et al., 2024a), and backpropagation limitations (Dohare
et al., 2024), resulting in biased learning and suboptimal
performance.

While neuron reset techniques offer promising solutions for
plasticity restoration (D’Oro et al., 2022), they introduce
a critical challenge: the risk of performance degradation
without proper implementation (Nauman et al., 2024). Di-
rect parameter reinitialization, while effective for restoring
plasticity, can destabilize network performance.

To address this trade-off between plasticity restoration and
performance preservation, we propose neuron regeneration
as a dedicated mechanism, defined as:

Definition 3.1: Neuron Regeneration

Given a neural network with parameters θ =
{θ1, θ2, ..., θn}, where each θi represents the param-
eters of the i-th neuron, let S ⊆ {1, 2, ..., n} be any
subset of neuron indices. The neuron regeneration
operation is defined as:

θ′ = NR(θ, S) = {θ′1, θ′2, ..., θ′n}

where:

θ′i =

{
θplastici , if i ∈ S

θnewi , if i /∈ S

θplastici represents the reset plastic state and θnewi

represents the potentially updated state of non-
regenerated neurons. A neuron regeneration op-
eration is considered effective if it maintains:
1. Plasticity Recovery: P(θ′) > P(θ)
2. Performance Guarantee: Per(θ′) ≥ Per(θ)
where P denotes a measure of the network’s plastic-
ity and Per represents the network’s performance.

The proposed neuron regeneration mechanism should com-
prise two phases: a reset phase that initializes a subset of
neurons S to θplastici to enhance plasticity, followed by a re-
covery phase that adjusts the remaining parameters to θnewi

to compensate for potential performance degradation. This
dual-phase design aims to increase network plasticity P(θ′)
while maintaining performance Per(θ′). The adjustment
of non-regenerated neurons preserves model stability, en-
abling sustainable plasticity for long-term learning at the
neuron level and addressing traditional limitations in neural
network training methods.

4. Methodology
To maximize the utilization of neural network capabili-
ties, we propose the Sustainable Backup Propagation (SBP)
method. SBP achieves sustainable plasticity through a novel
neuron regeneration mechanism, which combines two key
components: Cycle Reset and Inner Distillation.

4.1. Sustainable Backup Propagation

Our neuron regeneration mechanism integrates two com-
plementary components: Reset and Distillation. Reset re-
juvenates inactive neurons by resetting their parameters
to initial states, effectively discarding outdated knowledge.
Distillation preserves valuable information by transferring
knowledge from the pre-reset to post-reset network. To-
gether, these processes enable neurons to regain plasticity
while maintaining essential learned features. By ensuring ef-
fective regeneration of individual neurons, we can maintain
network-wide plasticity.

To implement network-wide neuron regeneration, we in-
troduce the Cycle Reset mechanism, governed by two key
parameters: Reset frequency F and Reset rate p. Every F
training steps, p% of neurons in each layer undergo reset
and regeneration following a cyclical order. Due to this
sequential reset pattern, neurons with the longest survival
time - those that have undergone more update steps and po-
tentially experienced reduced plasticity - naturally become
the targets of each reset cycle. This systematic process, il-
lustrated in Figure 2, continuously refreshes neurons across
all layers throughout training.

Inner Distillation completes the neuron regeneration process
initiated by Reset. As shown in Figure 2, before resetting,
the current policy πθ is copied to a temporary policy πtem.
Selected neurons then undergo reset, clearing outdated in-
formation. Subsequently, through temporarily freezing reset
neurons, Inner Distillation enables knowledge transfer from
πtem to non-reset neurons in πθ, with the flexibility to han-
dle any number of reset neurons (even a single one). This
neuron-specific distillation process complements the Re-
set operation, jointly achieving neuron regeneration that
yields both enhanced plasticity and maintained or improved
performance compared to the original network.

The integration of Cycle Reset and Inner Distillation creates
an effective neuron regeneration framework. While Cycle
Reset maintains network-wide plasticity through systematic
neuron regeneration, Inner Distillation ensures the preserva-
tion of learned capabilities during this process. Through this
balanced regeneration process, SBP enables neural networks
to maintain suitable plasticity throughout training and ulti-
mately maximize their learning capability utilization. The
complete mechanism is formalized as the SBP algorithm,
detailed in Algorithm 1.

4

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

Figure 2. Left: Cycle Reset. Right: Inner Distillation. The right figure illustrates our method that combines neuron reset and knowledge
distillation, where reset neurons restore plasticity while transferring knowledge to unreset neurons, thereby enhancing network plasticity
while maintaining performance.

4.2. Double KL Divergence

Our analysis of Figure 1 revealed that the PPO algorithm
faces challenges with plasticity loss. To address this issue,
we propose integrating the SBP framework into PPO, aiming
to enhance its capabilities. The Inner Distillation process
presents a complex scenario where neurons may contain
both valuable knowledge and irrelevant information. To
maximize generalization and plasticity, we must carefully
control this distillation process. In the context of reinforce-
ment learning, we leverage the KL divergence as our distilla-
tion function, building upon previous research(Martins et al.,
2021) that demonstrated the effectiveness of both Forward
KL (FKL) and Reverse KL (RKL) in different aspects of
knowledge transfer. Specifically, FKL has shown efficiency
in transferring knowledge from a teacher policy to a student
policy, while RKL is effective in preventing the infiltration
of potentially harmful knowledge into the student model. To
capitalize on the strengths of both approaches, we introduce
a combined method. We also incorporate a parameter α to
adapt the loss function to various distillation scenarios. This
results in our proposed α-weighted Double KL divergence
(α-DKL), expressed as:

L(θ) = min
θ

α ·D→KL(πtem ∥πθ′)+(1−α) ·D←KL(πθ′ ∥πtem)

(4)

• πθ represents the primary policy, πtem denotes a tem-
porary policy typically used before a reset, and πθ′

signifies the policy after the reset of certain neurons.
• D→KL(πtem ∥ πθ′) denotes the Forward KL divergence,

which measures how well the policy πθ′ approximates
the policy πtem. This term is crucial for the effective
transfer of essential knowledge from the πtem to the
πθ′ .

• D←KL(πθ′ ∥ πtem) represents the Reverse KL diver-
gence, which acts as a regularizer to prevent the πθ′

from adopting potentially harmful or irrelevant infor-
mation from the policy πtem.

• α ∈ [0, 1] is a tuning parameter that balances the con-
tributions of the Forward and Reverse KL divergences
to the overall loss function.

The α-DKL approach offers a flexible and robust method
for knowledge distillation, allowing us to balance the trans-
fer of useful information with the prevention of harmful
knowledge infiltration. By adjusting the α parameter, we
can fine-tune the distillation process to suit different learn-
ing scenarios and optimize the trade-off between knowledge
preservation and plasticity restoration. Leveraging α-DKL,
we propose Plastic PPO (P3O), an enhanced version of the
PPO algorithm that integrates SBP and employs α-DKL as
its distillation loss function. This integration allows P3O
to maintain sustainable plasticity throughout the learning
process, potentially overcoming the limitations observed
in standard PPO implementations. The details of P3O are
presented in Algorithm 2.

5. Experiments
5.1. Experimental Setup

Environment & Task To evaluate our algorithm’s perfor-
mance, we employed a diverse set of tasks. These include
standard benchmarks from MuJoCo (Todorov et al., 2012)
and the state-based versions of DeepMind Control Suite
(DMC) (Tassa et al., 2018). Additionally, we introduce the
Cycle Friction Control task, an innovative variant of the Mu-
JoCo environment inspired by the slip MuJoCo task (Dohare
et al., 2024). Figure 8 shows a task with a cyclically chang-
ing friction coefficient. It starts at 4, decreases by 1 every
million steps to 1, then increases back to 4. This discrete
evolution significantly increases environmental complexity,
challenging the algorithm.

5

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

Table 1. Performance comparison across MuJoCo environments (mean with 95% CI), with results averaged across 25 different random
seeds. Percentages show improvement over baseline PPO. H-Stand: HumanoidStandup, Half: HalfCheetah.

PPO PPO+CBP PPO+ReDo PPO+Cycle P3O

Hopper 3719 [3668,3770] 3692 [3653,3732] 3730 [3672,3788] 3532 [3258,3807] 3765 [3699,3830] (1%)
H-Stand 135k [129k,140k] 137k [133k,141k] 141k [138k,145k] 132k [122k,143k] 144k [136k,153k] (7%)
Walker 6270 [5974,6566] 5284 [4991,5576] 6240 [5891,6590] 4993 [4761,5225] 6788 [6380,6987] (8%)
Ant 3,354 [2839,3869] 5480 [5377,5583] 3579 [3318,3840] 2210 [1820,2600] 5522 [5421,5622] (64%)
Half 3626 [2450,4802] 5944 [5687,6201] 4936 [3663,6209] 4585 [4025,5146] 6865 [6181,7548] (89%)
Humanoid 1163 [809,1518] 1966 [1196,2736] 1413 [973,1854] 1066 [886,1247] 6237 [5901,6573] (436%)

PPO PPO+CBP PPO+ReDo PPO+Cycle P3O

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

1000

2000

3000

Av
er

ag
e

R
et

ur
n

(a) Hopper

0 1 2 3 4 5 6 7 8 9 101112
Environment Steps (Million)

50000

100000
Av

er
ag

e
R

et
ur

n

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(c) Walker

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(d) Ant

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(f) Humanoid

Figure 3. Performance of Various Algorithms in MuJoCo Environments

Baseline Throughout the entire experiment, we employed
PPO as the base algorithm. In the reset experiment, we
examined the impact of various reset strategies. CBP (Do-
hare et al., 2021) involves selecting neurons based on a
utility function that considers both weight and activation
values. ReDo (Sokar et al., 2023b) selects neurons based on
a score derived from their activation values. Cycle involves
selecting neurons in a specific order.

5.2. Experimental Results

MuJoCo Our experimental results demonstrate the effec-
tiveness of our P3O algorithm across several key dimensions.
Table 1 shows that P3O consistently outperforms other algo-
rithms across six MuJoCo environments, with particularly
remarkable improvements in the Humanoid environment,
where the performance boost reaches 436%. This substantial
increase in maximum rewards indicates that our framework
effectively enables neuron regeneration, enhancing learn-
ing efficiency and more fully utilizing the neural network’s
capacity. The learning curves in Figure 3 further support
this, demonstrating that P3O achieves the highest learning
efficiency in most environments and maintains an upward
trend for extended periods. This sustained improvement

suggests that we have indeed achieved sustainable plasticity,
continuously providing the neural network with the capacity
for learning and adaptation. Moreover, our ablation study
using a standalone cycle reset without distillation demon-
strates that knowledge recovery plays a crucial role in this
process.

As illustrated in Figure 4, we analyzed the average L1 norm
of network neuron weights during training. Our analysis
reveals that while the original PPO algorithm tends to ac-
cumulate larger weights, algorithms incorporating resets
maintain weights in a lower range. This observation aligns
with recent research (Dohare et al., 2024) suggesting that
excessively large weights indicate reduced neural plasticity.
Our detailed analysis in the appendix (Table 4, Figure 16,
and Figure 22) demonstrates a clear correlation between
reset strategies and weight magnitude: both higher reset
frequency and larger reset percentage contribute to smaller
overall weights. P3O achieves a balanced weight distribu-
tion through its moderate reset frequency and full neuron
reset strategy, positioning it between CBP’s frequent partial
resets and ReDo’s limited reset approach. These findings
confirm that strategic neuron resetting effectively restores
plasticity by maintaining weights within an optimal range.

6

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

PPO PPO+CBP PPO+ReDo PPO+Cycle P3O

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10
W

ei
gh

t N
or

m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(f) Humanoid

Figure 4. Actor Network Weight Norm (Lower norm tend to correlate with higher plasticity)

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

2e-4

4e-4

6e-4

G
ra

d
N

or
m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

8e-4

G
ra

d
N

or
m

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

8e-4

G
ra

d
N

or
m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(f) Humanoid

Figure 5. Actor Network Gradient Norm (Higher norm values tend to correlate with higher plasticity)

Beyond the benefits in weight regulation, Figure 5 reveals
a crucial finding: P3O maintains consistently higher gradi-
ent norms than other tested algorithms. This is significant
because learning occurs through gradients, and within a
certain range, higher gradients indicate better learning effi-
ciency and plasticity. While the phenomenon of vanishing
gradients often signals a loss of plasticity, our algorithm
effectively reduces weight values while maintaining robust
gradients, resulting in optimal performance. Other algo-
rithms show less effective gradient maintenance, suggesting
the importance of knowledge retention in sustaining gradi-
ents. Further analysis in Figure 17 and Figure 23 reveals that
both reset percentage and frequency significantly influence
gradient maintenance.

The superior performance of P3O stems from its balanced
approach: appropriate reset frequency combined with ef-
fective knowledge retention. This enables efficient neu-
ron regeneration while effectively addressing the plasticity-

stability trade-off. By maintaining sustainable plasticity
through systematic neuron regeneration, P3O achieves both
smaller weight magnitudes and higher gradient norms, lead-
ing to enhanced sample efficiency and learning stability in
reinforcement learning tasks. This demonstrates that neural
renewal, when properly balanced with knowledge preserva-
tion, is key to achieving long-term adaptability.

Advantages and Costs of Inner Distillation Our distilla-
tion process utilizes an online replay buffer and operates in
epochs. As shown in Table 5, the statistical results demon-
strate the computational overhead of distillation. Our ab-
lation studies about distillation are shown in Figure 3 and
Figure 24. The statistics show that while inner distilla-
tion requires more training epochs, it achieves better per-
formance. The results in Figure 3 and Figure 24 reveal
that naive approaches to maintaining network plasticity are
insufficient: cyclic reset without recovery operations leads
to performance degradation, and simply increasing recov-

7

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

ery training epochs fails to maintain stable performance
improvement. In contrast, our inner distillation approach
effectively facilitates neural regeneration while preserving
crucial knowledge, demonstrating both necessity and effi-
ciency in knowledge retention.

As shown in Figure 25, our distillation-based approach
achieves consistent performance improvements with in-
creased epochs, while enhancing sample efficiency and
effectively recovering historical knowledge. This stands
in contrast to conventional approaches, where increasing
training epochs often leads to performance degradation due
to primacy bias (Nikishin et al., 2022), as observed in PPO
implementations (Figure 1). Our approach, despite requir-
ing additional distillation epochs, demonstrates superior
performance over baseline approaches like CBP and ReDo,
confirming its effectiveness in sustaining plasticity and en-
suring stable learning.

PPO PPO+CBP PPO+ReDo P3O

0 1 2 3 4 5 6 7 8 9 101112131415
Environment Steps (Million)

0

2000

Av
er

ag
e

R
et

ur
n

(a) Ant-CF

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(b) Walker-CF

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(c) Hopper-CF

Figure 6. Performance of Various Algorithms in Cycle Friction
(CF) Environments

DMC & Cycle Friction Figures 7 and 6 reveal that in
these complex benchmarks, while PPO struggles and other
algorithms show only marginal improvements, our SBP
approach achieves substantial progress. This superior per-
formance in challenging environments demonstrates our
algorithm’s effectiveness and indicates that increased envi-
ronmental complexity demands higher neural plasticity. Our
method’s success underscores the importance of effective
neuron regeneration in complex tasks. These findings not
only validate our approach but also highlight the need for
further research into maximizing neural plasticity, especially
in intricate learning environments.

Additionally, the experimental outcomes observed across
Humanoid (Figure 3), Hopper Hop (Figure 7), and Cycle
Friction Ant (Figure 6) environments demonstrate that the
constrained plasticity of neural networks, rather than the

PPO PPO+CBP PPO+ReDo P3O

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

50

100

Av
er

ag
e

R
et

ur
n

(a) Dog Walk

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

500

1000

Av
er

ag
e

R
et

ur
n

(b) Quadruped Walk

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

500

Av
er

ag
e

R
et

ur
n

(c) Quadruped Run

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

50

100

Av
er

ag
e

R
et

ur
n

(d) Hopper Hop

Figure 7. Performance of Various Algorithms in DMC Environ-
ments
inherent limitations of algorithms, often restricts the ac-
quisition of valuable knowledge from data. This insight
highlights the pivotal role of neural network plasticity in
advancing learning capabilities.

6. Conclusion
In this work, we introduced the Sustainable Backup Propa-
gation (SBP) framework, which addresses the fundamental
challenge of maintaining neural network plasticity through
systematic neuron regeneration. The core objective is to
maximize the utilization of neural networks by providing
sustainable plasticity while preserving their long-term learn-
ing capacity.

Our implementation, the Plastic PPO (P3O) algorithm,
demonstrates the effectiveness of this approach across a
diverse set tasks in deep reinforcement learning. Through
its key components - a cycle reset mechanism that con-
trols weight magnitudes and maintains gradient, combined
with an inner distillation strategy that preserves valuable
knowledge during neuron regeneration - P3O achieves
both smaller weight magnitudes and higher gradient norms.
These empirical results validate our hypothesis that proper
neuron regeneration can create more adaptive AI systems
capable of sustained learning over extended periods, effec-
tively addressing the plasticity-stability trade-off in deep
reinforcement learning by enabling networks to maintain
high learning capacity while preserving acquired knowledge
(”stay hungry, keep learning”).

While our results demonstrate significant progress, several
areas require further investigation, including the optimiza-
tion of reset scheduling strategies and the theoretical analy-
sis of neuron regeneration mechanisms. Nevertheless, our
work provides new insights into maintaining network plas-
ticity and establishes a foundation for future research in
sustainable learning systems.

8

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

Acknowledgments
This work was supported by the National Science and
Technology Innovation 2030 - Major Project (Grant No.
2022ZD0208800), and NSFC General Program (Grant No.
62176215)

Impact Statement
Our research, ”Stay Hungry, Keep Learning: Sustainable
Plasticity for Deep Reinforcement Learning,” introduces
novel approaches to address fundamental challenges in deep
reinforcement learning, specifically focusing on sustainable
plasticity and long-term learning capabilities.

The primary technical contribution, Sustainable Backup
Propagation (SBP), represents a paradigm shift in how we
approach neural network plasticity. By implementing a
systematic neuron reset strategy combined with Inner Distil-
lation, we demonstrate that networks can maintain learning
capacity while mitigating performance degradation. This
framework challenges conventional wisdom about conser-
vative reset strategies and provides a practical solution for
maintaining network plasticity throughout the learning pro-
cess.

To validate our approach, we introduced the Cycle Fric-
tion Control task in the MuJoCo environment, which simu-
lates real-world scenarios where environmental conditions
change cyclically. This novel evaluation framework pro-
vides insights into the adaptability of reinforcement learning
algorithms in dynamic environments, making our findings
particularly relevant for real-world applications.

The broader implications of this work extend beyond techni-
cal achievements. By enabling more sustainable and adap-
tive learning systems, our research contributes to the devel-
opment of more resilient and flexible AI systems. However,
we acknowledge that enhanced plasticity in AI systems may
raise important considerations regarding system stability
and reliability. We encourage the research community to
carefully consider these trade-offs when implementing simi-
lar approaches in practical applications.

We believe this work represents a significant step toward
more capable and adaptable reinforcement learning systems,
while recognizing the importance of balancing performance
improvements with system stability and reliability. As the
field continues to advance, we hope our findings will inspire
further research into sustainable learning mechanisms and
their practical applications.

References
Abbas, Z., Zhao, R., Modayil, J., White, A., and Machado,

M. C. Loss of plasticity in continual deep reinforcement

learning. arXiv preprint arXiv:2303.07507, 2023.

Ahn, H., Hyeon, J., Oh, Y., Hwang, B., and Moon, T. Re-
set & distill: A recipe for overcoming negative trans-
fer in continual reinforcement learning. arXiv preprint
arXiv:2403.05066, 2024.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and
Bharath, A. A. Deep reinforcement learning: A brief
survey. IEEE Signal Processing Magazine, 34(6):26–38,
2017.

Berariu, T., Czarnecki, W., De, S., Bornschein, J., Smith, S.,
Pascanu, R., and Clopath, C. A study on the plasticity of
neural networks. arXiv preprint arXiv:2106.00042, 2021.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Carlson, B. M. Principles of regenerative biology. Elsevier,
2011.

Delfosse, Q., Schramowski, P., Mundt, M., Molina, A., and
Kersting, K. Adaptive rational activations to boost deep
reinforcement learning. arXiv preprint arXiv:2102.09407,
2021.

Dohare, S., Mahmood, A., and Sutton, R. Continual back-
prop: Stochastic gradient descent with persistent random-
ness. arXiv: Learning,arXiv: Learning, Aug 2021.

Dohare, S., Hernandez-Garcia, J. F., Lan, Q., Rahman, P.,
Mahmood, A. R., and Sutton, R. S. Loss of plasticity
in deep continual learning. Nature, 632(8026):768–774,
2024.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier. In
Deep Reinforcement Learning Workshop NeurIPS 2022,
2022.

Elsayed, M., Lan, Q., Lyle, C., and Mahmood, A. R. Weight
clipping for deep continual and reinforcement learning.
arXiv preprint arXiv:2407.01704, 2024.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

9

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

Hecht-Nielsen, R. Theory of the backpropagation neural
network. In Neural networks for perception, pp. 65–93.
Elsevier, 1992.

Igl, M., Farquhar, G., Luketina, J., Boehmer, W., and
Whiteson, S. Transient non-stationarity and generali-
sation in deep reinforcement learning. arXiv preprint
arXiv:2006.05826, 2020.

Juliani, A. and Ash, J. A study of plasticity loss in on-policy
deep reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 37:113884–113910, 2024.

Kim, W., Shin, Y., Park, J., and Sung, Y. Sample-efficient
and safe deep reinforcement learning via reset deep en-
semble agents. Advances in Neural Information Process-
ing Systems, 36, 2024.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kumar, S., Marklund, H., and Van Roy, B. Maintaining
plasticity via regenerative regularization. arXiv preprint
arXiv:2308.11958, 2023.

Lee, H., Cho, H., Kim, H., Gwak, D., Kim, J., Choo, J.,
Yun, S.-Y., and Yun, C. Plastic: Improving input and la-
bel plasticity for sample efficient reinforcement learning.
Advances in Neural Information Processing Systems, 36,
2024a.

Lee, H., Cho, H., Kim, H., Kim, D., Min, D., Choo, J., and
Lyle, C. Slow and steady wins the race: Maintaining
plasticity with hare and tortoise networks. arXiv preprint
arXiv:2406.02596, 2024b.

Lewandowski, A., Tanaka, H., Schuurmans, D., and
Machado, M. C. Directions of curvature as an expla-
nation for loss of plasticity, 2024. URL https://arxiv.
org/abs/2312.00246.

Lu, L., Shin, Y., Su, Y., and Karniadakis, G. E. Dying relu
and initialization: Theory and numerical examples. arXiv
preprint arXiv:1903.06733, 2019.

Lyle, C., Rowland, M., Dabney, W., Kwiatkowska, M.,
and Gal, Y. Learning dynamics and generalization in
reinforcement learning. arXiv preprint arXiv:2206.02126,
2022.

Lyle, C., Zheng, Z., Nikishin, E., Pires, B. A., Pascanu,
R., and Dabney, W. Understanding plasticity in neural
networks. arXiv preprint arXiv:2303.01486, 2023.

Lyle, C., Zheng, Z., Khetarpal, K., van Hasselt, H., Pas-
canu, R., Martens, J., and Dabney, W. Disentangling
the causes of plasticity loss in neural networks. arXiv
preprint arXiv:2402.18762, 2024.

Ma, G., Li, L., Zhang, S., Liu, Z., Wang, Z., Chen, Y., Shen,
L., Wang, X., and Tao, D. Revisiting plasticity in visual
reinforcement learning: Data. Modules and Training
Stages, 2023.

Martins, J. P., Almeida, I., Souza, R., and Lins, S. Policy
distillation for real-time inference in fronthaul congestion
control. IEEE Access, 9:154471–154483, 2021.

Montavon, G., Orr, G., and Müller, K.-R. Neural networks:
tricks of the trade, volume 7700. springer, 2012.

Nauman, M., Bortkiewicz, M., Ostaszewski, M., Miłoś, P.,
Trzciński, T., and Cygan, M. Overestimation, overfitting,
and plasticity in actor-critic: the bitter lesson of rein-
forcement learning. arXiv preprint arXiv:2403.00514,
2024.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. In International conference on machine learn-
ing, pp. 16828–16847. PMLR, 2022.

Nikishin, E., Oh, J., Ostrovski, G., Lyle, C., Pascanu, R.,
Dabney, W., and Barreto, A. Deep reinforcement learning
with plasticity injection. Advances in Neural Information
Processing Systems, 36, 2024.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins,
G., Kirkpatrick, J., Pascanu, R., Mnih, V., Kavukcuoglu,
K., and Hadsell, R. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Schwarzer, M., Ceron, J. S. O., Courville, A., Bellemare,
M. G., Agarwal, R., and Castro, P. S. Bigger, better,
faster: Human-level atari with human-level efficiency.
In International Conference on Machine Learning, pp.
30365–30380. PMLR, 2023.

Sender, R. and Milo, R. The distribution of cellular turnover
in the human body. Nature medicine, 27(1):45–48, 2021.

Shin, Y. and Karniadakis, G. E. Trainability of relu networks
and data-dependent initialization. Journal of Machine
Learning for Modeling and Computing, 1(1), 2020.

10

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

Singh, B., Kumar, R., and Singh, V. P. Reinforcement
learning in robotic applications: a comprehensive survey.
Artificial Intelligence Review, 55(2):945–990, 2022.

Sokar, G., Agarwal, R., Castro, P., and Evci, U. The dormant
neuron phenomenon in deep reinforcement learning. Feb
2023a.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learning.
arXiv preprint arXiv:2302.12902, 2023b.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics en-
gine for model-based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Oct
2012. doi: 10.1109/iros.2012.6386109. URL http://
dx.doi.org/10.1109/iros.2012.6386109.

Xu, G., Zheng, R., Liang, Y., Wang, X., Yuan, Z., Ji, T.,
Luo, Y., Liu, X., Yuan, J., Hua, P., et al. Drm: Master-
ing visual reinforcement learning through dormant ratio
minimization. arXiv preprint arXiv:2310.19668, 2023.

Yu, C., Liu, J., Nemati, S., and Yin, G. Reinforcement learn-
ing in healthcare: A survey. ACM Computing Surveys
(CSUR), 55(1):1–36, 2021.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. A
study on overfitting in deep reinforcement learning. arXiv
preprint arXiv:1804.06893, 2018.

Zhuang, Z., Lei, K., Liu, J., Wang, D., and Guo, Y. Be-
havior proximal policy optimization. arXiv preprint
arXiv:2302.11312, 2023.

Zhuang, Z., Peng, D., Liu, J., Zhang, Z., and Wang, D.
Reinformer: Max-return sequence modeling for offline rl.
arXiv preprint arXiv:2405.08740, 2024.

11

http://dx.doi.org/10.1109/iros.2012.6386109
http://dx.doi.org/10.1109/iros.2012.6386109

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

A. Appendix.
A.1. HyperParameter

• Python 3.8
• Pytorch 2.0.1 (Paszke et al., 2019)
• Gym 0.23.1 (Brockman et al., 2016)
• MuJoCo 2.3.7 (Todorov et al., 2012)
• mujoco-py 2.1.2.14

Figure 8. Cycle Friction.
Our experiment is based on PPO and incorporates SBP, CBP, and ReDo variants. We use the hyperparameters described in
Table 2 for all algorithms. It’s important to note that we’ve slightly modified the ReDo mechanism: instead of using a
threshold-based selection, each reset is based on evaluating the scores of the bottom one percent of neurons. To ensure
statistical significance and reproducibility, all experiments were conducted with 5 different random seeds, and the results
presented are the mean values with corresponding standard deviations across these runs in figures. Figure 8 illustrates the
pattern of friction changes of the cycle friction environments.

Table 2. Algorithm Parameters
Category Hyperparameter Value

PPO

Optimizer Adam (Kingma & Ba, 2014)
Learning Rate (Actor & Critic) 3e-4

Online Replay Buffer Size 8192
Mini-batch Size 256
Discount Factor 0.99
Training Step 1.5e7

Epochs per Update 10
Clip Range 0.2

Clip Grad Norm 0.5

Architecture
Actor & Critic Hidden Size 256

Actor & Critic Hidden Layers 3
Actor & Critic Activation Function Tanh

SBP

Reset Rate 0.01
Reset Frequency 50000 Environment Step

Neuron Utility Type Neuron Lifetime
DKL α 0.4

Distillation Loss Bound τ 0.01

CBP

Reset Rate 0.01
Reset Frequency 10000 Gradient Step

Neuron Utility Type Contribution

ReDo
Reset Rate 0.01

Reset Frequency 50000 Environment Step
Neuron Utility Type ReDo Score

12

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

A.2. Concept

To systematically analyze plasticity, we introduce key terminology in Table 3. The emergence of primacy bias can be
partially attributed to overfitting in neural networks. Dormant neuron identification requires careful hyperparameter selection,
particularly:

• For ReLU activation: neurons producing zero outputs are considered dead

• For tanh/sigmoid: neurons with boundary-proximal outputs (≈ ±1 for tanh, ≈ 0 or 1 for sigmoid) are deemed saturated

The activation threshold for determining dormancy must be environment-specific, as it directly impacts plasticity measure-
ments.

Table 3. Key Terminology Definitions

Term Definition

Plasticity The ability of neural networks to learn from new experiences(Berariu
et al., 2021).

Plasticity Loss The diminished capacity of neurons to acquire new knowledge. (Lyle
et al., 2023; Abbas et al., 2023)

Overfitting The excessive fitting of a model to the training data(Zhang et al., 2018).

Primacy Bias The tendency to overfit to earlier training data, resulting in poor learning
outcomes on later sampled data(Nikishin et al., 2022).

Dormant Neurons with low activation values in ReLU(Sokar et al., 2023a).

Dead (Saturated) In ReLU activations, dead neurons occur when the output is zero for all
inputs(Shin & Karniadakis, 2020; Lu et al., 2019). In sigmoid or tanh
functions, neurons are considered saturated when the output approaches
extreme values(Glorot & Bengio, 2010; Montavon et al., 2012).

13

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

A.3. Algorithm

In this section, we present two novel algorithms designed to achieve sustainable plasticity in neural networks: Sustainable
Backup Propagation (SBP) and Plastic Proximal Policy Optimization (P3O). These algorithms address the challenge of
maintaining neural network plasticity over extended periods.

A.3.1. SUSTAINABLE BACKUP PROPAGATION

Sustainable Backup Propagation (SBP) is a general framework designed to maintain the plasticity of neural networks over
extended periods.By incorporating a neuron regeneration mechanism into standard backpropagation, it backs up sustainable
plasticity for long-term network updates, hence enabling “sustainable” backpropagation.

The key components of SBP are:

• Cycle Reset: Periodically reinitializes a portion of neurons to prevent overspecialization.
• Inner Distillation: Utilizes a temporary model as a teacher network to recover essential knowledge after neuron reset.

This approach allows neural networks to maintain plasticity indefinitely, continually adapting to new information. The SBP
algorithm implements the cycle reset and inner distillation mechanisms. In every F step, the reset rate γ determines the
proportion of neurons reset in each cycle, while the distillation process ensures that essential knowledge is retained after
each reset. The distillation process continues until the distillation loss becomes less than τ , indicating the selected neurons
have successfully regenerated. The detailed algorithm is presented in Algorithm 1.

Algorithm 1 Sustainable Backup Propagation (SBP)
Neural Network fθ, Temporary Model ftmp, Reset Rate γ, Training Steps T , Reset Frequency F , Reset Index p = 0,
Distillation Threshold τ , Distillation Loss d = None. for t = 1 to T do

Update Neural Network fθ with standard backpropagation.
if t mod F = 0 then

Copy the weights of Neural Network fθ to Temporary Model ftmp.
for each layer L of the Network do

Let l = neurons of layer L.; Reinitialize input weights of neuron i in layer L: i ∈ [p · l : (p+ γ) · l].

Freeze all the reset neurons in Neural Network fθ.
while d > τ or d = None do

Update Neural Network fθ using Temporary Model ftmp as a teacher network, focusing on reducing the
distillation loss d according to a distillation loss.
Recalculate Distillation Loss d.

Unfreeze all the reset neurons in Neural Network fθ.
if p+ γ < 1 then

p = p+ γ;
else

p = 0;

A.3.2. PLASTIC PROXIMAL POLICY OPTIMIZATION

Plastic Proximal Policy Optimization (P3O) is a concrete implementation of the SBP framework within the context of
reinforcement learning, specifically tailored for the Proximal Policy Optimization (PPO) algorithm. A specialized distillation
function, DKL (Equation 4), is designed for PPO, ensuring effective knowledge transfer in policy space. The choice of
PPO as our baseline implementation is particularly motivated by its inherent characteristics. As an on-policy algorithm
maintaining only a small replay buffer, PPO faces significant plasticity demands due to the constant data distribution
shifts inherent in reinforcement learning exploration. These characteristics make PPO one of the most challenging yet
representative cases for testing plasticity mechanisms in reinforcement learning. We posit that if SBP can effectively enhance
PPO’s plasticity, it should generalize well to other reinforcement learning algorithms.

14

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

Algorithm 2 Plastic PPO(P3O)
Policy πθ, Temporary Policy πtmp, Reset Rate γ, Training Steps T , Reset Frequency F , Reset Index p = 0, Distillation
Threshold τ , Distillation Loss d = None. for t = 1 to T do

Update Policy πθ with regular policy gradient.
if t mod F = 0 then

Copy the weights of Policy πθ to Temporary Policy πtmp.
for each layer L of the Network do

Let l = neurons of layer L. Reinitialize input weights of neuron i in layer L: i ∈ [p · l : (p+ γ) · l].

Freeze all the reset neurons in Policy πθ.
while d > τ or d = None do

Update Policy πθ using Temporary Policy πtmp as a teacher network based on Equation 4.
Update Distillation Loss d.

Unfreeze all the reset neurons in Policy πθ.
if p+ γ < 1 then

p = p+ γ

else
p = 0

P3O demonstrates how the general SBP framework can be applied to specific machine learning paradigms, enabling
sustainable plasticity in reinforcement learning policies. By incorporating neuron regeneration and knowledge distillation,
these algorithms offer a promising approach to overcoming the limitations of traditional neural network training methods,
particularly in scenarios requiring long-term learning and adaptation to changing environments. The detailed algorithm is
presented in Algorithm 2.

A.3.3. COMPARISON OF RESET STRATEGIES

In our study, we made deliberate choices in reset counting methods to align with each algorithm’s characteristics while
maintaining comparability. For CBP, we retained its original approach of using gradient steps for reset counting, preserving
its algorithmic features. In contrast, for P3O, we opted to use environment interaction steps as the basis for reset counting.
This decision was motivated by our focus on understanding how changes in input data affect neural plasticity. For consistency
and to facilitate better comparison, we applied this same counting method based on environment interaction steps to ReDo as
well. This approach allowed us to maintain the unique aspects of each algorithm while ensuring a meaningful comparative
analysis across different reset strategies. Table 4 presents a comparative analysis of neuron reset statistics for the CBP, P3O,
and ReDo algorithms throughout their respective training processes. The data represents the average across six Mujoco
environments. Our findings reveal distinct patterns in reset frequency and scope among these algorithms:

• CBP exhibits the highest reset frequency, followed by P3O, with ReDo having the least frequent resets.
• In terms of reset scope, both CBP and P3O can reset all neurons, while ReDo has limitations in this aspect.

These reset patterns align with the weight norm distributions observed in Figure 4. The data suggests an inverse relationship
between reset frequency and weight magnitude: more frequent resets correspond to smaller neuronal weights. This
observation unveils a simple yet significant principle: the more frequent and comprehensive the resets, the smaller the
neuron weights tend to be. However, excessively frequent resets can lead to performance instability. This trade-off suggests
the importance of carefully calibrating both the reset frequency and recovery mechanisms to achieve an optimal balance
between plasticity and stability.

Table 4. Reset Statistics Comparison (768 Neurons)
Total Resets Average Resets Reset Proportion (%)

CBP 44208.6 57.6 100.0
ReDo 1800.0 2.3 22.3
SBP 2304.0 3.0 100.0

15

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

PPO PPO+CBP PPO+ReDo PPO+Cycle P3O

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

50000

100000

150000

Av
er

ag
e

R
et

ur
n

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0

5000

10000

Av
er

ag
e

R
et

ur
n

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(f) Humanoid

Figure 9. Performance Comparison of Different Algorithms with ReLU Activation in MuJoCo Environments

A.4. Ablation

A.4.1. ABLATION STUDY OF ACTIVATION

To comprehensively evaluate our algorithm’s capability in maintaining plasticity, we conducted additional experiments
across different activation functions, recognizing that activation is also a factor that affects the plasticity of neural networks.
We maintained the same parameter settings as shown in Table 2 across all six environments. As shown in Figure 9 and
Figure 3, our method demonstrates consistent performance improvements with both ReLU and Tanh activation functions,
with the magnitude of improvement remaining comparable between these conditions. While baseline methods show strong
performance with ReLU activation in some environments, such as HalfCheetah and Ant, they exhibit significant performance
degradation when using Tanh activation. In contrast, our approach maintains stable performance across both activation
functions. These results demonstrate that our algorithm exhibits superior robustness compared to existing methods, as it
maintains consistent effectiveness regardless of the choice of activation function. This indicates that its plasticity-maintaining
capabilities are not limited to specific activation functions but rather represent a more general and robust solution.

Plasticity Exploration

To better investigate the PPO algorithm, we chose the Tanh activation function based on previous research experience.
Inspired by the neuron activation analysis in ReDo, we adopted a straightforward approach by using the absolute value
of neuron activations as our scoring metric, leveraging the fact that Tanh activation values are bounded in [-1,1]. This
score effectively reflects individual neuron activity levels, and we use the mean score across all neurons to quantify overall
network activation. However, during our investigation of neural plasticity using dormancy rate as a metric, we made an
unexpected discovery: networks using Tanh activation exhibited a clear correlation between activation function outputs and
weight magnitudes. As shown in Figure 14 and 4, our analysis confirms a clear correlation between the overall magnitude of
activation values and network weights under Tanh activation. This correlation suggests that ReDo’s dormancy calculation
method may not be directly applicable to networks using Tanh activation functions.

Dormant Ratio To address this concern, we conducted additional experiments with ReLU activation functions, with results
shown in Figure 9, and calculated the dormant ratio using a threshold of 0.1 (Figure 10). The dormancy ratio curves closely
align with performance variations - lower dormancy rates correlate with higher performance. Our method consistently
maintains lower dormancy rates across most environments, following trends similar to those observed in weight and gradient
norms (Figure 11 and Figure 12). However, the activation norm shows a more nuanced relationship. Comparing Figure
14 and Figure 13 reveals that both extremely high and low activation norms can be problematic. Our method consistently
maintains stable activation norms across environments - approximately 0.7 for Tanh and 0.3 for ReLU activations. This

16

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

PPO PPO+CBP PPO+ReDo PPO+Cycle P3O

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.0

0.5

 D
or

m
an

t R
at

io

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.0

0.1

0.2

 D
or

m
an

t R
at

io

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.00

0.25

0.50

 D
or

m
an

t R
at

io

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.0

0.1

0.2

 D
or

m
an

t R
at

io

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.00

0.25

0.50

 D
or

m
an

t R
at

io

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.00

0.05

0.10

 D
or

m
an

t R
at

io

(f) Humanoid

Figure 10. Dormancy Ratio of Actor Networks with ReLU Activation (Threshold = 0.1) across MuJoCo Environments

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(f) Humanoid

Figure 11. Actor Network Weight Norm with ReLU Activation (Lower norm tend to correlate with higher plasticity)

suggests that maintaining activation values within specific, activation function-dependent ranges might be crucial for
plasticity, though this hypothesis requires further investigation. Therefore, weight and gradient norms serve as effective
indicators of neural network plasticity and demonstrate the effectiveness of our algorithm. While dormancy ratio can also
reflect plasticity levels, its applicability may be limited by the choice of activation functions. The relationship between
plasticity and different activation functions warrants further investigation.

17

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

PPO PPO+CBP PPO+ReDo PPO+Cycle P3O

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

2e-4

4e-4

6e-4

G
ra

d
N

or
m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

3e-4

5e-4

G
ra

d
N

or
m

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

3e-4

5e-4

G
ra

d
N

or
m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(f) Humanoid
Figure 12. Actor Network Gradient Norm with ReLU Activation (Higher norm tend to correlate with higher plasticity)

PPO PPO+CBP PPO+ReDo PPO+Cycle P3O

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.2

0.4

A
ct

iv
at

io
n

N
or

m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.25

0.50

0.75

A
ct

iv
at

io
n

N
or

m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.25

0.50

A
ct

iv
at

io
n

N
or

m

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.1

0.2

0.3

A
ct

iv
at

io
n

N
or

m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.0

0.5

A
ct

iv
at

io
n

N
or

m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.4

0.6

0.8

A
ct

iv
at

io
n

N
or

m

(f) Humanoid
Figure 13. Actor Network Activation Norm with ReLU in MuJoCo Environments

18

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.25

0.50

0.75

A
ct

iv
at

io
n

N
or

m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.6

0.8

A
ct

iv
at

io
n

N
or

m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.25

0.50

0.75

A
ct

iv
at

io
n

N
or

m
(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.4

0.6

0.8

A
ct

iv
at

io
n

N
or

m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.25

0.50

0.75

A
ct

iv
at

io
n

N
or

m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.6

0.8

A
ct

iv
at

io
n

N
or

m

(f) Humanoid
Figure 14. Actor Network Activation Norm with Tanh in MuJoCo Environments

19

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

p = 20% p = 50% p = 80%

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(a) Walker

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(b) Ant

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(c) Half

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(d) Humanoid

Figure 15. Performance of Various Network Reset Percentages

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(a) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(b) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.05

0.10

W
ei

gh
t N

or
m

(c) Half

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(d) Humanoid

Figure 16. Actor Network Weight Norm Across Various Reset Percentages

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(a) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(b) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(c) Half

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

5e-4

6e-4

G
ra

d
N

or
m

(d) Humanoid

Figure 17. Actor Network Grad Norm Across Various Reset Percentages

A.4.2. ABLATION OF CYCLE RESET

We present a systematic investigation of cycle reset’s impact on neural plasticity through carefully designed ablation studies.
Our experimental framework examines three fundamental parameters (reset percentage, rate, and frequency) and evaluates
their effects through three complementary metrics: performance outcomes, weight norm distributions, and gradient norm
patterns.

Ablation of Reset Percentage

In this section, we investigate how different reset percentages affect training performance to validate the necessity of cycle
reset. Our experiments restrict neuron reset to the initial x% (x ∈ 20, 50, 80) of the network. Throughout training, we use a
fixed per-reset rate of 0.01 with reset intervals of 50,000 steps, and cycle reset is applied only within the first x% of neurons.
Figure 15, 16, and 17 show the experimental results for performance, weight variations, and gradient variations, respectively.

Our experiments reveal a clear correlation between reset percentage and network characteristics:

• In most environments, higher reset percentage lead to better performance
• Higher reset percentage result in smaller weight magnitudes across the network
• Networks with higher reset percentage maintain larger gradient norms throughout training

Our analysis of reset percentages reveals important insights into neural plasticity and neuron regeneration. Higher reset
percentages consistently enhance network plasticity, as evidenced by weight magnitudes and gradient characteristics.
Notably, while the Walker environment demonstrates increased plasticity with complete network reset, its performance
trends differ from other environments. This divergence indicates that enhanced plasticity alone does not guarantee improved
performance - successful regeneration requires appropriate recovery mechanisms to maintain learning stability. Our current

20

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

rate=0.05 rate=0.1 rate=0.5 rate=1

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(a) Hopper

0 1 2 3 4 5 6 7 8 9 101112
Environment Steps (Million)

100000

200000

Av
er

ag
e

R
et

ur
n

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(c) Walker

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(d) Ant

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(f) Humanoid

Figure 18. Performance Across Various Per-Reset Rates

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.06

0.08

W
ei

gh
t N

or
m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.06

0.08

W
ei

gh
t N

or
m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.06

0.08

W
ei

gh
t N

or
m

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.075

0.100

0.125

W
ei

gh
t N

or
m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.06

0.08

W
ei

gh
t N

or
m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.06

0.08

W
ei

gh
t N

or
m

(f) Humanoid

Figure 19. Actor Network Weight Norm Across Various Per-Reset Rates

parameter settings, while effective in other environments, require adjustment for the Walker scenario. These findings
emphasize that effective neuron regeneration relies on carefully balancing network resets with recovery methods to achieve
both optimal plasticity utilization and knowledge preservation.

Ablation of Per-reset Rate

To investigate the impact of reset rates on P3O, we conducted experiments with four different per-reset rate while maintaining
a reset frequency of 50,000 environment steps. The results, illustrated in Figure 18 19 and 20, demonstrate several key
findings:

• In most environments, reset rates of 0.05 and 0.1 achieved optimal performance.
• Resetting the entire network often outperformed resetting 50% of neurons.
• Weight magnitudes and gradient magnitudes reveals similar patterns across different per-reset rates.

This suggests that moderate reset rates can effectively achieve complete neural regeneration. Higher reset rates do not

21

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

3e-4

5e-4

8e-4
G

ra
d

N
or

m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

8e-4

G
ra

d
N

or
m

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

5e-4

8e-4

G
ra

d
N

or
m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

5e-4

8e-4

G
ra

d
N

or
m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(f) Humanoid

Figure 20. Actor Network Grad Norm Across Various Per-Reset Rates

necessarily lead to increased plasticity but instead create additional challenges for knowledge recovery, particularly within
PPO’s limited replay buffer setting. The superior performance of rate 1.0 compared to rate 0.5 is particularly evident in
environments like Hopper, potentially indicating the influence of primacy bias on learning. These varying responses across
environments suggest the need for more robust knowledge recovery mechanisms to handle different regeneration scenarios.
Given that different reset rates yield similar plasticity improvements, implementing lower reset rates appears optimal as it
minimizes knowledge recovery complexity while maintaining effectiveness.

Ablation of Reset Frequency

To investigate the impact of reset frequency, we conducted ablation studies while maintaining a fixed reset rate of 0.01.
Figure 21, and presents our analysis across different reset intervals (20000, 40000, 80000, and 100000 steps). Our
experiments reveal several key findings:

• Higher reset frequencies consistently lead to smaller weight magnitudes and larger gradient norms, indicating enhanced
plasticity maintenance

• Higher reset frequencies generally correlate with better performance.

Reset frequency demonstrates a significant impact on neural plasticity restoration, with higher frequencies leading to
enhanced plasticity maintenance. However, this relationship presents a trade-off: while more frequent resets maintain
higher plasticity levels, excessively high reset frequencies can overwhelm the knowledge recovery process. This limitation
potentially prevents the full conversion of increased plasticity into performance improvements. The results suggest the
importance of finding an optimal reset frequency that balances plasticity enhancement with effective knowledge preservation.

Through our comprehensive ablation studies on cycle reset, we systematically investigated three key components: reset
percentage reset rate and reset frequency. The experimental results reveal several crucial insights:

• Reset Percentage: Cycling through the entire network, rather than restricting resets to a subset of neurons, proves
more effective in maintaining overall network plasticity.

• Reset Rate: Lower reset rates generally achieve optimal performance while maintaining stability.
• Reset Frequency: Higher reset frequencies correlate with enhanced plasticity, as evidenced by smaller weight

magnitudes and larger gradient norms.

Based on these findings, we recommend a configuration with relatively small per-reset rates, higher reset frequencies,
and complete network reset coverage. These results establish the effectiveness of our proposed cycle reset strategy while
indicating directions for future research, particularly in developing more precise and adaptive reset schedules based on task
characteristics and learning dynamics.

22

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

freq=20000 freq=40000 freq=80000 freq=100000

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(a) Hopper

0 1 2 3 4 5 6 7 8 9 101112
Environment Steps (Million)

50000

100000

150000

Av
er

ag
e

R
et

ur
n

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(c) Walker

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(d) Ant

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(f) Humanoid

Figure 21. Performance Across Various Reset Frequencies

freq=20000 freq=40000 freq=80000 freq=100000

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.06

0.08

0.10

W
ei

gh
t N

or
m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.050

0.075

0.100

W
ei

gh
t N

or
m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

0.06

0.08

0.10

W
ei

gh
t N

or
m

(f) Humanoid

Figure 22. Actor Network Weight Norm Across Various Reset Frequencies

23

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

freq=20000 freq=40000 freq=80000 freq=100000

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

2e-4

4e-4

6e-4

G
ra

d
N

or
m

(a) Hopper

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(c) Walker

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(d) Ant

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10
Environment Steps (Million)

4e-4

6e-4

G
ra

d
N

or
m

(f) Humanoid

Figure 23. Actor Network Grad Norm Across Various Reset Frequencies

24

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

PPO PPO+Cycle PPO+Cycle+RT P3O

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(a) Hopper

0 1 2 3 4 5 6 7 8 9 101112
Environment Steps (Million)

50000

100000

150000

Av
er

ag
e

R
et

ur
n

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(c) Walker

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(d) Ant

0 1 2 3 4 5 6 7 8 9 101112
Environment Steps (Million)

0

5000

10000

Av
er

ag
e

R
et

ur
n

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(f) Humanoid

Figure 24. Performance Comparison with Recovery Training (RT)

A.4.3. ABLATION OF INNER DISTILLATION

Through extensive ablation studies on cycle reset, we find that knowledge recovery settings play a crucial role in effective
neuron regeneration. A robust knowledge preservation mechanism enables flexible neuron reset at arbitrary frequencies and
proportions, facilitating effective regeneration of any selected neurons. Our investigation encompasses three key aspects:
a comparative study between recovery training and knowledge distillation for knowledge preservation, an assessment of
distillation robustness under different reset protocols, and a systematic exploration of the distillation hyperparameter α to
optimize preservation performance.

Inner Distillation VS Recovery Training

To rigorously evaluate the recovery feature of our distillation mechanism, we conducted comparative experiments between
inner distillation and simple extra training after cycle reset. We implemented a recovery training protocol where the network
underwent additional training epochs post-reset until the reward difference between the recovered model and the pre-reset
model fell below a threshold of 100, ensuring performance stability before proceeding to the next training cycle.

Our experimental results, as shown in Table 5 and Figure 24, demonstrate that while recovery training achieves moderate
reward levels with lower computational cost compared to cycle reset alone, it fails to generate substantial performance
improvements. This indicates that the ability to recover previous performance does not guarantee continued learning
progress. In contrast, our distillation mechanism exhibits superior capabilities in both knowledge preservation and learning
advancement. Notably, as illustrated in Figure 25, the additional epochs required for distillation translate directly into
performance improvements, indicating meaningful training rather than computational overhead. These findings suggest that
distillation not only effectively preserves and restores knowledge but also enhances sample efficiency by leveraging the
network’s plastic potential. The synergistic combination of reset and distillation thus emerges as a powerful approach for
long-term learning improvement.

Table 5. Extra Training Epochs across Environments under 5 random seeds(PPO baseline: 18,310 epochs)

Hopper Humanoid Stand Walker Ant HalfCheetah Humanoid

Distillation Epochs 597.66 638.19 1536.80 7698.40 2548.40 6525.25
Recovery Epochs 809.75 2731.60 524.00 700.20 253.20 485.25

25

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

Hop
pe

r

Hum
an

oid
 Stan

d

Walk
er Ant

Half
Cha

the
ah

Hum
an

oid
0

100

200

300

400

500

600

700

Im
pr

ov
em

en
t o

f P
3O

(%
)

3 9 26
62

98

669Improvement of P3O(%)
Distillation Epoch Ratio

0.0

0.2

0.4

0.6

0.8

1.0

D
is

til
la

tio
n

Ep
oc

h
R

at
io

0.03 0.03
0.08

0.42

0.14

0.36

Figure 25. Cross-Environment Performance Gains vs. Distillation Epochs(under 5 random seeds)

Random Random+INDS CBP+INDS ReDo+INDS

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(a) Hopper

0 1 2 3 4 5 6 7 8 9 101112
Environment Steps (Million)

50000

100000

150000

Av
er

ag
e

R
et

ur
n

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(c) Walker

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(d) Ant

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

500

1000

Av
er

ag
e

R
et

ur
n

(f) Humanoid

Figure 26. Performance of Inner Distillation(INDS) Integration with Different Algorithms across MuJoCo Environments

Combining Inner Distillation with Baselines

Experiments combining inner distillation with various baselines were conducted to further investigate the efficacy of
distillation-based knowledge preservation. As shown in Figure 26, distillation showed limited effectiveness when applied
to two distinct reset strategies: Random, which randomly resets 0.01 of neurons, and ReDo. However, when integrated
with CBP, distillation showed promising results, particularly in the Ant environment where notable performance gains were
observed, despite some learning instability. It should be noted that these experiments utilized default parameters, which may
have constrained the full potential of our algorithm’s integration with CBP. These findings suggest two key implications:
first, distillation can effectively complement existing reset strategies as a knowledge preservation mechanism in neuron
regeneration paradigms; second, there remains significant potential for optimization through parameter tuning. Further
research focusing on parameter optimization could enhance the robustness and effectiveness of combined distillation and
neuronal reset approaches.

26

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

Table 6. Training Time Comparison (hours) across MuJoCo Environments

Hopper Humanoid Stand Walker Ant HalfCheetah Humanoid

PPO 5.59 7.62 5.59 6.10 5.08 7.13
P3O 5.62 7.66 5.68 6.53 5.22 7.49
Distillation 0.03 0.04 0.09 0.43 0.14 0.36

In our experiments, we utilized a machine equipped with an NVIDIA V100 (32GB) GPU to measure the update time for the
PPO, which averaged approximately 0.30 seconds per update epoch. For the distillation phases, we observed an average of
0.20 seconds per epoch, as these phases only require updating the actor network without the need to update the critic. This
timing remains consistent across different environments. The differences in training times across environments primarily
stem from variations in sampling times. However, since the distillation phases relied on PPO’s own replay buffer, they did
not require additional sampling. The training time of PPO consists of sampling time and update time, while P3O additionally
requires distillation time. Ultimately, our results provide strong evidence that distillation does not significantly impact
overall training efficiency, as demonstrated in Table 6. This suggests that the benefits gained from distillation in terms of
performance do not come at a substantial cost to training time.

Ablation of Distillation α

Parameter α modulates the knowledge transfer process during distillation, which critically influences the neural regeneration
outcomes. Our experiments, as illustrated in Figure 27, suggest that different alpha values can affect learning efficiency. Our
experiments demonstrate the effectiveness of Inner Distillation, with an optimal alpha value of 0.3 consistently yielding
superior performance. This finding reveals that limiting forward-propagated information is beneficial and suggests the
presence of primacy bias in current learning frameworks. The improved performance with a lower alpha value indicates that
conventional learning paradigms may retain excessive redundant knowledge, highlighting the importance of effective neuron
regeneration in balancing knowledge preservation and acquisition.

Our ablation studies validate Inner Distillation through three aspects: recovery training comparisons demonstrate its
efficiency in performance restoration, tests across reset strategies confirm its generalizability, and analysis of parameter α
reveals effective knowledge transfer control. These results establish Inner Distillation as an efficient and versatile approach
for neural regeneration.

 = 0 = 0.3 = 0.5 = 0.8 = 1

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(a) Hopper

0 1 2 3 4 5 6 7 8 9 101112
Environment Steps (Million)

50000

100000

150000

Av
er

ag
e

R
et

ur
n

(b) HumanoidStandup

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(c) Walker

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(d) Ant

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(e) HalfCheetah

0 1 2 3 4 5 6 7 8 9 10 11 12
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(f) Humanoid

Figure 27. P3O Performance Sensitivity to α in MuJoCo Environments

27

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

A.5. SAC with SBP

As a demonstration of our framework’s generality in reinforcement learning, we extended our evaluation to Soft Actor-Critic
(SAC)(Haarnoja et al., 2018), testing its performance across four Mujoco environments (Figure 28). We compared the
ReDo, CBP, and Cycle reset approaches using the hyperparameter configurations detailed in Table 7. Additionally, we
incorporated periodic resets of the last hidden layer and periodic resets of the entire network, which were studied in the
context of off-policy methods.

Our results demonstrate that SBP consistently improves SAC’s performance. The analysis of dormant ratio (Figure 29),
gradient norm (Figure 32), weight norm (Figure 31), and activation norm (Figure 30) reveals trends similar to those observed
in PPO: lower dormancy rates, larger gradients, smaller weights, and activation values maintained within stable ranges.
Notably, despite a slightly higher dormancy rate in HalfCheetah, we observed larger activation norms, suggesting that similar
performance was achieved with fewer active neurons, indicating more efficient utilization of neural plasticity. However,
we believe these improvements represent only a fraction of SBP’s potential benefit to SAC, particularly considering that
our current implementation, which randomly samples just 1% (8,192 samples) from the replay buffer for inner distillation,
already achieves significant plasticity enhancement and notable performance gains. The current approach, while effective,
leaves substantial room for exploring more sophisticated sampling strategies to better utilize the rich information available in
off-policy settings. To summarize, we believe that achieving better performance on SAC requires attention to the following
two points:

Distillation Buffer: Constructing an appropriate distillation buffer is crucial. While the PPO online buffer can be directly
used for distillation, SAC requires a suitable method to create a distillation buffer from its large offline buffer. An unsuitable
buffer may exacerbate primacy bias.

Impact of the Critic: Our experimental results indicate that various reset strategies for the actor yield similar performance,
suggesting that addressing the critic may be necessary to mitigate the loss of plasticity in SAC, an issue also discussed in
previous work (Nikishin et al., 2022).

SAC faces challenges with a larger replay buffer, while PPO operates with a smaller one, leading to different exploration
directions. Additionally, the critic seems to play a more significant role in the plasticity of SAC.

Table 7. Hyperparameter Configuration of SAC with SBP
SAC Parameters SBP Parameters
Activation Function ReLU Reset Frequency 10,000 steps
Hidden Size 256 Reset Percentage 0.01
Training Step 2e6 Alpha Value 0.8
Replay Buffer Size 1M Distillation Buffer Size 8,192

28

Stay Hungry, Keep Learning: Sustainable Plasticity for Deep Reinforcement Learning

SAC
SAC+CBP

SAC+ReDo
SAC+Cycle

SAC+SBP
SAC + Last Layer Reset

SAC + Complete Reset

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0

10000

Av
er

ag
e

R
et

ur
n

(a) Half

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0

2000

4000

Av
er

ag
e

R
et

ur
n

(b) Hopper

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0

2500

5000

Av
er

ag
e

R
et

ur
n

(c) Walker

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0

5000

Av
er

ag
e

R
et

ur
n

(d) Ant

Figure 28. SAC Performance Across MuJoCo Environments

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.1

0.2

0.3

 D
or

m
an

t R
at

io

(a) Half

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.1

0.2

0.3

 D
or

m
an

t R
at

io

(b) Hopper

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.1

0.2

0.3

 D
or

m
an

t R
at

io

(c) Walker

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.0

0.2

0.4

 D
or

m
an

t R
at

io

(d) Ant

Figure 29. Dormant Ratio of SAC Actor Network in MuJoCo Environments (Threshold = 0.1)

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.5

1.0

A
ct

iv
at

io
n

N
or

m

(a) Half

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.2

0.4

A
ct

iv
at

io
n

N
or

m

(b) Hopper

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.2

0.4

A
ct

iv
at

io
n

N
or

m

(c) Walker

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.2

0.4

A
ct

iv
at

io
n

N
or

m

(d) Ant

Figure 30. Activation Norm of SAC Actor Network in MuJoCo

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.1

0.2

W
ei

gh
t N

or
m

(a) Half

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.1

0.2

0.3

W
ei

gh
t N

or
m

(b) Hopper

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.1

0.2

W
ei

gh
t N

or
m

(c) Walker

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0.1

0.2

0.3

W
ei

gh
t N

or
m

(d) Ant

Figure 31. Weight Norm of SAC Actor Network in MuJoCo

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0

5e-2

G
ra

d
N

or
m

(a) Half

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0

5e-3

1e-2

G
ra

d
N

or
m

(b) Hopper

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0

5e-3

1e-2

G
ra

d
N

or
m

(c) Walker

0.0 0.5 1.0 1.5 2.0
Environment Steps (Million)

0

1e-2

2e-2

G
ra

d
N

or
m

(d) Ant

Figure 32. Gradient Norm of SAC Actor Network in MuJoCo

29

