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Abstract

Event data-based object tracking is attracting attention increasingly. Unfortu-
nately, the unusual data structure caused by the unique sensing mechanism poses
great challenges in designing downstream algorithms. To tackle such challenges,
existing methods usually re-organize raw event data (or event clouds) with the
event frame/image representation to adapt to mature RGB data-based tracking
paradigms, which compromises the high temporal resolution and sparse charac-
teristics. By contrast, we advocate developing new designs/techniques tailored
to the special data structure to realize object tracking. To this end, we make the
first attempt to construct a new end-to-end learning-based paradigm that directly
consumes event clouds. Specifically, to process a non-uniformly distributed large-
scale event cloud efficiently, we propose a simple yet effective density-insensitive
downsampling strategy to sample a subset called key-events. Then, we employ a
graph-based network to embed the irregular spatio-temporal information of key-
events into a high-dimensional feature space, and the resulting embeddings are
utilized to predict their target likelihoods via semantic-driven Siamese-matching.
Besides, we also propose motion-aware target likelihood prediction, which learns
the motion flow to back-trace the potential initial positions of key-events and
measures them with the previous proposal. Finally, we obtain the bounding box
by adaptively fusing the two intermediate ones separately regressed from the
weighted embeddings of key-events by the two types of predicted target likeli-
hoods. Extensive experiments on both synthetic and real event datasets demon-
strate the superiority of the proposed framework over state-of-the-art methods in
terms of both the tracking accuracy and speed. The code is publicly available at
https://github.com/ZHU-Zhiyu/Event-tracking.

1 Introduction

Event cameras, the bio-inspired silicon retinas, have been widely adopted in computer vision and
robotics communities [57, 37, 18, 31, 28, 47]. Different from traditional RGB cameras, which
synchronously record the light intensity of each pixel, event cameras [13] only sense the changes in
dynamic scenes, i.e., if an event senor captures an intensity increment (resp. decrement) larger than a
threshold, it would trigger an event, composed of the corresponding pixel location, the timestamp,
and the polarity indicating brightness increase or decrease. With the concise information flow, event
cameras enjoy numerous advantages, such as high temporal resolution, low latency, high dynamic
range, and low power consumption. Moreover, recent works show that even without being associated
with RGB images, only event data could also realize various vision tasks, such as depth estimation
[14], semantic segmentation [1], and object detection [32].
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Notably, owing to the above-mentioned advantages, event cameras are desired to be a promising
object tracking solution [39, 18, 50], aiming to estimate the position of a specified target object.
However, the unusual data structure of the raw event data poses great challenges in designing tracking
algorithms. Facing such challenges, the existing non-learning-based methods usually build their
models based on various representations, such as event frame [40, 17, 29], time surface [33, 55, 7],
and event clouds [2, 32, 45]. In view of the great success of deep learning techniques in various
fields, especially RGB data-based object tracking, recently several deep learning-based methods for
event data-based object tracking have been naturally proposed [51, 47]. Generally, they quantize
and accumulate raw event data along the temporal dimension into event frames/images to adapt to
mature RGB data-based object tracking paradigms. However, such a manner drops the high temporal
resolution and sparse characteristics of raw event data to some extent, thus compromising tracking
accuracy.

Instead of following the research line of the existing learning-based methods, we are interested in
developing a new end-to-end learning-based paradigm that directly consumes raw event data (or
event clouds), in which new algorithms/modules considering the unique features of event clouds
are involved. Specifically, to cope with the irregular structure, we employ a graph-based neural
network to map an event cloud into a high-dimensional feature space to embed rich spatio-temporal
semantic information. Meanwhile, to process a large-scale event cloud efficiently and being aware of
its non-uniform distribution characteristic, we introduce a simple yet effective density-insensitive
downsampling strategy to sample a limited number of key-events, on which the feature embedding
process is performed. We then link the embeddings of template and search event clouds via Siamese-
matching to predict semantic-aware target likelihoods of search key-events. Besides, observing the
high temporal resolution characteristic of event data naturally preserve motion trajectories, we also
propose to back-trace the possible initial positions of the search key-event and measure them with
the previous proposal to predict their target likelihoods. Finally, we obtain the bounding box by
adaptively fusing the two intermediate ones separately regressed from the weighted embeddings of
key-events by the two types of predicted target likelihoods. We conduct extensive experiments on both
real and synthetic event data to demonstrate the superiority of our framework over state-of-the-art
methods in terms of both the tracking accuracy and speed, and comprehensive ablation studies to
validate the effectiveness of the proposed modules.

In summary, the main contributions of this paper are two-fold:

• we propose the first end-to-end learning-based object tracking paradigm directly handling
raw event data (or event clouds), featured with carefully-designed modules, e.g., key-event
embedding and motion-aware target likelihood prediction, to take advantage of the unique
characteristics of event data; and

• The superiority performance of our paradigm certifies the great potential of designing new
algorithms tailored to the special characteristics of event data to achieve object tracking.
Besides, we will release our framework built from scratch to contribute to this community.

2 Related Work

Deep learning on event data. As a kind of asynchronous bio-inspired vision sensors, event cam-
eras [13] have shown remarkable performance in various scenarios, such as quick motion and low
light environments, representing a paradigm shift in visual information collection [9]. Deep learning-
based frameworks for modeling event data have been proposed. For example, Phased LSTM [36]
extends the LSTM unit by adding a new time gate for classification on event data. EVDL [31]
proposes an event-frame representation and constructs a CNN model for prediction of a vehicle’s
steering angle. Then, EV-SegNet [1] introduces the first baseline for semantic segmentation with
event data. The emergence of MVSEC [57] dataset has aroused wide interest in the research of optical
flow [56, 58, 16] and depth estimation [58, 20]. Unlike the previous works, Rebecq et al. [41, 42]
used simulated events to train a convolutional recurrent neural network for image reconstruction.

RGB data-based object tracking. Recent methods could be roughly divided into two categories:
spatio-only-based and spatio-temporal-based. Most of offline Siamese-based tracking methods [3,
26, 25] fall into the first category. For example, SiamFC [3] enhances the tracking accuracy by
first introducing a correlation layer as a fusion tensor. SiamRPN [26] employs a single-stage
RPN [43] detector to redetect the template by comparing its features to that of the current frame.
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SiamRPN++ [25] uses a spatial-aware sampling strategy to remove the influence factors, such as
padding, and introduce ResNet [19] into the Siamese network-based visual trackers. However, the
spatio-only methods are difficult to deal with fast-moving or similar objects in the scene.

Compared with spatio-only trackers, spatio-temporal-based methods [35, 23, 46, 49] additionally
exploit temporal information to improve trackers’ robustness. For example, MDNet [35] proposes a
CNN-based multi-domain learning framework, which separates domain-independent information
from domain-specific one, to capture shared representations. RT-MDNet [23] improves MDNet by
employing the RoIAlign technique to extract more accurate representations of targets and candidates
from a feature map. Recently, Wang et al. [46] converted a general object detector to achieve
domain adaption and efficient online update. However, these methods are either difficult to balance
performance and speed or cannot handle real-time scenarios and low light scenes well.

Although various advanced techniques have been proposed for boosting the performance of RGB
data-based object tracking, the essentially different data modality requires additional efforts to extend
these techniques to event data-based object tracking.

Event data-based object tracking has been receiving increasing attention recently, and the proposed
methods could be broadly divided into two categories: optimization-based and learning-based.

For the optimization-based category, as the pioneering work, Mitrokhin et al. [32] proposed to
approximate the 3D geometry of the event stream without feature tracking or explicit optical flow
computation. Bryner et al. [5] presented a method to track the 6-DOF pose of an event camera in a
known environment described by a photometric 3D map.

Ramesh et al. [39] presented the first learning-based long-term object tracking algorithm for event
cameras, based on a tracking-learning-detection framework. Then, Li et al. [27] utilized the features
by VGG-Net-16 to represent the appearance of the event-stream object to achieve tracking. Recently,
Chae et al. [6] applied a Siamese-matching paradigm [3] to the event-based object tracking task
for learning edge-aware similarity. However, the methods in [27, 6] mainly focus on applying
well-developed RGB data-based tracking techniques to event data without well taking the special
characteristics of event data into account.

3 Proposed Method

Notation. Denote by e := [x, y, t, p] ∈ R1×4 an event, where x and y are the spatial coordinates on
the image plane, whose values are normalized to [0, 1], t is the timestamp, and p is the 1-bit polarity,
indicating brightness increase or decrease. Denote by E ∈ RN×4 an event cloud, where N events
in a short period of time [t0, t0 + ∆t] are randomly stacked in row-wise. Accordingly, for events
in a long period of time, we represent them with an event cloud sequence of U non-overlapping
event clouds, i.e.,

{
Ei ∈ RNi×4

}U
i=1

. Let Et be a template event cloud, and B0 ∈ R1×4 be the
annotated bounding box indicating the 2-D position of the object captured by Et ∈ RNt×4, which is
parameterized by the 2-D spatial locations and the corresponding size (i.e., width and height). The
objective of event-based object tracking is to predict the bounding box of a target object described by
B0 and Et from each of a given search event cloud sequence {Ei

s ∈ RNsi
×4}Us

i=1.

Overview. In contrast to existing learning-based methods usually re-organizing raw event data with
the frame-based representation, which compromises the high temporal resolution characteristic to
some extent and thus limits tracking performance, we directly deal with raw event data in its intrinsic
3-D spatio-temporal space. Specifically, as shown in Fig. 1, the proposed framework processes the
event clouds of {Ei

s}
Us
i=1 sequentially via the following three main steps:

Graph-based Key-event Embedding. This module aims to project an event cloud into a high-
dimensional feature space to embed rich spatio-temporal semantic information (see Sec. 3.1).
However, the irregular structure underlying event clouds, caused by the sparse and asynchronous
sensing manner, makes it intractable to learn the embeddings efficiently and effectively. To this end,
we employ a GNN, which has demonstrated the effectiveness in modeling irregularly distributed
signals, to embed input raw event data. Moreover, to process large-scale event clouds efficiently and
being aware of their noisy and highly non-uniform characteristics, we propose a simple yet effective
downsampling strategy, capable of sampling a few key-events evenly and robustly from an input
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Figure 1: Flowchart of the proposed end-to-end learning-based framework for tracking objects in
event clouds. It mainly consists of three steps: GNN-based key-event embedding, semantic matching
and motion-aware target likelihood prediction and confidence-based object proposal. Sub-figs. (a),
(b), and (c) illustrate the detailed processes of the first two steps, marked with corresponding color .

event cloud. Accordingly, we perform the tracking process on key-events instead of the whole event
cloud.

Semantic and Motion-aware Target Likelihood Prediction. This module, a dual-path architecture,
aims to predict the possibility of a key-event of the search event cloud belonging to the target object,
i.e., the target likelihood. Basically, from the visual recognition perspective, we propose a semantic-
driven Siamese-matching module, in which the similarity of each search key-event to the template
key-events is evaluated, based on their embeddings (see Sec. 3.2). Besides, observing that the
event cloud inherently preserves the motion trajectories of events, we also propose a motion-aware
target likelihood prediction module, in which the initial position of each key-event is back-traced
and compared with the previous proposal (see Sec. 3.3). We expect these two paths designed from
different perspectives will compensate each other for robust and accurate target likelihood prediction.

Confidence-based Object Proposal. In this module, we first regress two intermediate bounding
boxes separately from the embeddings of key-events weighted by the two types of predicted target
likelihoods and then fuse them adaptively under the guidance of the learned confidence scores,
generating the final bounding box (see Sec. 3.4).

3.1 Graph-based Key-event Embedding

We first sample a limited number of key-events via a simple yet effective density-insensitive down-
sampling strategy, then embed them into a high-dimensional feature space via a GNN.

Key-event sampling. As shown in Fig. 2 (a), to sample nk key-events from a typical event cloud,
we first define a 2D regular grid that contains nk grid points and has the same scale as the event
cloud in the spatial domain. Then, for each of the grid points, we find the spatially closest event in
the Euclidean distance sense, which will be thought of as a key-event. Such a simple downsampling
strategy could spread the receptive field of the neural network in a more spatially uniform manner.
We demonstrate its superiority against widely-used random sampling [21] in Sec. 4.3.

GNN-based spatio-temporal embedding. We utilize the graph convolutional layers to encode the
irregular 3-D spatio-temporal information of an event. Specifically, as shown in Fig. 2 (a), for each
key-event, we first figure out its nearest neighbours, then learn the high-dimensional spatio-temporal
embeddings of such a set of events via feeding the explicitly encoding2 of event clouds to multi-layer
perceptrons (MLPs). Meanwhile, adaptive pooling weights are also learned to aggregate neighbouring
information in an unordered manner, finally producing embeddings Ft ∈ Rnt×C and Fs ∈ Rns×C

for Et and Ei
s containing nt and ns key-events, respectively, where C is the number of channels. We

refer readers to Appendix for more details.

2The encoding refers to the concatenation of the central event point ec, its neighbour en, the difference
ec − en, and the Euclidean distance ‖ec − en‖2.
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Figure 2: Illustration of (a) the density-insensitive event downsampling strategy and local spatio-
temporal aggregation pattern of the graph neural network, and (b) the key-event back-tracing process
used in motion-aware target likelihood prediction.

3.2 Target Likelihood Prediction via Semantic-driven Siamese-matching

Let pjsem ∈ [0, 1] be the target likelihood of the j-th search key-event, and Psem :=
[p1sem; · · · ; pjsem; · · · ; pns

sem] ∈ Rns×1. Encouraged by the learnable combination pattern of trans-
former, which has shown its great potential in sparse point cloud processing [52], we first apply
swin-transformer [30] on the embeddings Ft and Fs, which respectively encode the semantics of the
key-events of Et and Ei

s , to equip them with abstract and distinguishable information, generating
St ∈ Rnt×Co and Ss ∈ Rns×Co (Co > C). To link Et and Ei

s, we then design a cross-attention
layer, which adaptively projects St onto Ss:

Sts = Ma × Ss, Ma = G(St,Ss), (1)
where the associated matrix Ma ∈ Rnt×ns is learned via another GNN G(·, ·), and Sts ∈ Rnt×Co

denotes the projected embeddings blending the information of both Et and Ei
s. Finally, we feed the

concatenation of Sts and Ss into another MLP to regress Psem. We refer readers to Appendix for the
detailed architecture.

3.3 Target Likelihood Prediction via Motion Trajectory Back-tracking

In this module, we leverage the inherent motion trajectories of event data [58, 34, 40] to predict the
target likelihood of each key-event of Ei

s. The basic idea is linking the current search key-events to
the previous target proposal to distinguish them. Specifically, we first back-trace the initial position of
each key-event from its motion trajectory in 3D spatio-temporal space. Considering that trajectories
are usually continuous, the former event points should have relatively smaller moving offsets. To
explicitly model such a characteristic, we apply MLPs to the embeddings of search key-events to learn
their motion velocities V ∈ Rns×2, which are further used to calculate the motion flow M ∈ Rns×2,
i.e.,

M = V ×T/max(T), V = MLP(Fs), (2)
where T ∈ Rns×1 records the timestamps of the search key-events, and max(·) is the operation
selecting the maximum element of the input. With the motion flow and the positions of the search
key-events, denoted as K ∈ Rns×2, we can localize their initial positions, denoted by Kini ∈ Rns×2,
as Kini = M + K. Finally, we predict the motion-aware target likelihood of each search key-event,
denoted as pjmon ∈ [0, 1] (accordingly, Pmon := [p1mon; · · · ; pjmon; · · · ; pns

mon] ∈ Rns×1), from

Kini together with the previous bounding box and a normalized distance
[
(x−xb)

wb

]2
+
[
(y−yb)

hb

]2
independently via MLPs, where xb, and yb are the spatial coordinates of the box center, and wb and
hb are the width and height of the box, respectively. We refer readers to Appendix for the detailed
architecture.

3.4 Confidence-based Object Proposal

This module regresses a bounding box from the predicted two kinds of predicted target likelihoods
Psem and Pmon, as well as the embeddings Fs encoding the rich spatio-temporal semantic informa-
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tion of Ei
s. Specifically, taking the semantic-aware branch as an example, we formulate the bounding

box regression as

Bsem = MLP(Hsem), Hsem = Mpsem
×(Fs�D(Psem)), Mpsem

= S(MLP(Fs�D(Psem))), (3)

where Bsem ∈ R1×4 denotes the intermediate bounding box, based on Psem, Hsem ∈ R1×c

encodes the embeddings after adaptive pooling, Mpsem ∈ R1×nk is the pooling weights, � denotes
the hadamard product, D(·) is the duplication operation, and S(·) stands for the softmax function. We
also apply the same procedures to the motion-aware branch, leading to another intermediate bounding
box Bmon. Finally, we fuse the two intermediate bounding boxes under the guidance of learned
confidence scores, i.e.,

Bo = Mf × [Bsem;Bmon], Mf = S{[MLP(Hsem); MLP(Hmon)]}, (4)

where Bo denotes the final output bounding box, and Mf ∈ R1×2 refers to the learned confidence
scores. We refer readers to Appendix for the detailed architecture.

3.5 Training & Online Tracking

Loss function. To train the proposed framework end-to-end, we design the following loss function:

L(Bg, B̂,Pg, P̂) =
∑

Pk∈P̂

Lcls(Pg,Pk)+α
∑

Bk∈B̂

(Lreg(Bg,Bk)+Lgiou(Bg,Bk))+βLCD, (5)

where B̂ := {Bo,Bsem,Bmon}, P̂ := {Psem,Pmon}, Bg and Pg are the ground-truth bounding
box and target likelihood, respectively, Lcls(·, ·) is the binary cross-entropy loss to supervise the
target likelihood prediction, Lreg(·, ·) refers to the L1 loss to supervise the regression of the bounding
box, Lgiou(·, ·) is the generalized intersection over union (GIOU) loss [44], and LCD computes
the Chamfer distance between the back-traced key-events and their potential locations to supervise
motion flow estimation, defined as

LCD =
1

ns

∑
kc∈Kc

min
ki∈Kini

M(‖ki − kc‖, γ) +
1

nc

∑
ki∈Kini

min
kc∈Kc

M(‖ki − kc‖, γ), (6)

where Kini ∈ Rnc×2 denotes the back-projected key-events. We clip the event clouds within very
tiny time interval Kc ∈ Rnc×2, t0 ≤ tc ≤ t0 + µ∆t, as the potential locations of Kini. Due to
the inevitable noise events, we truncate the accidental errors by a threshold γ via a minimization
functionM(·). we empirically set the hyper-parameters α, β, µ, and γ to 1e0, 1e1, 2e−1, and 1e−1,
respectively.

Robust training strategy. In addition to Et and Ei
s, we also have to feed the proposed framework

with the previous bounding boxes. Accordingly, the motion-aware target likelihood prediction may
highly rely on the accuracy of previous predictions. To mitigate the potential accumulated errors
and improve the robustness of our framework, we disturb the input bounding boxes with random
Gaussian noises during training.

Template updating strategy for online tracking. Considering that the appearance of an object may
undergo a large variance during a tracking process, we also introduce a strategy to update template
key-events. Specifically, we first partition the embeddings of key-events of Et, i.e., St, into two sets
equally: the constant set Stc and the variant set Stv. Then, after each search procedure, we stack
in the embeddings of the key-events of Ei

s (i.e., Ss from) with a high target likelihood, i.e., p > τ ,
where τ is empirically set to 9e−1, to Stv and randomly pop out embeddings from Stv to keep the
total size of St unchanged.

4 Experiments

4.1 Experiment Settings

Datasets. We evaluated the proposed method with both real and synthetic event datasets. The real
event dataset FE108 (MIT) [51] provides event data of spatial dimensions 346×260, dynamic range
120dB, and minimum latency time 20 µs, captured by the DAVIS 346 camera. The ground-truth
bounding boxes were captured by the Vicon motion capture system. FE108 contains 108 sequences
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Figure 3: Upper row: visual comparison of the tracking results of different methods on four event
clouds randomly selected from the FE108 dataset. Bottom row: a local zoom-in view of the dashed
box in corresponding upper sub-figures. The green arrows start from the spatial locations of key-events
and point to the direction of motion flow.

of total length 1.5 hours, recording the motion of 21 different types of objects under four challenging
scenarios. There are 59K event clouds for validation and 140K event clouds for training. Considering
that most objects in FE108 are rigid, which may be insufficient to validate the performance on non-
rigid objects, we also constructed a new synthetic dataset Event LaSOT (Evt-LaSOT), simulated from
the widely-used RGB data-based object tracking dataset LaSOT (Apache-2.0) [12] via Vid2E[15].
Evt-LaSOT consists of eight sequences3 randomly drawn from LaSOT , and there are 18K event
clouds in total.

Compared methods. We compared the proposed method with SOTA RGB data-based object tracking
algorithms, including SiamRPN [26], ATOM [10], DiMP [4], SiamFC++ [48], and PrDiMP [11], and
the event data-based branch of FENet [51]. Moreover, we modified two SOTA RGB data-based object
tracking methods, i.e., PrDiMP [8] and TransT [8], to adapt them to the event frame representation
[51], leading to two strong baselines, namely E-PrDiMP and E-TransT. For fair comparisons, we
trained all methods with the training set of FE108 and evaluated them on the testing set of FE108
and Evt-LaSOT.

Implementation details. To train our framework in a batch manner, we sampled 10K event points
for each event cloud. We set the value of ∆t as the interval of annotations, i.e., 25 ∼ 50ms for the
FE108 dataset according to its 20/40 FPS annotations. We implemented the framework with Pytorch
on Ubuntu 18.04 and trained it with 4 × NVIDIA-3090 and a batch size of 22 samples in each GPU ,
about 300K iterations. We adopted the Adam optimizer [24] with the weight decay of 1e−5 and the
learning rate of 1e−5 (resp. 1e−4) for the backbone (resp. the two target likelihood prediction and
object proposal modules). We set the spatial search region of the current event cloud as 1.2× the size
of the previous proposal.

4.2 Results

Results on FE108. Table 1 and Fig. 4 (a) and (b) show the quantitative comparisons of different
methods on FE108, where it can be seen that the event-based methods generally surpass the RGB data-
based methods under the LL and HDR scenarios, demonstrating the advantage of event data. Besides,
the significant improvement of E-TansT with the input changed from EF-1 to EF-3 demonstrates that
the high temporal resolution characteristic of event data is of importance. Our method achieves the

3The eight sequences are “bird-15", “bird-3", “crab-6", “crab-18", “cat-20", “cat-3", “crocodile-3", and
“bear-4".
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Table 1: Quantitative comparison on the FE108 dataset in terms of four commonly-used metrics,
i.e., representative success rate (RSR), representative precision rate (RPR), and overlap percision
(OP) with the threshold equal to 0.5 (OP0.50) and 0.75 (OP0.75). For all metrics, the larger, the better.
There are four challenging scenarios, i.e., low-light (LL), high dynamic range (HDR), fast motion
with and without motion blur on image frame (FWB and FNB), and all testing dataset (ALL). “Img"
(resp. “EF−n") indicates that the input of the methods is the RGB image/video (resp. the event
frame/image), where n refers to the number of channels or the temporal resolution. “RawE" stands
for raw event data (or event clouds). The best and second best results of event-based methods are
highlighted in red and green, respectively.

Metrics ATOM [10] DiMP [4] SiamFC++ [48] PrDiMP [11] E-PrDiMP [11] E-TransT [8] E-TransT [8] FENet [51] Ours

Input Img Img Img Img EF-3 EF-1 EF-3 EF-3 RawE

HDR

RSR 32.3 41.8 15.3 44.3 52.8 42.4 50.7 50.0 50.9
OP0.50 36.9 50.0 15.0 52.8 62.5 51.4 60.8 57.8 60.7
OP0.75 11.8 17.9 1.3 19.6 23.8 17.5 23.0 18.8 17.2
RPR 55.2 62.7 25.2 66.3 84.6 70.5 84.2 77.4 81.5

LL

RSR 38.6 45.6 13.4 44.6 58.0 46.8 58.8 56.6 60.6
OP0.50 44.3 52.8 8.7 48.2 67.8 55.9 72.2 69.1 75.0
OP0.75 13.2 11.2 0.8 8.9 28.7 25.0 31.4 22.9 30.8
RPR 59.6 69.5 15.3 69.5 86.2 72.6 92.2 86.1 90.1

FWB

RSR 44.1 69.4 28.6 67.0 43.3 31.6 46.8 59.3 60.8
OP0.50 50.9 94.7 36.3 89.9 52.9 34.3 57.9 74.2 76.3
OP0.75 16.7 37.1 6.0 33.6 19.6 0.09 28.4 32.1 29.8
RPR 88.6 99.7 48.2 99.7 81.6 77.0 87.9 84.9 90.6

FNB

RSR 57.1 60.5 36.8 60.6 47.7 30.7 51.8 50.2 54.3
OP0.50 68.2 75.6 42.7 75.8 51.0 35.7 60.2 56.3 61.8
OP0.75 32.1 29.3 7.4 29.7 18.9 12.9 24.8 19.0 18.7
RPR 87.9 93.2 63.1 93.3 80.0 52.9 85.8 75.5 87.0

ALL

RSR 40.6 52.6 23.8 53.0 52.0 39.1 52.4 52.3 54.9
OP0.50 47.8 65.4 26.0 65.0 60.9 46.2 62.2 61.4 65.8
OP0.75 17.3 23.4 3.9 23.3 22.6 16.6 21.0 19.8 21.4
RPR 67.0 79.1 39.1 80.5 84.6 67.2 87.0 80.0 85.9

best or second best performance in terms of different metrics under most scenarios, and especially,
it significantly exceeds the compared methods under the fast motion scenario. The reason may be
that the compared methods are disturbed by the large motion offset in the accumulated event frames,
as shown in Fig. 3 (b). Although the proposed method is slightly worse than or comparable to
the compared event frame-based methods under very rare scenarios, we want to notice that those
methods benefit a lot from the RGB data-based tracking, a long-standing field featured with great
efforts devoted and mature techniques, while our new paradigm is still plain to some extent, and it
is highly expected that its performance raises gradually with more advanced modules incorporated
in the future. Results on Evt-LaSOT. Since these synthetic event data from RGB data do not have
high temporal resolution and are driven from estimated optical-flow, which may not correctly reflect
the real movement of an object, for the sake of fairness, we only compared the proposed method
with event-based methods on this dataset. As shown in Table 2 and Figs. 4 (c) and (d), the proposed
method trained with real event data from FE108 is well generalized on Evt-LaSOT and outperforms
all the compared methods to a significant extent in terms of all the three metrics, which is credited to
the new paradigm of directly modeling raw event data. Besides, since our method directly consumes
raw event data without pre-processing required by existing event frame/image-based methods, it is
more efficient, reflected by the higher FPS. We also refer readers to the video demo contained in
Supplementary Material for the visual comparison of different methods.

Comparison with 3D point cloud-based trackers. Recently 3D point cloud-based object tracking
achieves remarkable growth, which aims to predict the location of a target object from a 3D point
cloud (PC) sequence [38, 54, 22, 53]. Although event clouds could be thought of as 3D point clouds,
they are still different. Specifically, 3D point clouds by the LiDAR sensor record the geometric
information of 3D entities, which are generally collected by measuring the reflection time of the
emitted pulses of infrared light hitting nearby objects/scenes. Only the part of the object/scene visible
to the LiDAR sensor will be perceived (one emitted pulse will generate at most one 3D point). Thus,
the captured 3D points are distributed on the surface of the 3D entity. However, even data are acquired
by measuring the pixel intensity variations in a short time period, and for a typical pixel, there may

8



Table 2: Quantitative comparison on the Evt-LaSOT dataset. FPS refers to the number of times of
prediction per second processed during inference. We refer readers to Appendix for the metric details.
The best results are highlighted in bold.

Metrics E-PrDiMP [11] E-TransT [8] FENet [51] Ours

FPS 15.7 18.7 17.2 25.2

Evt-LaSOT
RSR 27.9 30.3 28.7 32.3
OP0.50 12.3 17.9 15.4 22.1
RPR0.075 25.4 30.1 26.9 35.9
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Figure 4: The precision and success plots of different methods, where sub-figure (a) and (b) are
shown for FE108, (c) and (d) for Evt-LaSOT.

be multiple events (i.e., the events have the same x and y dimensions but different t dimensions).
Thus, the events are distributed within a 3D cube. Such a data distribution difference may make
it inappropriate to apply 3D point cloud-based trackers to event data. Here, we also conducted
experiments to compare the proposed method with SOTA 3D point cloud-based trackers on FE108
dataset. As listed in Table 3, the proposed method exceeds the 3D point cloud-based trackers [38, 54]
to a large extent, i.e., 7.4% and 15.5% improvements in terms of the success rate and precision
respectively, demonstrating the demand of designing event-specialized tracking algorithms.

4.3 Ablation Studies

Event downsampling strategy. We constructed a baseline by replacing the proposed downsampling
strategy with random sampling. By comparing rows 4) and 6) of Table 4, it can be seen that without
using the proposed downsampling strategy, the values of RSR and RPR decrease by 4.8% and 8.4%,
respectively, validating the effectiveness of this strategy. Moreover, such a downsampling process
can accelerate the network convergence during training.

Motion-aware target likelihood prediction & Training strategy. To validate the effectiveness of
this module, we constructed a baselines without using it. As shown in rows 1), 2), and 3) of Table 4,
it can be seen that this module augmented by the training strategy achieves 2.7% gains in terms of
RSR. Besides, without using the training strategy, this module even harms the accuracy, validating
the effectiveness of the training strategy on mitigating the accumulated errors.

Flow estimation module. By comparing rows 3) and 6) of Table 4, it can be seen that this module
improves the value of RSR by 1%, validating its effectiveness. Besides, we also visualized the flow

Table 3: Comparison of the proposed method and 3D point cloud-based trackers on the FE108 dataset.
We trained the 3D point cloud-based trackers with the same experiment settings as ours and also tried
our best to adapt those methods to event data for optimal performance.

method RSR OP0.50 OP0.75 RPR

P2B [38] 36.1 35.4 4.7 40.5
PTTR [54] 47.5 49.6 11.5 70.2

Ours 54.9 65.8 21.4 85.9
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Table 4: Quantitative results of the ablation studies of the proposed method. “×" (resp. X) means
the corresponding module is unused (resp. used). (a) Downsampling strategy (b) Injecting noise
during the training phase (c) Flow estimation (d) Motion-aware target likelihood prediction (e) online
template updating strategy (f) Semantic-aware target likelihood prediction. Note that (b) and (c) are
applicable only if (d) is used.

(a) (b) (c) (d) (e) (f) RSR OP0.50 OP0.75 RPR

1) X × × × X X 52.2 61.5 14.2 85.0
2) X × × X X X 51.7 61.2 14.5 83.7
3) X X × X X X 53.9 64.0 19.9 84.9
4) × X X X X X 50.1 59.5 19.3 77.5
5) X X X X × X 54.5 65.2 21.0 85.7
6) X X X X X X 54.9 65.8 21.4 85.9

of key-events Fig. 3, where it can be seen that although there are some noise events, the predicted
flow could correctly present the motion of both the background and target object.

Online template updating strategy. The effectiveness of this strategy is validated by comparing
rows 5) and 6) of Table 4, where it can be see that the value of RSR improves by 0.4% when including
this strategy.

4.4 Discussions

Limitations: although the proposed method demonstrates the great potential of raw event data-based
object tracking, there are still some promising directions that are worth studying to further boost
tracking performance. First, noisy events are inevitable, as shown in Fig. 3, which may disturb
the target likelihood prediction; hence, a typical event data denoising algorithm could be applied
as pre-processing to remove the interference. Second, in addition to the prior knowledge of the
continuous motion trajectory preserved in event data, the velocity information of an object hidden
in event data, which may also be continuous, could be taken into account. Third, for the long-term
object tracking, it is necessary to investigate more delicate template updating strategies. Finally,
according to RGB data-based object tracking, the powerful pre-trained backbones are essential for
improving tracking performance, and thus, it is highly desired to introduce pre-trained backbone on
event data into event-based object tracking.

5 Conclusion

We have presented the first end-to-end learning-based object tracking paradigm on raw event data.
Owing our critical modeling of the tracking process for exploring the special characteristics of raw
event data, including the delicate downsampling method, the motion-aware module, and the noise
injecting training strategy, the proposed framework achieves competitive performance and efficiency
in comparison with state-of-the-art methods.

Last but not least, despite that we demonstrate the great potential of designing new algorithms tailored
to the special characteristics of event data to achieve object tracking, as a beginning of this research
line, our framework is still relatively plain, compared to the well-developed RGB data-based object
tracking, and it could be expected that the performance will improve gradually with more efforts and
advanced techniques incorporated in the future.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 2.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We have discussed the limitations

in Sec. 4.4.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Existing

visual object tracking algorithms may cause public privacy issues. However, our
tracking algorithms is specially designed with event-based vision, which contains less
visual patterns than traditional RGB images. Thus, we think it would put lower threaten
for public privacy.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] Our algorithm is robust to the random seed. We tested
our model with different random seeds and showed the results in Table 5.

Table 5: Quantitative comparison on the FE108 dataset, with different random seeds.

Seeds RSR OP0.5 OP0.75 RPR

50 54.9 65.8 21.4 85.9
100 54.9 65.9 21.6 85.7
200 54.9 65.8 21.4 85.8

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please refer to Sec. 4.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We have correctly

cited the FE108 dataset in Sec. 4.1.
(b) Did you mention the license of the assets? [Yes] Please refer to Sec. 4.1.
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(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We have included the source code and pre-trained model in the supplementary material.
And we will also release the simulated Evt-LaSOT.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Since there is no random process for those image-based methods
during inference. Their result is constant.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] There is no person related data in our dataset.

5. If you used crowdsourcing or conducted research with human subjects
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] No research with human subjects.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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