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Abstract

Scaling limits, such as infinite-width limits, serve as promising theoretical tools to
study large-scale models. However, it is widely believed that existing infinite-width
theory does not faithfully explain the behavior of practical networks, especially
those trained in standard parameterization (SP) meaning He initialization with a
global learning rate. For instance, existing theory for SP predicts instability at large
learning rates and vanishing feature learning at stable ones. In practice, however, op-
timal learning rates decay slower than theoretically predicted and networks exhibit
both stable training and non-trivial feature learning, even at very large widths. Here,
we show that this discrepancy is not fully explained by finite-width phenomena.
Instead, we find a resolution through a finer-grained analysis of the regime pre-
viously considered unstable and therefore uninteresting. In particular, we show
that, under the cross-entropy (CE) loss, the unstable regime comprises two distinct
sub-regimes: a catastrophically unstable regime and a more benign controlled
divergence regime, where logits diverge but gradients and activations remain stable.
Moreover, under large learning rates at the edge of the controlled divergence regime,
there exists a well-defined infinite width limit where features continue to evolve
in all the hidden layers. In experiments across optimizers, architectures, and data
modalities, we validate that neural networks operate in this controlled divergence
regime under CE loss but not under MSE loss. Our empirical evidence suggests that
width-scaling considerations are surprisingly useful for predicting empirically max-
imal stable learning rate exponents which provide useful guidance on optimal learn-
ing rate exponents. Finally, our analysis clarifies the effectiveness and limitations
of recently proposed layerwise learning rate scalings for standard initialization.

Experiment Code | Refined Coordinate Check Package

1 Introduction

Scaling has become the dominant paradigm in building ever more capable vision and language models
(Brown et al., 2020, Dosovitskiy et al., 2021, Kaplan et al., 2020, Hoffmann et al., 2022, Grattafiori
et al., 2024). Infinite-width limits have served as a crucial theoretical tool for understanding large
models, providing valuable insights into their optimization and generalization behaviour (Jacot
et al., 2018, Du et al., 2018, Allen-Zhu et al., 2019, Arora et al., 2019, Mei et al., 2018, Rotskoff
and Vanden-Eijnden, 2022, Sirignano and Spiliopoulos, 2020, Lai et al., 2023). Nevertheless, it is
now widely believed that existing infinite-width theory, particularly in the kernel regime, does not
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serve as a faithful proxy for practical neural networks, as it fails to capture fundamental aspects of
their training (Sohl-Dickstein et al., 2020, Lee et al., 2020, Vyas et al., 2022, Wenger et al., 2023).

Figure 1: Optimal learning rate ex-
ponents exceed the theoretically pre-
dicted stability threshold. For MLPs
on MNIST and GPT on language data,
optimal learning rates in SP decay
slower than the theoretically predicted
maximal stable ηn = O(n−1) in gray.

This disconnect is especially prominent for the dominant
training practice, standard parameterization (SP): He ini-
tialization (He et al., 2015) with a single global learning
rate (OLMo Team et al., 2024). For example, infinite-
width theory predicts that under SP, network dynamics
should become unstable with learning rates scaling larger
than O(1/n) (where n is network width), and that feature
learning vanishes with O(1/n) learning rates, causing the
models to enter a kernel regime (Sohl-Dickstein et al.,
2020, Yang and Hu, 2021). Empirically, however, net-
works trained in SP exhibit stable feature learning and
excellent generalization performance, often with optimal
learning rates decaying much slower than theoretically
predicted (commonly around Ω(1/

√
n)). This is depicted

in Figure 1, where we see that the optimal learning rates
(solid lines) for different models trained in SP decay much
slower than the theoretically predicted maximal stable scal-
ing law (dashed gray lines). These observations represent a fundamental puzzle and motivate two
crucial open questions:

Why does SP remain stable and effective at large learning rates, despite the theoretical predictions?
And does there exist an infinite-width limit that corresponds more closely with the behaviour of

practical finite-width networks?

In this work, we investigate these questions and find a resolution through a finer grained analysis of
the regime previously dismissed as unstable. Consequently, we provide the first infinite-width proxy
that corresponds more closely to practical, finite-width networks. Our main contributions are:

(a) We investigate and rule out finite-width effects as the key explanation. Plausible explanations
to explain these discrepancies include finite-width effects, either accumulated over large depth or
longer training times. We show these explanations are insufficient, as the gap is surprisingly more
pronounced in shallow (2-layer) MLPs in a single pass (Figure F.15). Furthermore, we investigate
other known finite-width dynamics, like the catapult regime (Lewkowycz et al., 2020) or the edge
of stability (Cohen et al., 2021, 2022) in simplified linear models, and show that these mechanisms
alone also cannot explain the stability of large learning rates in SP.

(b) We validate infinite-width alignment predictions. Contrary to what was hypothesized in
previous work (Everett et al., 2024), we show that the infinite-width alignment predictions between
weights and incoming activations indeed hold at moderate width when measured with sufficiently
refined coordinate checks (RCC). This is a crucial finding, since it confirms the theoretical
prediction that logits do diverge at sufficient width in SP under empirically optimal learning rates.

(c) The resolution. Instead, we find a resolution to these discrepancies through a fine-grained
analysis of the regime previously considered unstable and therefore uninteresting. In particular,
we show that, under the CE loss, the unstable regime comprises two distinct sub-regimes: a
catastrophically unstable regime and a more benign controlled divergence regime, where logits
diverge but gradients and activations remain stable. Moreover, at the edge of the controlled
divergence regime, which corresponds to scaling the learning rate as n−1/2 for deep MLPs under
SP, there exists a well-defined infinite width limit where features continue to evolve in all hidden
layers, which could partially explain the practical success of SP. To the best of our knowledge, this
provides the first practical infinite-width limit in the feature-learning regime for SP.

(d) Empirical validation. We show that our width-scaling considerations provide surprisingly
accurate predictions of maximal stable learning rate exponents, which often dominate optimal
learning rates, particularly in Transformers (Vaswani et al., 2017). However, while output-layer
divergence under CE loss remains benign with respect to the stability threshold, it occasionally
influences the optimal learning rate choice. As one important example, previously observed
learning rate transfer under layerwise learning rates breaks on all considered image datasets.
Avoiding logit divergence while recovering feature learning with µP, on the other hand, opens up
more loss functions such as MSE loss as competitive alternatives.
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Taken together, our results deepen the theoretical understanding of why SP remains effective at large
scales, provide thorough empirical validation for critical assumptions in infinite-width theory, and
offer practical insights into stable hyperparameter transfer for scaling neural networks.

2 Background: Width-scaling arguments from Tensor Program theory

Before exploring plausible explanations for the empirical width-scaling properties of neural networks,
we first define used notation and distill all necessary width-scaling arguments from Tensor Program
(TP) theory (Yang and Hu, 2021, Yang and Littwin, 2023). We provide a more detailed introduction
to TP scaling arguments in Appendix C.1, and a detailed account of related work in Appendix A.

Setting and Notation. We define an (L+ 1)-layer MLP of width n iteratively via

h1(ξ) := W 1ξ, xl(ξ) := ϕ(hl(ξ)), hl+1(ξ) := W l+1xl(ξ), f(ξ) := WL+1xL(ξ),

for inputs ξ ∈ Rdin with trainable weight matrices W 1 ∈ Rn×din , W l ∈ Rn×n for l ∈ [2, L], and
WL+1 ∈ Rdout×n. We call hl preactivations, xl activations, and f(ξ) output logits. Training the
MLP with Stochastic Gradient Descent (SGD) with global learning rate η > 0 under loss function
L : Rdout × Rdout → R with labelled training point (ξt, yt) ∈ Rdin × Rdout is defined as W l

t+1 =

W l
t −η∇W lL(ft(ξt), yt). We denote updates accumulated over all time steps by ∆hl

t = hl
t−hl

0 and
the change in a single update step by δhl

t = hl
t − hl

t−1 . The fan-notation has the purpose of unifying
all weight matrices and simply means W ∈ Rfan_out×fan_in. In this paper, we define standard
parameterization (SP) to mean He initialization (W l

0)ij ∼ N(0, cϕ/fan_in(W l
0)) trained with SGD

or Adam with a single possibly width-dependent learning rate ηn = η · nα, α ∈ R, for all trainable
weights {W l

t}l∈[L+1]. This models the typical practice, in which a global learning rate is tuned
at each model scale. We denote the softmax function by σ(f)i = exp(fi) · (

∑
j∈[dout]

exp(fj))
−1.

In this paper, by CE loss, we refer to the concatenation L ◦ σ of the cross-entropy loss func-
tion L(f, y) = −y · log(f) and the softmax σ, as is the dominant practice implemented in
torch.CrossEntropyLoss. For naturally measuring the average scaling of entries in vectors
x ∈ Rd, we use the root-mean-squared norm ∥x∥RMS := d−1/2 · ∥x∥2 as the standard vector norm.
For matrices W , we write ∥W∥F for the Frobenius norm and measure entry-wise scaling with the
RMS norm ∥W∥RMS :=

(
1

fan_in·fan_out
)1/2 ∥W∥F . The operator norm w.r.t. the RMS-norm is de-

fined as ∥W∥op := ∥W∥RMS→RMS := supx∈Rfan_in(W )(∥Wx∥RMS/∥x∥RMS). We use Bachmann-
Landau notation O,Θ,Ω that purely tracks dependence on width n and omits all other dependencies.

Effective and Propagating Updates. When training neural networks, weights W l
t of layer l evolve

from their initialization W l
0 through updates ∆W l

t , such that W l
t = W l

0+∆W l
t . Although we directly

control the scaling of these initial weights and updates, we are ultimately interested in their impact on
subsequent activations in the network. For standard architectures, including convolutional networks
and Transformers, weights typically act linearly on incoming activations. Thus, for weights W l

t and
incoming activations xl−1

t , the change in the next layer’s pre-activations ∆hl
t can be decomposed

into two distinct contributions: the effective updates arising directly from the change in weights ∆W l
t

of the current layer, and the propagating updates, arising indirectly from activation changes ∆xl−1
t

in preceding layers:

∆hl
t = (∆W l

t )x
l−1
t︸ ︷︷ ︸

Effective Updates

+ W l
0(∆xl−1

t ).︸ ︷︷ ︸
Propagating Updates

(RCC)

We say a layer admits maximal stable feature learning if both the effective updates and propagating
updates remain width-independent as network width n → ∞, that is ∥(∆W l

t )xt∥RMS = Θ(1) and
∥W l

0(∆xl−1
t )∥RMS = Θ(1). This definition of feature learning as non-vanishing effective updates

formulates a necessary but not sufficient condition for learning well-generalizing features at large
width, common in related literature (Yang and Hu, 2021, Vyas et al., 2024, Bordelon et al., 2025).

Identifying the correct scaling exponents. In the spirit of Everett et al. (2024), we use pl and
ql to denote the width-scaling exponents of the alignment ratios of the pairs (∆W l

t , x
l−1
t ) and

(W l
0,∆xl−1

t ) respectively, that is,

∥∆W l
tx

l−1
t ∥RMS

∥∆W l
t∥RMS · ∥xl−1

t ∥RMS

= Θ(npl),
∥W l

0∆xl−1
t ∥RMS

∥W l
0∥RMS · ∥∆xl−1

t ∥RMS

= Θ(nql). (α-rms)
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Figure 2: Alignment has minimal width-dependence. Alignment ratio between accumulated
weight updates ∆Wt and incoming activations xt in RMS norm (left) and operator norm (center) as
well as between initial weights W0 and activation updates ∆xt in operator norm (right) for the last
layernorm layer, the first MLP layer in Transformer block 2 and the readout layer. RMS norm may be
confounded by accumulated rank over the course of training (e.g. compare (∆Wt, xt) values for last
LN). While operator norm alignment tends to decay over the course of training, it does not display
strong width-dependence, even after 2000 batches (see annotated width-dependent exponents).

A key insight from Yang and Hu (2021) and Yang and Littwin (2023) is that during training,
correlations can emerge in certain layers between the two quantities in each pair in (RCC), causing
them to become aligned in the infinite-width limit and thereby inducing pl = 1 and ql = 1 due to
a law of large numbers effect. If, instead, these quantities were uncorrelated, their product would
exhibit smaller scaling exponents (pl = 1/2 and ql = 1/2) due to a central limit effect. In particular,
infinite-width theory predicts the exponents p1:L+1 = 1, q1:L = 1/2 , and qL+1 = 1. The alignment
exponents pl, ql are a consequence of gradient-based training and do not depend on the specific
parameterization used (e.g., SP, NTP, or µP).

By adjusting the initialization variance, which controls the scale of initial weights W0, and the
learning rate, which governs the magnitude of updates ∆Wt, we can ensure that both contributions
in (RCC) remain width-independent as the network width n grows. The corresponding choice of
hyperparameter scaling defines the Maximal Update Parameterization (µP). As we will discuss in
Section 4, under the theoretically predicted alignment exponents, SP with O(1/n) learning rates
leads to vanishing activation updates in all layers ∥∆xt∥RMS = o(1) and choosing the learning rate
ω(1/n) leads to logit divergence in the infinite-width limit.

3 Finite-width distortions and long-training dynamics alone do not explain
the stability of large learning rates in SP

Discrepancies between finite- vs infinite-width networks is often attributed to finite-width effects.
Plausible explanations include dynamics induced by (1) large depth or (2) longer training time
which may induce accumulation of finite-width effects over multiple steps (e.g., when T > n).
Here, we show these explanations are insufficient. In Figure F.15, we find this discrepancy is
surprisingly more pronounced in shallow (2-layer) MLPs in a single pass under SP. This finding—that
the issue persists even without large depth or multi-epoch accumulation—motivates investigating
other mechanisms. In this section, we explore two such explanations.

3.1 Update alignment between weights and activations is barely width-dependent
Everett et al. (2024) highlight that at finite width and over extended training times, it is a priori
unclear whether the pairs (∆W l

t , x
l−1
t ) and (WL+1

0 ,∆xL
t ) remain strongly correlated or whether

their alignment exponents (p1:L+1, qL+1) should rather be thought of as dynamically changing over
the course of training. If the alignment exponents instead transition towards the central-limit regime
and in particular if p1:L+1 = 1/2, this could explain the observed

√
n gap between theoretically

predicted and empirically observed optimal learning rate scalings.

Since our objective is measuring with which width-scaling ∆W l
t propagates incoming activations

xl−1
t forward, but rank accumulation can decouple the RMS norm ∥∆W l

t∥RMS from this objective,
we measure alignment with operator norms (Yang et al., 2023a),

αA,x =
∥Ax∥RMS

∥A∥RMS→RMS · ∥x∥RMS
. (α-op)
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Specifically, if the alignment exponents p1:L+1 = 1, q1:L = 1
2 , qL+1 = 1 hold, both contributions

in (RCC) must propagate signals forward maximally as a function of width with alignment metrics
α∆W l

t ,x
l−1
t

and αW l
0,∆xl−1

t
of order Θ(1) unifying all layers. In Appendix C.2, we explain our

alignment measurement considerations in more detail.

In Figure 2, we plot the alignment metrics at varying widths over the course of Transformer training
with AdamW in SP. The figure shows that while alignment can decrease over the course of training,
it exhibits minimal dependence on network width. Even after accumulating approximately 2000
batches of training, the width-scaling exponents are much closer to 0 than to −0.5, indicating that
infinite-width alignment predictions hold reasonably well. Hence a lack of alignment alone cannot
explain the large optimal learning rate exponents observed in practice.

3.2 Does a catapult mechanism in the first update steps stabilize large learning rates in SP?

As another plausible explanation, initial divergence under large learning rates may be stabilized over
the course of training at finite width. Unlike at infinite width, where there only exist a divergent
regime and a lazy regime without feature learning, an intermediate catapult regime was identified by
Lewkowycz et al. (2020), for SGD training with MSE loss in Neural Tangent Parameterization (NTP)
at finite width. They provide theory for 2-layer linear networks. Under small learning rates η ≤ 2/λ0,
where λ0 denotes the largest eigenvalue of the Hessian at initialization, the network monotonically
converges to a minimum. Under large learning rates η > 4/λ0, training diverges. But in an edge of
stability regime (Cohen et al., 2021, 2022) of intermediate learning rates, the loss increases in the first
O(log(n)) update steps while the sharpness λt decreases. Once the sharpness lies below the edge of
stability 2/η, the loss decreases and the final learned function may generalize better as the solution
lies in a basin with lower sharpness. But existing work does not study width-scaling with SP. May
similar initial training dynamics be at play here?

In Appendix C.4 we analyse the 2-layer linear network model from Lewkowycz et al. (2020)
in NTP, SP and µP trained with SGD under MSE loss, and provide loss and sharpness increase
characterizations in Proposition C.18. In µP, the update equations of the learned function ft and the
sharpness λt are fully width-independent, which allows width-independent learning rates. In NTP, at
least the conditions for loss and sharpness reduction are approximately width-independent. In SP,
on the other hand, sharpness increases λt+1 ≥ λt iff λt ≥ 4

nηn
(1 + y

ft−y ), requiring ηn = O(n−1)

to avoid sharpness (as well as loss) divergence in the first update steps. The simulations shown in
Figure C.2 validate the maximal stable learning rate scaling η = O(n−1). Hence catapult dynamics
alone do not suffice for explaining large learning rate stability in SP.

4 Cross-entropy loss enables stable feature learning under large learning
rates in standard parameterization

First, let us briefly recall why infinite-width theory predicts divergence under SGD training in SP
with learning rates ηn = η · n−α for α < 1.

Recall that the alignment exponents in (α-rms) satisfy p1:L+1 = 1. In particular, for the output
layer, we have ∥∆WL+1

t xL
t ∥RMS = Θ(n · ∥∆WL+1

t ∥RMS · ∥xL
t ∥RMS). For SGD, the weight

update of the last layer after 1 update step is given by ∆WL+1 = −η · n−α · χ0 · (xL
0 )

T , where
χ0 := ∂fL(f0(ξ0), y0). Under SP, at initialization, both ∥xL

0 ∥RMS = Θ(1) and ∥χ0∥RMS = Θ(1).
This implies logit divergence after 1 step of SGD with learning rates ηn = ω(1/n):

∥xL∥RMS = Θ(1), ∥∆WL+1∥RMS = Θ(n−α), =⇒ ∥∆WL+1xL∥RMS = Θ(n1−α)

So, why do larger learning rates remain stable and even effective, despite logit divergence?

Here, we demonstrate that a simple yet fundamental aspect of training, the choice of loss function,
resolves the large learning rate puzzle, and enables a well-defined and practical infinite-width limit
that allows feature learning under SP. The key insight is that, under cross-entropy (CE) loss, the logits
f never directly appear in the training dynamics; instead, the effective output function is σ(f). Unlike
the destabilizing logit blowup encountered under mean squared error (MSE) loss, under CE loss,
logit growth has a harmless effect on training stability. Therefore, CE loss introduces an intermediate
controlled divergence regime that is absent for the MSE loss (Figure 3).
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Figure 3: Learning rate regimes for SGD in
SP. Under MSE loss, training a deep MLP either
remains stable (α ≥ 1) or logits and hidden-layer
activations diverge (α < 1) in the infinite-width
limit. Under CE loss, a controlled divergence
regime α ∈ [1/2, 1) emerges where logits di-
verge, but training does not diverge. At α = 1/2,
hidden layers learn features width-independently.

Definition 1 (Learning regimes). Fix t ∈ N. We say that training lies in the stable regime iff the
activations ∥xl

t∥RMS of all layers remain Θ(1) and the logits ∥ft∥RMS remain O(1) after t update
steps. We say that training is catastrophically unstable iff the logits and activations in at least one
layer diverge after t steps, that is ∥ft∥RMS → ∞ and ∃ l ∈ [L] such that ∥xl

t∥RMS → ∞. If training
neither lies in the stable nor in the catastrophic regime, it lies in the controlled divergence regime. ◀

Proposition 2 shows that there exists a non-vanishing controlled divergence regime under the CE loss.

Proposition 2. (Asymptotic regimes in SP, informal) For fixed L ≥ 2, t ≥ 1, η > 0, α ∈ R, consider
training a (L + 1)-layer MLP of width n in SP with SGD and global learning rate ηn = η · n−α

for t steps. Then the logits ft, loss-logit derivatives χt := ∂fL(ft(ξt), yt), loss-weight gradients
∇l

t := ∇W lL(ft(ξt), yt) and activations xl
t, l ∈ [L], after training scale as follows as n → ∞.

Under cross-entropy (CE) loss, three qualitatively distinct regimes arise:

(a) Stable regime (α ≥ 1): Logits, gradients and activations remain stable, that is
∥ft∥RMS = O(1), ∥χt∥RMS = O(1), ∥∇l

t∥RMS = O(n−1/2) and ∥xl
t∥RMS = Θ(1) for

all l ∈ [L].
(b) Controlled divergence ( 12 ≤ α < 1): Logits diverge ∥ft∥RMS = Θ(n1−α), but gra-

dients and activations remain stable, that is ∥xl
t∥RMS = Θ(1), ∥χt∥RMS = O(1) and

∥∇l
t∥RMS = O(n−1/2) for all l ∈ [L].

(c) Catastrophic instability (α < 1
2 ): Logits, activations and weight gradients diverge, that is

∥ft∥RMS → ∞, ∥xl
t∥RMS → ∞ and ∥∇l

t∥RMS → ∞, l ∈ [2, L].

Under mean-squared error (MSE) loss, a stable regime as in (a) above arises if α ≥ 1. If α < 1,
training is catastrophically unstable as in (c) above and, in addition, ∥χt∥RMS → ∞.

Remark 3 (Maximal-stable learning rate). In SP, different layer types learn at different rates. For
SGD, the output layer logits remain stable iff ηn = O(n−1). The input layer, biases, Layernorm
gains and embedding layers all behave input-like and remain stable iff ηn = O(1). All other trainable
weights in typical CNNs and Transformers behave hidden-like and remain stable iff ηn = O(n−1/2).

If we define the maximal stable learning rate (max-stable LR) scaling of a network as the edge to
the catastrophic regime, and the max-stable LR scaling of each layer as that above which the layer’s
output diverges (Definition C.11), then Proposition 2 shows that the max-stable LR of a network can
exceed that of individual layers. Since CE loss does not require output layer stability, the proposition
naturally extends to 2-layer MLPs, which do not contain a hidden layer, so that their controlled
divergence regime under CE loss extends to 0 ≤ α < 1 (Remark C.14). ◀

The formal statement together with a proof can be found in Appendix C.3. For an intuitive under-
standing of this result, note that the only effect that the choice of loss function L(f, y) has on the final
learned function is through the loss-logit gradients χt := ∂fL(ft(ξt), yt) over the course of training.
Under MSE loss, the loss gradients are given by the residuals χt = ft(ξt)− yt. But CE loss induces
loss gradients χt = σ(ft(ξt))− yt. Crucially, it is the correct choice of loss function to effectively
view σ(f) as the output of the network instead of the unnormalized logits f . If one were to use
MSE(σ(f), y) as a loss function instead, additional derivative terms can induce vanishing gradients
under exploding network output and not increase the optimal learning rate exponent (Appendix F.4).
Under CE loss, the effective network output σ(f) at most converges to one-hot predictions when the
logits diverge, and with increasing width training points are sharply memorized after a single update
step. At large learning rates ηn = Θ(n−1/2), training points are not just memorized in last-layer
weights, but feature learning is recovered in the infinite-width limit:
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Figure 4: Hidden-layer feature learning albeit logit divergence in SP under large learning
rates. Effective l-th layer update scalings ∥∆Wtxt∥RMS of MLPs trained with SGD in SP with
ηn = 0.0001 · (n/256)−1/2 on CIFAR-10 under CE loss. Our TP scaling predictions are accurate:
Hidden layers learn features width-independently, and input layers have vanishing feature learning.
The update scaling exponents can already be accurately estimated at small width n ≤ 512.

Proposition 4 (Under CE loss, SP with large learning rates learns features at large width,
informal). Consider the setting of Proposition 2 of training a (L+1)-layer MLP with SGD in SP with
global learning rate ηn = η · n−α, α ∈ R, in the infinite-width limit n → ∞.

(a) Under both MSE and CE loss in the stable regime (α ≥ 1), feature learning vanishes in all
layers l ∈ [L], that is ∥∆xl

t∥RMS = O(n−1/2).
(b) Under CE loss in the controlled divergence regime ( 12 ≤ α < 1), input layer feature learning

vanishes at rate ∥∆x1
t∥RMS = Θ

(
n−1/2−α

)
, and hidden layers l ∈ [2, L] learn features

at rate ∥∆xl
t∥RMS = Θ

(
n1/2−α

)
. In particular, when α = 1/2, the weight updates of all

hidden layers induce width-independent activation updates, that is ∥∆xl
t∥RMS = Θ(1).

To the best of our knowledge, this provides the first infinite-width limit of SP in the practical feature
learning regime. Figure 4 empirically validates that the predicted width-scaling exponents that induce
maximally stable feature learning despite logit blowup under ηn = η · n−1/2 are already accurate
at moderate width 512. Appendix E.4 shows that effective update predictions also hold accurately
in Transformers trained with Adam. In the next section, we discuss the implications that training
stability despite logit blowup has on learning rate scaling exponents in practice.

5 Consequences of training stability under logit divergence

In this section we perform extensive experiments to empirically evaluate the implications of the
stability and feature learning predictions of our infinite-width theory from the previous section.

Experimental details. We train MLPs of varying depth up to width 16384 with plain SGD and
Adam on CIFAR-10, MNIST and a generated multi-index model (reported in Appendix F). We also
train Pythia-GPTs with warmup and cosine learning rate decay on the DCLM-Baseline dataset (Li
et al., 2024) up to width 4096 or 1.4B parameters using both Adam with decoupled weight decay
(Loshchilov and Hutter, 2019) and SGD (reported in Appendix F.2). If not stated otherwise, we
consider SP with a global learning rate. In this paper, we train for a single epoch to prevent overfitting
effects. We leave a systematic study of the multi-epoch setting to future work. All details can be
found in Appendix D. Open-source code to reproduce our experiments is publicly available.

Refined coordinate checks. Our results demonstrate that disentangling the width dependence of
effective updates and propagating updates in each trainable weight in refined coordinate checks
(RCC) can serve as an useful diagnostic tool for understanding and correcting layerwise update signal
propagation, for improving training stability and performance at scale. Our implementation is easy to
adapt and publicly available.

5.1 Infinite-width theory is a useful predictor of empirical optimal learning rate exponents

While, in general, the optimal learning rate depends on the architecture and dataset (see Appendix F.1),
it often saturates at the accurately predicted maximal stable learning rate in deep non-linear networks.
We hypothesize that maximal stable feature learning in all layers induces optimal performance at large
width. However, since different layer types require different maximal stable learning rate exponents,
the single global learning rate under SP is subject to opposing forces for recovering feature learning
under the constraint of training stability. We now evaluate several instantiations of this hypothesis.
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Figure 5: Approximate learning rate transfer for GPT in SP. Left to center-right: Width-scaled
learning rate versus training loss for GPT trained with SGD, Adam with trainable Layernorm
parameters and Adam without trainable Layernorm parameters. Right: Corresponding optimal (solid)
and maximal stable (dashed) learning rate exponents. For SGD, hidden-layer stability ηn = O(n−1/2)
clearly dominates the maximal stable as well as optimal learning rate scaling. For Adam without
Layernorm parameters, hidden-layer stability induces a stability threshold ηn = O(n−1). Trainable
Layernorm parameters further stabilize large learning rates and induce larger optimal learning rate
scaling ηn ≈ Θ(n−1/2) toward preserving input-layer feature learning at scale.

MLPs and Transformers with SGD. Figures 5 and 6 show that the empirical maximal learning
rate exponents under CE loss closely follow α = 1/2 for both MLPs on vision data and for GPT on
language data. The x-axes scale the learning rate with the closest clean exponent from {0, 0.5, 1}
to show that approximate empirical transfer is often enforced by the stability threshold O(n−1/2).
While the theory only predicts the maximal stable exponent, Proposition 4 suggests that the optimal
learning rate may follow the maximal stable exponent α = 1/2 since it is the only choice under which
feature learning is preserved at large width in all hidden layers. When optimal learning rate exponents
exceed the maximal stable exponents, as for CIFAR-10, optimal learning rates saturate at the maximal
stable learning rate at realistic width ≥ 16384 on all considered datasets (see Figure F.11). The
maximal stable learning rate under MSE loss also consistently scales as its infinite-width prediction
O(n−1) and optimal learning rates closely follow this exponent, as under smaller exponents α > 1,
not even logits are updated ∥∆ft∥RMS → 0. However, this approximate learning rate transfer under
MSE loss is not useful, since the loss also converges fast and does not monotonically improve with
scale. Overall, this shows that existing infinite-width theory was indeed predictive of the maximal
stable learning rate exponents under MSE loss, but that CE loss induces qualitatively more favorable
behaviour that is only captured by a finer-grained analysis.

MLPs with Adam. Adam approximately normalizes the gradient and therefore further stabilizes
training against misscaled gradients beyond the effect of CE loss. W l is effectively updated if the
learning rate scaling counteracts the scaling accumulated in the inner product between normalized
weight gradients and incoming activations. This leads to the ideal (µP) learning rates η(W l) =
η/fan_in(W l). Thus Adam in SP with ηn = Θ(n−1) induces width-independent updates, except
for vanishing input layer feature learning and logit divergence through WL+1

0 ∆xL
t . For deep MLPs

on image datasets, Figure F.25 shows optimal learning rate exponents close to ηn = O(n−1) for both
CE and MSE loss, suggesting a controlled divergence regime also arises from a stabilized backward
pass and that stable hidden-layer feature learning dominates the optimal learning rate scaling.
Transformer training with AdamW. In Transformers with trainable Layernorm parameters, which
scale input-like, training is stabilized, and the exponent is increased toward input layer feature learning.
Without trainable Layernorm parameters, in contrast, only the embedding layer scales input-like so
that training becomes approximately width-independent under ηn = Θ(n−1). Figure 5 shows that
the max-stable and optimal learning rate exponents shrink from −1/2 toward −1 if we remove the
trainable layer-norm parameters. This suggests that trainable scale parameters in normalization layers
play an essential role in maintaining high learning rates in Transformers, which could explain why
they are almost unanimously used in modern architectures (OLMo Team et al., 2024, Grattafiori et al.,
2024, Gemma Team et al., 2024). Moreover, input layer learning vanishes at scale in SP, which may
explain techniques like removing weight decay in the embedding layer (OLMo Team et al., 2024).
Logit divergence under large learning rates may be a reason for regularizing techniques like the z-loss
(Chowdhery et al., 2023, Wortsman et al., 2024, OLMo Team et al., 2024).

Taken together, our empirical evidence suggests that infinite-width theory may serve as a helpful
proxy for understanding practical neural networks at finite width. Since training divergence
imposes a hard constraint on the optimal learning rate and activation divergence in multiple layers
becomes harder to stabilize, width-scaling predictions seem to hold even more accurately on deep
and sensitive architectures such as Transformers.
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5.2 A novel understanding of standard initialization with layerwise learning rates

Everett et al. (2024) perform extensive Transformer experiments, and recommend training with
Adam in SP with µP learning rates (SP-full-align) as the overall best performing parameterization in
terms of validation loss, learning rate transfer and learning rate sensitivity. This parameterization
only differs from µP through the larger last-layer He initialization WL+1

0 ∼ N(0, n−1). While the
authors attribute the success of SP-full-align to a lack of alignment between WL+1

0 and ∆xL
t , they

only measure the joint alignment between Wt and xt for each layer, which confounds the individual
alignment exponents of (∆Wt, xt) and (W0,∆xt) from (RCC). We provide a detailed explanation in
Appendix C.2. Our empirical alignment reevaluation in Figure 2 and Appendix E.4 does not support
the hypothesized lack of alignment. Thus, at sufficient width, logits diverge through WL+1

0 ∆xL
t

as soon as feature learning does not vanish. Instead our theoretical results in Section 4 show that
logit divergence does not harm training stability under CE loss. Just like SP with ηn = Θ(n−1/2),
SP-full-align with ηn = Θ(1) lies at the feature learning edge of the controlled divergence regime.
Learning rate transfer of SP-full-align breaks on image datasets. Due to width-independent
alignment between WL+1

0 and ∆xL
t , logits diverge with width in SP-full-align at sufficient width.

We validate this claim for CIFAR-10 at moderate width in Figure F.32. This introduces width-
dependent training dynamics. Consequently our single-pass experiments in Figure 6 and Appendix F.7
consistently show decaying optimal learning rates in SP-full-align for both SGD and Adam on
common image datasets and generated multi-index data. We also observe that the maximal stable
learning rate remains remarkably width-independent as our theory would predict. This constitutes our
only experiment in which the maximal stable learning rate scaling is suboptimal in deep nonlinear
networks. We leave fully understanding the driving mechanism to future work.

Large output dimension may explain learning rate transfer of SP-full-align on language data.
On language data, Everett et al. (2024) report learning rate transfer of SP-full-align. To understand
this difference to the vision settings above, we measure the individual contributions to the only source
of width dependence WL+1

0 ∆xL
t in this parameterization.

By empirically verifying the predicted width-independent incoming updates ∥∆xL
t ∥RMS = Θ(1)

and alignment ratio αWL+1
0 ∆xL

t
= Θ(1) from (α-op) (Figures E.17 and E.18), the scaling of the

propagating updates ∥WL+1
0 ∆xL

t ∥RMS is determined by the initial operator norm

∥WL+1
0 ∥RMS→RMS ≈ d

−1/2
out (d

1/2
out + n1/2) = 1 + (n/dout)

1/2,

under standard initialization (Vershynin, 2010). Now, in the large width regime n ≫ dout the second
term dominates, but in the regime dout ≫ n the first term dominates and induces an approximately
width-independent effect on the logits (verified in Figure E.17). From this perspective, standard
initialization is the approximately correct initialization in the regime dout ≫ n, but transfer should
eventually break at sufficient width n ≈ dout as logits start to diverge.

Initialization for transfer at all scales. To ensure that updates remain non-asymptotically scale-
preserving, the above arguments motivate choosing the last-layer initialization variance σL+1 =
( fan_in√

fan_out +
√
fan_in)−1, which transitions from SP to µP with increasing width.
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Figure 7: µP enables other loss functions to be competitive. Optimal training accuracy of 8-layer
MLPs trained with SGD on MNIST (left), CIFAR-10 (center) and FASHION MNIST (right). In SP,
feature learning is lost under MSE loss, inducing highly suboptimal performance. The layer-balanced
learning in µP allows loss functions beyond CE loss to perform well.

5.3 A scaling-theoretic view on the practical success of CE loss in deep learning
Many success stories in deep learning, from computer vision to natural language processing, use
the cross-entropy loss. We propose a scaling-theoretic explanation for this practical dominance.
Our results show that networks trained under CE loss allow stable optimization at significantly
larger learning rates in SP than under MSE loss, which recovers feature learning at large widths
and consequently improves generalization. To empirically investigate this hypothesis, we compare
the performance of CE and MSE losses under both SP and µP. Since µP admits asymptotically stable
dynamics, both losses exhibit similar limiting behaviours. Thus we predict that CE loss only signif-
icantly outperforms MSE loss in SP, but not in µP. Figure 7 confirms this prediction, which suggests
that MSE loss may deserve renewed consideration as a practical choice under stable parameterizations
like µP, especially given its theoretical simplicity and widespread use in theoretical analyses.

6 Discussion and future work

On the theoretical side, we have provided the first infinite-width proxy model for finite neural
networks, as they are initialized and trained in practice. On the practical side, we have seen that
infinite-width feature learning and instability predictions are surprisingly predictive indicators for
empirical width-scaling exponents, in particular for deep Transformers.

Understanding of the controlled divergence regime. As practical neural networks operate at the
edge of the controlled divergence regime, better understanding parameterizations beyond the stable
regime is paramount. We believe that many conclusions in previous work about the properties of
wide networks in SP or neural tangent parameterization (Lee et al., 2020, Wenger et al., 2023) change
when studying the optimal learning rate scaling at the edge of the controlled divergence regime. Since
the NTK diverges in SP with ηn = Θ(n−1/2), studying this limit is subtle. However, investigating the
rescaled NTK might still be a useful tool in better understanding this limit. While width dependence
is undesirable from a transfer perspective, fast memorization under logit blowup may improve
learning speed. How is generalization affected? Logit blowup may partially explain overconfidence
in neural networks in SP, and suggests that wide networks in µP may be more calibrated.

Numerical considerations. In this paper, we consider the regime of sufficient numerical precision.
From a numerical perspective, signals that diverge fast can leave floating point range at moderate
widths. Hence implementations that ensure minimal accumulation of width-dependent factors in SP
akin to Blake et al. (2025) could stabilize large-scale model training in practice.

Understanding optimal learning rate exponents. The exact conditions that induce hyperparameter
transfer are still poorly understood. Without full width-independence, the optimal learning rate
scaling cannot be predicted with certainty, and rigorous statements about optimal LR exponents likely
require strong architectural and distributional assumptions, akin to neural scaling laws (Hoffmann
et al., 2022, Bachmann et al., 2023) (see Appendix F.1 for more details). Both vanishing feature
learning in input-like layers and logit divergence can induce strong finite-width effects, so that we
would still recommend µP learning rates over SP from a width-scaling perspective. Similar to CE loss,
normalization layers correct scaling in the forward pass. In combination with Adam which stabilizes
the backward pass (Figure F.25), such stabilizing components can correct most misscaled signals.
Deeply understanding their interplay and effect on optimal learning rates remains an important
direction for future work.
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A Detailed Related Work

Here we provide a more detailed account of related work than what is possible in the main body of
the paper.

Strongly related, Atanasov et al. (2025) study the 2D plane of learning rate and feature learning
strength, meaning the output multiplier, in µP and find a related pseudo-catapult regime in CE but
not in MSE loss at fixed width. They study a simplified one-parameter model and provide several
insightful empirical evaluations in MLPs and CNNs. Their results highlight the importance of tuning
the ‘feature learning strength’ multiplier in the output layer, which can also be interpreted as the
softmax temperature (Agarwala et al., 2023). As SP and NTP are width-dependent parameterizations,
the feature learning strength is implicitly altered when scaling width.

Neural networks in the infinite-width limit. Past work has extensively analysed the Neural Tangent
Parameterization (NTP) (Jacot et al., 2018) due to its tractability. But due to lacking feature learning
in the infinite-width limit, finite networks in NTP behave qualitatively differently and hence NTP
is not the ideal model for understanding finite neural networks. Finite-width deviations already
accumulate after a few steps of training (Wenger et al., 2023), in particular under CE loss (Yu et al.,
2025). Much feature learning has been empirically shown to improve generalization over the infinite-
width kernel regime Chizat et al. (2019), Lee et al. (2020), Agarwala et al. (2023). Considerable
effort has been invested in finding a descriptive infinite-width model for SP. Sohl-Dickstein et al.
(2020) note that the NTK diverges under large learning rates ηn = ω(n−1) in SP, which motivates
them to consider a different parameterization which preserves a finite NTK in the infinite-width
limit, but consequently does not correspond to SP anymore. Golikov (2020) studies a class of
‘dynamically stable’ parameterizations, allowing large learning rates under a variant of SP, they call
‘sym-default’ parameterization, which again is not equivalent SP. Another popular width-dependent
parameterization is the Maximal Update Parameterization (µP). It achieves a width-independent effect
of updates in all trainable weights on the output function. Its infinite-width limit has been observed to
closely track finite networks in µP well over long periods of training in, for example, feature learning
strength, the learned function, or gradient and Hessian statistics (Vyas et al., 2024, Noci et al., 2024b).
As an important practical consequence, it allows to tune small proxy models and train the large model
only once with the optimal HPs (Yang et al., 2022). µP was derived using Tensor Programs (TP)
framework (Yang, 2019, Yang and Hu, 2021, Yang and Littwin, 2023) that, in theory, allows to exactly
track the learning dynamics of many popular architectures like MLPs, ResNets and Transformers
trained with SGD or Adam in arbitrary parameterizations in the infinite-width limit. Haas et al. (2024)
derive a µP-like parameterization for sharpness aware minimization algorithms achieving transfer
of the optimal learning rate and perturbation radius jointly by showing that perturbations should be
scaled like updates in µP. Vankadara et al. (2024) derive an initialization and learning rate scaling
rule that achieves width-independent training dynamics for the state-space model Mamba, which
shows that the spectral condition on the weights and weight updates in every layer for achieving µP
provided by Yang et al. (2023a) does not apply to arbitrary architectures. At sufficient numerical
precision, the mean-field parameterization (Mei et al., 2018, Chizat and Bach, 2018) is equivalent
to µP. While it was initially restricted to shallow neural networks, the dynamical mean-field theory
(DMFT) by Bordelon and Pehlevan (2022) generalizes it to more complex architectures, including
Transformers (Bordelon et al., 2024a). Although still expensive, the approximate solvers from DMFT
are more computationally feasible than iteratively solving the exact TP limit equations. Chizat et al.
(2024) studies deep linear networks in µP and shows convergence of gradient flow to a minimum
l2-norm solution.

Other neural network scaling limits. Beyond width scaling, depth scaling L → ∞ has been studied
in detail. For ResNets, Yang et al. (2023b), Hayou and Yang (2023), Bordelon et al. (2024b) show
that L−1/2-scaling of shallow residual blocks induces depth-independence and this limit commutes
with width scaling, implying that depth can be scaled independent of width. Using approximative
DMFT theory, Bordelon et al. (2024a) suggest that L−1-depth scaling may be necessary to preserve
feature learning in attention blocks although they consider a pure depth limit. Dey et al. (2025)
confirm L−1-block scaling to be the ‘correct’ scaling by providing additional desiderata and empirical
evidence on Transformers. Bordelon et al. (2024a) also show that the infinite within-head dimension
limit effectively leads to a single-head Transformer, an the infinite number of heads limit concentrates
by aggregating over the coordinate distribution at fixed within-head size, closer to how scaling is
typically performed in practice (Brown et al., 2020). Noci et al. (2024a) study a joint width and
depth limit close to initialization for Transformers with the goal of preventing rank collapse. Long
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training time is much less understood. Bordelon and Pehlevan (2025) study the training dynamics of
deep and wide linear networks trained on structureless Gaussian data. Chizat and Netrapalli (2024)
considers the angle between activations and gradients to give scaling rules for hyperparameters toward
automatic HP scaling. They correct output layer scaling of MLPs in µP depth-dependently, only for
SGD.

Scaling laws. Robust compute-optimal scaling laws in LLMs were reported by Kaplan et al. (2020),
Hoffmann et al. (2022). Paquette et al. (2024) provide theory on random feature models trained
with one-pass SGD and identify 4 phases and 3 subphases depending on properties of the data and
the target. Bjorck et al. (2025) observe no transfer across token horizons but a predictable scaling
law with exponent −0.32 on LLama. McCandlish et al. (2018) suggests that the optimal learning
rate scales as a/(1 + b/batchsize) with setting-dependent constants a, b. Hence for sufficiently
large batch size the optimal learning rate is roughly constant, which is in line with the empirical
observations by Shallue et al. (2018), Yang et al. (2022). Ren et al. (2025) study SGD training of
2-layer MLPs on isotropic Gaussian data under MSELoss and find that different teacher neurons are
abruptly learned at different timescales leading to a smooth scaling law in the cumulative objective.
Further work toward assessing the compute-optimal and data-optimal Pareto frontiers under realistic
assumptions remains an important and challenging task for future work.

Finite width training dynamics. Understanding finite-width training dynamics complements infinite-
width theory very well, as the former line of work operates at fixed width, while the latter ask what
changes with increasing width. From a practical perspective, scaling networks with µP appears to
preserve the properties from base width (Vyas et al., 2024, Noci et al., 2022). Deep understanding of
neural network training dynamics is still limited to 2-layer nonlinear MLP (Ren et al., 2025, Zhang
et al., 2025) or (deep) linear MLP (Kunin et al., 2024, Tsigler et al., 2025) toy models under strong
distributional assumptions. Lee et al. (2020) find that large learning rates cause differences between
finite and infinite-width networks.

Kunin et al. (2024) explain for 2-layer networks that varying layerwise initialization variance and
learning rate scaling induces differing learning regimes: fast feature learning in balanced parame-
terizations (desirable for linear nets), faster learning of earlier layers in upstream parameterizations
with small parameter movement (desirable in nonlinear networks, as it reduces time to grokking
and sample complexity of hierarchical data structures), faster learning of later layers in downstream
initializations (that is initial lazy fitting followed by slow feature learning). Abbe et al. (2023) show
that, opposed to lazy networks, feature learning networks can learn low rank spikes in hidden layer
weights/kernels to help with sparse tasks. Qiao et al. (2024) show that large learning rates induce
sparse linear spline fits in univariate gradient descent training by showing that all stable minima are
flat, non-interpolating and produce small first order total variation, hence avoid overfitting and learn
functions with bounded first order total variation

Edge of stability. Large learning rates have broadly been observed to induce optimal generalization.
While the empirical connection between optimal and max-stable learning rates is well-documented,
the mechanisms remain poorly understood, independent of model scale. Our findings offer a novel
perspective on the advantages of large learning rates for facilitating feature learning at large model
scales. Previously suggested explanations include improved generalization through reduced sharpness
(Andriushchenko et al., 2023a), a shift in the learning order of patterns (Li et al., 2019), enhanced
SGD noise (Keskar et al., 2017), and implicit bias towards sparsity (Andriushchenko et al., 2023b).

Lewkowycz et al. (2020) observe that under large learning rates at the edge of stability, 2/λ0 < η <
carc/λ0 (where carc = 12 for ReLU nets) an initial blowup at training time at least log(n) induces
a bias towards flatter minima. Cohen et al. (2021) find loss spikes during training, but that training
self-stabilizes through sharpness reduction. Damian et al. (2023) and (Cai et al., 2024) develop
some understanding of the mechanisms behind EOS dynamics. For Adam, the preconditioner matrix
provides an additional mechanism by which stabilization can occur (Cohen et al., 2022, Gilmer et al.,
2022).

Warmup. Warmup allows stability under larger learning rates via slow sharpness reduction (Kalra
and Barkeshli, 2024). Kalra and Barkeshli (2024) also shows that warmup allows using larger learning
rates than otherwise stable by constantly operating at the edge of stability. Warmup does not improve
performance but stabilizes training; by allowing training with larger learning rates, these often induce
improved performance. Large catapults harm Adam by persisting in its memory. Hence Adam’s
optimal learning rate is further away from the failure boundary than for SGD, and Adam benefits
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more from longer warmup. Above the optimal learning rate, Adam has a regime of training failure,
where early catapults persist in the second moment and prevent learning. Warmup also widens the
regime of near-optimal learning rate choices. Liu et al. (2020) find that particularly Adam needs
warmup due to large initial variance.

Effective learning rates. Kosson et al. (2024) study the effect of weight decay on rotation in weight
vectors, which influences the effective learning rate. Also see references therein for literature on
effective learning rates, which is related to the alignment discussion in this paper.

Stability of Transformer training. More empirically, a plethora of works study the training stability
of large-scale Transformers with respect to warmup, weight decay (D’Angelo et al., 2024), batch size
(You et al., 2020), the optimizer (Kosson et al., 2024), the position of normalization layers (Xiong
et al., 2020) and their interplay with the parameterization and numerical considerations (Wortsman
et al., 2024, Blake et al., 2025, Everett et al., 2024). Wortsman et al. (2024) find that qk-Layernorm
stabilizes Transformer training beyond the stabilizing effect from using µP. Xiong et al. (2020)
propose pre-LN for enhanced training stability requiring less warmup. He et al. (2024) observe that
outlier features (=extremely activated coordinates in activations) emerge quickly in Transformer
training with AdamW and that rank-collapse under strong correlations between inputs is correlated
with more outlier features. Non-diagonal preconditioning like SOAP and Shampoo resolves the issue.

Srećković et al. (2025) find that SGD with momentum almost performs en par with Adam in LLMs
under small batch size, so that understanding small-batch SGD (as we do) is practically relevant.

Most relevant to our work, Everett et al. (2024) perform extensive and insightful experiments for Nan-
oDO decoder-only Transformers (Liu et al., 2024) in SP, µP, NTP and mean field parameterizations
with corrected layerwise learning rate scalings, questioning the infinite-width alignment predictions
between weights and incoming activations at finite width over the course of long training. They
recommend SP with ADAM in conjunction with µP-learning rate scaling (they call SP-full-align) as
the best-performing empirical parameterization in terms of generalization, learning rate transfer and
learning rate sensitivity.

B Take-aways for practitioners

B.1 A practitioner-oriented introduction to width scaling

In this paper, the term parameterization refers to width-dependent scaling of initialization and learning
rate of each trainable weight tensor. Studying parameterizations then means applying a scaling rule
for layerwise initialization variances and learning rates and understanding how relevant quantities
such as update scaling in activations and logits evolves, and where instabilities may arise at large
widths. At some fixed base width, all parameterizations can be considered equivalent, if we allow
tuning constant multipliers.

For properly comparing the performance of parameterizations, constant weight and initialization
multipliers should be tuned at some fixed base width (Yang et al., 2022). This adjusts the layerwise
activation and gradient size at finite width for all parameterizations at once. The parameterization then
prescribes the rule, by which the layerwise initialization and updates are rescaled when changing the
width in relation to that base width width/base_width. Alternatively, multipliers can be tuned at
larger width for each parameterization separately, but this quickly becomes computationally infeasbile.
The extensive LLM experiments in Everett et al. (2024) suggest that the advantage of large last-layer
initialization may just be an artifact of the community extensively tuning performance in SP, and after
also tuning all layerwise multipliers for µP, the performance difference vanishes.

While SP performs better than naive theory would predict, and can learn hidden-layer features
width-independently under CE loss, feature learning still vanishes in input-like layers like embedding
or Layernorm layers under both SGD and Adam. Still only µP learning rate scaling effectively
updates all layers. For AdamW without using width-dependent weight multipliers, layer-balancing
µP learning rates are simply given by the learning rate scaling η(W ) = η/fan_in(W ). Here, all
biases as well as normalization layer weights should be understood as weights to the one-dimensional
input 1, hence fan_in = 1. For recovering width-independent weight decay, weight decay requires
the inverse scaling wd · fan_in(W ).

TP-like width scaling arguments are very useful for identifying sources of divergence or shrinkage
with scale, and architecture components such as normalization layers and training algorithms such
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as Adam correct most but not all divergent or vanishing scalings in the forward and backward pass,
respectively. Of particular importance for evaluating the width-dependent signal propagation is
the refined coordinate check (RCC) for disentangling effective updates in the current layer from
updates propagating forward through the network. Ideally, all W0∆xL

t and ∆Wtxt should remain
width-independent, which is only guaranteed in µP at sufficient width.

B.2 Practical implications of our results

Constraining the search space for the optimal learning rate. Our experiments strongly support the
prediction from Proposition 2 that the maximal stable learning rate scales as ηn = η · n−1/2 when
training deep non-linear networks with SGD in SP under CE loss. This result provides a concrete
constraint on the learning rate search space, significantly reducing the range practitioners must
consider. Rather than exhaustive or heuristic searches, practitioners may narrow their search around
the theoretically justified scaling, leading to substantial computational savings and more efficient
hyperparameter tuning. Furthermore, we observe that, particularly in deep nonlinear architectures,
the optimal learning rate often saturates at this maximal stable scaling (see e.g. Figures 5 and F.10,
Figures F.4 and F.5, Appendix F.3). Thus, employing the correct scaling often effectively enables
approximate transfer of optimal learning rates, even in SP.

Potential performance gains at scale using alternative loss functions with µP. Correctly attributing
the observed performance gap between MSE and CE loss in SP to scaling considerations reveals a
concrete recommendation: Practitioners could leverage stable parameterizations like µP for image
datasets or SP-full-align for language datasets to effectively utilize loss functions beyond cross-entropy
at large scales. In Figure 7, we consistently observe that CE loss greatly outperforms MSE under SP,
whereas MSE consistently outperforms CE loss under µP, with differences becoming particularly
pronounced at large widths. These results highlight the potential for substantial performance gains
from further investigating the interplay between the loss function and parameterization. They also
suggest that it is worth exploring the use of further loss functions in conjunction with µP.

Identifying the correct scaling mechanisms enables principled improvements of scaling practice.
Identifying the correct causal mechanism for training stability under large learning rates enables
principled and informed exploration of the extended search space of practically relevant potentially
best-performing parameterizations for efficiently finding improvements in model scaling practice:
The controlled divergence regime had previously been neglected, even though common scaling
practice as well as the best-performing parameterization SP-full-align from Everett et al. (2024)
exactly operate in this regime. We now detail two concrete implications together with exciting
avenues for future work.

Identifying the correct mechanism for training instability at large scales. Training instability
due to logit divergence at large scales is a widely-established empirical phenomenon under SP
which has motivated popular interventions like the z-loss (Chowdhery et al., 2023, Wortsman et al.,
2024). However, only understanding the underlying causal mechanism and providing the exact
width-dependent scaling exponents enables to design principled interventions. Both our theoretical
and empirical results suggest that practically relevant large-scale neural networks naturally operate at
the boundary of the controlled divergence regime, allowing persistent hidden-layer feature learning
despite logit divergence. Consequently scaling up networks in SP inherently causes logit divergence,
leading to numerical instability. As a principled intervention, stable parameterizations like µP should
not suffer from such systematic divergence and potentially eliminate the need for ad-hoc interventions
like the z-loss.

Logit divergence induces overconfidence. A similar argument applies to uncertainty calibration.
Our theory also explains why we should expect predictions to be increasingly overconfident with
increasing model scale and suggests that this may be partially mitigated by considering stable
parameterizations like µP. However there may be inherent trade-offs between miss-calibration and
faster memorization due to logit divergence. Their effect on performance and designing the ideal
intervention deserves a more thorough investigation beyond the scope of the current paper.

Understanding the transfer of SP-full-align motivates a novel last-layer initialization. Small
last-layer initialization recovers width-independent and hence predictable scaling dynamics un-
der sufficient precision in the regime n ≫ dout, whereas standard last-layer initialization induces
logit blowup at sufficient width, which is not necessarily harmful for generalization but reduces
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predictability as scaling is not fully width-independent. Standard initialization with µP learning
rates (SP-full-align) can induce ‘practical transfer’ and empirically update all weights effectively
without logit blowup at moderate scales n ≪ dout in the regime where the width is much smaller
than the output dimension, as is relevant for NLP settings, but likely exhibits unexpected changed
behaviour at sufficient scale, when logits start to diverge due to the last-layer term WL+1

0 ∆xL
t .

This can be read off from differing dominating terms in ∥WL+1
0 ∥RMS→RMS , assuming width-

independent alignment αWL+1
0 ∆xL

t
= Θ(1) (as verified in Figure E.18). For uniform non-asymptotic

transfer for both n ≫ dout and n ≪ dout, the same argument motivates a last-layer initialization
σL+1 = ( fan_in√

fan_out +
√
fan_in)−1, that transitions from SP initialization in the regime n ≪ dout to

µP initialization in the regime n ≫ dout, similar to the one proposed in Yang et al. (2023a). Verifying
improved transfer under this initialization is left to future work, since it requires scaling to widths
beyond our computational constraints.

Faithful evaluation of the accuracy of infinite-width theory. While in principle the refined
coordinate check (RCC) was previously known (Yang and Hu, 2021, Appendix H), we find that the
predicted update exponents are surprisingly accurate in this decomposition already at moderate width
and over the course of training (Figures 2 and 4), even in parameterizations with width-dependent
dynamics like SP. Consequently, optimal and maximal stable learning rate exponents in SP also
follow the predicted width-dependent exponent in realistic settings (see e.g. Figures 5 and F.10,
Figures F.4 and F.5). To lower the hurdle for practitioners to incorporate the (RCC) in their workflow
as a diagnostic tool, we have made our fine-grained and easily adaptable implementation of the
RCC using LitGPT publicly available at https://github.com/tml-tuebingen/torch-module-monitor.
Understanding and correcting miss-scaled update signals through each weight matrix has impactful
consequences on performance and trainability at large scale.

C Theoretical considerations

C.1 Distilled TP scaling arguments

Here we aim to provide a more detailed, comprehensive introduction to the essential width-scaling
arguments inspired by Tensor Program (TP) theory.

Effective Updates. When training neural networks, we have control over the initial scaling W0 and
update scaling ∆Wt of trainable weights Wt = W0 +∆Wt, but we are ultimately interested in their
effect on the activations in the following layers. In standard architectures (including convolutional
networks and Transformers), weights typically act linearly on the incoming activations. For such
weights Wt and incoming activations xt, we can decompose the next layer’s (pre-)activation updates
∆ht into effective updates of Wt and activation updates ∆xt propagating forward from previous
layers. Evaluating the contributions of both terms separately yields a refined coordinate check,

∆ht = (∆Wt)xt +W0(∆xt). (RCC)

Note that updates of previous layers can propagate forward through the term W0∆xt even when
the current layer’s effect on the output vanishes ∆Wtxt → 0 as width n → ∞. Hence, we say
that the weight Wt is effectively updated only if ∆Wtxt contributes non-vanishingly. Plotting the
width-dependent scaling of ∥(∆Wt)xt∥RMS and ∥W0(∆xt)∥RMS as a refined coordinate check, has
been very useful for us to gain insights into the network internal signal propagation. The usefulness of
(RCC) for effective update scalings is illustrated in Figure C.1. While the activations and activation
updates in a Layernorm layer evolve width-independently when training GPT with Adam in SP and
global learning rate scaled as ηn = η · n−1, the refined coordinate check reveals that the effective
updates in the current (input-like) layer and the activation update scaling instead stems from effective
updates propagating forward from previous (hidden-like) layers.

By choosing layerwise initialization variances and learning rates according to the Maximal Update
Parameterization (µP), both terms in (RCC) become width-independent in all layers in each update
step. Consequently, width-scaling becomes predictable, stable and feature learning is preserved
even at large width. Starting from SP, µP can be realized with smaller last-layer initialization
∥WL+1

0 ∥RMS = O(n−1), larger input layer learning rate ηW 1 = η ·n and smaller last-layer learning
rate ηWL+1 = η · n−1 for SGD.
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Predicting scaling exponents. While the TP framework formally requires writing out all forward
and backward pass computations performed during training and provides the exact infinite-width
limit objects of output logits and activation coordinate distributions, we simplify its implications on
width-scaling exponents for practical purposes as follows. A linear transformation either maps fixed
to width-scaling dimension (input-like), width-scaling to width-scaling (hidden-like) or width-scaling
to fixed dimension (output-like). Here, all bias vectors and normalization layer weights can be
understood as input-like weights to the one-dimensional input 1. Any sum of length n → ∞ that
occurs in individual terms in (RCC) either accumulates a factor n1/2 under sufficient independence
of 0-mean summands (CLT-like behaviour) or a factor n when the summands are correlated or have
non-zero mean (LLN-like behaviour). Crucially, not any sum may be evaluated with this heuristic but
only weight and activation (update) pairs as in (RCC) (see Yang and Hu (2021, Appendix H)). If, for
example, we considered the confounded term (W0 +∆Wt)x0, the initial part W0x0 clearly scales
CLT-like but ∆Wtx0 scales LLN-like; evaluating the scaling of their sum might result in wrong
scaling predictions.

At sufficient width, all width-scaling inner products (∆Wt, xt) from (RCC), however, are expected
to behave LLN-like, that is ∥∆Wtxt∥RMS = Θ(n · ∥∆Wt∥RMS · ∥xt∥RMS).

Figure C.1: (Tracking effective updates requires refined coordinate check) Activation norm
∥Wtxt∥RMS , activation update norm ∥∆(Wtxt)∥RMS , propagating update norm ∥W0∆xt∥RMS

and effective update norm ∥∆Wtxt∥RMS for the last normalization layer in GPT trained with Adam
and learning rate scaling ηn = 0.01 · n−1 for width-independent hidden layer feature learning. While
activations and activation updates appear width-independent due to propagating updates, our refined
coordinate check (RCC) reveals that Layernorm weight updates have vanishing effect in SP. Over
time, effective updates accumulate effective rank, but do not lose alignment with width (Figure 2).

Concrete examples. Complementing the more generic introduction to TP scaling arguments above,
we now provide more concrete examples for illustrating how weight updates affect activations in
subsequent forward passes. Consider the Tensor Program for training MLPs with SGD from Yang and
Hu (2021, Appendix H). We restate the relevant update scalings when using large learning rates in SP
that induce output blowup. Since divergence is not allowed in the TP framework, it does not formally
cover the unstable case, but we can still heuristically write down the scaling predictions, assuming
that correlations still induce LLN-like exponents and independence still induces CLT-like exponents,
as we have measured to hold empirically. The crucial insight is that training with cross-entropy loss
effectively means that we are considering ft(ξ) = σ(WL+1

t xL
t (ξ)) as the output function and the

loss derivative also becomes χt :=
∂Lt

∂f = σ(WL+1
t xL

t )− yt. Hence, from a stability point of view,

we can allow f̃t := WL+1xL → ∞, which results in a saturated softmax. Under one-hot labels
y ∈ {0, 1}C with

∑
c yc = 1, this means fast memorization of training points (xi, yi). For width-

independent hidden-layer feature learning, we may still require activations to have width-independent
coordinate-scaling, but let the output function be arbitrary, since the softmax renormalizes.

Definition C.1 (Activation stability). A parameterization is activation stable iff ∥xl
t∥RMS = Θ(1)

for all times t ≥ 0 and all layers l ∈ [L]. ◀

We now show heuristically that MLPs trained with SGD in SP are activation stable and feature
learning under global learning rate scaling η = Θ(n−1/2).

Backward pass. Here we denote the entry-wise scaling in width-scaling vectors as v = Θ(nc),
meaning ∥v∥RMS = Θ(nc). Assuming ∥ϕ′(hl

t)∥RMS = Θ(1) as for ReLU (otherwise we would get
vanishing gradients), the entries of the following width-scaling vectors scale as

∂f

∂xL
t

= WL+1
t = WL+1

0 −∆WL+1
t = O(n−1/2),

∂f

∂hl
t

=
∂f

∂xl
t

⊙ ϕ′(hl
t) = Θ(

∂f

∂xl
t

),
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∂f

∂xl−1
t

= (W l
0)

⊤ ∂f

∂hl
t

− ηθW l

t−1∑
s=0

χs

( ∂f
∂hl

s
)⊤ ∂f

∂hl
s

n
xl−1
s = Θ(max(

∂f

∂hl
t

, η(
∂f

∂hl
s

)2xl−1
s ) = Θ(n−1/2).

Note that any larger learning rate scaling would induce exploding gradients. For example, η = Θ(1)

induces δWL+1
1 = Θ(1), so ∂f

∂xL
1
= Θ(1) and ∂f

∂xL−k
1

= Θ(n ∂f

∂xL−k+1
1

) = Θ(n2k−1) for k ≥ 1. This
results in exploding activations in the next forward pass, and even larger gradients in the following
backward pass.

We therefore continue with η = Θ(n−1/2), and get the activation updates

δh1
t = −ηχt−1

∂f

∂h1
t−1

(ξt−1)
⊤ξ = Θ(n−1/2 · 1 · n−1/2 · 1) = Θ(n−1),

δhl
t = W l

t−1δx
l−1
t + δW l

tx
l−1
t

= θx

W l
0δx

l−1
t − ηθW l

∑
s

χs−1
∂f

∂hl
s−1︸ ︷︷ ︸

Θ(n)−1/2

(xl−1
t−1)

⊤δxl−1
t︸ ︷︷ ︸

O(n)


−ηχt−1θW

∂f

∂hl
t−1︸ ︷︷ ︸

Θ(n−1/2)

(xl−1
t−1)

⊤xl−1
t︸ ︷︷ ︸

Θ(n)

= Θ(1),

The output updates are

δf̃t(ξ) = δWL+1
t xL

t (ξ) + (WL+1
0 +∆WL+1

t−1 )δxL
t (ξ)

= −ηχt−1 x
L
t−1x

L
t (ξ)︸ ︷︷ ︸

Θ(n)

+WL+1
0 δxL

t (ξ)︸ ︷︷ ︸
Θ(1)

+∆WL+1
t−1 δxL

t (ξ)︸ ︷︷ ︸
Θ(n1/2)

= Θ(n1/2),

δft(ξ) = σ(f̃t−1 + δf̃t)− σ(f̃t−1) = Θ(1).

2 layer networks. Observe that in 2 layer nets, there are no hidden layers, so that a larger learning
rate can be chosen. Let η = Θ(nc). Then in the first step, δh1

1 = Θ(η ∂f
∂h1

0
) = Θ(ncn−1/2).

But note that the gradient scaling may grow after the first step, ∂f
∂xL

1
= WL+1

1 = Θ(nc), so that

δh1
2 = Θ(ncnc). Hence activation stability requires η = O(1), which results in feature learning after

2 steps δx1
2 = Θ(1). Then f̃t = Θ(η(xL

t−1)
⊤xL

t (ξ)) = Θ(n).

Random feature models. In random feature models, we only train the last layer and keep all other
weights fixed W l

t = W l
0 for all l ≤ L. There, by definition, we do not get feature learning and the

backward pass does not matter. The only gradient that matters is the last-layer gradient which has
fixed scaling Θ(χt−1x

L
t−1) = Θ(1) at all times t ≥ 0. The function update becomes δWL+1

t xL(ξ) =

−ηχt−1(x
L(ξt−1))

⊤xL(χ) = Θ(ncn), where the inner product between activations converges to
the NNGP kernel in the infinite-width limit. Hence large learning rates η = ω(n−1) result in
immediate extreme memorization of the training points ft(ξt−1) → one-hot(yt−1) as n → ∞, and
ηn = Θ(n−1) results in fully width-independent dynamics.

Adam. Adam with small enough ε normalizes the gradients in each layer before updating the weights.
Since the gradients ∇W lL = χ ∂f

∂hl (x
l−1)⊤ are generally correlated with the incoming activations

xl−1, their inner product accumulates Θ(fan_in). Non-vanishing correlation persists when only
recovering the signs of the gradient. Hence for a width-independent effect on the output of the current
layer, the learning rate should always be chosen as η(W ) = η

fan_in(W ) . Since both hidden and output
layers have fan_in = n, activation stability requires a global learning rate η = O(n−1), which
results in effective hidden and output layer learning, but vanishing input layer updates. Networks
recover input layer feature learning under η = Θ(1), where f̃t = Θ(n). In random feature models, η
just determines the extremeness of memorization of the training labels, where η = Θ(n−1) induces
width-independence and η = ω(n−1) increasing memorization.
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C.2 Measuring Alignment

Everett et al. (2024, Fig. 2) provides RMS-alignment exponents between weights Wt and incoming
activations xt. But only measuring the alignment between ∆Wt and xt as well as W0 and ∆xt from
(RCC) separately allows to evaluate the width-scaling predictions from Yang and Hu (2021).

For example hidden layers in µP scale as (W l
0)ij = Θ(n−1/2) at initialization, as 0-mean indepen-

dence induces CLT-like scaling

W l
0x

l−1
0 = Θ(n1/2 · ∥W l

0∥RMS · ∥xl−1
0 ∥RMS).

But updates are correlated with incoming activations, so that

∆Wtxt = Θ(n · ∥∆Wt∥RMS · ∥xt∥RMS),

which necessitates ∥∆Wt∥RMS = Θ(n−1). This implies that the entry size of Wt = W0 +∆Wt is
dominated by the initialization and confounds ∥Wt∥RMS for accurately measuring the alignment
exponent of the layer’s updates ∆Wt. For correct width-scaling of the layer’s learning rate, the
influence of W0 is irrelevant so that the joint alignment between Wt and xt does not reveal the
alignment exponent that is relevant for correct learning rate scaling.

Additionally, replacing the RMS-norm ∥A∥RMS by the operator norm ∥A∥RMS→RMS provides
a more natural measure of alignment (Bernstein and Newhouse, 2024), since the RMS-norm is
confounded by accumulated rank whereas under maximal alignment for the operator norm it holds
that ∥∆Wtxt∥RMS = ∥∆Wt∥RMS→RMS∥xt∥RMS , and the left-hand side is smaller under less
alignment. Under perfect alignment we expect the ratio ∥∆Wtxt∥RMS

∥∆Wt∥RMS→RMS∥xt∥RMS
to remain width-

independent. We are not interested in constant prefactors, but only width-dependent scaling.

C.3 Formal statements and proofs of Propositions 1 and 2

Before providing the full formal statements of Proposition 2 and Proposition 4, we formally introduce
all definitions and assumptions.

C.3.1 Definitions

In this section, we collect all definitions that do not appear in the main text. We adopt all definitions
from Yang and Hu (2021), up to minor modifications. If not stated otherwise, limits are taken with
respect to width n → ∞.
Definition C.2 (Big-O Notation). Given a sequence of scalar random variables c = {cn ∈ R}∞n=1,
we write c = Θ(n−a) if there exist constants A,B ≥ 0 such that for almost every instantiation of
c = {cn ∈ R}∞n=1, for n large enough, An−a ≤ |cn| ≤ Bn−a. Given a sequence of random vectors
x = {xn ∈ Rn}∞n=1, we say x has coordinates of size Θ(n−a) and write x = Θ(n−a) to mean the

scalar random variable sequence
{√

∥xn∥2 /n
}

n

is Θ(n−a). For the definition of c = O(n−a)

and c = Ω(n−a), adapt the above definition of c = Θ(n−a) by replacing An−a ≤ |cn| ≤ Bn−a

with |cn| ≤ Bn−a and An−a ≤ |cn|, respectively. We write xn = o(n−a) if na ·
√
∥xn∥2 /n → 0

almost surely. ◀

Definition C.3 (SGD update rule). Given a (L+1)-layer MLP with layerwise initialization variances
{σl}l∈[L+1] and (potentially) layerwise learning rates {ηW l}l∈[L+1], we define the SGD update rule
as follows:

(a) Initialize weights iid as (W l
0)ij ∼ N (0, σ2

l ).
(b) Update the weights via

W l
t+1 = W l

t − ηW l · ∇W lL (ft (ξt) , yt) .

◀

Definition C.4 (Parameterization). We define a width-scaling parameterization as a collection of
exponents {bl}l∈[L+1] ∪ {cl}l∈[L+1] that determine layerwise initialization variances σ2

l = Cl · n−bl

and layerwise learning rates ηl = η · n−cl , with width-independent constants Cl, η > 0 for all
l ∈ [L+ 1]. ◀
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Weight-multiplier version Weight-multiplier-free version
Input-like Hidden-like Output-like Input-like Hidden-like Output-like

SP
αl ·W l, αl ∝

-
1 1 1

N (0, σ2
l ), σl ∝ 1 n−1/2 n−1/2

ηl · ∇W lL, ηl ∝ n−c n−c n−c

NTP
αl ·W l, αl ∝ 1 n−1/2 n−1/2 1 1 1
N (0, σ2

l ), σl ∝ 1 1 1 1 n−1/2 n−1/2

ηl · ∇W lL, ηl ∝ 1 1 1 1 n−1 n−1

µP
αl ·W l, αl ∝ n1/2 1 n−1/2 1 1 1
N (0, σ2

l ), σl ∝ n−1/2 n−1/2 n−1/2 1 n−1/2 n−1

ηl · ∇W lL, ηl ∝ 1 1 1 n 1 n−1

Table C.1: (Common abc-parameterizations) Here, we collect standard parameterization (SP),
neural tangent parameterization (NTP) and the maximal update parameterization (µP) for SGD in
their multiplier version which purely adapts the architecture and allows width-independent global
learning rates (left) and in their weight multiplier-free version (right). Parameterizations differ in
their layerwise choice of width-dependent weight multipliers αl, initialization variances σl and
learning rates ηl. Weight multiplier-free representatives of an abc-equivalence class purely adapt the
optimization algorithm highlighting the fact that parameterizations effectively only induce layerwise
learning rates. Knowing that µP correctly scales the updates in all layers, observe that the input- and
hidden-layer learning rates in NTP induce vanishing updates. The same holds in SP when choosing
c ≥ 1 as is necessary for avoiding logit blowup in the infinite-width limit.

In Table C.1, we summarize the three most common parameterizations SP, NTP and µP (equivalent
to the mean-field parameterization).
Definition C.5 (Training routine). A training routine is a combination of base learning rate η ≥ 0,
training sequence {(ξt, yt)}t∈N and a continuously differentiable loss function L(f(ξ), y) using the
SGD update rule. ◀

Definition C.6 (Stability). We say a parametrization of a (L+ 1)-layer MLP is stable if

1. For every nonzero input ξ ∈ Rdin \{0},

hl
0, x

l
0 = Θξ(1), ∀l ∈ [L], and Ef0(ξ)2 = Oξ(1),

where the expectation is taken over the random initialization.
2. For any training routine, any time t ∈ N, l ∈ [L], ξ ∈ Rdin , we have

hl
t(ξ)− hl

0(ξ), x
l
t(ξ)− xl

0(ξ) = O∗(1), and ft(ξ) = O∗(1),

where the hidden constant in O∗ can depend on the training routine, t, ξ, l and the initial
function f0.

◀

Definition C.7 (Nontriviality). We say a parametrization is trivial if for every training routine,
ft(ξ)− f0(ξ) → 0 almost surely for n → ∞, for every time t > 0 and input ξ ∈ Rdin . Otherwise
the parametrization is nontrivial. ◀

Definition C.8 (Feature learning). We say a parametrization admits feature learning in the l-th
layer if there exists a training routine, a time t > 0 and input ξ such that xl

t(ξ) − xl
0(ξ) = Ω∗(1),

where the constant may depend on the training routine, the time t, the input ξ and the initial function
f0 but not on the width n. ◀

Definition C.9 (σ-gelu). Define σ-gelu to be the function x 7→ x
2

(
1 + erf

(
σ−1x

))
+σ e−σ−2x2

2
√
π

. ◀

In order to apply the Tensor Program Master Theorem, all Nonlin and Moment operations in the
NE⊗OR⊤ program (Yang and Littwin, 2023), which do not only contain parameters as inputs, are
required to be pseudo-Lipschitz in all of their arguments. For training with SGD, this is fulfilled as
soon as ϕ′ is pseudo-Lipschitz. σ-gelu fulfills this assumption.
Definition C.10 (Pseudo-Lipschitz). A function f : Rk → R is called pseudo-Lipschitz of degree d

if there exists a C > 0 such that |f(x)− f(y)| ≤ C∥x− y∥(1 +
∑k

i=1 |xi|d + |yi|d). We say f is
pseudo-Lipschitz if it is so for any degree d. ◀
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Finally, we differentiate relevant notions of maximal stable learning rates.
Definition C.11 (Maximal stable learning rates). Fix t ∈ N and consider any layerwise learning
rate scaling rule ηl = ηn · n−cl for l ∈ [L+ 1] with prescribed width-scaling exponents {cl}l∈[L+1]

and tunable global learning rate ηn = Θ(n−α) as we scale width n → ∞.

(a) Theoretical max-stable learning rate of a network. We define the theoretical maximal stable
learning rate exponent ᾱ of the network as the boundary to the catastrophic regime, that is there
exists a training routine and ξ ∈ Rdin such that for all α < ᾱ training with ηn = η ·n−α implies
∥ft∥RMS → ∞ and ∥xl

t∥RMS → ∞ a.s. after t steps for all l ∈ [L+ 1].
(b) Theoretical max-stable learning rate of a layer. We define the theoretical maximal stable

learning rate exponent ᾱl w.r.t. layer l as the global learning rate scaling above which the layer’s
effective updates diverge, that is, given stable inputs ∥x∥RMS = Θξ(1) with maximal alignment
α∆W l

t ,x
= Θξ(1), there exists a training routine such that for all α < ᾱl training with a global

learning rate ηn = η · n−α implies ∥∆W l
tx∥RMS → ∞ a.s.

(c) Empirical max-stable learning rate. We softly define the empirical maximal stable learning
rate exponent ᾱ as the global learning rate exponent above which training diverges and the
network’s predictions degrade to random guessing.

◀

C.3.2 Full formal statements of Propositions 1 and 2

Assumptions. For all of the results in this section, we assume that the used activation function is
σ-gelu for σ > 0 sufficiently small. For small enough σ > 0, σ-gelu (Definition C.9) approximates
ReLU arbitrarily well. We assume constant training time t ≥ 1 as width n → ∞. We assume batch
size 1 for clarity, but our results can be extended without further complications to arbitrary fixed
batch size.
Proposition C.12. (Asymptotic regimes in SP) For fixed L ≥ 2, t ≥ 1, η > 0, α ∈ R, consider
training a (L+ 1)-layer MLP of width n in SP with SGD and global learning rate ηn = η · n−α for
t steps. Then the logits ft, training loss L(ft(ξt), yt), loss-logit derivatives χt := ∂fL(ft(ξt), yt),
loss-weight gradients ∇l

t := ∇W lL(ft(ξt), yt) and activations xl
t, l ∈ [L], after training scale as

follows in the infinite-width limit n → ∞. The hidden constants in O∗,Ω∗ and ω∗ below can depend
on the training routine, t, ξ, l and the initial function f0.

Under cross-entropy (CE) loss, three qualitatively distinct regimes arise:

(a) Stable regime (α ≥ 1): For any training routine, all l ∈ [L] and any ξ ∈ Rdin , it holds
that ∥ft(ξ)∥RMS = O∗(1), |L(ft(ξt), yt)| = O∗(1), ∥χt∥RMS = O∗(1), ∥∇l

t∥RMS =
O∗(n

−1/2) and ∥xl
t(ξ)∥RMS = O∗(1).

(b) Controlled divergence ( 12 ≤ α < 1): For any training routine, all l ∈ [L] and any
ξ ∈ Rdin , it holds that ∥nα−1 · ft(ξ)∥RMS = O∗(1), ∥xl

t(ξ) − xl
0(ξ)∥RMS = O∗(1),

|L(ft(ξt), yt)| = O∗(1), ∥χt∥RMS = O∗(1) and ∥∇l
t∥RMS = O∗(n

−1/2). In addition,
there exists a training routine and input ξ such that ∥nα−1 · ft(ξ)∥RMS = Ω∗(1).

(c) Catastrophic instability (α < 1
2 ): For any l ∈ [L], there exists a training routine and a

ξ ∈ Rdin , such that ∥ft(ξ)∥RMS = ω∗(1), ∥xl
t(ξ)∥RMS = ω∗(1) and ∥∇l

t∥RMS = ω∗(1).

Under mean-squared error (MSE) loss, a stable regime as in (a) above arises if α ≥ 1. If α < 1,
training is catastrophically unstable as in (c) above and, in addition, there exists a training routine
such that |L(ft(ξt), yt)| = ω∗(1) and ∥χt∥RMS = ω∗(1).
Proposition C.13 (Under CE loss, SP with large learning rates learns features at large width).
Consider the setting of Proposition 2 of training a (L+1)-layer MLP with SGD in SP with global
learning rate ηn = η · n−α, α ∈ R, in the infinite-width limit n → ∞. The hidden constants in
O∗,Ω∗ and ω∗ below can depend on the training routine, t, ξ, l and the initial function f0.

(a) Under both MSE and CE loss in the stable regime (α ≥ 1), for any training routine, l ∈ [L]
and ξ ∈ Rdin it holds that ∥∆xl

t(ξ)∥RMS = O∗(n
−1/2).

(b) Under CE loss in the controlled divergence regime ( 12 ≤ α < 1), for any training routine,
l ∈ [L] and ξ ∈ Rdin it holds that ∥∆x1

t (ξ)∥RMS = O∗
(
n−1/2−α

)
, and ∥∆xl

t(ξ)∥RMS =

O∗
(
n1/2−α

)
. For any l ∈ [L], there exists a training routine and ξ ∈ Rdin such that

∥∆x1
t (ξ)∥RMS = Ω∗

(
n−1/2−α

)
, and ∥∆xl

t(ξ)∥RMS = Ω∗
(
n1/2−α

)
.

27



Remark C.14 (2-layer networks recover stable training dynamics and width-independent
feature learning at α = 0). Similarly, it can be shown that 2-layer MLPs remain activation stable
under width-independent learning rate scaling ηn = Θ(1). The controlled divergence regime is
given by 0 ≤ α < 1/2, with width-independent input layer feature learning at α = 0. Experimental
evidence in Appendix F.4 supports this maximal stable learning rate scaling prediction. ◀
Remark C.15 (Adam recovers stable training dynamics and width-independent hidden-layer
feature learning at α = 1). For Adam and L ≥ 2, an analogous NE⊗OR⊤-based proof (Yang and
Littwin, 2023) would show that ηn = Θ(n−1) recovers feature learning in all hidden layers l ∈ [2, L],
stable activations and loss-logit gradients, while logits blow up only through WL+1

0 ∆xL
t = Θ(n1/2).

To avoid logit blowup, ηn = Θ(n−3/2) would be necessary. In that case, only the term WL+1
0 ∆xL

t
would contribute non-vanishingly to the logit updates. Hence, for Adam under CE loss, the controlled
divergence regime is given by 1 ≤ α < 3/2, with hidden-layer feature learning at α = 1. ◀

C.3.3 Proof of Propositions 1 and 2

The proof in Yang and Hu (2021) for general stable abc-parameterizations directly covers the stable
regimes of both losses, showing a kernel regime and vanishing feature learning for α ≥ 1.

For the controlled divergence regime under CE loss, however, note that the TP framework does not
allow diverging computations. Here, we need to replace the logit updates by rescaled logit updates,
before computing the softmax limit outside of the TP framework.

Formally, under standard initialization, WL+1
0 ∼ N(0, 1/n) is replaced in the TP by ŴL+1

ε con-
structed via Nonlin, conditioning on f0(ξ) (see Yang and Hu (2021, Appendix H) for all details). For
stable parameterizations, the function updates are defined in the TP as

δf̂t = θ′L+1

δWL+1
t xL

t

n
+ θ′Lf

ŴL+1
t−1 δxL

t

n
,

where θ′L+1 = n1−α and θ′Lf = n1−r−bL+1 . In the controlled divergence regime α < 1, we now
define rescaled logit updates in the TP as

δf̂t = θ̂L+1
δWL+1

t xL
t

n
+ θ̂Lf

ŴL+1
t−1 δxL

t

n
,

by replacing θ′L+1 by θ̂L+1 := θαθ
′
L+1 and replacing θ′Lf by θ̂Lf := θαθ

′
Lf , where θα := nα−1.

The adapted pre-factors ensure that δf̂ remains O∗(1) for a well-defined TP. The TP master theorem
now implies almost sure convergence of the rescaled logit updates δf̂t → δ̊f̂t ∈ Rdout a.s.

Now we compute the softmax limit outside of the TP framework, as we want to recover the softmax
values of the original diverging logits. Thus, given the convergent sequence δf̂t → δ̊f̂t ∈ Rdout a.s.,
due to the smoothness and saturation properties of the softmax it follows that there exists a χ̊t ∈ Rdout

such that σ(θ−1
α · δf̂t)− yt → χ̊t a.s. Since |σ(θ−1

α · δf̂t)− yt| ≤ 1 + |yt| and |χ̊t| ≤ 1 + |yt|, this
sequence can again be used as a TP scalar. Now the last-layer weights are TP vectors updated with
δWL+1

t = −ηnχtx
L
t which do not change the scaling of ŴL+1

t = ŴL+1
t−1 + θL+1/f · δWL+1

1 with
θL+1/f ≤ 1 as long as α ≥ 1/2. Thus the backward pass scalings are not affected and the rest of the
TP can remain unchanged.

For larger learning rates α < 1/2 under CE loss, we provide heuristic scaling arguments. Observe
that preactivations diverge after the first update step δh2

1 = −ηn
∂f0
∂h2 (x

1
0)

⊤x1
1 = Θ(n1/2−α). The

updates of the next hidden layer’s preactivations scale even larger, that is δh3
1 = −ηn

∂f0
∂h3 (x

2
0)

⊤x2
1 =

Θ(n2(1/2−α)). In this way, the exponent growth continues throughout the forward pass. But even
if there is only a single hidden layer, the scaling of the backpropagated gradient is increased after
the second step, ∂f2

∂xL = W0 − ηnχ0x
L
0 − ηnχ1x

L
1 = Ω(ηnχ1δx

L
1 ) = Ω(n1/2−2α) = ω(n−1/2).

This, in turn, increases the preactivation update scaling δh2
3 = −ηn

∂f2
∂h2 (x

1
2)

⊤x1
3 = Ω(n−α ∂f2

∂xLn) =

Ω(n3(1/2−α)), which in turn increases the gradient scaling in the next step, inducing a feedback
loop of cascading exponents between diverging activations and gradients, inducing fast training
divergence.

Under MSELoss, observe how, already for α < 1, diverging logits δf1 = WL+1
0 δxL

1 −
ηnχ0(x

L
0 )

⊤xL
0 = Θ(n1−α) increase the gradient scaling through χ1 = f1−y1 = Θ(n1−α) which in
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turn increases the activation as well as logit scaling in the next step, and induces a divergent feedback
loop even worse than above.

C.4 Scaling dynamics in 2-layer linear networks

Here, we rederive the training dynamics of the minimal model from Lewkowycz et al. (2020) that
shows an initial catapult mechanism in NTP. They observe that the training dynamics of repeatedly
updating a 2-layer linear network in NTP on the same training point is fully captured by update
equations of the current function output tt and the current sharpness λt.

C.4.1 Deriving the update equations for SP, NTP and µP

NTP. The original model by Lewkowycz et al. (2020) is given by

f = n−1/2vux,

where u ∈ Rn×d, v ∈ Rn are initialized as uij , vi ∼ N(0, 1) and trained with MSE loss L(f, x, y) =
1
2 (f(x)− y)2, loss derivative χt = f(x)− y and a global learning rate η.

Repeated gradient descent updates using (x, y), then results in the update equations,

ft+1 = ft(1 + n−1η2χ2∥x∥2)− ηχtλt,

λt+1 = λt + n−1ηχt∥x∥2(ηχt∥x∥2λt − 4ft),

where the update kernel is defined as

Θ̃(x, x′) = n−1(∥u∥2 + ∥v∥2).

Note that the width-dependence in ft and λt results in qualitatively different behaviour in the infinite-
width limit. In particular, in the limit, the sharpness cannot evolve over the course of training,
λt = λ0.

Maximal Update Parameterization. We define a 2-layer linear network in µP with arbitrary weight
multipliers as

f = v̄ūx,

with reparameterization-invariant weights ūij ∼ N(0, 1/din) and v̄i ∼ N(0, 1/n2), ū =
n−auu, v̄ = n−avv, and the original weights u, v are trained with MSE loss and layerwise learning
rates ηu = ηn1+2au and ηv = ηn−1+2av , which results in reparameterization-invariant layerwise
learning rates η̄u = ηn and η̄v = ηn−1.

Formally, we now perform updates on u and v, but we can work with ū and v̄ instead. For gradients
it holds that ∂f

∂u = ∂f
∂ū

∂ū
∂u = ∂f

∂ūn
−au ; this width scaling has to be accounted for when transitioning

between representatives of the µP equivalence class. For updates η̄u, η̄v should be used instead of
ηu, ηv, as the layerwise learning rate rescaling was exactly chosen to cancel out the effect of the
weight rescaling,

ūt+1 − ūt = −n−auηu
∂f

∂ū

∂ū

∂u
= −n−2auηu

∂f

∂ū
= −η̄u

∂f

∂ū
.

The derivatives for backpropagation are given by,

χt :=
∂L

∂f
= f(xt)− yt,

∂f

∂v̄
= x⊤ū⊤,

∂f

∂ū
= v̄⊤x⊤.

The updated weights are then given by

v̄t+1 = v̄t − ηn−1χtx
⊤ū⊤, ūt+1 = ūt − ηnχtv̄

⊤x⊤.

In the case din = 1, the updated function is then given by

ft+1 = v̄t+1ūt+1x = ft + η2χ2
tx

⊤ū⊤v̄⊤x⊤x− η̄uχtv̄v̄
⊤x⊤x− η̄vχtx

⊤ū⊤ūx

= ft
(
1 + η2χ2

t∥x∥2
)
− ηχt

(
n∥v̄∥2 + n−1∥ū∥2

)
∥x∥2
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= ft
(
1 + η2χ2

t∥x∥2
)
− ηχtΘ̃(x, x),

where we call Θ̃ the reparameterization-invariant update kernel defined as

Θ̃(x, x′) =
∑
l

ηl
η

∂f(x)

∂W l

∂f(x′)

∂W l
= x⊤(n−1∥ū∥2 + n∥v̄∥2

)
x′.

The update kernel evolves via the reparameterization-invariant update equation

λt+1 = Θ̃t+1(x, x) = ∥x∥2
(
n∥v̄t+1∥2 + n−1∥ūt+1∥2

)
= ∥x∥2

(
n∥v̄t∥2 + n−1∥ūt∥2 + n−1η̄2uχ

2
t v̄v̄

⊤x⊤x

−2nη̄vχtv̄ūx+ nη̄2vχ
2
tx

⊤ū⊤ūx− 2n−1η̄uχtv̄ūx
)

= λt + ∥x∥2
(
η2χ2

t∥x∥2(n−1∥ū∥2 + n∥v̄∥2)− 4ηχtft
)

= λt + ∥x∥2
(
η2χ2

tλt − 4ηχtft

)
= λt + ∥x∥2ηχt

(
ηχtλt − 4ft

)
.

Now note that, even under f0 = 0, we get non-trivial, width-independent dynamics. Due to the LLN,
at initialization, we have n−1∥ū0∥2 ≈ 1 and n∥v̄0∥2 ≈ 1 (=n−1 times sum over n iid χ2 variables),
hence λ0 ≈ 2.

To conclude, the training dynamics for repeatedly updating with the same training point (x, y) are
fully described by the update equations,

ft+1 = ft
(
1 + η2χ2

t∥x∥2
)
− ηχtλt, (C.1)

λt+1 = λt + ∥x∥2ηχt

(
ηχtλt − 4ft

)
. (C.2)

This can be rewritten in terms of the error (or function-loss derivative under MSE loss) χt = ft − y,
akin to Kalra et al. (2025), as

χt+1 = χt

(
1− ηλt + η2∥x∥2χt(χt + y)

)
, (C.3)

λt+1 = λt + ∥x∥2ηχt

(
ηχtλt − 4(χt + y)

)
. (C.4)

First observe that all terms in the update equations become width-independent in µP. Only the initial
conditions are width-dependent with vanishing variance, f0 = Θ(n−1/2). As opposed to NTP, the
sharpness update term η2χ2

t∥x∥2 is not vanishing anymore. While Lewkowycz et al. (2020) simply
use labels y = 0, non-trivial dynamics in µP require y ̸= f0 → 0.

Importantly, ηχt always appear jointly, so that interpolation effectively reduces the learning rate.

Remark C.16 (Characterizing sharpness increase: Critical threshold depends on the labels.).
When both sharpness and the loss increase, then training diverges as the learning rate lies even further
from its edge of stability. In µP, since f0 → 0, λt will grow in the first step. For subsequent steps,
the sharpness update equation (C.4) implies that sharpness increases (λt+1 ≥ λt) if and only if
λt ≥ 4

η (1 +
y
χ ) =

4
η

ft
χt

. Kalra et al. (2025) provides a more extensive analysis of the dynamics and
fixed points of this model in µP. ◀

Remark C.17 (Weight multipliers). A natural choice of weight multipliers for µP can be considered
to be al = 1/2 · I(l = L+1)− 1/2 · I(l = 1), as this choice allows using a width-independent global
learning rate ηn = η · n0, and the update kernel does not require width-dependent scaling factors,
Θ̃(x, x′) = x⊤(∥u∥2+∥v∥2

)
x′. In other words, under these weight multipliers, width-independence

in parameter space translates into width-independence in function space. ◀

Standard Parameterization. We define training a 2-layer linear network in SP with global learning
rate scaling n−c as

f = v̄ūx,
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with initialization ū ∼ N(0, 1/din), v̄ ∼ N(0, 1/n) and global learning rate η̄u = η̄v = ηn−c.
Parameter multipliers affect all scalings in the same way as for µP. Only the learning rate has a
different prefactor, and the last layer has larger initialization. The adapted update equations become

ft+1 = ft(1 + n−2cη2χ2∥x∥2)− n1−cηχtλt,

λt+1 = λt + ∥x∥2n−cηχt(n
−cηχtλt − 4n−1ft),

where we define, as for NTP,

Θ̃(x, x′) = n−1(∥ū∥2 + ∥v̄∥2),

where n−1∥v̄∥2 ≈ n−1 at initialization (n−2 times sum over n iid χ2-variables with positive mean).

Choosing c < 1 results in output blowup of the term n1−cηχtλt. While this can in principle be
counteracted by shrinking λt at finite width, a well-defined stable and non-trivial infinite-width limit
is only attained at c = 1, where ft+1 = ft − ηχtλt and λt+1 = λt. We now show that also at finite
width, stable training with a constant learning rate in SP requires η = O(n−1).

C.4.2 Finding the maximal stable learning rate scaling by characterizing the conditions for
loss and sharpness decrease

The following proposition characterizes the choices of η that result in a decrease in loss at any present
state.

Writing nsp =

{
n, in SP,
1, else,

nntp =

{
n, in NTP,
1, else,

, we can write the update equations of parameter-

izations jointly as

χt+1 = χt(1− nspηλt + n−1
ntpη

2χ∥x∥2(χt + y)),

λt+1 = λt + ηχt∥x∥2n−1
ntp(ηχtλt − 4n−1

sp (χt + y)).

Proposition C.18 (Characterizing loss decrease in SP and NTP). Let η ≥ 0. For nsp or nntp

large enough, we write the update equations of repeatedly updating the uv-model with SGD on the
training point (x, y) with ∥x∥ = 1 in SP or NTP jointly as provided above. The loss decreases at any
step, omitting time t,

1. in the case f(f−y) ≥ 0, if and only if η ≤ 2
nspλ

+O(n−3
sp n

−1
ntp) or η ∈ [

nspnntpλ
∥x∥2χf − 2

nspλ
−

O(n−3
sp n

−1
ntp),

nspnntpλ
∥x∥2χf ],

2. in the case, f(f − y) < 0, if and only if η ≤ 2
nspλ

−O(n−3
sp n

−1
ntp).

It holds that λt+1 ≥ λt if and only if λt ≥ 4
nspηt

(1 + y
χt
).

Remark C.19 (Instability in SP). The crucial insight from Proposition C.18 for SP is that both
loss and sharpness increase early in training as soon as η = ω(n−1), unless an extensively large
learning rate that depends on the current sharpness, training point and output function, is accurately
chosen at each time step in a slim interval of benign large learning rates, which is unlikely to hold in
practice. Figure C.2 shows that in simulated training with constant learning rates, the maximal stable
learning rate indeed scales as Θ(n−1). This instability prediction is in line with the infinite-width
prediction from Yang and Hu (2021), and hence does not explain large learning rate stability in SP in
practice. Figure C.3 shows that the learning rate scaling ηn = η0 · n−1 induces an asymptotically
width-independent instability threshold for η0, asymptotically constant sharpness in the kernel regime,
and that small widths diverge at smaller η0 due to diverging sharpness. ◀

Proof. From the update equations, it holds that λt+1 ≥ λt if and only if ηtnntpχt(ηtχtλt− 4
nsp

ft) ≥
0 if and only if λt ≥ 4

nspηt
(1 + y

χt
).

Observe that the loss decreases if and only if |χt+1| ≤ |χt|, which holds if and only if |1− nspηλt +

η2n−1
ntpχ∥x∥2(χt + y)| ≤ 1, which can be written as, omitting all subscripts ·t,

η2n−1
ntp∥x∥2χf − ηnspλ ∈ [−2, 0].
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Assuming η ≥ 0, the above holds if and only if
(
ηχf ≤ nspnntpλ

∥x∥2 and n−1
ntpη

2∥x∥2χf − ηnspλ ≥
−2

)
. The first constraint is a mild one that states η = O(n). We will now focus on the second one.

Solving for the roots of this polynomial in η, we get

η1,2 =
1

2∥x∥2χf

(
nntpnspλ±

√
n2
ntpn

2
spλ

2 − 8∥x∥2nntpχf
)
.

Assuming n2
spnntpλ

2 ≫ 8∥x∥2χf =: C, we get nspnntpλ
√
1− C

n2
spnntpλ2 ≈ nspnntpλ(1 −

C
2n2

spnntpλ2 − 1
4 (

C
n2
spnntpλ2 )

2). In that case η1 ≈ 2
nspλ

and η2 ≈ nspnntpλ
∥x∥2χf − 2

nspλ
.

Hence, if χf ≥ 0, we get loss decrease if η ≤ 2
nspλ

+ O(n−3
sp n

−1
ntp) or η ∈ [

nspnntpλ
∥x∥2χf − 2

nspλ
−

O(n−3
sp n

−1
ntp),

nspnntpλ
∥x∥2χf ].

If χf < 0, we get loss decrease if η ∈ [
nspnntpλ
∥x∥2χf − 2

nspλ
+O(n−3

sp n
−1
ntp),

2
nspλ

−O(n−3
sp n

−1
ntp)], where

the left end of the interval is negative. The upper end resembles the edge of stability that vanishes as
n−1
sp for SP but not for NTP.

Note the interesting slim regime of benign large learning rates η ≈ nλ
∥x∥2χf − 1

nspλ
= Θ(n) when

f(f − y) > 0. As all of the involved quantities are known at training time, an adaptive learning
rate schedule may significantly speed up training by stable learning with excessive learning rates.
However it remains unclear whether a similar regime exists in practical architectures under CE loss.
In that case, the sharpness computation would also be much more computationally expensive.

Figure C.2: Stable SP. ft (left) and λt (center) after training to convergence for several widths. The
largest stable learning rate for SP indeed scales as n−1 (right). When lines end, training diverged for
larger learning rates. The first subplot shows that training has succeeded in memorizing the training
label y = 1 at the optimal learning rate at all widths. The second subplot shows that the randomness
in λt due to random initial conditions vanishes with increasing width, as SP is approaching its kernel
regime.
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Figure C.3: Stable SP dynamics. ft (top) and λt (bottom) over the course of training in SP with
ηn = η0 · n−1 for several widths, where η0 = 1 in the gradient flow regime (left), η0 = 1.9 close to
the edge of stability (center) and η0 = 2.1 above the edge of stability (right). Smaller widths tend
to diverge at smaller learning rates due to sharpness divergence due to the non-vanishing term in
the sharpness update. The learning rate scaling ηn = Θ(n−1) leads to asymptotically consistent
dynamics. This shows that larger learning rate scaling would induce divergence. Asymptotically
SP with ηn = Θ(n−1) lies in the kernel regime and the sharpness stays constant over the course of
training. Edge of stability oscillations do not enable larger learning rate scaling under MSE loss.

D Experimental details

If not otherwise specified, we train a single epoch to prevent confounding from multi-epoch overfitting
effects.

D.1 MLPs

We implement our MLP experiments on MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky et al.,
2009) in PyTorch (Paszke et al., 2019). We train ReLU MLPs with the same width n in all hidden
dimensions with plain SGD/Adam with a single learning rate for all trainable parameters, batch
size 64 without learning rate schedules, weight decay or momentum to prevent confounding. We
use Adam with the PyTorch standard hyperparameters. By standard initialization we mean He
initialization variance cϕ/fan_in with cϕ = 2 for the ReLU activation function (He et al., 2015).

D.2 Multi-index data

For some experiments in Appendix F, we generate multi-index teacher data, inspired by Kunin et al.
(2024), but setting a deterministic teacher for ensuring a balanced classification task.

We draw the covariates ξ ∼ U(Sdin−1) i.i.d. from the uniform distribution on the unit sphere in Rdin

with input dimension din = 100. The training set consists of 103 training points. We also draw a test
set consisting of 104 test points.

For the target function f∗, drawing 3 random directions as in Kunin et al. (2024) results in heavily
unbalanced classes and f∗ = 0 on large part of the support with high probability. Instead, we
set 4 teacher neurons deterministically for less noisy results. The teacher net is a shallow ReLU
network given by f∗(ξ) = sign(

∑4
i=1 siϕ(w

⊤
i ξ)) with unit vectors w1 = e1, w2 = e2, w3 = −e1,

w4 = −e2 and signs s1 = s3 = +1 and s2 = s4 = −1. This results in the nonlinear target function
f∗(ξ) = sign(ξ1 − ξ2) for all ξ ∈ Rdin with ξ1 > 0 or ξ2 > 0, but f∗(ξ) = sign(ξ2 − ξ1) for all
ξ ∈ (−∞, 0)× (−∞, 0). We do not use label noise.

This dataset requires learning to align with the first 2 covariate dimensions (ξ1, ξ2), where all of the
signal for the labels f∗(ξ) lies. If the input layer does not learn to align with these dimensions, the
sparse signal is obscured in the activations (random features) after the first layer due to the large
variance in the remaining covariate dimensions.
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D.3 Language modeling

We train small Transformer models (Vaswani et al., 2017) using LitGPT (Lightning AI, 2023). We
adapt the Pythia (Biderman et al., 2023) architecture with 6 Transformer blocks, standard d_head−1/2

attention scaling, pre-attention and qk-Layernorm (Wortsman et al., 2024). We purely scale width,
proportionally scaling the number of attention heads and the MLP hidden size while keeping the
number of layers and head dimension d_head= 32 fixed. For widths 256, 1024 and 4096, this results
in 8, 32 and 128 heads per Transformer block and a total of 30M , 167M and 1.4B parameters.

Standard training means AdamW with a single, tuned maximal learning rate, (β1, β2) = (0.9, 0.95),
ε = 10−12, sequence length 512, batch size 256, 700 steps of warmup followed by cosine learning
rate decay to 10% of the maximal learning rate, weight decay 0.1, gradient clipping. We train for
10681 steps in mixed precision on the DCLM-Baseline dataset (Li et al., 2024). We train all models
on the same number of tokens to prevent confounding effects from increased training time.

D.4 Figure Details

Figure 1: The training accuracy of 8-layer MLPs is averaged over 4 runs to reduce noise from random
initialization. The training loss of GPT trained with SGD is averaged over 3 runs. GPT with Adam
was only run once.

Figure 2: In the left subplot, cl = 1 for normalization layers, since they act like diagonal matrices and
do not accumulate fan_in-dependent scaling. For all other layers, we expect LLN-like scaling cl =
fan_in, which is the length of the inner products between weight updates and incoming activations.
For determining the correct layerwise learning rate scaling, what matters is how much of the expected
alignment exponent is lost at finite width in a single update step. For the first step, we measure the
barely width-dependent exponents 0.01, −0.08 and −0.08 for the last Layernorm, the MLP and
readout layer, respectively, suggesting that maximal width-dependent alignment approximately holds,
so that infinite-width scaling predictions are useful for determining layerwise learning rate scaling
rules. The readout layer and last Layernorm layer are chosen due to their particular importance for
logit blowup. The MLP layer was chosen to add a layer that scales hidden-like. This layer was not
cherry picked. We observe other MLP layers to have similar scaling properties.

Figure 4: 3-layer MLP trained with SGD on CIFAR-10 with width-dependent learning rate ηn =
0.0001 · n−0.5. Averages over 4 random seeds.

Figure 5: Learning rate sweeps for GPT. SGD runs are averaged over 3 random seeds, due to
noisy individual outcomes. The results for Adam stem from a single random seed due to limited
computational resources. Minimal unstable learning rates are defined as the smallest learning rates
to produce loss worse than (optimal CE loss +1) at each width. The x-axes showing learning rates
are scaled as (n/256)α. In this way, the learning rate at base width 256 remains the same for
comparability of the constants. If the optimal or maximal stable learning rate indeed scales as
ηn = η · n−α, then the width-dependent scaling of the x-axis ηn · nα shows learning rate transfer.

Figure 6: Exponents are based on the learning rate curves provided in Appendix F.2 for GPT on
DCLM-Baseline and in Appendix F.3 for 8-layer MLPs on image data sets. For MLPs on MNIST
and CIFAR-10, we measure minimal unstable learning rates as the smallest learning rate larger than
the optimal one to produce NaN entries when using MSE loss, or accuracy < 20% under CE loss.
For GPT, we measure minimal unstable learning rates as the smallest learning rates that are larger
than the optimal one to produce loss worse than (optimal CE loss +1) at each width.

Figure 7: Shown is the training accuracy at the end of training for one epoch for the optimal learning
rate at each width.

E Refined coordinate checks

The standard coordinate check as provided in the readme of the mup-package Yang et al. (2022)
may be considered the plot of activation norms ∥xl

t∥RMS after t steps of training for all layers l

and the network output norm ∥f∥RMS with f := WL+1
t xL

t as a function of width. Completely
width-independent dynamics under µP then result in an approximately width-independent coordinate
check of all layers. However, width-dependence in the activations of previous layers would confound
the l-th layer activation scaling, so that measuring the effective l-th layer updates requires measuring
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∥∆W l
tx

l
t∥RMS in each layer, where one may be interested in the weight updates accumulated over

the entire course of training ∆W l
t = W l

t −W l
0 or the update in a single step δW l

t = W l
t −W l

t−1.
In standard architectures, one can equivalently measure the operator norm of the weight updates√
fan_in(W l

t )/fan_out(W l
t ) · ∥∆W l

t∥2→2
!
= Θ(1) (Yang et al., 2023a); however in non-standard

architectures such as Mamba this spectral condition has been shown to fail, so that, in the general
case, care should be taken in how exactly weight updates affect the output function (Vankadara et al.,
2024). The difference between ∥∆Wtxt∥ and the preactivation updates ∥∆(Wtxt)∥ is precisely
∥W0∆x∥RMS which measures the effect of updates propagating from previous layers.

All coordinate checks are run over 4 random seeds either at small learning rate or the optimal learning
rate η256 at base width 256 (after 1 epoch of training) on CIFAR-10. The learning rate is then scaled
in relation to that base width ηn = η · (n/256)α with a clean exponent α ∈ {−1,−0.5, 0}.

E.1 SGD

Figure E.1 shows the refined coordinate check for a 3-layer MLP in SP with global learning rate
scaling ηn = η · n−1/2. As predicted by Proposition 4, the input layer updates decay as n−1, the
hidden layer learns features width-independently, and the output scales as n1/2 which results in
one-hot predictions after the softmax in wide models, but not necessarily unstable training dynamics.

Both ∥∆W l
tx

l
t∥RMS and ∥∆W l

t∥RMS→RMS measure the effective update effect in the l-th layer
equivalently and accurately even in narrow MLPs of width 64. Naively tracking the activation updates
∆xl

t = xl
t − xl

0 however is confounded by non-vanishing feature learning in narrow models, and only
shows the correct hidden- and last-layer scaling exponents for n ≥ 4000, even after only a single
update step.

Figure E.1: (Hidden layer feature learning in SP under intermediate learning rate scaling)
Effective l-th layer update scalings ∥∆W l

tx
l−1
t ∥RMS (top), weight update spectral norm ∥∆W l

t∥∗
(2nd row) and activation updates δxl (bottom) of MLPs trained in SP with small learning rate
ηn = 0.0001 · (n/256)−1/2 scaled to preserve hidden-layer feature learning. The TP scaling
predictions are accurate. Hidden layers learn features width-independently, and input layers have
vanishing feature learning. At moderate widths, activation updates are confounded by previous layer
updates, and thus do not provide an accurate metric for effective update scaling.
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Figure E.2 shows a refined coordinate check for a 3-layer MLP in SP with width-independent
global learning rate scaling ηn = 0.0001 · n0. While infinite-width theory predicts the input layer
to learn width-independently and the hidden layer to explode as Θ(n), both empirical exponents
are n−1/2 smaller, so that the input layer has vanishing feature learning and the hidden layer is
still exploding. This ostensible contradiction is resolved when repeating the coordinate check but
initializing the last layer to 0 (Figure E.3). Now the predicted scaling exponents are recovered,
already at small width. The reason for this subtle but important difference is that the gradient that
is back-propagated is given by the last-layer weights, ∂f/∂xL = WL+1

t = WL+1
0 + ∆WL+1

t .
Under standard initialization at the optimal learning rate, the initialization WL+1

0 = Θ(n−1/2) still
dominates the updates ∆WL+1

t = Θ(ηn) in absolute terms after a few update steps at widths up
to 16384. Comparing the absolute scales of ∥∆W l

tx
l
t∥RMS or ∥W l

t∥∗ in both figures confirms this
hypothesis. The pure update effects in Figure E.3 have lower order of magnitude in the constant
before the scaling law, but follow clear scaling exponents. Therefore the faster scaling law under
last-layer zero initialization can be extrapolated with certainty to induce a phase transition under
standard initialization around width 4 · 107. We do not have sufficient computation resources to
validate this but arrive at this order of magnitude irrespective of whether we extrapolate the scaling
laws of ∥∆W l

tx
l
t∥RMS or ∥W l

t∥∗ as well as of the input or hidden layer laws. For base width n0

and width-dependent statistics ∆1
n and ∆2

n with differing scaling exponents c1 and c2, ∆1
n and ∆2

n

intersect at width n0 · (∆2
n0
/∆1

n0
)1/(c1−c2).

This consequential difference in empirical scaling exponents at realistic widths due to a subtle dif-
ference in last-layer initialization highlights the attention to detail that is required to make accurate
scaling predictions from infinite-width limit theory, but, as we show in this paper, apparent contradic-
tions can often be reconciled with enough attention to detail, and the clean scaling laws we arrive at
as a result already hold at moderate scales and prove the usefulness of investing this extra effort.

Hence, one reason why scaling exponents in SGD can be larger than predicted up to very large
widths, is due to differing orders of magnitude in the constant pre factors in the initialization
versus update terms in the backward pass. Without our refined coordinate check, the phase
transition around width 107 is hard to predict.
As predicted, the width-exponents of 2-layer nets behave like the input and output layer in 3-layer
nets (Figure E.4).

When choosing the optimal learning rate η256 = 0.03 at width 256, stronger finite-width effects due to
non-vanishing input layer feature learning already occur after a few steps and make the update scaling
exponents after 10 steps only visible at larger width n ≥ 2048 (Figure E.5). As long as divergence is
prevented in the first few steps, self-stabilization mechanisms such as activation sparsification can
quickly contain the initial catapult (Figure E.6). In deeper networks, explosion of several hidden
layers is increasingly difficult to stabilize, and finite width effects are reduced.

Figure E.6 shows the effective update rank and the alignment between activations at initialization
versus at time t for the same input training points under unstable width-independent learning rate
scaling. The updates in each layer are remarkably strongly dominated by a single direction. As
hidden-layer activations are slowly diverging, their alignment is only beginning to decrease at large
widths n ≥ 4096. The beginning instability of ∥∆x2∥RMS will eventually induce training instability
and suboptimal accuracy at large width, which is hard to predict without tracking the layerwise
effective update scaling across widths.
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Figure E.2: (Inaccurate exponent predictions under standard initialization with large learning
rate scaling) Effective l-th layer update scalings ∥∆W l

tx
l−1
t ∥RMS (top), weight update spectral

norm ∥∆W l
t∥∗ (2nd row) and activation updates δxl (bottom) of 3-layer MLPs trained in SP with

width-independent ηn = 0.0001. Hidden layer activation updates explode, and input layers have
vanishing feature learning. By TP scaling predictions, however, the input layer should learn features
width-independently. Instead, the TP scaling exponents are only accurate under last-layer zero
initialization, not under standard initialization (see Figure E.3 for last-layer zero initialization) as
the initialization scaling WL+1

0 = Θ(n−1/2) still dominates the update scaling ∆WL+1
t = Θ(ηn)

at realistic widths after a few updates under the optimal learning rate. Hence, the backpropagated
gradient ∂f/∂xL = WL+1

t , relevant for the hidden and input layer updates, behaves for a several
steps like it should only behave in the first step. By comparing the absolute scales here versus those
in Figure E.3 it becomes apparent that this is indeed a finite-width effect, as the absolute scale of
∥∆Wx∥2 here is on the order 10−1 and 10−2 for input and hidden layer, respectively, whereas
the pure update effects under last-layer zero initialization are of at most order 10−4 for both layer
types. Clearly for sufficient width, the differing scaling exponents will induce a phase transition
toward the predicted scaling exponents. While the input layer learns features width-independently
under last-layer zero initialization, as predicted by TP theory, this is not the case at realistic scales
under standard initialization. The qualitative statement that standard parameterization with width-
independent learning rates is not activation stable in deep networks is still accurate at moderate width.
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Figure E.3: (Accurate exponent predictions in SP with last-layer zero initialization under large
learning rate scaling) Same as Figure E.2 with width-independent ηn = 0.0001 but initializing the
last layer to zero. Here, the TP scaling predictions are accurate. Hidden layer activation updates
explode as n1, and input layers learn features width-independently. Observe a smaller absolute
scale of the pure update effects here versus in Figure E.1 that explains the differing exponents there.
The updates in the input and hidden layers vanish in the first step, as the gradient for backprop is
WL+1

0 = 0.

Figure E.4: (Shallow nets learn features width-independently under large learning rate scaling)
Same as Figure E.1 but for 2-layer MLPs trained in SP with width-independent ηn = 0.0003 with
standard initialization (left) and last-layer initialized to 0 (right). The input layer and output layer
scalings behave as in the 3-layer nets. Since there is no exploding hidden layer, activation stability is
preserved in 2-layer nets under ηn = Θ(1).
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Figure E.5: (Large finite-width effects at optimal learning rate in shallow 3-layer MLPs) At the
optimal learning rate η256 = 0.03 with width-independent scaling, non-vanishing input layer feature
learning confounds the scalings after few update steps up to moderate widths n ≤ 1024, similar to
Adam (Figure E.9).
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Figure E.6: (Activation sparsification at the optimal learning rate) Effective l-th layer update
ranks ∥∆W l

t∥F /∥∆W l
t∥∗, activation sparsity and cosine similarity between activations to each layer

comparing time 0 and time t on the same input training point and on differing training points in
the same batch of 3-layer MLPs trained with SGD in SP with width-independent learning rate
ηn = 0.03 as in Figure E.5. As opposed to the gradient flow regime, at the optimal learning rate,
there are significant self-stabilization effects at large width already after 10 steps through activation
sparsification but less through activation rotation.
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Figure E.7: (Full width-independence in µP) Effective l-th layer updates (top), effective update
ranks ∥∆W l

t∥F /∥∆W l
t∥∗ (second row) and cosine similarity between activations to each layer

comparing time 0 and time t on the same input training point (bottom) of 3-layer MLPs trained
with SGD in µP with width-independent learning rate ηn = 0.03. As expected, all statistics behave
width-independently. The effective update rank is remarkably small, as for SP. The activation are
rotated quite quickly.

E.2 Adam

With ηn = Θ(n−1/2), the optimal learning rate scaling for 3-layer MLPs with Adam on CIFAR-10 is
larger than predicted (Figure F.30). Figure E.9 shows that this may be due to large finite-width effects
for Adam at optimal learning rate multiplier η256 = 0.0003 and moderate width n ≤ 8192. While the
weight update spectral norm scales as predicted, the input-layer gets large updates at moderate width
(Figure E.10) and induces a strong rotation of the activations. As a result, the activation explosion
only sets in at large width n ≥ 8192. This qualitative change toward vanishing input layer feature
learning will result in a phase transition toward unstable scaling at large widths which is hard to
predict at small scale from measurements alone, except when measuring both ∥∆W l∥∗ and the
alignment ∥∆W lxl−1∥RMS .

As opposed to SGD, observe large finite-width effects in the activation updates even under small
absolute learning rate 10−6 at moderate width n ≤ 8192 (Figure E.8).
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Figure E.8: (Large finite-width effects from input-layer updates in Adam) Effective l-th layer up-
date scalings ∥∆W l

tx
l−1
t ∥RMS (top), weight update spectral norm ∥∆W l

t∥∗ (2nd row) and activation
update norm ∥δxl∥RMS (bottom) of 3-layer MLPs trained with Adam in SP with ηn = 10−6 · n−1/2.
Observe the theoretically predicted exponents in ∥∆W l∥∗ do not transfer to the activation updates at
moderate width n < 8192 due to large non-vanishing input layer updates at moderate width. Even
the effective updates ∥∆W l

tx
l−1
t ∥RMS do not perfectly align with the scaling law at infinite width,

indicating that the alignment between ∆W l
t and xl−1

t evolves non-trivially across width and that
the spectral norm ∥∆W l∥∗ and pure infinite-width predictions are less useful for explaining the
behaviour of Adam at moderate width.

42



Figure E.9: (Large finite-width effects from input-layer updates in Adam) Effective l-th layer
update scalings ∥∆W l

tx
l−1
t ∥RMS (top), weight update spectral norm ∥∆W l

t∥∗ (2nd row) and ac-
tivation update norm ∥δxl∥RMS (bottom) of 3-layer MLPs trained with Adam in SP with large
ηn = 0.0003 · n−1/2. Observe the theoretically predicted exponents in ∥∆W l∥∗ do not transfer to
the activation updates at moderate width n < 8192 due to large non-vanishing input layer updates at
moderate width. Even the effective updates ∥∆W l

tx
l−1
t ∥RMS do not perfectly align with the scaling

law at infinite width, indicating that the alignment between ∆W l
t and xl−1

t evolves non-trivially
across width and that the spectral norm ∥∆W l∥∗ and pure infinite-width predictions are less useful
for explaining the behaviour of Adam at moderate width.

Figure E.10: (Strong activation rotation under Adam at moderate width) Effective l-th layer
update ranks ∥∆W l

t∥F /∥∆W l
t∥∗ (top) and cosine similarity between activations to each layer

comparing time 0 and time t on the same input training point (bottom) of 3-layer MLPs trained with
ADAM in SP with large ηn = 0.0003 · n−1/2. The effective update rank is mostly growing in time in
the input layer. Already after a few steps, the first-layer activation coordinates are drastically rotated
at moderate widths. This induces a u-curve in the hidden-layer activations that inherit large rotation
from the input layer at moderate width and update too much at large width under ηn = Θ(n−1/2).
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E.3 Normalization layers and Adam provide robustness to miss-initialization

For MLPs trained with SGD, initialization greatly impacts the training dynamics as both the forward
and the backward pass are affected (Figure E.11). Large input layer initialization induces update
instability at large width, which is stabilized by extreme activation sparsification (Figure E.13).

By adding normalization layers, the forward pass can be enforced to scale width-independently. This
may affect the gradients. But the gradient norms become irrelevant under Adam with sufficiently
small ε. Adding both normalization layers and Adam to MLPs, observe that initialization is barely
relevant for update scalings (Figure E.12), and other downstream statistics such as activation sparsity
(Figure E.14). Here we use RMSNorm to fairly compare activation sparsity, but we expect LayerNorm
to induce the same scaling behaviour.

Figure E.11: (Initialization matters in MLPs with SGD) SP (top), SP with large input layer variance
2 (bottom). The initializations induce significant differences in the training dynamics. Large input
layer normalization becomes unstable at large width.

Figure E.12: (Differing initialization barely matters with normalization layers and Adam)
Update spectral norms of MLPs with the most basic normalization layer RMSNorm after every layer
trained with Adam and initialized with SP (top) versus SP with large input layer variance 2 (bottom).
Here, initialization barely impacts the update scaling.
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Figure E.13: (Big difference in activation sparsity under SGD) SP (top), SP with large input layer
variance 2 (bottom). Large input variance has to be stabilized by increased activation sparsity.

Figure E.14: (Activation sparsity barely affected under normalization) Same as Figure E.12 but
showing the fraction of activation entries that equal 0. Both initializations do not significantly sparsify
activations beyond 50%.

E.4 Alignment and update scaling in Transformers

For GPT in SP, alignment and update scaling follows the theoretical predictions: Hidden and output
layers diverge with width at constant learning rate (Figure E.15, top). At the optimal learning rate
where ηn → 0 (here only ηn = Θ(n−1) is shown), embedding and normalization layer updates
vanish with width (Figure E.16 and Figure E.15, bottom).

SP-full-align achieves approximately width-independent signal propagation in the language setting
dout ≫ n. Since we measure width-independent alignment αWL+1

0 ∆xL
t
= Θ(1) (Figures 2 and E.18),

under large output dimension dout ≫ n, the initial output layer operator norm ∥WL+1
0 ∥RMS→RMS

approximately scales Θ(1) (Vershynin, 2010), as opposed to Θ(n1/2) at sufficient width n ≫ dout.
The term WL+1

0 ∆xL
t therefore induces approximately width-independent logit updates even under

standard last-layer initialization, in the regime dout ≫ n (cf. Figure E.17), but it induces logit
divergence at sufficient width dout ≪ n.
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Figure E.15: (Effective updates follow predictions) Effective updates ∥∆Wtxt∥ for constant
learning rate scaling ηn = 0.01 (top) and stable learning rate scaling ηn = 0.01 · (n/256)−1 (bottom)
in GPT models of varying width (the darker, the wider) for the embedding layer, the first MLP layer
in the Transformer block 2, the last Layernorm before the readout layer and the readout layer (from
left to right). At constant learning rate, hidden and output layers diverge with width. At optimal
learning rate, embedding and normalization layer updates vanish with width.

Figure E.16: (Refined coordinate checks for GPT in SP with Adam and ηn = 0.01 ·n−1) From left
to right: Activation norm, activation updates, effective updates ∥∆Wtxt∥RMS , propagating updates
∥W0∆xt∥RMS after 2, 10, 100 and 700 batches of training (the darker, the more batches). Layers
from top to bottom: readout, last Layernorm, first MLP layer in Transformer block 2, embedding
layer. Infinite width-scaling predictions are accurate in all effective update terms ∥∆Wtxt∥RMS :
Embedding and Layernorm layers scale input-like and their updates vanish as Θ(n−1), all hidden
and output layers are effectively updated width-independently. Against the infinite-width prediction,
logit updates do not explode, not because of miss-alignment but because output dimension is much
larger than width dout ≫ n, which changes the approximate scaling of ∥WL+1

0 ∥RMS→RMS from
Θ(n1/2) in the infinite-width limit, to Θ(1) in the large output dimensional regime.
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Figure E.17: (Refined coordinate checks for GPT in SP-fullalign with Adam and width-
independent ηn = 0.003162) Same as Figure E.16 but for SP-full-align. The propagating update
and effective update terms in all layers scale approximately width-independently. The output layer
propagating updates do not diverge as in the large width regime n ≫ dout (Figure F.32). Here, instead,
due to the large output dimension dout ≫ n, ∥WL+1

0 ∥RMS→RMS is dominated by its other summand,
which induces approximately width-independent signal propagation at realistic widths.

Figure E.18: (Updates propagate maximally in the readout layer in SP-full-align) The operator
norm ratio for propagating activations in the readout layer for training GPT with AdamW in SP-
full-align with near-optimal learning rate ηn = 0.00316. The ratio is barely width dependent so
that propagated activations can be computed when knowing both ∥W0∥op = ∥W0∥RMS→RMS and
∥∆xt∥RMS .
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F Empirical learning rate exponents

F.1 Summary of the MLP experiments in this section

In general, the optimal learning rate exponent appears to be architecture- as well as data-dependent.
We conjecture that the optimal learning rate scaling is subject to opposing objectives. Ideally, the
effective updates in all layers scale width-independently. Since this cannot be achieved with a single
learning rate for input, hidden and output layers, the layer types act on the optimal learning rate
scaling as opposing forces.

SGD under MSE loss. For SGD under MSE loss, output blowup results in unstable training
dynamics so that the maximal stable and optimal learning rate robustly scales as ηn = Θ(n−1) across
architectures and datasets. As a consequence of vanishing feature learning, neither training nor test
loss monotonically improve with scale under MSE loss.

Random feature models. When only training the last layer, fully width-independent training
dynamics are achieved with ηn = η · n−1. Figure F.19 shows that this exponent clearly results in
learning rate transfer for 2-layer ReLU random feature networks on CIFAR-10. Also observe that
since all learning rate scalings recover activation-stability, larger than optimal learning rates still
result in non-trivial classification accuracy.

Deep MLPs. With an increasing amount of hidden layers, their width-independence eventually
outweighs input layer feature learning in vision datasets. For at least 6 layers, we see approximate
learning rate transfer under ηn = Θ(n−1/2) for SGD and ηn = Θ(n−1) for Adam as predicted for
width-independent hidden layer feature learning for both CIFAR-10 and MNIST.

Shallow ReLU MLPs at moderate width and (deep) linear networks are not useful proxy models
for deep nonlinear networks. For shallow MLPs, we often observe stronger finite-width effects than
for deeper networks causing larger than predicted optimal learning rate scaling at moderate width, as
divergence in fewer hidden layers can be stabilized over the course of training up to larger widths (cf.
Appendix E). In linear networks, on the other hand, feature learning is not essential as the learned
function always remains linear. Consequently we often observe that optimal learning rates decay
faster than maximal stable learning rates in (deep) linear networks even under CE loss (Figures F.20
and F.40). These differences between deep non-linear networks and toy architectures suggest that
shallow MLPs and deep linear networks do not serve as useful proxy models for practical non-linear
networks in terms of optimal learning rate exponents at moderate width.

Input layer task. Under multi-index data with a sparse signal and high-dimensional isotropic
covariates (explained in Appendix D.2), learning the two signal input dimensions is particularly
useful for good generalization. Appendix F.4 shows the predicted exponent ηn = η · n0 for input
layer learning in 2-layer MLPs. Deeper MLPs recover hidden layer stability with optimal learning
rate scaling ηn = Θ(n−1/2). Observe that generalization suffers when the input layer does not learn
to align with the signal dimensions, so that only the 2-layer MLP with CE loss generalizes well at
large width.

Standard initialization with µP learning rates (SP-full-align). While Everett et al. (2024) re-
port good transfer properties of SP-full-align, Appendix F.7 shows that the optimal learning rate
clearly shrinks across image datasets and our multi-index data. We also introduce a variant of this
parameterization that matches the n1/2 logit blowup rate from the term WL+1

0 ∆xt in the effective
last-layer updates by increasing the last-layer learning rate. This variant performs similarly well as
SP-full-align. In particular, both variants seem to be less learning rate sensitive than µP.

Adam learns features with ηn = η · n−1. Adam simplifies the learning rate scaling for weight W
to ηW = η/fan_in(W ), because the gradient is normalized but still correlated with the incoming
activations since the sign is preserved in each entry. Thus ηn = η/n is expected to induce width-
independent hidden- and output-layer learning, but vanishing input-layer learning since here fan_in
is fixed and hence would require constant learning rate scaling. As for SGD, we still observe the
optimal learning rate scaling ηn = η · n−1 in deep MLPs on MNIST and CIFAR-10 (Appendix F.6),
indicating that width-independence in hidden- and output-layer dominates input layer feature learning.
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F.2 Transformer experiments

As we consider single-pass training, training and validation loss approximately coincide, so that
statements about the training loss transfer to statements about the validation loss irrespective of the
optimizer. All figures in this section show training loss on the left and validation loss on the right.

Stabilizing techniques like gradient clipping can improve the absolute learning rate multiplier in front
of the scaling law, but do not seem to change the width-scaling exponent for SGD (Figure F.4 vs
Figure F.5).

Figure F.1: (Instability without qk-Layernorm) Train loss (left) and validation loss (right) of
single-pass AdamW training without qk-Layernorm. Training and validation loss approximately
coincide. Optimal learning rate scaling is dominated by the maximal stable learning rate scaling
that is at most Θ(n−1). But without qk-Layernorm, the stability threshold is decreasing faster than
Θ(n−1) even when increasing warmup length, so that it may be that the instability threshold would
decay beyond the ideal learning rate and performance suffers. As our computational budget does not
allow us to scale further, this setting remains inconclusive.

Figure F.2: (Large learning rate stability with qk-Layernorm) Same as Figure F.1 but with qk-
Layernorm as recommended by Wortsman et al. (2024). Training and validation loss approximately
coincide. The optimal learning rate seems to approximately transfer under ηn = η · n−1/2, so the
added Layernorm appears to stabilize learning at larger learning rate scaling, similar to the softmax
in CE loss.
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Figure F.3: (Smaller optimal learning rate exponents under fixed Layernorms) Same as Fig-
ure F.1 with qk-Layernorm as recommended by Wortsman et al. (2024), but all trainable Layernorm
parameters are fixed to initialization. Here only the embedding layer behaves input-like, so that all
other parameters learn width-independently under learning rate scaling Θ(n−1). While the optimum
is drifting toward larger learning rates, an increasingly large plateau of near-optimal learning rates
emerges at large width. Θ(n−1) still approximately captures the maximal stable learning rate scaling.

Figure F.4: (GPT trained with SGD has Θ(n−1/2)-learning rate scaling) Train loss (left) and
validation loss (right) of single-pass SGD training (averaged over 3 random seeds affecting weight
initialization and data shuffling). Training and validation loss approximately coincide. Hence
also validation-optimal learning rate scaling is dominated by maximal stable learning rate scaling
Θ(n−1/2) for hidden-layer stability.

Figure F.5: (Larger learning rates remain stable under gradient clipping) Same as Figure F.4 but
with gradient clipping. Performance is significantly improved as larger learning rate constants are
stable (observe similar performance as without gradient clipping at the same learning rate). Optimal
learning rate scaling is still dominated by the maximal stable learning rate scaling ηn = η · n−1/2 for
hidden-layer stability.
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Figure F.6: (No clean transfer under SGD in SP-full-align) Same as Figure F.5 but in SP-full-align.
The optimal learning rate tends to grow and saturate at the maximal stable learning rate which appears
to be roughly width-independent as predicted, but transfer is not ideal.

Figure F.7: (Optimal learning rate shrinks at large width under AdamW in SP-full-align) Same
as Figure F.2 (AdamW and trainable qk-Layernorm) but in SP-full-align. The optimal learning rate
initially transfers but starts to shrink at sufficient width. In Appendix F.7, the optimal learning rate
already decays at small width on image datasets with small output dimension.

Figure F.8: (Optimal learning rate exponent −1 as predicted under MSE loss) Same as Figure F.5
(SGD in SP with gradient clipping) but under MSE loss. The optimal learning rate appears to follow
ηn = η · n−1, as expected. Loss is worse than under CE loss.
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Figure F.9: (Large learning rate exponent in original GPT paper) Just plotting the reported
learning rate and d_model values from Brown et al. (2020) results in quite a stable scaling law with
exponent −0.648, which is larger than −1 required for hidden-layer stability but significantly smaller
than 0 required for width-independent embedding and normalization layer learning. But note that
jointly increasing batch size, n_layers and n_heads might be confounding factors here.

F.3 Learning rate sweeps corresponding to 8-layer MLPs

Here we provide all learning rate curves that correspond to the learning rate exponent tables of 8-layer
MLPs trained on image datasets (Figure 6). The curves corresponding to GPT on DCLM-Baseline
are provided in Appendix F.2. For SP under CE loss and MSE loss, Figures F.10 and F.11 show that
maximal stable learning rates approximately follow the predicted exponent −0.5 for CE loss and −1
for MSE loss, and even for the worst-fitting dataset CIFAR-10 the optimal learning rate saturates
at the maximal stable learning rate at realistic width 16384 (Figure F.13). Thus, for CIFAR-10, we
expect a regime transition when scaling further where the maximal stable learning rate constrains the
optimal learning rate to scale with exponent close to −0.5.

In all datasets, performance improves much more with scale under CE loss than under MSE loss,
under which feature learning is lost and the accuracy tends to asymptote at moderate scale. For GPT
on the DCLM-Baseline dataset with MSE loss, gradient clipping and normalization layers might
stabilize larger learning rates, but optimal learning clearly requires exponent −1. For SP-full-align
under CE loss, Figure F.12 shows that the maximal stable learning rate remains remarkably width-
independent (as predicted) on all four image datasets, but that the optimal learning rate decays with
differing exponents.

Figure F.10: (Learning rates decay slower under CE loss than under MSE loss) Width-scaled
learning rate versus training error for MNIST showing approximate transfer with ηn = η · n−1 under
MSE loss versus with ηn = η · n−1/2 under CE loss.
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Figure F.11: (Maximal stable learning rate dominates optimal learning rate at sufficient width)
Same as Figure F.10 but for FashionMNIST (left), CIFAR-10 (center) and TinyImagenet (right):
Training accuracy as a function of width-scaled learning rate of 8-layer ReLU MLPs trained with SGD
in SP under CE loss (top) and MSE loss (bottom). The maximal stable learning rate approximately
follows the predicted exponent −0.5 for CE loss and −1 for MSE loss, and the optimal learning
rate saturates close to the maximal stable learning rate at sufficient width. MLPs barely learn on
TinyImagenet when using MSE loss.

Figure F.12: (Optimal learning rate decays in SP-full-align) Training accuracy as a function of
learning rate of 8-layer ReLU MLPs trained with SGD in SP-full-align under CE loss on MNIST,
FashionMNIST, CIFAR-10 and TinyImagenet (from left to right). As predicted, the maximal stable
learning rate remains strikingly width-independent in all datasets, but the optimal learning rate decays
in all datasets.

Figure F.13: Learning rates decay slower under CE loss than under MSE loss. Optimal learning
rate (solid) and minimal unstable learning rate (dashed) for 8-layer MLPs on CIFAR-10, MNIST and
Fashion-MNIST corresponding to Figure F.11. Optimal learning rates are often close to max-stable
learning rates. Theoretical instability predictions ηn = O(n−1) for MSE loss and ηn = O(n−1/2)
for CE loss are surprisingly accurate. Even for CIFAR-10, the optimal learning rate saturates at the
maximal stable learning rate at realistic width 16384, so that it is expected to follow the maximal
stable learning rate scaling at larger widths.

53



MNIST Fashion-
MNIST

CIFAR-
10

Tiny
ImageNet

DLCM-
Baseline

CE loss Max-stable LR expon. -0.54 -0.7 -0.37 -0.33 -0.38
Optimal LR expon. -0.46 -0.55 0.07 -0.33 -0.38

MSE Max-stable LR expon. -0.9 -0.89 -0.77 - -0.50
Optimal LR expon. -0.98 -0.83 -0.9 - -1.05

SP-full-align Max-stable LR expon. 0.0 0.0 0.0 0.0 0.09
Optimal LR expon. -0.25 -0.35 -0.33 -1.45 0.21

Table F.1: Learning rate exponents at the edge of controlled divergence. Same data as in Figure 6,
but as a table. We do not compute exponents on TinyImageNet under MSE loss because the accuracy
of MLPs remains too close to random guessing.

F.4 MSE loss with softmax does not enable feature learning, but Adam does

CE versus MSE versus MSE+softmax. Here we train 2-layer and 3-layer ReLU MLPs on generated
multi-index teacher data as detailed in Appendix D. These data crucially differ from the other
considered datasets in that the target function only depends on the first 2 input dimensions. Due to
the isotropic covariate distribution, input layer feature learning is necessary for good generalization.
Hence we observe an approximate ηn ≈ Θ(1) scaling for 2-layer MLPs with CE loss, necessary
for preserving input layer feature learning (Figure F.14, left). 3-layer MLPs attain the maximal
activation-stable exponent ηn = Θ(n−1/2) in CE loss (Figure F.16, left). 2-layer MLPs preserve a
better validation accuracy compared to their training accuracy than deeper nets, as input layer learning
gets increasingly inhibited by Θ(1)-learning rate instability in the presence of hidden layers. Both for
shallow and deeper MLPs with MSE loss, we lose feature learning under the maximal output-stable
scaling ηn = Θ(n−1), as expected.

Figure F.14: (CE loss increases maximal stable learning rate scaling to Θ(1) in 2-layer nets)
Training accuracy (top) and validation accuracy (bottom) for a 2-layer MLP on generated multi-index
teacher data (mean over 4 seeds) with CE loss (left), MSE loss (center) and MSE loss with softmax
(right). The x-axis scales the learning rate with width-dependent exponents; observe approximate
transfer under Θ(1), Θ(n−1) and Θ(n−1) scaling, respectively. In the MSE plot, ending lines indicate
divergence for larger learning rates. MSE loss with softmax on the output does not increase optimal
learning rate scaling due to vanishing gradients and gets worse due to a lack of input layer feature
learning.
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Figure F.15: (CE loss increases maximal stable learning rate scaling to Θ(1) in 2-layer nets)
Optimal and maximal stable learning rate exponents corresponding to Figure F.14. Since 2-layer
MLPs do not contain hidden layers, the maximal stable learning rate under CE loss is determined by
input-layer stability ηn = Θ(1) (see Remark C.14). Under MSE loss, the maximal stable learning
rate is constrained by logit stability ηn ≈ Θ(n−1).

Figure F.16: (Cross-entropy loss increases maximal stable learning rate scaling to approximately
Θ(n−1/2) in 3-layer nets) Same as Figure F.14 but for a 3-layer MLP. The x-axis scales the learning
rate with width-dependent exponents; observe approximate transfer of the maximal stable learning
rate under Θ(n−1/2), Θ(n−1) and Θ(n−1) scaling, respectively. In the MSE plot, ending lines
indicate divergence for larger learning rates. Observe that wider networks generalize worse with
scale as they lose input layer feature learning.

In this setting, it becomes particularly apparent that using the MSE loss with a softmax applied to the
output of the network is not desirable (Figures F.14 and F.16, right). Ultimately, the only difference to
CE loss is that the loss derivative with respect to the network output f(ξ) := WL+1xL(ξ) becomes

(
∂L
∂f

)
j

=
∑
i∈[C]

(σ(f)i − yi)σ(f)i(δij − σ(f)j),

where the inner derivative of the softmax σi(δij − σj) vanishes as soon as the outputs diverge
|fi(ξ)− fj(ξ)| → ∞ on a training point ξ. Hence, while the softmax still mitigates output blowup in
the forward pass, the gradients vanish under output blowup. The CE loss, on the other hand, is exactly
the correct choice of loss function to cancel out the inner derivative of the softmax and effectively
view σ(f) as the output of the network, resulting in

(
∂L
∂f

)
j
= σ(f)j − yj .

Here vanishing gradients under output blowup in the MSE+softmax setting is so severe that output
blowup prevents learning under large learning rates and the optimal learning rate scales as Θ(n−1).
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Figure F.17: (Layernorm on logits also stabilizes large learning rates under MSE loss) 8-layer
MLPs trained with SGD (left) and Adam (right) on CIFAR-10 with MSE loss with Layernorm applied
to the logits. The Layernorm has a similar stabilizing effect as CE loss and allows learning with logit
blowup under ηn = Θ(n−1/2), but performance does not monotonically improve with width. For
Adam, hidden and output layers learn width-independently with ηn = Θ(n−1).

Figure F.18: (Large performance difference between losses for SGD in SP but not Adam) Optimal
training accuracy of 8-layer MLPs trained with SGD (left) and Adam (right) on CIFAR-10 (top) and
MNIST (bottom) with MSE loss (dashed lines) and CE loss (solid lines) in µP (blue) and SP (orange).
For SGD in SP, CE loss performs much better than MSE loss as large learning rates recover feature
learning at large widths. The performance in µP depends much less on the loss function since features
are always learned width-independently. In µP, MSE loss slightly outperforms CE loss, suggesting
that µP might benefit from exploring other loss functions. For ADAM, ηn = Θ(n−1) in SP remains
stable even under MSE loss and recovers hidden-layer feature learning so that the difference between
losses is much smaller.

In Figure F.17, we apply a Layernorm to the logits instead of a softmax. The Layernorm allows
learning despite logit blowup under ηn = Θ(n−1/2), but performance does not monotonically
improve with width either.

Adam reduces sensitivity to loss function. Figure F.18 shows that the big performance difference
between MSE loss and CE loss for SGD in SP is reduced if either (a) µP is applied to ensure width-
independent feature learning or (b) Adam in SP is used, which remains stable with ηn = Θ(n−1)
due to stable update scaling even under MSE loss, allowing width-independent hidden-layer feature
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learning. Observe that MSE loss outperforms CE loss in both µP and Adam in SP. This suggests that
exploring loss functions beyond CE loss might be promising when using µP and/or Adam. A more
detailed evaluation of Adam is provided in Appendix F.6.

F.5 SGD

F.5.1 Random feature models are optimal under stable learning rates

Figure F.19 shows that 2-layer random feature ReLU MLPs transfer under ηn = η · n−1 learning
rate scaling under any loss. Under CE loss, also larger learning rates result in non-trivial learning as
saturating the softmax does not harm training stability. Under MSE loss on the other hand, training
diverges above the edge of stability and results in trivial accuracy of 10%. Under MSE with softmax
on the output logits, a exploding logits induce vanishing gradients which also inhibits learning (see
Appendix F.4 for more details), and results in worse accuracy than under CE loss.

Figure F.19: (Random feature models approximately transfer under ηn = Θ(n−1) for SGD)
Training accuracy after one epoch of only training the last layer of 2-layer MLPs on CIFAR 10
with CE loss (left), MSE loss (center) and MSE loss with softmax (right). Observe approximately
width-independent dynamics with ηn = η · n−1 independent of the loss function or architecture used.
Note that also larger learning rates result in non-trivial generalization because there is no instability
caused by activation blowup. The larger learning rates are not optimal, because the usual benefits
of larger learning rates like increased feature learning or activation sparsity do not apply to random
feature models.

F.5.2 Linear networks are optimal under stable learning rates

Linear networks lack the ability to learn non-linear features for improved generalization at large
learning rates. Hence, small learning rates ηn ≈ Θ(n−1) are optimal for MNIST (Figure F.20), where
feature learning is lost, but activations and logits remain stable. Observe that also deeper linear MLPs
are only stable under O(n−1/2) as theoretically predicted.

Figure F.20: (In linear nets on MNIST, the optimal learning rate shrinks faster than the maximal
stable learning rate) Same as Figure F.22 but for linear nets. The maximal stable learning rate scales
similarly as for the non-linear nets, but the optimum approximately follows Θ(n−1). Irrespective of
the depth, linear MLPs can only learn a linear transformation; hence under sufficient width, feature
learning under large learning rates does not provide a benefit over mere last-layer learning.
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F.5.3 Small optimal learning rates under MSE loss

With MSE loss, observe a clear ηn = O(n−1) optimal and maximal stable learning rate exponent
irrespective of MLP depth (Figure F.21). Any blowup induces catastrophically cascading updates, so
that the stability threshold ηn = O(n−1) is strictly enforced at all depths, and the loss converges to
its kernel limit at moderate width for MLPs with at least 3 layers.

Figure F.21: (MSE loss on MNIST approximately transfers under Θ(n−1) learning rate scaling)
Both the optimal as well as the maximal stable learning rate approximately transfer under global
Θ(n−1) learning rate scaling when training 2, 3 or 10 layer MLPs (from left to right) with MSE loss
on MNIST. Loss is not improving as feature learning is lost under Θ(n−1) scaling. Especially in 2
layer nets, the input layer is learning features at small width, but not at large width, so that the loss
worsens with width. In 3 and 10 layer MLPs, on the other hand, the loss quickly converges with
width, which suggests fast convergence to the kernel limit under MSE loss.

F.5.4 Large optimal learning rates under CE loss

As theoretically predicted in Remark C.14, 2-layer MLPs transfer the optimal and maximal stable
learning rate ηn ≈ Θ(n0), where the input layer learns width-independently.

Figure F.22: (Deeper nets follow infinite width theory increasingly accurately) Training accuracy
after 1 epoch of training MLPs with 2, 3, 4, 6, 8 and 10 layers (from top-left to bottom right) on MNIST.
While 2, 3 and 4 layer MLPs self-stabilize under large learning rates Θ(n0) and approximately transfer
the optimum as well as max-stable learning rate, in 6, 8 and 10 layer MLPs it becomes increasingly
apparent that the maximal stable learning rate transitions towards Θ(n−1/2) to prevent hidden layer
blowup, which also forces the optimal learning rate to be O(n1/2) for at least feature learning in the
hidden layers. Hence the theoretical activation stability predictions hold more accurately in deeper
nets, with too many hidden layers to stabilize blowup in all of them.

For 3-layer RELU MLPs with CE loss on CIFAR-10, the maximal stable learning rate and the optimal
learning rate transfer over many widths before beginning to shrink at width 16384. At moderate
width and depth, strong self-stabilization mechanisms such as activation sparsification stabilize an
initial catapult at large learning rate (Figure E.6).

In increasingly deep networks, the maximal stable learning rate scaling ηn ≈ O(n−1/2) becomes
increasingly pronounced, as it becomes increasingly difficult to stabilize activation blowup in an
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increasing amount of hidden layers, and width-independent learning of increasingly many hidden
layers dominates (MNIST Figure F.22, CIFAR-10 Figure F.23).

Observe in all figures here that the optimal learning rate saturates at the maximal stable learning rate
at sufficient width.

Figure F.23: (Hidden-layer stability determines learning rate scaling in deep MLPs for SGD on
CIFAR-10) MLPs trained with SGD on CIFAR-10 with 4, 6, 8 and 10 layers (from left to right). First
two x-axes are width-independent, last two scaled by n1/2. While 4- and 6-layer MLPs self-stabilize
sufficiently for approximate transfer under width-independent learning rate scaling, 8- and 10-layer
MLPs have a max-stable learning rate scaling ηn ≈ O(n−1/2). The optimal learning rate saturates at
the maximal stable learning rate at sufficient width.

F.6 Adam stabilizes updates similar to CE loss

We first show µP as a baseline for learning rate transfer in MLPs on MNIST (Figure F.24).

Figure F.24: (µP as a baseline for transfer) 8-layer MLPs trained on MNIST with SGD (top) and
ADAM (bottom) under CE loss (left) and MSE loss (right). No systematic learning rate shifts in µP;
saturating drifts may occur. Transfer and monotonic improvement looks less noisy under MSE loss.

Controlled divergence through stabilized updates. The closest clean optimal learning rate exponent
of 8-layer MLPs trained with Adam under both MSE loss as well as CE loss is −1 for most of the
evaluated image datasets (Figure F.25). Validation-optimal learning rates tend to be larger than
train-optimal learning rates, suggesting a well-generalizing bias of large learning rates. The fact that
Adam with MSE loss (Figure F.26) can have optimal learning rates as large as CE loss indicates that
the crucial effect of CE loss in SGD is stabilizing the updates. A crucial difference to SGD is that
activation blowup does not affect the updates in Adam since the gradient is normalized. For SGD,
exploding gradients induce even larger explosion in the next forward pass, which in turn induces even
larger explosion in the next backward pass. Hence, without activation stability, even the divergence
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exponent grows over time in SGD resulting in catastrophically cascading updates. For Adam, on
the other hand, gradients are normalized, so that the forward pass always accumulates the same
width-dependent exponent that is stabilized when passed through the softmax. Thus under sufficient
numerical precision, from a stability point of view, Adam can even tolerate larger learning rates than
the hidden-layer feature learning ηn = Θ(n−1), and the optimal learning rate may also be pushed
toward input layer feature learning.

In shallow networks the input layer enforces slower optimal learning rate decay. As for SGD,
with increasing depth, the optimal learning rate decays faster, from around ηn ≈ Θ(n−1/2) in
shallow networks to small ηn = O(n−1) in deep MLPs in both MNIST (Figure F.27) and CIFAR-10
(Figure F.28), and in both train and validation accuracy (Figure F.29). Figure F.30 confirms the
hypothesis that the optimal learning rate is subject to opposing objectives for width-independent
learning of input-like and hidden-like layers by showing that a 3-layer MLP trained with Adam with
fixed input layer follows the clean exponent ηn ≈ Θ(n−1), where the hidden and output layer learn
fully width-independently.

Less clear maximal stable learning rate. For Adam, the optimal learning rate typically does not
saturate at the maximal stable learning rate. Instead, a regime of suboptimal large learning rates
emerges where its moments are already harmed (Kalra and Barkeshli, 2024), and the maximal stable
learning rate threshold is often less clear cut compared to SGD. For all depths, the instability threshold
appears to scale around ηn ≈ Θ(n−1/2).

Figure F.25: (MSE and CE loss share similar optimal learning rate exponents under Adam)
Train-optimal (solid) and validation-optimal (dashed) learning rate as a function of width for several
image datasets for 8-layer MLPs trained with Adam under MSE loss (left) and CE loss (right).
Generally observe exponents around −1. The MSE-optimal learning rate does not decay faster than
under CE loss, which indicates that Adam’s parameterwise normalization of the gradient stabilizes
exploding updates, recovering feature learning with ηn ≈ Θ(n−1) under both MSE and CE loss.

Figure F.26: (Adam stabilizes the backward pass even under MSE loss) MLPs trained with
ADAM on CIFAR-10 under MSE loss with 2, 3, 6, 8 layers (from left to right). 2 and 3 layers show
approximate transfer under n−1/2 learning rate scaling, 6 and 8 layers show approximate transfer
under n−1.
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Figure F.27: (Learning rate transfer in deep MLPs for ADAM on MNIST) MLPs trained with
ADAM on MNIST with 2, 3, 4, 6, 8, 10 layers (from top left to bottom right). In the first row,
the x-axis is width-dependently scaled to show approximate transfer under n−1/2 learning rate
scaling. In the bottom row, the x-axis is width-dependently scaled to show approximate transfer under
ηn ≈ Θ(n−1). Observe the optimal learning rate scaling transitioning from larger than Θ(n−1/2) in
2-layer MLPs toward at most Θ(n−1) with increasing depth.

Figure F.28: (Learning rate exponent ηn = Θ(n−1) for ADAM in deep MLPs on CIFAR-10)
MLPs trained with ADAM on CIFAR-10 with 2-layer random features, 2, 8, 10 layers (from left
to right). The first 2 x-axes show approximate transfer under n−1/2 learning rate scaling, the last
2 under n−1 learning rate scaling. As for SGD, in deeper nets hidden-layer width-independence
dominates input-layer width-independence and induces optimal learning rate scaling ηn ≈ Θ(n−1).

Figure F.29: (Transfer in validation accuracy in deep MLPs for ADAM on MNIST) Validation
accuracy of MLPs trained with ADAM on MNIST with 2 layer random feature, 3, 8, 10 layers (from
left to right). Validation-optimal learning rate in deep MLPs scales as ηn = O(n−1). 2 layer RF and
3 layer nets appear to approximately transfer under ηn ≈ Θ(n−1/2) but lose monotonic improvement
and predictability at scale.
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Figure F.30: (Trade off between input- and hidden-layer width-independence) 3-layer MLPs
trained with ADAM on CIFAR-10 (left) and not training the first layer (right). 3-layer MLPs
approximately transfer under ηn = Θ(n−1/2), being pushed toward input-layer feature learning. As
there are no conflicting goals like preserving input layer feature learning, 3-layer MLPs with fixed
input layer follow the width-independent exponent ηn = Θ(n−1) that yields hidden-and output-layer
width-independent feature learning.

F.7 Effective update parameterizations beyond µP

The logit updates can be decomposed into

ft(ξ)− f0(ξ) = WL+1
0 ∆xL

t (ξ) + ∆WL+1
t xL

t (ξ),

for arbitrary inputs ξ ∈ Rdin and ∆WL+1
t =

∑t−1
t′=0 χt′ · xL

t′(ξt′).

In this section, we consider vision and generated data sets in the regime n ≫ dout. First note
that under large last-layer initialization (WL+1

0 )ij ∼ N(0, n−1) as in SP, fully width-independent
training dynamics are impossible, since width-independent feature learning ∆xL

t = Θ(1) implies
logit blowup through the term WL+1

0 xL
t = Θ(n1/2) for both SGD and Adam. The fact that logit

blowup does not prevent stable training under CE loss explains why we can achieve non-vanishing
feature learning under SP last-layer initialization. When dropping the logit stability constraint, we
can ask which is the optimal layerwise learning rate scaling under standard last-layer initialization.
Following the µP desiderata, we still want to effectively update all layers, meaning a non-vanishing
effect of the weight updates in each layer on the output function. With the correct choice of layerwise
learning rates, we can still satisfy these desiderata for all scalings of last-layer initialization variance,
which also implies that there is not a unique abc-equivalence class to fulfill these effective update
desiderata when not requiring logit stability. We will see that SP full-align in Everett et al. (2024),
which just uses the µP layerwise learning rates for SP initialization (which they promote as their
overall best-performing parameterization without identifying stability under logit blowup as the key
mechanism), fulfills these desiderata, except for vanishing last-layer update effect on the output
function. We will introduce another variant with larger last-layer learning rate that recovers effective
updates of all layers. For avoiding confusion with SP, meaning using a global learning rate, and
with µP, meaning also achieving width-independence in the logits, we call this last variant Maximal
Update Parameterization under Standard Output-layer Initialization (MUSOLI).

For deriving the optimal layerwise learning rate exponents, first consider the scaling of hidden-layer
pre-activation updates δhl, l ∈ [2, L], and input-layer pre-activation updates δh1 (Yang and Hu, 2021,
p. 51),

δhl(ξ) = Θ
(
W l

0δx
l−1
t + ηlχt−1

∂f

∂hl
t−1

(xl−1
t−1)

⊤xl−1
t (ξ)︸ ︷︷ ︸

Θ(n)

)
)
,

δh1(ξ) = Θ
(
η1χt−1

∂f

∂h1
t−1

(ξt−1)
⊤ξ︸ ︷︷ ︸

Θ(1)

)
)
,

where it holds that ∂f/∂hl = Θ(∂f/∂xL) = WL+1
t = Θ(WL+1

0 − ηL+1χtx
L) (at latest in

the second step) (Yang and Hu, 2021, p. 52). Hence the correct l-th layer learning rate ηl for
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achieving a width-independent effect on the next layer’s pre-activations needs to cancel out the
backpropagated gradient scaling ∂f/∂hl and for hidden layers additionally the LLN-like scaling
from the inner product between activations. As we still require activation stability xL

T = Θ(1), we
have ∂f/∂xL = Θ(n−min(bL+1,cL+1)). While under standard µP, it holds that ∂f/∂xL = Θ(n−1),
the changed gradient scaling must be counteracted by choosing hidden layer learning rate ηl =
Θ(nmin(bL+1,cL+1)−1), l ∈ [2, L], and input layer learning rate η1 = Θ(nmin(bL+1,cL+1)). In words,
under larger last-layer initialization or learning rate, the hidden and input layer learning rates should
be scaled down by the same amount. Finally, SP-full-align achieves a width-independent effect of the
last-layer weight updates on the logits. But as the width-independent feature updates ∆xL = Θ(1)

induce logit blowup WL+1
0 ∆xL

t = Θ(n1/2), the effect of the last-layer weight updates on the softmax
output is actually vanishing. For last-layer weight updates to affect the softmax output in the same
scaling as the updates propagated forward, the last-layer learning rate needs to be ηL+1 = Θ(n−bL+1),
hence cL+1 = bL+1. Hence MUSOLI is defined as SP-full-align but setting ηL+1 = Θ(n−bL+1).
This last-layer learning rate is larger than in µP or Everett et al. (2024) under standard last-layer
initialization bL+1 = 1/2, but necessary for fulfilling the desideratum that the weight updates in all
layers affect the output function non-vanishingly.

Figure F.31: (Coordinate check for µP for SGD on CIFAR-10) µP induces fully width-independent
update dynamics.

Figure F.32: (Coordinate check for SP-full-align for SGD on CIFAR-10) Effective updates
∥∆W lxl−1∥RMS and activation updates ∥∆xl∥RMS as a function of width. The theoretically
predicted scaling exponents hold: All layers update width-independently, but due to the large last-
layer initialization, the activation updates correlated with WL+1

0 propagated forward induce output
logits exploding as WL+1

0 δxL
t = Θ(n1/2). This motivates increasing the last-layer learning rate to

ηL+1 = Θ(n−1/2) so that last-layer updates contribute with the same scaling. Note that in absolute
terms, the updates are much smaller than under µP (Figure F.31).
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By definition, the effective update and propagating update terms in all layers scale width-
independently in µP (Figure F.31). For SP-full-align, Figure F.32 shows that indeed all weight
updates behave width-independently, but the output logits are dominated by the activations propa-
gated forward as WL+1

0 δxL
t = Θ(n1/2), since δxL

t and WL+1
0 are highly correlated. Consequently,

the last-layer updates have vanishing effect on the output function, which induces width dependence.
By additionally scaling up the last-layer learning rate ηL+1 = Θ(n−1/2), the logit scaling exponent
in the term WL+1

0 δxL
t = Θ(n1/2) is matched in the last-layer update term ∆WL+1

t xL
t = Θ(n1/2)

so that bL+1 = 1/2 and cL+1 = 1/2 recovers a balanced influence of all layer updates in the softmax
output.

Figure F.33 and Figure F.34 show that after single-pass SGD or Adam, for both SP-full-align and
MUSOLI the optimal learning rate shrinks with width for both generated 2-class multi-index teacher
data as well as MNIST. The optimal learning rate exponent is often closer to −0.5 as we consistently
observe under MSE loss, preventing logit blowup. Figure F.35 shows the same for CIFAR-10.
This behaviour persisting across 3 data sets suggests that neither SP-full-align nor MUSOLI can be
expected to transfer the optimal learning rate in general. An interesting question for future work
remains why logit divergence introduces a width-dependence in the optimal learning rate in these
parameterizations.

Figure F.33: (Effective update variants do not transfer optimal learning rates on multi-index
data) Training accuracy of 8-layer MLPs trained for 1 epoch on multi-index teacher data under CE
loss (top) and MSE loss (bottom) with SGD in SP-full-align, SGD in MUSOLI, Adam in SP-full-
align and Adam in MUSOLI (from left to right). In all cases, logit blowup is avoided by optimal
learning rates shrinking as ηn = Θ(n−1/2). Under CE loss the maximal stable learning rate remains
width-independent, for SGD under MSE loss the maximal stable learning rate decays as n−1/2, as
necessary for stability.

Figure F.34: (Effective update variants do not transfer optimal learning rates on MNIST)
Training accuracy of 8-layer MLPs trained for 1 epoch on MNIST under CE loss with SGD in
SP-full-align, SGD in MUSOLI, Adam in SP-full-align and Adam in MUSOLI (from left to right).
In all cases, the optimal learning rate decays with width, while the maximal stable learning rate stays
constant.
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Figure F.35: (Effective update variants for SGD on CIFAR-10) MLPs with 2, 3 an 6 layers
(from left to right) trained with SGD on CIFAR-10 in µP (top) versus SP full-align from Everett
et al. (2024) (2nd row) versus SP full-align with larger last-layer learning rate (MUSOLI) (bottom
row). While µP transfers with low variance as expected (left), µP with large standard last-layer
initialization bL+1 = 1/2 and large last-layer learning rate cL+1 = 1/2 (right) have a non-trivial
optimal learning rate scaling between Θ(n−1/2) and Θ(1), while the maximal stable learning rate
scales width-independently.

As expected from parameterizations in the controlled divergence regime, Figure F.35 also shows that
the maximal stable learning rate scales width-independently, since activation and gradient stability is
preserved. Over the course of 20 epochs, the training dynamics under large learning rates in MLPs
with at least 3 layers are stabilized and the optimal learning rate indeed scales width-independently
under standard last-layer initialization. Hence width-dependence in parameterizations can induce
optimal learning rate scaling that varies over the course of long training. But often the optimal
learning rate scales like the maximal stable learning rate. In such cases our theory is predictive.
For MSE loss, Figure F.36 shows that logit divergence needs to be avoided through optimal and
max-stable learning rate scaling ηn = Θ(n−1/2), irrespective of single or multi-epoch settings,
because training diverges in the first steps under larger learning rates. This shows that µP is necessary
for making MSE loss a viable alternative to CE loss, avoiding logit divergence while recovering
feature learning. Under CE loss, SP full-align and MUSOLI are more robust to poor tuning of the
learning rate than µP, both in terms of training and test accuracy (Figures F.37 and F.38). We leave a
closer analysis of the multi-epoch setting to future work.
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Figure F.36: (Effective update variants with SGD under MSE loss avoid logit blowup) Training
accuracy of 2-layer, 3-layer linear, 6-layer and 8-layer MLPs (from left to right) trained with SGD for 1
epoch (top) and 20 epochs (bottom) on CIFAR-10 in SP full-align from Everett et al. (2024). Optimal
learning rates shrinking as ηn = Θ(n−1/2) persists, avoiding logit blowup through WL+1

0 ∆xL
t . Only

in 8-layer MLPs is the optimal learning rate saturating at the width-independent stability threshold.

Figure F.37: (Effective update variants for SGD on CIFAR-10 after convergence) MLPs with 2, 3
an 6 layers (from left to right) trained with SGD in µP (top) versus SP full-align from Everett et al.
(2024) (2nd row) versus SP full-align with larger last-layer learning rate (MUSOLI) (bottom row)
as in Figure F.35 but trained for 20 epochs. After sufficiently long training the large learning rate
dynamics stabilize in MUSOLI so that the optimum indeed scales width-independently. MUSOLI
strictly dominates original µP in training accuracy, and robustness to badly tuned learning rate is
strongly improved under SP last-layer initialization compared to original µP. In sufficiently deep
MLPs, the larger last-layer learning rate barely matters, but in 2-layer nets SP-full align avoids output
blowup and feature learning by transferring under ηn = Θ(n−1/2).
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Figure F.38: (Test accuracy of effective update variants for SGD on CIFAR-10 after convergence)
Test accuracy of 2-layer, 3-layer and 6-layer (from left to right) MLPs trained with SGD for 20 epochs
on CIFAR-10 in µP (top) versus SP full-align from Everett et al. (2024) (2nd row) versus SP full-align
with larger last-layer learning rate (MUSOLI) (bottom row). The validation-optimal learning rate
scales width-independently in all cases. Observe that, while all variants generalize similarly well, the
susceptibility to poorly tuned learning rates is much larger in µP than under parameterizations with
large last-layer initialization.

For ADAM, the gradient is normalized in the backward pass, so that input- and hidden-layer learning
rates remain the same as in µP under large last-layer initialization. This is again equivalent to the SP
full-align parameterization from Everett et al. (2024). The logit update term WL+1

0 ∆xL
t = Θ(n1/2)

should again be balanced with a larger output layer learning rate ηL+1 = Θ(n−1/2) if the weight
updates of all layers should have a non-vanishing effect on the softmax output in the infinite-width
limit (MUSOLI). Figure F.39 shows that nonlinear networks trained with Adam and large last-
layer initialization already tend to transfer better under MUSOLI than under SP full-align after 1
epoch. Linear networks again have smaller optimal learning rate exponent, indicating that avoiding
logit blowup improves over feature learning in this case, where feature learning does not even add
expressivity. Generalization, learning rate transfer and learning rate sensitivity after 20 epochs tends
to be similar in all 3 considered parameterizations in deep ReLU MLPs (Figure F.40), showing again
that parameterizations with logit blowup are a viable alternative.

Especially in deep ReLU MLPs, the last-layer learning rate does not seem to have a big impact, and
SP full-align and MUSOLI overall behave similarly for both SGD and Adam.
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Figure F.39: (Train accuracy of effective update variants for ADAM on CIFAR-10) Train accuracy
of 2-layer, 3-layer, 6-layer and 3-layer-linear MLPs (from left to right) trained with ADAM for 1
epoch on CIFAR-10 in µP (top row) versus SP full-align from Everett et al. (2024) (2nd row) versus
MUSOLI (bottom row). The learning rate transfers irrespective of the architecture in µP. Large
last-layer learning rate improves transfer in MUSOLI over SP full-align. The optimal learning rate
scales as ηn = Θ(n−1/2) in both parameterizations with large last-layer initialization, as feature
learning does not improve expressivity.

Figure F.40: (Test accuracy of effective update parameterizations for ADAM on CIFAR-10 after
convergence) Test accuracy of 2-layer, 3-layer, 6-layer and 3-layer-linear MLPs (from left to right)
trained with ADAM for 20 epochs on CIFAR-10 in µP (top row) versus SP full-align from Everett
et al. (2024) (2nd row) versus MUSOLI (bottom row). The validation-optimal learning rate scales
width-independently in all ReLU MLPs with at least 3 layers. 3-layer linear networks clearly transfer
under ηn = Θ(n−1/2) in SP full-align and MUSOLI, as for sufficient width learning features does
not add expressivity, and instead avoiding logit blowup dominates the learning rate scaling.
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Answer: [Yes]
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Single training runs of 8-layer MLPs of width 16384 including tracking all
relevant statistics as well as our 1.4B GPT model of width 4096 run within less than 24
hours on a single Nvidia A100 GPU. We typically trained MLPs up to width 4096 on a
single Nvidia Geforce Rtx 2080 Ti within less than 24 hours.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this paper conforms in every respect with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper aims to advance the understanding of standard deep learning
practice. We do not foresee any societal impacts beyond the dual use considerations that
apply to the whole field of machine learning research.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper studies pre-existing training procedures on established datasets. We
do not release any data or high-risk models.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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and DCLM-Baseline (Li et al., 2024) datasets following the standard practice. We also cite
the Python assets PyTorch (Paszke et al., 2019) and LitGPT (Lightning AI, 2023) that we
use as a basis for our experiments.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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rigorousness, or originality of the research.
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• The answer NA means that the core method development in this research does not
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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