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ABSTRACT

Active perception is a fundamental skill that enables us humans to deal with
uncertainty in our inherently partially observable environment. For senses such
as touch, where the information is sparse and local, active perception becomes
crucial. In recent years, active perception has emerged as an important research
domain in robotics. However, current methods are often bound to specific tasks
or make strong assumptions, which limit their generality. To address this gap, this
work introduces APPLE (Active Perception Policy Learning) – a novel framework
that leverages reinforcement learning (RL) to address a range of different active
perception problems. APPLE jointly trains a transformer-based perception module
and decision-making policy with a unified optimization objective, learning how to
actively gather information. By design, APPLE is not limited to a specific task and
can, in principle, be applied to a wide range of active perception problems. We
evaluate two variants of APPLE across different tasks, including tactile exploration
problems from the Tactile MNIST benchmark. Experiments demonstrate the
efficacy of APPLE, achieving high accuracies on both regression and classification
tasks. These findings underscore the potential of APPLE as a versatile and general
framework for advancing active perception in robotics.

1 INTRODUCTION

Figure 1: Our method Active Perception Policy
Learning (APPLE) aims to infer properties, such as ob-
ject classes, of its environment based on limited per-step
information. To do so, it jointly optimizes an action
policy to gather information and a prediction model for
inference. Both the action policy and the prediction
model use a shared transformer-based backbone to pro-
cess sequences of inputs. Illustrated on the top are four
benchmark tasks we use to evaluate APPLE.

Imagine searching for a set of tools inside a clut-
tered toolbox. You do not know where a tool
is located or how it is positioned. Rather than
waiting passively for the information to reveal it-
self, most people would place their hands inside
the box and begin exploring. They would probe,
grasp, and adjust their motions based on the
feedback they receive. This process illustrates
the concept of active perception: the deliberate
selection of actions to acquire information in
the face of uncertainty Bajcsy (1988). Crucially,
active perception does not aim to exhaustively
explore every possible aspect of the world. In-
stead, it focuses on finding efficient strategies
that reduce uncertainty about specific properties
of the environment. Equipping robots with this
same capability is a key step toward enabling
them to act autonomously in unstructured envi-
ronments, where information is often sparse, noisy, and incomplete.

Particularly relevant to active perception is the sense of touch. While vision has been widely
explored in this context, especially for tasks such as object search and next-best-view planning Yang
et al. (2019); Xiong et al. (2025a); Tan et al. (2020), tactile sensing poses distinct challenges
and opportunities. Unlike vision, which can provide wider information coverage from a single
observation, touch is inherently local, with each contact providing only a small glimpse of the
environment Prescott et al. (2011). This locality makes tactile sensing a natural fit for active
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perception, since purposeful interaction is often the only practical way to gather sufficient information
without resorting to prohibitively exhaustive exploration. Indeed, several works have investigated
tactile active perception, focusing on tasks such as shape estimation Björkman et al. (2013); Smith
et al. (2021), texture recognition Boehm et al. (2024), and grasping De Farias et al. (2021). However,
these approaches typically optimize a task-specific objective, such as maximizing force closure in
grasping or minimizing uncertainty in shape completion, often greedily optimizing an information-
gain heuristic. Moreover, methods such as Björkman et al. (2013); Dragiev et al. (2013); De Farias
et al. (2021) also simplify the problem by assuming a static environment in which objects remain
stationary during exploration, an assumption that overlooks the inherently dynamic and contact-rich
nature of tactile exploration. While effective in narrow settings, such methods remain fundamentally
tied to predefined objectives, rather than learning a transferable strategy for information gathering.
In contrast, alternative options, such as reinforcement learning (RL), can provide a more general
framework for acquiring more dynamic active perception policies. Although a reward signal must
still be specified, RL enables agents to learn sequential decision-making strategies directly from
interaction, guided by broader task-level goals rather than narrowly hand-crafted optimization criteria.

In the context of active perception, some works have explored RL for learning exploration strategies.
For tactile sensing, various RL algorithms have been employed, including REINFORCE Fleer et al.
(2020), PPO Xu et al. (2022); Shahidzadeh et al. (2024), and DQN Smith et al. (2021). Most
notably, Fleer et al. (2020) introduced the Haptic Attention Model (HAM), which adapts the recurrent
model of visual attention proposed by Mnih et al. (2014) to the tactile domain. HAM demonstrated
that even simple policy gradient methods such as REINFORCE can learn exploration strategies by
jointly optimizing perception and action, enabling object classification through haptic exploration.
However, on-policy approaches such as REINFORCE and PPO can be sample-inefficient, limiting
their scalability. Moreover, the generality of active perception methods has not been widely studied:
most existing approaches are tied to specific tasks and objectives, lacking a unified formulation.
Ideally, active perception policies should be trained to discover exploration strategies that are agnostic
to the underlying task, enabling transfer across modalities and problem settings.

Thus, in this work, we ask the following: can we design a principled RL-based algorithm for
discovering active perception policies by relying only on a ground-truth label and a differentiable
loss during training? And more broadly, can such an approach be general enough to extend across a
diverse set of active perception problems, ranging from classification to regression, without requiring
task-specific exploration heuristics? To investigate these questions, we frame active perception
within the setting of partially observable Markov decision processes (POMDPs), where an agent
must act under uncertainty to actively reduce ambiguity about a target property. Note that in this
work, we purely aim to evaluate the agent’s ability to actively perceive. Accordingly, we focus
on tasks where the agent’s primary objective is to learn a property of the environment (e.g., the
class or pose of an object) and leave the evaluation of problems that involve active perception for
another downstream task to future work. Building on this formulation, we introduce APPLE (Active
Perception Policy Learning), a framework that combines reinforcement learning with supervised
learning, requiring only a differentiable loss function and a POMDP environment. APPLE jointly
trains a decision-making policy and a perception module on top of a shared transformer backbone,
allowing it to accommodate diverse sensor inputs without task-specific modifications. We present
two variants of APPLE, extending SAC Haarnoja et al. (2018) and CrossQ Bhatt et al. (2019), and
evaluate them across five benchmarks that include classification, volume estimation, and localization
tasks (see Fig. 1). Our experiments show that our RL framework can be effective for active perception
across several tasks and thus serves as a step towards a more general framework. In summary, our
main contributions are:

• A unified formulation for active perception that motivates using a combination of policy gradient
methods and supervised learning to solve interactive supervised learning problems.

• A framework for active perception that jointly trains a reinforcement learning policy and a
perception module on a shared transformer backbone. This formulation enables adaptability
across different tasks by making minimal assumptions about the nature of the underlying POMDP.

• Comprehensive empirical evaluation of two method variants, based on SAC and CrossQ, on
classification, volume estimation, and localization tasks, demonstrating that RL-based strategies
can discover active exploration policies without task-specific heuristics, and establishing APPLE
as a viable formulation for active perception.
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2 RELATED WORK

Active perception has been studied for both vision and touch Bajcsy (1988); Bajcsy et al. (2018); Bohg
et al. (2017); Taylor et al. (2021) and in the context of Applications range from object localization
and tracking Yang et al. (2019); Gounis et al. (2024); Tallamraju et al. (2019); Mateus et al. (2022),
to scene description Tan et al. (2020), object property identification Boehm et al. (2024), shape
estimation Yi et al. (2016); Björkman et al. (2013), UAV navigation Bartolomei et al. (2021), and
robotic manipulation De Farias et al. (2021); Xiong et al. (2025a); Dragiev et al. (2013). Many of
these works have been formulated using reinforcement learning or non-parametric methods such as
Bayesian optimization, with a few imitation-learning-based approaches emerging more recently Yang
et al. (2024b); Chuang et al. (2025); Liu et al. (2025); Dai et al. (2022); Xiong et al. (2025b). However,
these methods are usually tailored to specific tasks, environments, and objectives, and often assume
the agent does not influence the environment through its actions. To our knowledge, there exists
no active perception method that has been shown to work on a wide range of tasks, objectives, and
environments.

Active Perception for Tactile Sensing: Tactile sensing allows robots to infer object geometry, texture,
and materials through physical contact, complementing or substituting visual sensing, especially
in occluded scenarios. Early tactile sensing systems primarily used simple binary contacts Yousef
et al. (2011), whereas recent approaches employ vision-based tactile sensors Yuan et al. (2017);
Lambeta et al. (2020); Lloyd & Lepora (2024). These sensors provide high-resolution data useful in
complex tasks, including shape reconstruction, texture recognition, and advanced manipulation, such
as autonomous page turning Zheng et al. (2022), object reorientation Yin et al. (2023); Qi et al. (2023),
and handling deformable objects Bauer et al. (2025). Active tactile perception involves deliberately
selecting contact locations and trajectories to optimize information gain during interaction. Previous
approaches leverage Gaussian Processes Yi et al. (2016); Björkman et al. (2013) and Bayesian
optimization Dragiev et al. (2013); De Farias et al. (2021); Boehm et al. (2024) to efficiently
reconstruct shapes, discriminate textures, or identify grasp points. However, these approaches
typically rely only on sparse contact points, assume the object is stationary, and often require
additional sensing modalities such as vision Björkman et al. (2013). Moreover, most works are
tailored to specific tasks. Gaussian process-based methods, such as Yi et al. (2016); Björkman et al.
(2013); Dragiev et al. (2013), focus on shape reconstruction, while Boehm et al. (2024) performs
texture recognition using vision-based tactile. For comprehensive surveys on tactile manipulation, we
refer readers to Li et al. (2020); Yousef et al. (2011).

Reinforcement Learning in Active Perception: In active perception, previous works have explored
RL-based approaches. In the visual domain, Yang et al. (2019) performs active object search and Tan
et al. (2020) generates semantic scene annotations, both use REINFORCE to train camera-control
policies that improve perception. Related camera-control methods include Cheng et al. (2018), who
apply RL to a manipulation task using RCNN-processed visual input, and Dass et al. (2024), who
recover a known context variable from visual observations using PPO without memory. Hu et al.
(2025) focuses on real-world, vision-based active perception and proposes an RL training recipe
that uses privileged sensing and demonstrations to learn deployable viewpoint-selection policies.
Active perception for 3D scene understanding has also been studied. Jayaraman & Grauman (2018)
learn LSTM-based policies for actively completing panoramic scenes, while Lv et al. (2023) uses a
differentiable simulator to select informative viewpoints with attention to sim-to-real transfer. Other
works jointly model motor and sensor policies under partial observability, as in Shang & Ryoo (2023),
or integrate point-cloud conditioning and distillation for mobile manipulation Uppal et al. (2024).

In the tactile domain, RL-based methods have addressed object shape reconstruction. Particularly,
PPO Xu et al. (2022) and DDQN Smith et al. (2021) have been applied to build object shape estimates
by selecting informative contact points, with the former assuming a binary tactile sensor in a 2D
environment and the latter requiring both vision and touch. By assuming that the object is static,
these approaches avoid uncertainty in object pose and maintain explicit shape reconstructions that
serve as the policy state. Complementing these, Rajeswar et al. (2022) propose curiosity-driven
haptic exploration based on mismatches between visual predictions and tactile observations. Related
to our work is the Recurrent Models of Visual Attention (RAM) Mnih et al. (2014), which uses
REINFORCE to select sequential image glimpses for MNIST classification via an LSTM policy.
Although developed for classification, the idea naturally extends to regression. Building on RAM,
Fleer et al. (2020) introduce the Haptic Attention Model (HAM), which learns a control policy
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Figure 2: Active perception process in the APPLE framework. In this task the agent’s goal is to classify the digit
using touch alone. At each step, it receives a tactile reading and state information (e.g., sensor position). A
Vision Transformer encodes the tactile input, which is concatenated with state data and processed as a sequence
over time by a transformer. At every step, the model outputs a label prediction yt, evaluated against the ground
truth

∗

y via a loss function ℓ, and an action at that controls the sensor’s next movement.

for a taxel-based tactile sensor to classify four static objects, though training requires millions of
interactions. Niemann et al. (2024) extends this with a binary “done” action, again evaluating on
tactile classification.

Finally, our classification experiments fit within the broader family of internally rewarded RL (IRRL)
methods formalized by Li et al. (2023), which use internal discriminators to produce rewards defined
as mutual information between trajectories and labels. While our rewards also depend on the agent’s
own prediction model, our framework is more general, allowing any differentiable loss rather than
targeting mutual information specifically.

3 ACTIVE PERCEPTION POLICY LEARNING

Our objective in this work is to develop an active perception method that, unlike prior approaches, is
not tied to a particular task or environment. Our guiding principle here is similar to RL. That is, just
as RL requires only a reward function, we want to specify a perception objective and let the agent
learn an appropriate perception policy on its own, without imposing strong task-specific assumptions.
On a high level, we frame active perception as a supervised learning problem. The agent’s goal is to
minimize a loss ℓ(ŷt, yt) between its current prediction ŷt and the ground-truth label yt. However,
unlike in classical supervised learning, we assume that the agent is not simply presented with a
static data point as input, but rather with an interactive environment that it can actively gather data
from. E.g., the agent could be presented with an object and has to decide actively how to examine
it to extract the information it needs. This perspective defines active perception fundamentally as a
sequential decision-making problem embedded within a supervised learning problem. An example
of this process is given in Fig. 2. Here, the agent is faced with a classification task, where it must
identify a digit from touch alone. Hence, in every step, the agent chooses where to move the sensor
while also making a prediction about the class label. The agent’s objective is to minimize the loss
function ℓ throughout this process (illustrated in the bottom row of the Fig. 2). Thus, it must optimize
its actions to be as informative as possible.

In the remainder of this section, we formally define our problem and derive the Active Perception
Policy Learning (APPLE) framework. We propose two variants of APPLE, based on SAC Haarnoja
et al. (2018) and CrossQ Bhatt et al. (2019).

3.1 PROBLEM STATEMENT

Formally, we define the problem of active perception as a special case of a Partially Observable
Markov Decision Process (POMDP). Here, the environment is governed by unknown dynamics
p(h̃t+1∣h̃t, ãt), where h̃t is the hidden environment state and ãt is the action taken at time t. The
agent then makes observations through the distribution, p(ot∣h̃t), where ot is the observation. In the
active perception scenario, the agent’s objective is to learn a particular property of the environment,
e.g., the class or pose of an object. We assume that the ground truth value

∗
yt of this property at time t

is part of the hidden state h̃t and thus not directly accessible to the agent. Hence, the hidden state
decomposes into h̃t = (ht,

∗
yt), where ht is the remainder of the hidden state without the ground

truth property value. Additionally, the agent’s action space contains not only control actions at but
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also a current estimate yt of the desired environment property. In other words, the action space
decomposes into ãt = (at, yt), meaning that the agent predicts the desired environment property at
every step. As is typical for RL, the action at is a control signal, e.g., a desired finger movement,
which is communicated to the agent’s motor controllers.

The overall reward function r̃ consists of two parts: a differentiable prediction loss ℓ and a regular RL
reward r. That is, r̃(ht,

∗
yt, at, yt) = r(ht, at) − ℓ(

∗
yt, yt). Here, the prediction loss, ℓ(∗yt, yt), could,

e.g, be a cross-entropy loss in the case of a classification task or the Euclidean distance in the case of
a pose estimation task. The RL reward, r(ht, at), does not have to be differentiable or known to the
agent. In this work, we only use it to regularize the agent’s actions at. In the following, to simplify
the notation, we denote p(h, ∗y,o,a,y) = π(o ∣h) p(h, ∗y,o,a), π(y ∣o) = ∏∞t=0 π(yt ∣ o0∶t) and

p(h, ∗y,o,a) = p(h0,
∗
y0)∏

∞
t=0 p(ot ∣ht)π(at ∣ o0∶t) where h ∶= h0∶∞,

∗
y ∶= ∗y0∶∞, and so on.

The objective is now to find a policy π(at ∣ o0∶t) for which the expected discounted return is maximized.
That is, given the discount factor γ ∈ [0,1),

max
π

J(π) ∶= E
p(h,∗y,o,a,y)

[
∞
∑
t=0

γtr̃(ht,
∗
yt, at, yt)] . (1)

3.2 OPTIMIZING THE ACTIVE PERCEPTION OBJECTIVE

Let ℓπ(
∗
yt, o0∶t) ∶= Eπ(yt ∣o0∶t)[ℓ(

∗
yt, yt)]. Since the agent’s predictions yt do not influence future

states, we can rewrite Eq. (1) as

J(π) = E
p(h,∗y,o,a)

[
∞
∑
t=0

γt (r(ht, at) − ℓπ(
∗
yt, o0∶t))] . (2)

In this work, we assume that the policy π is a neural network, parameterized by parameters θ ∈ RM ,
which allows us to compute a gradient of Eq. (2) and optimize the problem with gradient descent
algorithms. Computing the gradient of J(πθ) now yields

∂

∂θ
J(πθ) = E

pθ(h,
∗
y,o,a)

[
∂

∂θ
lnπθ(a ∣o)

∞

∑
t=0

γ
t
r̃(ht,

∗

yt, at, yt)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
policy gradient

− E
pθ(

∗
y,o)
[
∞

∑
t=0

γ
t ∂

∂θ
ℓπθ
(∗yt, o0∶t)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
prediction loss gradient

. (3)

Intermediate steps can be found in Appendix G. As can be seen in Eq. (3), the gradient of the objective
function J(πθ) decomposes into a policy gradient and a negative supervised prediction loss gradient.

3.3 DERIVING APPLE-SAC AND APPLE-CROSSQ

We use RL-based techniques to estimate the policy gradient in Eq. (3). Here we propose two variations
of APPLE based on two actor-critic methods: SAC Haarnoja et al. (2018) and CrossQ Bhatt et al.
(2019). SAC is an off-policy RL algorithm that jointly learns a policy and two Q-networks. The
Q-networks are optimized to minimize the Bellman residual for the policy, and the policy is optimized
to maximize the smaller of the two values predicted by the Q-networks. To stabilize the training of
the Q-networks, SAC deploys target networks, which slowly track the actual Q-networks. CrossQ is
similar to SAC but drops the target networks and instead uses BatchRenorm Ioffe (2017) layers in the
Q-network to stabilize their training. To use either SAC and CrossQ in the active perception setting,
we adjust three components:

1. The active perception setting is partially observed. Hence, instead of a state st, the policy and
the Q-networks receive a trajectory of past observations o0∶t.

2. During the training of the Q-networks, SAC and CrossQ sample transitions and rewards from
the replay buffer to compute the Bellman residual. The presence of the prediction loss ℓπθ

requires us
to dynamically recompute the total reward when evaluating the Bellman residual, yielding

Lcritic = ED [
1

2
(Qθ(o0∶t, at) − (rt − ℓπθ

(∗yt, o0∶t) + γEπθ
[Qθ̄(o0∶t+1, at+1)]))

2
] .
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3. During the policy update, the policy gradient is augmented by the prediction loss gradient.

In the following, we denote those APPLE variants as APPLE-SAC and APPLE-CrossQ.

3.4 INPUT PROCESSING

We assume that the sequence of past observations o0∶t consists of both images and scalar data.
In tactile-based active perception, image observations typically correspond to high-dimensional
tactile inputs (represented as images), while the scalar data encodes the position of the sensor.
As illustrated in Fig. 2, the agent receives this exact combination of tactile images and sensor
positions. To efficiently process this data in the policy and Q-networks, we use an architec-
ture similar to the Video-Vision-Transformer (ViViT) Arnab et al. (2021) architecture. First,
a Vision Transformer (ViT) Alexey (2020) is used to generate embeddings for each tactile im-
age. These embeddings are then concatenated with the scalar inputs and processed by a trans-
former to generate an embedding mt for each time step. We empirically found that sharing
these embeddings across Q-networks Qθ(o0∶t, at), action policy πθ(at ∣ o0∶t) and prediction policy
πθ(yt ∣ o0∶t) yields better results than training individual representations for each of these components.

Circ-
leSquare

TactileM-
NIST

TactileMNIST-
Volume Toolbox

Figure 3: Active perception benchmarks
on which we evaluate our method. Tac-
tileMNIST, TactileMNISTVolume, and
Toolbox are tactile perception tasks
from the Tactile MNIST Benchmark
Suite Schneider et al. (2025) where the
agent must decide how to gather in-
formation with its tactile sensor. Circ-
leSquare and TactileMNIST are classifi-
cation tasks and TactileMNISTVolume
is a regression task, where the agent must
determine an object’s volume. Toolbox
is a pose estimation task, where the agent
must determine the 2D pose of the object.
All tasks require the agent to gather in-
formation actively and are not accurately
solvable via random exploration.

4 EXPERIMENTS

With APPLE, our goal is to answer two questions: (1) can
we design a general and principled RL-based algorithm that
successfully discovers active-perception policies using only a
task label and a differentiable loss during training? and (2) can
such an approach extend across diverse active-perception prob-
lems, including both classification to regression without the
need to over-design task-specific exploration heuristics? To
answer these questions, we focus mainly on the tactile domain,
which is particularly suited for active perception due to the lo-
cal and sparse nature of touch. Thus, we run experiments that
span different observation spaces (such as low-dimensional
image arrays and higher-dimensional tactile images) and var-
ied downstream prediction goals (including classification and
regression). Here, our four evaluated active perception tasks
are: CircleSquare, TactileMNIST, TactileMNISTVolume, and
Toolbox introduced by Schneider et al. (2025) (see Fig. 3). We
also compare our approach against the MHSB tactile shape
classification task from Fleer et al. (2020). In each task, the
agent must actively gather information and jointly learn both
a policy and a prediction model. All experiments described in
this section are run with 5 random seeds per method, with all
models trained from scratch for each seed. In addition to our
core configurations, APPLE-CrossQ and APPLE-SAC, we
also evaluate the following baselines:

(i) APPLE-RND: a random policy baseline sharing the same
configuration as APPLE-SAC, but not optimizing an action
policy. Instead, actions are sampled uniformly at random
throughout training. Importantly, while the policy remains
random, the perception module is still trained, enabling the model to learn how to interpret tactile
observations even without control over the spatial allocation of its haptic glances.

(ii) HAM: the Haptic Attention Model introduced by Fleer et al. (2020). HAM employs a recurrent
neural network (LSTM) to integrate tactile observations over time and jointly learns to classify objects
while optimizing its exploratory actions through REINFORCE.

For evaluation on the classification tasks, we report two complementary metrics. The average class
prediction accuracy considers the agent’s predictions at all steps of an episode and computes the
average accuracy across them. The final class prediction accuracy only uses the prediction from the
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Figure 4: Average and final prediction accuracies for our methods APPLE-SAC and APPLE-CrossQ,
HAM Fleer et al. (2020), and APPLE-RND across various tasks. MHSB refers to the tactile classification
task used in Fleer et al. (2020). All methods were trained with 5 seeds. Shaded areas represent one standard
deviation. Metrics are computed on evaluation tasks with unseen objects, except for CircleSquare and the MHSB
classification task, which have only two or four, respectively.

final step of each episode, thus showing the model’s decision after completing its exploratory sequence.
For regression tasks, we report average error and final error. The hyperparameters of all methods are
tuned with HEBO Cowen-Rivers et al. (2022). For all methods except APPLE-CrossQ, we use one
set of hyperparameters, tuned on the TactileMNIST task, for all experiments involving visual tactile
inputs and a different set, tuned on the CircleSquare task, for other tasks. For APPLE-CrossQ, we
use the same hyperparameters, tuned on the TactileMNIST task, for all experiments.

4.1 THE MHSB CLASSIFICATION TASK

To enable more direct comparison between our method and HAM, we use the benchmark task provided
in Fleer et al. (2020). The dataset D for this benchmark is generated in Gazebo and consists of data
from a haptic classification task where a set of four blocks from the Modular Haptic Stimulus Board
(MHSB) were arranged in the simulated environment. Each block represents a distinct local shape
feature, and data was collected using a simulated Myrmex tactile sensor array that produces 16×16
pressure images upon contact with the block surface. Here, each data point d ∈ D consists of the
tuple d = (x, φ,p), where x ∈ [−1,1] is the location of the sensor, φ ∈ [−π

2
, π
2
] the angle and p the

corresponding normalized pressure (image) array. The agent’s goal is to identify the correct object,
so at each time step it selects continuous movement actions at = (x, φ). The closest associated
datapoint dt ∈ D is then selected and the agent makes a prediction. Each episode allows the agent to
perform 10 touches. For extra details, please refer to Fleer et al. (2020).

In this setting, we evaluate APPLE-RND, APPLE-SAC, and APPLE-CrossQ, with the vision
encoder removed to ensure comparability with HAM. The first column of Fig. 4 shows the comparison
between the different methods on this task. While HAM is generally able to solve this task (see
Appendix C.5 for a longer run), it requires a large amount of samples to learn an effective policy.
After 1M training steps, HAM achieves only a final accuracy of 68%, while all of our approaches,
including the random baseline, approach 100% after around 250K steps. Additionally, the good
performance of the APPLE-RND baseline highlights a limitation of this task: due to the discretization
of position and angles into 41 bins each, the observation space contains only a total of 1,681 distinct
values per class. Agents can quickly learn to memorize all of these values and then solve this task
perfectly with just a few random touches. This insight raises questions about HAM’s capabilities in
learning active perception policies, as HAM was only evaluated on this task in Fleer et al. (2020).

4.2 THE CIRCLESQUARE TASK

The CircleSquare task has the goal of evaluating active perception in a low-dimensional space. Here,
the agent is presented with a 28×28 grayscale image containing either a white circle or square
placed randomly in the field (Fig. 3 top-left). Its goal is to identify the correct object class, but
it can only observe a 5×5 glimpse at a time and must explore the image over time. Each episode
allows the agent to take up to 16 steps. A color gradient offers directional guidance, but the agent
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starts without information about the object’s location. It selects a continuous movement action
at ∈ [−1,1]2 per step to reposition its glimpse, encouraging learned search strategies over random
behavior. Since the agent’s glance in this task is small, we again do not use our vision encoder but
treat the inputs as a 25-dimensional vector for better comparability to HAM, which also processes
a flat representation of the input image. In this setting, in addition to the HAM baseline, we also
compare our APPLE-SAC and APPLE-CrossQ to the random baseline agent, APPLE-RND. As
shown in Fig. 4, APPLE-SAC and APPLE-CrossQ learn to complete the task with similar final
prediction accuracies of 97% and 96%, respectively. For a visualization of a policy learned by
APPLE-CrossQ, refer to Fig. 8. APPLE-RND, achieves a 68% accuracy, highlighting the need
for active perception in the CircleSquare task. Despite extensive tuning of the learning rate and β
parameter with HEBO and training for 10M steps, we could not find a configuration for which HAM
reached a prediction accuracy beyond random guessing. For full implementation details, including an
ablation with longer training times, where we compare HAM with a PPO baseline, see Appendix B.1.

4.3 TACTILEMNIST CLASSIFICATION
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Figure 5: Exploration efficiency of
final policies on the TactileMNIST
task. Shown are the predicted prob-
ability of the correct label (top) and
accuracy (bottom) after N glances.

While the CircleSquare environment already presents a non-trivial
active perception problem for more generic agents, it remains
relatively simple: the input space contains just 25 pixels, there
are only two object classes, with a color gradient providing a
search direction. In contrast, (visual-) tactile perception add more
complexity. First, the input is a high-dimensional image requiring
encoding into a latent space. Second, real-world classification
tasks often involve many classes with diverse instances. E.g., a
robot sorting waste into plastics, glass, and metal must handle
objects of various shapes and textures that belong to the same
class. Finally, tactile exploration often lacks directional cues, as
retrieving an object from a cluttered bag requires systematic search
strategies. To investigate this, we evaluate our methods on the
TactileMNIST classification. Here, an agent uses a GelSight Mini
sensor to explore a randomly placed and oriented 3D MNIST digit
without prior location knowledge. The goal is to classify the digit
within a fixed time budget (see Fig. 3 top-right for a visualization).
In this setting, we evaluate APPLE-SAC and APPLE-CrossQ
and compare them with APPLE-RND. As this task requires a
vision encoder, direct comparison with HAM is not possible.

As shown in Fig. 4, both APPLE-SAC and APPLE-CrossQ reach similar high final prediction
accuracies of 87% and 89% on the evaluation task. APPLE-RND, however, eventually stagnates
at an accuracy of around 74%, highlighting the importance of action selection on this task. The
average class prediction accuracy, as shown in Fig. 4 (first column), presents a similar trend, with
APPLE-SAC achieving 80% and APPLE-CrossQ 81%. An additional insight into the agent’s
performance is given by Fig. 5, which shows how the accuracy and correct label probability of the
trained agents over the course of an episode, averaged over multiple episodes. This figure shows that
the active agents gather information much quicker and are much more certain about the class label
than the random agent. For more details on this task, see Appendix B.2.

4.4 TACTILEMNIST VOLUME ESTIMATION

In the TactileMNISTVolume task, the agent again uses a GelSight Mini sensor to explore a randomly
placed and oriented 3D MNIST digit without prior location knowledge. Unlike the prior classification-
based tasks, the objective here is to estimate the digit’s volume within a fixed time budget, which
makes this task a regression task. A visualization of the TactileMNISTVolume task can be seen
in Fig. 3 on the bottom left. To succeed, the agent must simultaneously localize the digit on the
workspace and gather sufficient shape information cues to enable accurate volume estimation. For
more details about this task, refer to Appendix B.3.

In this setting, we evaluate APPLE-SAC, APPLE-CrossQ, and APPLE-RND, analyzing their
ability to perform regression tasks. In the last column of Fig. 4, we show the comparison results for
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this task. The final average prediction error throughout the task reaches 1.28 cm3 for APPLE-RND.
APPLE-CrossQ and APPLE-SAC reach an average prediction error of 1.10 cm3 and 1.16 cm3,
respectively. For the final error APPLE-SAC, with 0.99 cm3, outperforms both APPLE-RND with
an error of 1.07 cm3 and APPLE-CrossQ with 1.05 cm3. The higher variances and performance
fluctuations in Fig. 4 indicate that this task is more challenging than the other tasks. In part, these
results might be explained by the fact that neither method was tuned on a regression task. Additionally,
estimating the volume of an unknown object requires much more complete information about its
shape than classifying it, making both the perception and policy optimization more challenging.

4.5 TOOLBOX
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Figure 6: Average and final prediction accuracies for our
methods APPLE-SAC and APPLE-CrossQ, as well
as the baseline APPLE-RND on the Toolbox task. Each
method was trained on 5 seeds for 10M steps.

In the Toolbox task, the agent has to find a
wrench on a platform by touch alone. Like Tac-
tileMNISTVolume, Toolbox is a regression task,
but here, the agent has to predict the 2D posi-
tion and 1D orientation of the wrench in the
workspace. As such, the task consists of two
problems: the agent must find the wrench in the
workspace and determine its pose. Crucially, as
can be seen in Fig. 3 bottom-right, most parts
of the wrench are ambiguous in location when
touched, and the information of multiple touches
has to be combined to make an accurate predic-
tion. For example, when touching the handle,
the agent may extract information about the lat-
eral position of the wrench, but does not yet
know where it is currently touching the handle
longitudinally, and whether the open end is left
or right. Hence, to disambiguate the wrench pose, a strong exploration strategy must include finding
one of its ends. Similar to the previous two tasks, the agent moves a GelSight Mini sensor freely in
2D space, constrained by the platform boundaries. Since the platform for this task is larger than that
for the other tasks, we allow 64 steps for exploration before the episode is terminated.

The results in Fig. 6 show that APPLE-CrossQ reaches a final accuracy of 1.9cm and 13○ on aver-
age, while APPLE-SAC and the random baseline APPLE-RND stagnate at much lower accuracies.
Throughout the training, APPLE-CrossQ learned a sensible exploration strategy, comprised of
finding the handle of the wrench and then sliding along it to disambiguate its orientation (see Fig. 12).
The low performance of the APPLE-RND again highlights the importance of active perception for this
task. It is important to note that we again did not tune any of these methods on this task and instead
relied on hyperparameters optimized for TactileMNIST. While tuning APPLE-SAC on this task can
lead to stronger performance, these results indicate that APPLE-CrossQ might be more robust
w.r.t the choice of hyperparameters. However, more experiments are needed to answer this question
definitively. For training and evaluation details, and hyperparameter settings, see Appendix B.4.

5 DISCUSSION

The results in Section 4 show that APPLE successfully learns exploration strategies across diverse
active perception tasks. We evaluated APPLE on the CircleSquare classification task and three
simulated tactile benchmarks: TactileMNIST (digit classification), TactileMNISTVolume (volume
estimation), and Toolbox (pose estimation). In all three tactile benchmarks, the agent must learn an
image encoder and refine its exploration policy jointly. The poor performance of the APPLE-RND
baseline across our tasks confirms the necessity of structured exploration and confirms that our
methods learned policies that go beyond random exploration. Notably, APPLE-CrossQ retained
high performance when switching tasks without hyperparameter tuning, highlighting its robustness.

We compare our method to HAM Fleer et al. (2020), which failed to learn an effective strategy even
on the Circle-Square toy task, defaulting to predicting the mean class despite extensive tuning using
HEBO. This points to a fundamental limitation of HAM in this setting, namely that HAM relies on
on-policy RL, which discards samples after a single update, limiting sample efficiency. Further exper-
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iments using a PPO-based variant of our method (see Fig. 14) underline our hypothesis that on-policy
RL is not suited for active perception. In contrast, we employ off-policy methods (APPLE-SAC and
APPLE-CrossQ), enabling sample reuse – a critical factor in active perception, where supervised
learning benefits from multiple passes over the same data. Both APPLE-SAC and APPLE-CrossQ
perform comparably on environments they have been tuned on, but APPLE-CrossQ has proven
more robust to new environments without hyperparameter tuning and offers a clear computational
advantage. By avoiding target network updates, it requires roughly half the transformer forward
passes during training, leading to a 53% reduction in training time on average, without sacrificing
performance. The strong performance of APPLE, especially of APPLE-CrossQ without retuning,
demonstrates its potential as a robust, general framework for active perception.

Particularly, in Fig. 8 and Fig. 12, we show the learned behaviors for our policies in the CircleSquare
and Toolbox environments, respectively. In both environments, we can observe that our agents have
learned interesting exploration behaviors that ultimately help in solving the task. In CircleSquare,
APPLE first moves rapidly along the background gradient, which reliably leads toward the object’s
location. Once it reaches the circle or square, the agent stabilizes its position and keeps the glimpse
above the object for the remainder of the episode. More interestingly, in the Toolbox environment,
APPLE-CrossQ learns to both locate the wrench and disambiguate its orientation. At the beginning
of the episode, the agent learns a circular search pattern that efficiently sweeps the workspace. Then,
when first encountering the wrench handle, it transitions into a sliding motion along the handle’s
length. While these patterns are intuitive from a human perspective, for the TactileMNIST and
TactileMNISTVolume, the strategies are less clear. In those, the agent typically moves toward the
center of the platform early in the episode, as most objects extend into the central region. After initial
contact, it often follows local edges or strokes of the digit, but such behaviors vary considerably
across digits and seeds. In many cases, the final contacts do not follow a recognizable pattern,
suggesting that, in this case, the agent relies more on aggregating many local cues. Overall, these
emergent behaviors highlight that APPLE can learn different active perception policies, thus adapting
its exploration behavior to the demands of each environment with minimal changes to the setup,
suggesting a promising step toward more general active perception frameworks.

6 CONCLUSION

We introduced APPLE, a framework combining reinforcement learning and transformer-based mod-
els for active tactile perception. We evaluated it on five benchmarks where APPLE consistently
outperforms its baselines, underscoring its efficiency in learning exploration policies. Notably, our
method requires no hand-crafted heuristics and learns exploration policies in a principled way by
minimizing the prediction loss function. The current state-of-the-art method for tactile classification –
HAM – cannot solve any of these tasks beyond the MHSB task, which it was originally developed for.
On the Circle-Square task, HAM resorted to always predicting a 50/50 probability for both labels, even
after long training, while the other three tasks require an image encoder, which HAM lacks. APPLE,
on the other hand, achieves high performance across all tasks, with the exception of APPLE-SAC on
the Toolbox task, where it was not tuned on. These results demonstrate APPLE’s versatility across
diverse tasks, including both classification and regression. Future work will focus on improving the
sample efficiency of APPLE, extending to more realistic applications such as in-hand pose estimation
and texture recognition, and exploring multi-modal integration with vision and touch. Another poten-
tial future research avenue will be deploying APPLE on a real robotic system. While, in principle,
APPLE could be applied to real-world tasks as-is, its sample efficiency poses a practical challenge.
In other works, sample efficiency issues of RL methods have been addressed through large-scale
domain randomization and sim-to-real transfer Bohlinger et al. (2024); Akkaya et al. (2019); Handa
et al. (2023). However, their soft gel makes vision-based tactile sensors particularly hard to simulate.
Nevertheless, using sim-to-real transfer jointly with accurate soft-body tactile simulation Nguyen
et al. (2024) and transferrable representations Yang et al. (2024a) or realistic rendering Chen et al.
(2022) are promising avenues towards the application of APPLE to real-world tasks.
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REPRODUCIBILITY STATEMENT

We took special care to make this work reproducible. The full codebase will be released as open
source upon acceptance, and further implementation details are provided in the supplementary
material. For transparency, all hyperparameters are listed in Appendix E, and implementation details,
including GPU specifications and memory considerations, are provided in Appendix F.

LARGE LANGUAGE MODEL USAGE

A large language model (LLM) was used solely for language editing — polishing phrasing, enhancing
readability, and correcting minor typographical errors.
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APPENDIX

A HAM AS A GENERAL ACTIVE PERCEPTION METHOD

HAM in its original version is an active classification method. Though it is in principle able to use
different loss functions than a cross-entropy loss, its reward is defined as a 0-1 reward, yielding 1
for a correct classification and 0 for an incorrect classification. For a regression task, such a reward
does not make much sense, as one would have to hand-define thresholds to classify predictions as
correct or incorrect. However, we found that on the task it was developed for — the MHSB tactile
classification task — using the negative prediction loss directly as a reward yields similar results to
the original implementation. With this modification, HAM fits in the APPLE framework, and would,
in principle, also be a candidate algorithm for solving the objective in Eq. (1). However, as we
show throughout our experiments, HAM’s on-policy nature makes it impossible to compete with our
off-policy approaches APPLE-SAC and APPLE-CrossQ.

Nevertheless, to allow for a fair comparison, we used this modified version of HAM throughout
our experiments. The reasons for this are (a) that otherwise, the APPLE methods and HAM would
be evaluated on different rewards, making them less comparable, and (b) that we found in our
reproduction study of the work of Fleer et al. (2020), that HAM is, surprisingly, more stable when
using the negative prediction loss as a reward.

B ENVIRONMENT DETAILS

Here, we detail each of the tasks that were evaluated, with the exception of the MHSB classification
task, for which details can be found in Fleer et al. (2020). Thus, we present the details for the
CircleSquare 2D classification task, the Tactile MNIST tactile classification and volume estimation
tasks, and the Toolbox pose estimation task. These tasks are a part of the TactileMNIST Benchmark
Suite, and extra details can be found in Schneider et al. (2025).

B.1 CIRCLESQUARE TASK

In each CircleSquare episode, the agent receives a 28×28 grayscale image containing either a circle
or a square. It can only observe a 5×5 pixel region (glimpse), with the initial location randomized. A
color gradient in the background helps guide exploration, but the agent has no access to the object’s
position. See Fig. 7 and Fig. 8 for an illustration of the CircleSquare task.

Actions at ∈ [−1,1]2 are mapped to pixel motion as at ⋅ 5.6px (20% of the image width), allowing
smooth movement across the image. We use bilinear interpolation to compute the glimpse values
even at non-integer positions. The agent’s prediction yt ∈ R2 is interpreted as logits for circle vs.
square:

pcircle(yt) =
ey
(1)
t

ey
(1)
t + ey

(2)
t

, psquare(yt) =
ey
(2)
t

ey
(1)
t + ey

(2)
t

.

Cross-entropy loss is used for training:

ℓ(y∗t , yt) = − ∑
c∈{circle,square}

δ(y∗t , c) log (pc(yt)) .

We apply a regularizing reward penalty on the magnitude of each action: r(ht, at) = 10−3∥at∥2.

Due to the small input size, we do not use a vision encoder; instead, the input is directly flattened into
a 25-dimensional vector. This design choice allows a fairer comparison to HAM Fleer et al. (2020),
which also operates on flat image data.

B.2 TACTILE MNIST CLASSIFICATION

In the Tactile MNIST classification task (see 9), the agent is presented with a 3D model of a high-
resolution MNIST digit, placed randomly on a 12×12cm plate. Each digit is up to 10cm in width and
height. The agent uses a single simulated GelSight Mini sensor Yuan et al. (2017) to explore the plate
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(a) (b) (c) (d)

Figure 7: Episode starting conditions of the CircleSquare task. The agent’s glimpse and the object (circle (a, c)
or square (b, d)) are placed in random locations on the field. Besides the color gradient, the agent receives no
information about the object’s location on the field.

(a) (b) (c) (d)

Figure 8: Visualization of a learned APPLE-CrossQ policy in the CircleSquare task. (a) The agent starts at a
random location and uses the color gradient to locate the object. It can only observe a 5 × 5 pixel patch. (b) The
agent follows the gradient, gradually gathering information. Without full certainty, it predicts a 50/50 probability
between classes along the way. Colored boxes show past glances, with color indicating prediction confidence.
(c) The agent reaches the object at the corner. (d) Upon confident identification, the agent classifies the object as
a square (bright green box) and maintains this prediction in later steps.

Figure 9: The simulated Tactile MNIST classification benchmark Schneider et al. (2025), which we use for
evaluating our method. The objective of the Tactile MNIST task is to identify the numeric value of the presented
digit by touch only. In every step, the agent decides how to move the finger and predicts the class label. The
haptic glance is computed via the Taxim Si & Yuan (2022) tactile simulator.
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Figure 10: The simulated Tactile MNIST-Volume Schneider et al. (2025) task, which we use for evaluating our
method. The objective of this task is to estimate a single continuous value representing the volume of a 3D
MNIST digit by touch alone. In every step, the agent decides how to move the finger and predicts the volume of
the digit. The haptic glance is computed via the Taxim Si & Yuan (2022) tactile simulator, and in red, we show
the current volume estimation in a single run.

surface. The sensor outputs a 32×32 pixel image rendered from a depth map by Taxim Si & Yuan
(2022). Additionally, the agent receives the 3D position of the sensor as input.

Each episode begins with a randomly selected digit, randomly placed and oriented. The agent has 16
steps to explore and classify the object. At each step, it chooses a movement action at ∈ [−1,1]2,
which corresponds to a translation of up to 1.5cm per axis. The sensor is automatically positioned to
maintain a 2mm indentation into the 4mm-thick gel. To simulate the object shifting around when
being manipulated by the agent, we apply Gaussian random noise to the position and orientation of
the object throughout the episode.

The classification output is a 10-dimensional logit vector. A standard cross-entropy loss is used:

ℓ(∗yt, yt) = −
10

∑
c=1

δ (y∗t , c) log (pc (yt)) , pc (yt) =
ey
(c)
t

∑10
i=0 e

y
(i)
t

.

The reward is used only for regularizing motion: r(ht, at) = 10−3∥at∥2.

We train APPLE-SAC, APPLE-CrossQ, and APPLE-RND from scratch (no pre-trained encoders),
using 5 random seeds for 5M steps. Hyperparameters are tuned via the HEBO Bayesian optimizer.
HAM Fleer et al. (2020) is not evaluated here as it lacks an image encoder. Evaluation is done using
digits not seen during training.

B.3 TACTILE MNIST-VOLUME

In the Tactile MNIST-Volume task (see Fig. 10), each episode begins with the 3D model of a high-
resolution MNIST digit being placed randomly on a 12×12cm plate. The agent explores the scene
using a simulated GelSight Mini sensor, identical to that used in the classification variant of the
MNIST task. The sensor provides a 32×32 tactile image, and the agent also received its 3D sensor
position as input. Actions at ∈ [−1,1]2 again correspond to a maximum motion of 1.5cm per axis.
The sensor maintains a fixed 2mm indentation into the gel on each step. Unlike Tactile MNIST, this
is a regression task, and the target in each episode is the volume of the digit, normalized to zero mean
and unit variance across all digits.

Each agent – APPLE-SAC, APPLE-CrossQ, and APPLE-RND – is trained from scratch using
5 random seeds for 5M steps. We reuse the hyperparameters optimized on Tactile MNIST with-
out modification to evaluate robustness across tasks. Evaluation is performed on held-out shape
configurations, which are not seen during training.

B.4 TOOLBOX TASK

In the Toolbox task (see 11), the agent has to estimate the pose of a 24cm long wrench that is placed
in a uniformly random 2D position and orientation on a 30×30cm plate. Similar to the previous two
tasks, the agent explores the scene using a simulated GelSight Mini sensor, providing a 32×32 tactile
image, while also receiving the 3D sensor position as input. Actions at ∈ [−1,1]2 again correspond
to a maximum motion of 1.5cm per axis, and the sensor maintains a fixed 2mm indentation into the
gel on each touch. To simulate the object shifting around when being manipulated by the agent, we
apply Gaussian random noise to the position and orientation of the object throughout the episode.
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Figure 11: The simulated Toolbox task, which we use for evaluating our method. The objective of the Toolbox
task is to determine the 2D pose (i.e., 2D position and orientation angle) of the object relative to the platform’s
center. In every step, the agent decides how to move the finger and predicts the 2D pose. The haptic glance is
computed via the Taxim Si & Yuan (2022) tactile simulator.

(a) (b) (c) (d)

Figure 12: Exploration strategy learned by our APPLE-CrossQ agent. In the beginning (a), both sensor and
wrench start in uniformly random places on the platform. The agent guesses a central position of the wrench
(illustrated by the transparent wrench) to minimize error in the absence of any further information. To find the
object efficiently, the agent has learned a circular search pattern and therefore quickly locates the object (b).
However, the information it currently has is not enough, as the orientation of the wrench is not clear just by
touching the handle. Thus, it randomly guesses the wrong orientation, with the open jaw pointing left instead of
right. To gather information, it moves along the handle (c) until it finds the open jaw d) and immediately corrects
the angle of its pose estimation.

The Toolbox task poses two challenges: finding the object and determining its exact position and
orientation. Once the object is found, determining its orientation is still not trivial, as many touch
locations only provide ambiguous data. Hence, as shown in Fig. 12, even after the object is found, an
exploration strategy for determining its pose must be executed.

Each agent – APPLE-SAC, APPLE-CrossQ, and APPLE-RND – is trained from scratch using 5
random seeds for 10M steps. We reuse the hyperparameters optimized on TactileMNIST without
modification to evaluate robustness across tasks.

B.5 CIFAR-10 CLASSIFICATION TASK

Although omitted in the main paper due to space constraints, we also evaluated our approach on the
CIFAR10 task introduced by Schneider et al. (2025). Similar to CircleSquare, the agent moves a
small 5x5 pixel glimpse across an image in order to classify it. In contrast to CircleSquare, the agent
is presented with 32x32 pixel RGB images from the CIFAR-10 dataset Krizhevsky et al. (2009),
which it must classify into 10 classes. See Fig. 13 for an illustration of this task.

Actions at ∈ [−1,1]2 are mapped to pixel motion as at ⋅ 6.4px (20% of the image width), allowing
smooth movement across the image. We use bilinear interpolation to compute the glimpse values
even at non-integer positions. The agent’s prediction yt ∈ R10 is interpreted as logits for the classes:

pc(yt) =
ey
(c)
t

∑10
i=1 e

y
(i)
t

.

Cross-entropy loss is used for training:

ℓ(y∗t , yt) = −
10

∑
c=1

δ(∗yt, c) log (pc(yt)) .

We apply a regularizing reward penalty on the magnitude of each action: r(ht, at) = 10−3∥at∥2.
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(a) (b) (c) (d)

Figure 13: Episode starting conditions of the CIFAR10 task. The agent’s glimpse is placed in a random location
on the field. It must move the glimpse around in order to learn the class of the displayed image.

Due to the small input size, we do not use a vision encoder; instead, the input is directly flattened into
a 25-dimensional vector.

The experimental results for CIFAR10 are presented in Appendix C.6.

C FURTHER EXPERIMENTS

In this section, we present additional experimental results that could not be included in the main body
due to space constraints.

C.1 EVALUATING PPO AND HAM ON CIRCLESQUARE

Figure 14 shows an additional experiment on the CircleSquare task Schneider et al. (2025), where
we compare HAM to two PPO-based variants, one using HAM’s LSTM model (APPLE-PPO-LSTM)
and one using our transformer model (APPLE-PPO). Note that, unlike in the experiment shown
in Fig. 4 where we stopped training after 250K environment steps, here, we let the training run
for 10M steps. Despite the longer training time, HAM fails to achieve a final prediction accuracy
that is better than random guessing. The PPO variant using HAM’s model (APPLE-PPO-LSTM)
achieves a final prediction accuracy of 72% after 10M steps, while the PPO variant with our
model (APPLE-PPO) achieves around 79%. In addition to the difference in final performance
of APPLE-PPO-LSTM and APPLE-PPO being 7%, APPLE-PPO improves much quicker in the
beginning than APPLE-PPO-LSTM. All hyperparameters for this experiment were again tuned using
HEBO Cowen-Rivers et al. (2022) and each method was trained from scratch on 5 seeds.

These results, in conjunction with the results shown in Section 4.2, indicate that HAM’s issues in
solving the CircleSquare task may have two reasons: First, HAM’s LSTM model seems to be ill-
suited for learning this task, as all other compared methods (APPLE-SAC, APPLE-CrossQ, and
APPLE-PPO) each performed worse with HAM’s LSTM model than with our transformer model.
Second, the fact that PPO and HAM are both on-policy algorithms likely has a negative impact on their
sample efficiency, as samples collected from the environment cannot be reused later on. Off-policy
algorithms, such as APPLE-SAC and APPLE-CrossQ, on the other hand, store samples over the
course of the entire training and revisit them many times, making optimal use of the information
gathered during training. We see this effect clearly in Fig. 14, where APPLE-CrossQ outperforms
APPLE-PPO by orders of magnitude in sample-efficiency, despite both algorithms using the same
model for their policy and class predictions.

C.2 ABLATION STUDY ON CIRCLESQUARE

To gain an understanding of the effect of the different components of APPLE, we conduct an ablation
study on our CircleSquare experiment.

First, we replace the transformer model with an LSTM model. The results shown in Fig. 15 show
that, although our model is still learning to solve the task, convergence is much slower compared
to the transformer variant of our method, despite extensive tuning of the LSTM baselines with
HEBO Cowen-Rivers et al. (2022). These findings are in line with the results from Appendix C.1, in
which the transformer-based architecture also outperformed the LSTM architecture when used with a
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Figure 14: Experiments on the CircleSquare task, comparing HAM with two PPO-based variants: APPLE-PPO
and APPLE-PPO-LSTM. The difference between APPLE-PPO and APPLE-PPO-LSTM is that APPLE-PPO
uses our transformer model, while APPLE-PPO-LSTM uses HAM’s LSTM model. APPLE-CrossQ’s run with
250K steps is shown for reference. The left plot shows the average prediction accuracies, while the right plot
shows the final prediction accuracies. Training is terminated after 10M environment steps.
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Figure 15: Ablation on the CircleSquare environment, comparing our two APPLE variants with modified
versions, in which we use an LSTM model in place of APPLE’s transformer model. The left plot shows the
average prediction accuracies, while the right plot shows the final prediction accuracies. Training is terminated
after 1M environment steps.

PPO variant of APPLE. Hence, we conclude that the choice of model can have a significant influence
on APPLE’s overall performance.

Second, we investigate the importance of utilizing the target label and the loss function ℓ during
training. Hence, in this experiment, we just use r̃(ht,

∗
yt, at, yt) directly as an RL-reward and make yt

become part of the action space. Instead of relying on supervised learning for optimizing π(yt ∣ o0∶t),
the agent must now rely on its policy gradient and essentially find the optimal yt via trial and error.
We call these variants APPLE-SAC-PURE-RL and APPLE-CrossQ-PURE-RL, respectively.

As shown in Fig. 16, although the final accuracy of APPLE-SAC-PURE-RL briefly peaks to 80%,
the absence of target labels and the loss function makes the training of these agents very inefficient
and unstable. Since CircleSquare is a fairly simple task, this experiment highlights how challenging
it is for RL agents to discover and learn a correlation between their observations and the reward they
receive in this setting if no structure is imposed.

Finally, we compare our approach to a variant of itself, which, instead of learning an exploration
policy, uses a static grid-search strategy to gather information. This strategy moves the glimpse in a
grid pattern across the image, always starting at the closest corner. While this strategy produces better
exploration than a random policy, it stagnates at a final accuracy of 73%. The reason for this poor
performance is that the time budget of the CircleSquare task is specifically chosen to be too low for
exhaustive exploration of the entire environment. Instead, the agent must learn to follow the gradient
to efficiently locate and classify the target object.
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Figure 16: Ablation on the CircleSquare environment, comparing our two APPLE variants with modified
versions, in which we treat the prediction loss as a regular RL reward, using neither its differentiability nor the
target label. Instead, the label prediction becomes part of the regular action space and the agent has to optimize
it through its regular policy gradient. The left plot shows the average prediction accuracies, while the right plot
shows the final prediction accuracies. Training is terminated after 1M environment steps.
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Figure 17: Ablation on the CircleSquare environment, comparing our two APPLE variants with a modified
version using a heuristic grid-search policy. The grid-search policy searches through the image in a grid pattern,
always starting from the closest corner and moving vertically first. Aside from the agent having no control over
its actions, everything else is kept the same. The left plot shows the average prediction accuracies, while the
right plot shows the final prediction accuracies. Training is terminated after 1M environment steps.
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Figure 18: Experiment on a sparse version of CircleSquare, in which only the agent’s prediction in the last time
step counts. The original learning curve on the non-sparse version of CircleSquare is also displayed for reference.
Training is terminated after 1M environment steps.

C.3 HOW WELL DOES APPLE DEAL WITH SPARSE REWARDS?

In the real world, labels might not always be available for every time step. For example, if a tracking
system is used to generate ground-truth data for a tactile pose estimation task, there may be some
time steps in the data where the tracking system loses sight of the object. To support this case in our
formalism, we can store a boolean variable wt ∈ {0,1}, indicating whether the object was tracked
at time step t (wt = 1) or not (wt = 0) alongside the perception targets

∗
yt. With a tracking-aware

loss function ℓ((∗y,wt), yt) ∶= wtMSE(∗yt, yt), we can now make sure that only those steps get
considered in the prediction loss in which the tracking was successful.

To briefly evaluate the feasibility of using APPLE with sparse rewards, we conducted a small
experiment on our CircleSquare environment. In this experiment, we made the reward sparse by
using the above loss function and setting wt = 0 for all time steps except the last one, where we set
wt = 1. Essentially, the agent receives its perception reward only for the prediction it makes in the
final time step. As shown in Fig. 18, we observe that both APPLE variants continue to learn to solve
the task, although our CrossQ variant converges slightly more slowly.

C.4 CAN THE PERCEPTION LOSS HELP IN THE PRESENCE OF ANOTHER DOWNSTREAM TASK?

Our long-term objective with this line of work is to tackle tasks in which active perception is not the
primary objective, but rather tasks in which the agent must use active perception to fulfill another
objective. One such example is finding and retrieving a specific tool from a toolbox. In this task, the
main objective is not to find the tool, but it still has to be found in order to be retrieved. Although we
deem these types of tasks to be outside of the scope of this work, we conducted a small experiment to
pre-validate the feasibility of using APPLE in this context.

Specifically, we created a variant of the CircleSquare task, in which the agent must stay close to
squares and far from circles. We call this variant CircleSquareHideAndSeek and implement it by
using the following base reward instead of the regular CircleSquare base reward:

r(ht, at) = 10−3∥at∥2 + {
∥pagent

t − pobject
t ∥ if square

−∥pagent
t − pobject

t ∥ if circle

Hence, to solve this task optimally, the agent must first identify the class of the object and then either
remain close or move far away. Here, active perception is only an intermediate step towards solving
this task, as knowing the label yields reward only indirectly. In Fig. 19, we compare two variants of
our APPLE-CrossQ agent on this task: our regular APPLE-CrossQ agent, which utilizes label
and loss-function information, and a variant APPLE-CrossQ-NO-PRED, which just maximizes
the base return.

Our results show that the regular agent, which utilizes the label and the loss function, significantly
outperforms the agent relying on pure RL. This result suggests that incorporating a supervised
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Figure 19: Experiment on the CircleSquareHideAndSeek variant of CircleSquare. In this variant, the agent
must stay close to squares and avoid circles. We test two variants: APPLE-CrossQ, our regular approach, and
APPLE-CrossQ-NO-PRED, which does not make use of the target label and the loss function. APPLE-SAC
variants were not included as neither of them learned any meaningful behavior. Training is terminated after 1M
environment steps.
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Figure 20: Additional experiments on the MHSB Classification task Fleer et al. (2020), where we let HAM run for
longer. APPLE-CrossQ’s run with 1M step is shown for reference. The left plot shows the average prediction
accuracies, while the right plot shows the final prediction accuracies. HAM eventually converges to a good policy
within 5M steps, reproducing the results of Fleer et al. (2020). Note that the experiment here differs slightly
from Fleer et al. (2020), as we use the classification loss as a reward signal for the RL agent instead of a binary
reward. We chose to do this modification to allow for a fair comparison to our methods.

learning problem as an inductive bias to guide agents toward discovering relevant information can be
beneficial for solving downstream tasks. However, more experiments on more complex environments
are needed to investigate whether adding such an active perception bias also brings advantages in
broader applications.

C.5 LONGER EVALUATION OF HAM OF THE MHSB TASK

To validate our implementation of HAM, we conduct a longer experiment on the MHSB task, on
which it was originally evaluated. The results of this experiment can be seen in Fig. 20, where we see
that HAM eventually converges to good performance. Since these results are similar to those of Fleer
et al. (2020), we conclude that our implementation is correct.

C.6 CIFAR10 CLASSIFICATION TASK

In Fig. 21, we present the results of running our two APPLE variants, as well as a random baseline, on
the CIFAR10 task, described in Appendix B.5. Although the task is similar, CIFAR10 is significantly
more challenging than CircleSquare, as the agent now has to deal with much more diverse data and
ten labels instead of two.
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Figure 21: Average and final prediction accuracies for our methods APPLE-SAC and APPLE-CrossQ, and
APPLE-RND on the CIFAR10 task. All methods were trained with 5 seeds. Shaded areas represent one standard
deviation. Metrics are computed on the test split with unseen images.

As shown in Fig. 21, despite not being tuned for this task, APPLE-SAC still performs well, achieving
a final accuracy of 76%. APPLE-CrossQ converges slightly slower and reaches a slightly lower
final accuracy of 73%. Our random baseline reaches a final accuracy of 67% after 2.5M steps.

D LIMITATIONS

While APPLE demonstrates strong performance across various active perception tasks, it also has
certain limitations. One of the primary drawbacks is its reliance on large amounts of training data,
requiring up to 5M steps for the tactile perception tasks. This high data requirement arises from
the combination of a transformer-based architecture and RL-based policy optimization. While
this approach enhances the generality of APPLE, allowing it to adapt to different tasks without
hyperparameter tuning, it comes at the cost of sample efficiency. A promising avenue to solve
this issue is leveraging pre-trained transformer models, which could improve sample efficiency
by providing useful feature representations. Furthermore, recent advancements in sample-efficient
reinforcement learning Nauman et al. (2024); Lee et al. (2024) offer potential alternatives for
improving the practicality of APPLE in real-world applications. Another limitation and future
direction is to explore a more diverse and practical set of tasks. Applications such as object pose
estimation, shape reconstruction, or material property inference remain unexplored and could pose
additional challenges to our methodology. Moreover, our current experiments use a single tactile
sensor, but in principle, the APPLE model architecture supports multi-fingered robotic hands and
multi-modal perception (e.g., combining vision and touch). However, the practical scalability of
APPLE to those applications remains an open question, as the increased action and observation
space complexity may introduce additional challenges in training efficiency, policy learning stability,
and computational demands. Future work will explore these extensions by evaluating APPLE on
multi-fingered robotic systems and integrating complementary sensing modalities to enhance active
perception capabilities.

E HYPERPARAMETER OPTIMIZATION

For fair comparison between our method and the baselines, we have performed extensive hyperpa-
rameter searches with the HEBO Cowen-Rivers et al. (2022) Bayesian optimizer.

Procedure. We select the CircleSquare and TactileMNIST classification environments as repre-
sentative environments on which to tune hyperparameters. Specifically, CircleSquare is used as the
representative environment without a vision encoder, and TactileMNIST is used as the representative
environment with a vision encoder. We evaluate each candidate configuration by training with a
single seed (250K steps on CircleSquare and 2.5M steps on TactileMNIST, except for HAM and PPO,
which are trained for 1M steps on CircleSquare) and measure the episode return averaged across the
entire training run. Averaging rewards over time, rather than using final performance alone, ensures
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Table 1: Hyperparameters determined by the HEBO Cowen-Rivers et al. (2022) Bayesian optimizer for
APPLE-SAC and APPLE-CrossQ. The no vision-encoder configuration was trained on the CircleSquare
environment, while the vision-encoder configuration was trained on the TactileMNIST environment. Hyperpa-
rameters with Rel. are relative to the total number of steps throughout the training.

Hyperparameter APPLE-SAC APPLE-CrossQ
no vis.-enc. vis.-enc. no vis.-enc. vis.-enc.

Optimizer type ADAMW ADAMW ADAMW ADAMW
Learning-rate (actor) 5 ⋅ 10−5 5 ⋅ 10−4 1 ⋅ 10−5 3 ⋅ 10−4
Learning-rate (critic) 5 ⋅ 10−4 5 ⋅ 10−5 1 ⋅ 10−4 6 ⋅ 10−5
LR-schedule (both) none cosine-decay none none
Rel. LR cosine warm-up (both) N/A 0.15 N/A N/A
Initial UTD 0.75 0.25 5.0 0.25
Final UTD 4.0 1.5 0.5 3.5
Rel. UTD warm-up 0.9 0.4 0.3 0.45

that sample efficiency is taken into account: two hyperparameter sets achieving the same final return
may differ greatly in how quickly they reach that level of performance.

Search space. Because Bayesian optimization scales poorly with dimensionality, we restrict the
search to hyperparameters we found most impactful for performance. All methods are tuned for
learning rate, learning-rate schedule (none, cosine decay, linear), schedule parameters (e.g., warm-
up steps), and optimizer choice (ADAM, ADAMW, SGD). For off-policy APPLE methods, we
additionally tune the update-to-data (UTD) schedule: initial and final UTD ratios and the number of
warm-up steps.

Findings. Despite an extensive search, we were unable to identify hyperparameters yielding com-
petitive performance for HAM on CircleSquare. In contrast, the search provided valuable insights
for APPLE-SAC and APPLE-CrossQ. Although both achieved comparable performance on their
tuning tasks, APPLE-CrossQ demonstrated substantially greater robustness when transferred to
unseen environments (Section 4). Interestingly, applying APPLE-CrossQ’s vision-encoder hy-
perparameters to CircleSquare produced no measurable degradation in performance. To simplify
evaluation, we therefore adopt the vision-encoder configuration for all environments in subsequent
experiments.

The final hyperparameter settings selected by HEBO are summarized in Table 1.

F IMPLEMENTATION DETAILS

The implementations of APPLE, APPLE-PPO, and HAM are built on JAX Bradbury et al. (2018)
with the Flax framework Heek et al. (2024), and use Hugging Face transformers Wolf et al. (2020).
For performance, the training loop is fully JIT-compiled, and environment interactions are handled
via host callbacks—maximizing throughput at the expense of some implementation flexibility.

Replay buffer design. A common bottleneck in deep learning arises from the transfer of data
between VRAM (GPU) and RAM (CPU). To minimize this overhead, we keep the replay buffer in
VRAM, so that host-device communication is limited to stepping the environment and logging. The
drawback is reduced capacity for environments with vision inputs, since VRAM is smaller than RAM.
On Nvidia RTX A5000 GPUs (24GB VRAM), storing downscaled 32× 32px visual inputs allows for
roughly 3M transitions before memory is exhausted. Consequently, for vision-encoder configurations
(i.e., the Tactile MNIST classification and volume estimation tasks as well as the Toolbox localization
task), we set the replay-buffer size to 3M, whereas for non-vision-encoder configurations, we use a
replay-buffer size equal to the total number of environment steps.

Hardware setup. All experiments were run on Nvidia RTX A5000 or RTX 3090 GPUs with the
hyperparameters from Table 1. For vision-encoder configurations, we dedicate one GPU per run. A
single run of 5M training steps takes about 40–50 hours, depending on the algorithm.
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Parallelization. Non-vision-encoder configurations demand less VRAM, enabling multiple runs to
share a GPU. On a single RTX A5000/3090, we can accommodate up to 28 parallel runs, depending
on the environment and algorithm. As wall-clock runtime then depends heavily on the number of
concurrent runs, reporting averages is not meaningful. Nevertheless, we observe that HAM and PPO
typically run about four times faster than APPLE.

G DETAILED DERIVATION OF EQ. (3)

Due to space constraints, we omitted intermediate steps in the derivation of Eq. (3) in the main paper
and instead note them here:

∂

∂θ
J(πθ) =

∂

∂θ
E
pθ(h,

∗

y,o,a)
[
∞
∑
t=0

γt (r(ht, at) − ℓπθ
(∗yt, o0∶t))]

= ∂

∂θ
∫ pθ(h,

∗
y,o,a)

∞
∑
t=0

γt (r(ht, at) − ℓπθ
(∗yt, o0∶t))d(h,

∗
y,o,a)

= ∫
∂
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∗
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prediction loss gradient

.

H CONNECTION TO CURIOSITY-BASED INTRINSIC REWARD METHODS

Since formulation in Eq. (2) somewhat resembles the augmented rewards commonly used in curiosity-
based intrinsic reward RL methods, such as RND Burda et al. (2018) or ICM Pathak et al. (2017), one
might wonder what the connection between APPLE and those methods is. Fundamentally, APPLE
solves a different problem than curiosity-based intrinsic reward methods. Intrinsic reward methods
typically focus on enhancing policy learning in an MDP setting by providing intrinsic exploration
bonuses for under-explored areas of the state space. Hence, they are concerned with letting the agent
collect rich experiences to facilitate efficient policy learning. Crucially, the MDP the agent faces
during training is, because of the augmentation with the intrinsic reward bonus, different from the
one it faces during evaluation.

APPLE, on the other hand, is concerned with learning hidden properties of the environment within
an episode. Although our formulation may resemble the augmented rewards of intrinsic motivation
methods, it operates on a fundamentally different level of exploration. In our case, the extraction of
information is the objective posed by the task and not a surrogate used to learn better policies.

On a high level, one could say that intrinsic reward methods utilize exploration to learn the optimal
policy parameters, while APPLE uses exploration to learn about the hidden state of the POMDP it
operates in. Hence, the exploration procedure of intrinsic reward methods occurs across episodes,
while the exploration procedure of APPLE takes place within each episode. These two concepts are
fully orthogonal, and one could indeed combine ICM or RND with APPLE in an attempt to speed up
its learning progress.
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