

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 APPLE: TOWARD GENERAL ACTIVE PERCEPTION VIA REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Active perception is a fundamental skill that enables us humans to deal with uncertainty in our inherently partially observable environment. For senses such as touch, where the information is sparse and local, active perception becomes crucial. In recent years, active perception has emerged as an important research domain in robotics. However, current methods are often bound to specific tasks or make strong assumptions, which limit their generality. To address this gap, this work introduces **APPLE** (**A**ctive **P**erception **P**olicy **L**earning) – a novel framework that leverages reinforcement learning (RL) to address a range of different active perception problems. **APPLE** jointly trains a transformer-based perception module and decision-making policy with a unified optimization objective, learning how to actively gather information. By design, **APPLE** is not limited to a specific task and can, in principle, be applied to a wide range of active perception problems. We evaluate two variants of **APPLE** across different tasks, including tactile exploration problems from the Tactile MNIST benchmark. Experiments demonstrate the efficacy of **APPLE**, achieving high accuracies on both regression and classification tasks. These findings underscore the potential of **APPLE** as a versatile and general framework for advancing active perception in robotics.

1 INTRODUCTION

Imagine searching for a set of tools inside a cluttered toolbox. You do not know where a tool is located or how it is positioned. Rather than waiting passively for the information to reveal itself, most people would place their hands inside the box and begin exploring. They would probe, grasp, and adjust their motions based on the feedback they receive. This process illustrates the concept of *active perception*: the deliberate selection of actions to acquire information in the face of uncertainty Bajcsy (1988). Crucially, active perception does not aim to exhaustively explore every possible aspect of the world. Instead, it focuses on finding efficient strategies that reduce uncertainty about specific properties of the environment. Equipping robots with this same capability is a key step toward enabling them to act autonomously in unstructured environments, where information is often sparse, noisy, and incomplete.

Particularly relevant to active perception is the sense of touch. While vision has been widely explored in this context, especially for tasks such as object search and next-best-view planning Yang et al. (2019); Xiong et al. (2025a); Tan et al. (2020), tactile sensing poses distinct challenges and opportunities. Unlike vision, which can provide wider information coverage from a single observation, touch is inherently local, with each contact providing only a small glimpse of the environment Prescott et al. (2011). This locality makes tactile sensing a natural fit for active

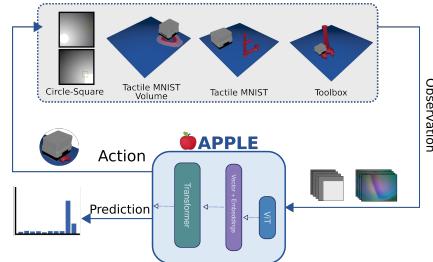


Figure 1: Our method **Active Perception Policy Learning** (**APPLE**) aims to infer properties, such as object classes, of its environment based on limited per-step information. To do so, it jointly optimizes an action policy to gather information and a prediction model for inference. Both the action policy and the prediction model use a shared transformer-based backbone to process sequences of inputs. Illustrated on the top are four benchmark tasks we use to evaluate **APPLE**.

054 perception, since purposeful interaction is often the only practical way to gather sufficient information
 055 without resorting to prohibitively exhaustive exploration. Indeed, several works have investigated
 056 tactile active perception, focusing on tasks such as shape estimation Björkman et al. (2013); Smith
 057 et al. (2021), texture recognition Boehm et al. (2024), and grasping De Farias et al. (2021). However,
 058 these approaches typically optimize a task-specific objective, such as maximizing force closure in
 059 grasping or minimizing uncertainty in shape completion, often greedily optimizing an information-
 060 gain heuristic. Moreover, methods such as Björkman et al. (2013); Dragiev et al. (2013); De Farias
 061 et al. (2021) also simplify the problem by assuming a static environment in which objects remain
 062 stationary during exploration, an assumption that overlooks the inherently dynamic and contact-rich
 063 nature of tactile exploration. While effective in narrow settings, such methods remain fundamentally
 064 tied to predefined objectives, rather than learning a transferable strategy for information gathering.
 065 In contrast, alternative options, such as reinforcement learning (RL), can provide a more general
 066 framework for acquiring more dynamic active perception policies. Although a reward signal must
 067 still be specified, RL enables agents to *learn sequential decision-making strategies* directly from
 068 interaction, guided by broader task-level goals rather than narrowly hand-crafted optimization criteria.
 069

070 In the context of active perception, some works have explored RL for learning exploration strategies.
 071 For tactile sensing, various RL algorithms have been employed, including REINFORCE Fleer et al.
 072 (2020), PPO Xu et al. (2022); Shahidzadeh et al. (2024), and DQN Smith et al. (2021). Most
 073 notably, Fleer et al. (2020) introduced the Haptic Attention Model (HAM), which adapts the recurrent
 074 model of visual attention proposed by Mnih et al. (2014) to the tactile domain. HAM demonstrated
 075 that even simple policy gradient methods such as REINFORCE can learn exploration strategies by
 076 jointly optimizing perception and action, enabling object classification through haptic exploration.
 077 However, on-policy approaches such as REINFORCE and PPO can be sample-inefficient, limiting
 078 their scalability. Moreover, the generality of active perception methods has not been widely studied:
 079 most existing approaches are tied to specific tasks and objectives, lacking a unified formulation.
 Ideally, active perception policies should be trained to discover exploration strategies that are agnostic
 to the underlying task, enabling transfer across modalities and problem settings.

080 Thus, in this work, we ask the following: can we design a principled RL-based algorithm for
 081 discovering active perception policies by relying only on a ground-truth label and a differentiable
 082 loss during training? And more broadly, can such an approach be general enough to extend across a
 083 diverse set of active perception problems, ranging from classification to regression, without requiring
 084 task-specific exploration heuristics? To investigate these questions, we frame active perception
 085 within the setting of partially observable Markov decision processes (POMDPs), where an agent
 086 must act under uncertainty to actively reduce ambiguity about a target property. Note that in this
 087 work, we purely aim to evaluate the agent’s ability to actively perceive. Accordingly, we focus
 088 on tasks where the agent’s primary objective is to learn a property of the environment (e.g., the
 089 class or pose of an object) and leave the evaluation of problems that involve active perception for
 090 another downstream task to future work. Building on this formulation, we introduce **APPLE** (**A**ctive
 091 **P**erception **P**olicy **L**earning), a framework that combines reinforcement learning with supervised
 092 learning, requiring only a differentiable loss function and a POMDP environment. **APPLE** jointly
 093 trains a decision-making policy and a perception module on top of a shared transformer backbone,
 094 allowing it to accommodate diverse sensor inputs without task-specific modifications. We present
 095 two variants of **APPLE**, extending **SAC** Haarnoja et al. (2018) and **CrossQ** Bhatt et al. (2019), and
 096 evaluate them across five benchmarks that include classification, volume estimation, and localization
 097 tasks (see Fig. 1). Our experiments show that our RL framework can be effective for active perception
 098 across several tasks and thus serves as a step towards a more general framework. In summary, our
 099 main contributions are:
 100

- A unified formulation for active perception that motivates using a combination of policy gradient methods and supervised learning to solve interactive supervised learning problems.
- A framework for active perception that jointly trains a reinforcement learning policy and a perception module on a shared transformer backbone. This formulation enables adaptability across different tasks by making minimal assumptions about the nature of the underlying POMDP.
- Comprehensive empirical evaluation of two method variants, based on **SAC** and **CrossQ**, on classification, volume estimation, and localization tasks, demonstrating that RL-based strategies can discover active exploration policies without task-specific heuristics, and establishing **APPLE** as a viable formulation for active perception.

108

2 RELATED WORK

109
 110 Active perception has been studied for both vision and touch Bajcsy (1988); Bajcsy et al. (2018); Bohg
 111 et al. (2017); Taylor et al. (2021) and in the context of Applications range from object localization
 112 and tracking Yang et al. (2019); Gounis et al. (2024); Tallamraju et al. (2019); Mateus et al. (2022),
 113 to scene description Tan et al. (2020), object property identification Boehm et al. (2024), shape
 114 estimation Yi et al. (2016); Björkman et al. (2013), UAV navigation Bartolomei et al. (2021), and
 115 robotic manipulation De Farias et al. (2021); Xiong et al. (2025a); Dragiev et al. (2013). Many of
 116 these works have been formulated using reinforcement learning or non-parametric methods such as
 117 Bayesian optimization, with a few imitation-learning-based approaches emerging more recently Yang
 118 et al. (2024b); Chuang et al. (2025); Liu et al. (2025); Dai et al. (2022); Xiong et al. (2025b). However,
 119 these methods are usually tailored to specific tasks, environments, and objectives, and often assume
 120 the agent does not influence the environment through its actions. To our knowledge, there exists
 121 no active perception method that has been shown to work on a wide range of tasks, objectives, and
 122 environments.

123 **Active Perception for Tactile Sensing:** Tactile sensing allows robots to infer object geometry, texture,
 124 and materials through physical contact, complementing or substituting visual sensing, especially
 125 in occluded scenarios. Early tactile sensing systems primarily used simple binary contacts Yousef
 126 et al. (2011), whereas recent approaches employ vision-based tactile sensors Yuan et al. (2017);
 127 Lambeta et al. (2020); Lloyd & Lepora (2024). These sensors provide high-resolution data useful in
 128 complex tasks, including shape reconstruction, texture recognition, and advanced manipulation, such
 129 as autonomous page turning Zheng et al. (2022), object reorientation Yin et al. (2023); Qi et al. (2023),
 130 and handling deformable objects Bauer et al. (2025). Active tactile perception involves deliberately
 131 selecting contact locations and trajectories to optimize information gain during interaction. Previous
 132 approaches leverage Gaussian Processes Yi et al. (2016); Björkman et al. (2013) and Bayesian
 133 optimization Dragiev et al. (2013); De Farias et al. (2021); Boehm et al. (2024) to efficiently
 134 reconstruct shapes, discriminate textures, or identify grasp points. However, these approaches
 135 typically rely only on sparse contact points, assume the object is stationary, and often require
 136 additional sensing modalities such as vision Björkman et al. (2013). Moreover, most works are
 137 tailored to specific tasks. Gaussian process-based methods, such as Yi et al. (2016); Björkman et al.
 138 (2013); Dragiev et al. (2013), focus on shape reconstruction, while Boehm et al. (2024) performs
 139 texture recognition using vision-based tactile. For comprehensive surveys on tactile manipulation, we
 refer readers to Li et al. (2020); Yousef et al. (2011).

140 **Reinforcement Learning in Active Perception:** In active perception, previous works have explored
 141 RL-based approaches. In the visual domain, Yang et al. (2019) performs active object search and Tan
 142 et al. (2020) generates semantic scene annotations, both use REINFORCE to train camera-control
 143 policies that improve perception. Related camera-control methods include Cheng et al. (2018), who
 144 apply RL to a manipulation task using RCNN-processed visual input, and Dass et al. (2024), who
 145 recover a known context variable from visual observations using PPO without memory. Hu et al.
 146 (2025) focuses on real-world, vision-based active perception and proposes an RL training recipe
 147 that uses privileged sensing and demonstrations to learn deployable viewpoint-selection policies.
 148 Active perception for 3D scene understanding has also been studied. Jayaraman & Grauman (2018)
 149 learn LSTM-based policies for actively completing panoramic scenes, while Lv et al. (2023) uses a
 150 differentiable simulator to select informative viewpoints with attention to sim-to-real transfer. Other
 151 works jointly model motor and sensor policies under partial observability, as in Shang & Ryoo (2023),
 152 or integrate point-cloud conditioning and distillation for mobile manipulation Uppal et al. (2024).

153 In the tactile domain, RL-based methods have addressed object shape reconstruction. Particularly,
 154 PPO Xu et al. (2022) and DDQN Smith et al. (2021) have been applied to build object shape estimates
 155 by selecting informative contact points, with the former assuming a binary tactile sensor in a 2D
 156 environment and the latter requiring both vision and touch. By assuming that the object is static,
 157 these approaches avoid uncertainty in object pose and maintain explicit shape reconstructions that
 158 serve as the policy state. Complementing these, Rajeswar et al. (2022) propose curiosity-driven
 159 haptic exploration based on mismatches between visual predictions and tactile observations. Related
 160 to our work is the *Recurrent Models of Visual Attention* (RAM) Mnih et al. (2014), which uses
 161 REINFORCE to select sequential image glimpses for MNIST classification via an LSTM policy.
 Although developed for classification, the idea naturally extends to regression. Building on RAM,
 Fleer et al. (2020) introduce the *Haptic Attention Model* (HAM), which learns a control policy

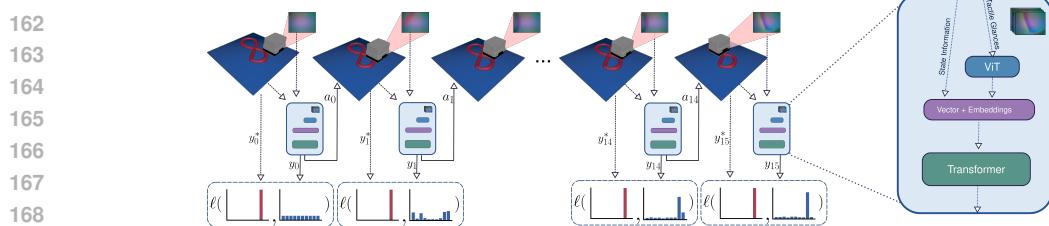


Figure 2: Active perception process in the **APPLE** framework. In this task the agent’s goal is to classify the digit using touch alone. At each step, it receives a tactile reading and state information (e.g., sensor position). A Vision Transformer encodes the tactile input, which is concatenated with state data and processed as a sequence over time by a transformer. At every step, the model outputs a label prediction y_t , evaluated against the ground truth y^* via a loss function ℓ , and an action a_t that controls the sensor’s next movement.

for a taxel-based tactile sensor to classify four static objects, though training requires millions of interactions. Niemann et al. (2024) extends this with a binary “done” action, again evaluating on tactile classification.

Finally, our classification experiments fit within the broader family of internally rewarded RL (IRRL) methods formalized by Li et al. (2023), which use internal discriminators to produce rewards defined as mutual information between trajectories and labels. While our rewards also depend on the agent’s own prediction model, our framework is more general, allowing any differentiable loss rather than targeting mutual information specifically.

3 ACTIVE PERCEPTION POLICY LEARNING

Our objective in this work is to develop an active perception method that, unlike prior approaches, is not tied to a particular task or environment. Our guiding principle here is similar to RL. That is, just as RL requires only a reward function, we want to specify a *perception objective* and let the agent learn an appropriate perception policy on its own, without imposing strong task-specific assumptions. On a high level, we frame active perception as a supervised learning problem. The agent’s goal is to minimize a loss $\ell(\hat{y}_t, y_t)$ between its current prediction \hat{y}_t and the ground-truth label y_t . However, unlike in classical supervised learning, we assume that the agent is not simply presented with a static data point as input, but rather with an interactive environment that it can actively gather data from. E.g., the agent could be presented with an object and has to decide actively how to examine it to extract the information it needs. This perspective defines active perception fundamentally as a sequential decision-making problem embedded within a supervised learning problem. An example of this process is given in Fig. 2. Here, the agent is faced with a classification task, where it must identify a digit from touch alone. Hence, in every step, the agent chooses where to move the sensor while also making a prediction about the class label. The agent’s objective is to minimize the loss function ℓ throughout this process (illustrated in the bottom row of the Fig. 2). Thus, it must optimize its actions to be as informative as possible.

In the remainder of this section, we formally define our problem and derive the **Active Perception Policy Learning (APPLE)** framework. We propose two variants of **APPLE**, based on SAC Haarnoja et al. (2018) and CrossQ Bhatt et al. (2019).

3.1 PROBLEM STATEMENT

Formally, we define the problem of active perception as a special case of a Partially Observable Markov Decision Process (POMDP). Here, the environment is governed by unknown dynamics $p(\tilde{h}_{t+1}|\tilde{h}_t, \tilde{a}_t)$, where \tilde{h}_t is the hidden environment state and \tilde{a}_t is the action taken at time t . The agent then makes observations through the distribution, $p(o_t|\tilde{h}_t)$, where o_t is the observation. In the active perception scenario, the agent’s objective is to learn a particular property of the environment, e.g., the class or pose of an object. We assume that the ground truth value y_t^* of this property at time t is part of the hidden state \tilde{h}_t and thus not directly accessible to the agent. Hence, the hidden state decomposes into $\tilde{h}_t = (h_t, y_t^*)$, where h_t is the remainder of the hidden state without the ground truth property value. Additionally, the agent’s action space contains not only control actions a_t but

216 also a current estimate y_t of the desired environment property. In other words, the action space
 217 decomposes into $\tilde{a}_t = (a_t, y_t)$, meaning that the agent predicts the desired environment property at
 218 every step. As is typical for RL, the action a_t is a control signal, e.g., a desired finger movement,
 219 which is communicated to the agent’s motor controllers.

220 The overall reward function \tilde{r} consists of two parts: a differentiable prediction loss ℓ and a regular RL
 221 reward r . That is, $\tilde{r}(h_t, \dot{y}_t, a_t, y_t) = r(h_t, a_t) - \ell(\dot{y}_t, y_t)$. Here, the prediction loss, $\ell(\dot{y}_t, y_t)$, could,
 222 e.g., be a cross-entropy loss in the case of a classification task or the Euclidean distance in the case of
 223 a pose estimation task. The RL reward, $r(h_t, a_t)$, does not have to be differentiable or known to the
 224 agent. In this work, we only use it to regularize the agent’s actions a_t . In the following, to simplify
 225 the notation, we denote $p(\mathbf{h}, \dot{\mathbf{y}}, \mathbf{o}, \mathbf{a}, \mathbf{y}) = \pi(\mathbf{o} | \mathbf{h}) p(\mathbf{h}, \dot{\mathbf{y}}, \mathbf{o}, \mathbf{a})$, $\pi(\mathbf{y} | \mathbf{o}) = \prod_{t=0}^{\infty} \pi(y_t | o_{0:t})$ and
 226 $p(\mathbf{h}, \dot{\mathbf{y}}, \mathbf{o}, \mathbf{a}) = p(\mathbf{h}, \dot{\mathbf{y}}_0) \prod_{t=0}^{\infty} p(o_t | h_t) \pi(a_t | o_{0:t})$ where $\mathbf{h} := h_{0:\infty}$, $\dot{\mathbf{y}} := \dot{y}_{0:\infty}$, and so on.

227 The objective is now to find a policy $\pi(a_t | o_{0:t})$ for which the expected discounted return is maximized.
 228 That is, given the discount factor $\gamma \in [0, 1]$,

$$231 \max_{\pi} J(\pi) := \mathbb{E}_{p(\mathbf{h}, \dot{\mathbf{y}}, \mathbf{o}, \mathbf{a}, \mathbf{y})} \left[\sum_{t=0}^{\infty} \gamma^t \tilde{r}(h_t, \dot{y}_t, a_t, y_t) \right]. \quad (1)$$

234 3.2 OPTIMIZING THE ACTIVE PERCEPTION OBJECTIVE

235 Let $\ell_{\pi}(\dot{y}_t, o_{0:t}) := \mathbb{E}_{\pi(y_t | o_{0:t})} [\ell(\dot{y}_t, y_t)]$. Since the agent’s predictions y_t do not influence future
 236 states, we can rewrite Eq. (1) as

$$237 J(\pi) = \mathbb{E}_{p(\mathbf{h}, \dot{\mathbf{y}}, \mathbf{o}, \mathbf{a})} \left[\sum_{t=0}^{\infty} \gamma^t (r(h_t, a_t) - \ell_{\pi}(\dot{y}_t, o_{0:t})) \right]. \quad (2)$$

238 In this work, we assume that the policy π is a neural network, parameterized by parameters $\theta \in \mathbb{R}^M$,
 239 which allows us to compute a gradient of Eq. (2) and optimize the problem with gradient descent
 240 algorithms. Computing the gradient of $J(\pi_{\theta})$ now yields

$$241 \frac{\partial}{\partial \theta} J(\pi_{\theta}) = \underbrace{\mathbb{E}_{p_{\theta}(\mathbf{h}, \dot{\mathbf{y}}, \mathbf{o}, \mathbf{a})} \left[\frac{\partial}{\partial \theta} \ln \pi_{\theta}(\mathbf{a} | \mathbf{o}) \sum_{t=0}^{\infty} \gamma^t \tilde{r}(h_t, \dot{y}_t, a_t, y_t) \right]}_{\text{policy gradient}} - \underbrace{\mathbb{E}_{p_{\theta}(\dot{\mathbf{y}}, \mathbf{o})} \left[\sum_{t=0}^{\infty} \gamma^t \frac{\partial}{\partial \theta} \ell_{\pi_{\theta}}(\dot{y}_t, o_{0:t}) \right]}_{\text{prediction loss gradient}}. \quad (3)$$

242 Intermediate steps can be found in Appendix G. As can be seen in Eq. (3), the gradient of the objective
 243 function $J(\pi_{\theta})$ decomposes into a policy gradient and a negative supervised prediction loss gradient.

244 3.3 DERIVING APPLE-SAC AND APPLE-CROSSQ

245 We use RL-based techniques to estimate the policy gradient in Eq. (3). Here we propose two variations
 246 of **APPLE** based on two actor-critic methods: **SAC** Haarnoja et al. (2018) and **CrossQ** Bhatt et al.
 247 (2019). **SAC** is an off-policy RL algorithm that jointly learns a policy and two Q-networks. The
 248 Q-networks are optimized to minimize the Bellman residual for the policy, and the policy is optimized
 249 to maximize the smaller of the two values predicted by the Q-networks. To stabilize the training of
 250 the Q-networks, **SAC** deploys target networks, which slowly track the actual Q-networks. **CrossQ** is
 251 similar to **SAC** but drops the target networks and instead uses BatchRenorm Ioffe (2017) layers in the
 252 Q-network to stabilize their training. To use either **SAC** and **CrossQ** in the active perception setting,
 253 we adjust three components:

- 254 1. The active perception setting is partially observed. Hence, instead of a state s_t , the policy and
 255 the Q-networks receive a trajectory of past observations $o_{0:t}$.
- 256 2. During the training of the Q-networks, **SAC** and **CrossQ** sample transitions and rewards from
 257 the replay buffer to compute the Bellman residual. The presence of the prediction loss $\ell_{\pi_{\theta}}$ requires us
 258 to dynamically recompute the total reward when evaluating the Bellman residual, yielding

$$259 \mathcal{L}_{\text{critic}} = \mathbb{E}_{\mathcal{D}} \left[\frac{1}{2} \left(Q_{\theta}(o_{0:t}, a_t) - \left(r_t - \ell_{\pi_{\theta}}(\dot{y}_t, o_{0:t}) + \gamma \mathbb{E}_{\pi_{\theta}} [Q_{\theta}(o_{0:t+1}, a_{t+1})] \right) \right)^2 \right].$$

270 3. During the policy update, the policy gradient is augmented by the prediction loss gradient.
 271

272 In the following, we denote those **APPLE** variants as **APPLE-SAC** and **APPLE-CrossQ**.
 273

274 **3.4 INPUT PROCESSING**

276 We assume that the sequence of past observations $o_{0:t}$ consists of both images and scalar data.
 277 In tactile-based active perception, image observations typically correspond to high-dimensional
 278 tactile inputs (represented as images), while the scalar data encodes the position of the sensor.
 279 As illustrated in Fig. 2, the agent receives this exact combination of tactile images and sensor
 280 positions. To efficiently process this data in the policy and Q-networks, we use an architec-
 281 ture similar to the Video-Vision-Transformer (ViViT) Arnab et al. (2021) architecture. First,
 282 a Vision Transformer (ViT) Alexey (2020) is used to generate embeddings for each tactile im-
 283 age. These embeddings are then concatenated with the scalar inputs and processed by a trans-
 284 former to generate an embedding m_t for each time step. We empirically found that sharing
 285 these embeddings across Q-networks $Q_\theta(o_{0:t}, a_t)$, action policy $\pi_\theta(a_t | o_{0:t})$ and prediction policy
 286 $\pi_\theta(y_t | o_{0:t})$ yields better results than training individual representations for each of these components.
 287

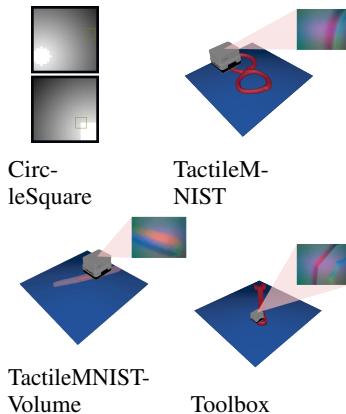
288 **4 EXPERIMENTS**

290 With **APPLE**, our goal is to answer two questions: (1) can
 291 we design a general and principled RL-based algorithm that
 292 successfully discovers active-perception policies using only a
 293 task label and a differentiable loss during training? and (2) can
 294 such an approach extend across diverse active-perception prob-
 295 lems, including both classification to regression without the
 296 need to over-design task-specific exploration heuristics? To
 297 answer these questions, we focus mainly on the tactile domain,
 298 which is particularly suited for active perception due to the lo-
 299 cal and sparse nature of touch. Thus, we run experiments that
 300 span different observation spaces (such as low-dimensional
 301 image arrays and higher-dimensional tactile images) and var-
 302 ied downstream prediction goals (including classification and
 303 regression). Here, our four evaluated active perception tasks
 304 are: *CircleSquare*, *TactileMNIST*, *TactileMNISTVolume*, and
 305 *Toolbox* introduced by Schneider et al. (2025) (see Fig. 3). We
 306 also compare our approach against the MHSB tactile shape
 307 classification task from Fleer et al. (2020). In each task, the
 308 agent must actively gather information and jointly learn both
 309 a policy and a prediction model. All experiments described in
 310 this section are run with 5 random seeds per method, with all
 311 models trained from scratch for each seed. In addition to our
 312 core configurations, **APPLE-CrossQ** and **APPLE-SAC**, we
 313 also evaluate the following baselines:
 314

315 **(i) APPLE-RND:** a random policy baseline sharing the same
 316 configuration as **APPLE-SAC**, but not optimizing an action
 317 policy. Instead, actions are sampled uniformly at random
 318 throughout training. Importantly, while the policy remains
 319 random, the perception module is still trained, enabling the model to learn how to interpret tactile
 320 observations even without control over the spatial allocation of its haptic glances.
 321

322 **(ii) HAM:** the Haptic Attention Model introduced by Fleer et al. (2020). HAM employs a recurrent
 323 neural network (LSTM) to integrate tactile observations over time and jointly learns to classify objects
 324 while optimizing its exploratory actions through REINFORCE.

325 For evaluation on the classification tasks, we report two complementary metrics. The *average class*
 326 *prediction accuracy* considers the agent’s predictions at all steps of an episode and computes the
 327 average accuracy across them. The *final class prediction accuracy* only uses the prediction from the



328 Figure 3: Active perception benchmarks on which we evaluate our method. TactileMNIST, TactileMNISTVolume, and Toolbox are tactile perception tasks from the *Tactile MNIST Benchmark Suite* Schneider et al. (2025) where the agent must decide how to gather information with its tactile sensor. CircleSquare and TactileMNIST are classification tasks and TactileMNISTVolume is a regression task, where the agent must determine an object’s volume. Toolbox is a pose estimation task, where the agent must determine the 2D pose of the object. All tasks require the agent to gather information actively and are not accurately solvable via random exploration.

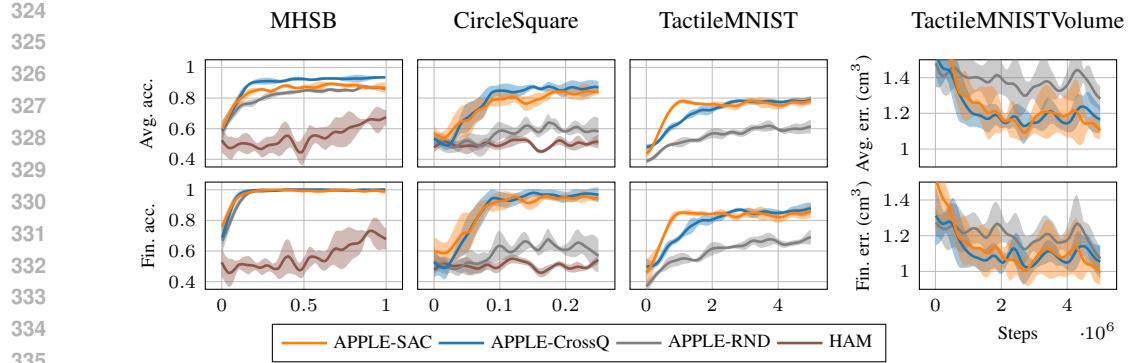


Figure 4: Average and final prediction accuracies for our methods **APPLE-SAC** and **APPLE-CrossQ**, **HAM** Fleer et al. (2020), and **APPLE-RND** across various tasks. **MHSB** refers to the tactile classification task used in Fleer et al. (2020). All methods were trained with 5 seeds. Shaded areas represent one standard deviation. Metrics are computed on evaluation tasks with unseen objects, except for **CircleSquare** and the **MHSB** classification task, which have only two or four, respectively.

final step of each episode, thus showing the model’s decision after completing its exploratory sequence. For regression tasks, we report *average error* and *final error*. The hyperparameters of all methods are tuned with **HEBO** Cowen-Rivers et al. (2022). For all methods except **APPLE-CrossQ**, we use one set of hyperparameters, tuned on the **TactileMNIST** task, for all experiments involving visual tactile inputs and a different set, tuned on the **CircleSquare** task, for other tasks. For **APPLE-CrossQ**, we use the same hyperparameters, tuned on the **TactileMNIST** task, for all experiments.

4.1 THE MHSB CLASSIFICATION TASK

To enable more direct comparison between our method and **HAM**, we use the benchmark task provided in Fleer et al. (2020). The dataset \mathcal{D} for this benchmark is generated in Gazebo and consists of data from a haptic classification task where a set of four blocks from the Modular Haptic Stimulus Board (MHSB) were arranged in the simulated environment. Each block represents a distinct local shape feature, and data was collected using a simulated Myrmex tactile sensor array that produces 16×16 pressure images upon contact with the block surface. Here, each data point $d \in \mathcal{D}$ consists of the tuple $d = (\mathbf{x}, \varphi, \mathbf{p})$, where $\mathbf{x} \in [-1, 1]$ is the location of the sensor, $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ the angle and \mathbf{p} the corresponding normalized pressure (image) array. The agent’s goal is to identify the correct object, so at each time step it selects continuous movement actions $a_t = (\mathbf{x}, \varphi)$. The closest associated datapoint $d_t \in \mathcal{D}$ is then selected and the agent makes a prediction. Each episode allows the agent to perform 10 touches. For extra details, please refer to Fleer et al. (2020).

In this setting, we evaluate **APPLE-RND**, **APPLE-SAC**, and **APPLE-CrossQ**, with the vision encoder removed to ensure comparability with **HAM**. The first column of Fig. 4 shows the comparison between the different methods on this task. While **HAM** is generally able to solve this task (see Appendix C.5 for a longer run), it requires a large amount of samples to learn an effective policy. After 1M training steps, **HAM** achieves only a final accuracy of 68%, while all of our approaches, including the random baseline, approach 100% after around 250K steps. Additionally, the good performance of the **APPLE-RND** baseline highlights a limitation of this task: due to the discretization of position and angles into 41 bins each, the observation space contains only a total of 1,681 distinct values per class. Agents can quickly learn to memorize all of these values and then solve this task perfectly with just a few random touches. This insight raises questions about **HAM**’s capabilities in learning active perception policies, as **HAM** was only evaluated on this task in Fleer et al. (2020).

4.2 THE CIRCLE-SQUARE TASK

The **CircleSquare** task has the goal of evaluating active perception in a low-dimensional space. Here, the agent is presented with a 28×28 grayscale image containing either a white circle or square placed randomly in the field (Fig. 3 top-left). Its goal is to identify the correct object class, but it can only observe a 5×5 glimpse at a time and must explore the image over time. Each episode allows the agent to take up to 16 steps. A color gradient offers directional guidance, but the agent

378 starts without information about the object’s location. It selects a continuous movement action
 379 $a_t \in [-1, 1]^2$ per step to reposition its glimpse, encouraging learned search strategies over random
 380 behavior. Since the agent’s glance in this task is small, we again do not use our vision encoder but
 381 treat the inputs as a 25-dimensional vector for better comparability to HAM, which also processes
 382 a flat representation of the input image. In this setting, in addition to the HAM baseline, we also
 383 compare our APPLE-SAC and APPLE-CrossQ to the random baseline agent, APPLE-RND. As
 384 shown in Fig. 4, APPLE-SAC and APPLE-CrossQ learn to complete the task with similar final
 385 prediction accuracies of 97% and 96%, respectively. For a visualization of a policy learned by
 386 APPLE-CrossQ, refer to Fig. 8. APPLE-RND, achieves a 68% accuracy, highlighting the need
 387 for active perception in the CircleSquare task. Despite extensive tuning of the learning rate and β
 388 parameter with HEBO and training for 10M steps, we could not find a configuration for which HAM
 389 reached a prediction accuracy beyond random guessing. For full implementation details, including an
 390 ablation with longer training times, where we compare HAM with a PPO baseline, see Appendix B.1.

391 4.3 TACTILEMNIST CLASSIFICATION

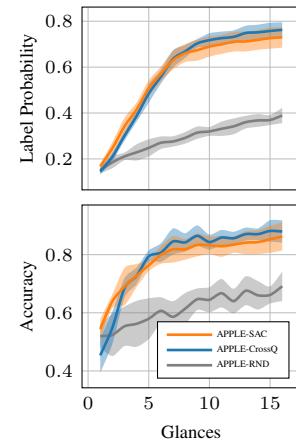
392 While the CircleSquare environment already presents a non-trivial
 393 active perception problem for more generic agents, it remains
 394 relatively simple: the input space contains just 25 pixels, there
 395 are only two object classes, with a color gradient providing a
 396 search direction. In contrast, (visual-) tactile perception add more
 397 complexity. First, the input is a high-dimensional image requiring
 398 encoding into a latent space. Second, real-world classification
 399 tasks often involve many classes with diverse instances. E.g., a
 400 robot sorting waste into plastics, glass, and metal must handle
 401 objects of various shapes and textures that belong to the same
 402 class. Finally, tactile exploration often lacks directional cues, as
 403 retrieving an object from a cluttered bag requires systematic search
 404 strategies. To investigate this, we evaluate our methods on the
 405 *TactileMNIST classification*. Here, an agent uses a GelSight Mini
 406 sensor to explore a randomly placed and oriented 3D MNIST digit
 407 without prior location knowledge. The goal is to classify the digit
 408 within a fixed time budget (see Fig. 3 top-right for a visualization).
 409 In this setting, we evaluate APPLE-SAC and APPLE-CrossQ
 410 and compare them with APPLE-RND. As this task requires a
 411 vision encoder, direct comparison with HAM is not possible.

412 As shown in Fig. 4, both APPLE-SAC and APPLE-CrossQ reach similar high final prediction
 413 accuracies of 87% and 89% on the evaluation task. APPLE-RND, however, eventually stagnates
 414 at an accuracy of around 74%, highlighting the importance of action selection on this task. The
 415 average class prediction accuracy, as shown in Fig. 4 (first column), presents a similar trend, with
 416 APPLE-SAC achieving 80% and APPLE-CrossQ 81%. An additional insight into the agent’s
 417 performance is given by Fig. 5, which shows how the accuracy and correct label probability of the
 418 trained agents over the course of an episode, averaged over multiple episodes. This figure shows that
 419 the active agents gather information much quicker and are much more certain about the class label
 420 than the random agent. For more details on this task, see Appendix B.2.

421 4.4 TACTILEMNIST VOLUME ESTIMATION

422 In the *TactileMNISTVolume* task, the agent again uses a GelSight Mini sensor to explore a randomly
 423 placed and oriented 3D MNIST digit without prior location knowledge. Unlike the prior classification-
 424 based tasks, the objective here is to estimate the digit’s volume within a fixed time budget, which
 425 makes this task a regression task. A visualization of the TactileMNISTVolume task can be seen
 426 in Fig. 3 on the bottom left. To succeed, the agent must simultaneously localize the digit on the
 427 workspace and gather sufficient shape information cues to enable accurate volume estimation. For
 428 more details about this task, refer to Appendix B.3.

429 In this setting, we evaluate APPLE-SAC, APPLE-CrossQ, and APPLE-RND, analyzing their
 430 ability to perform regression tasks. In the last column of Fig. 4, we show the comparison results for



431 Figure 5: Exploration efficiency of
 432 final policies on the TactileMNIST
 433 task. Shown are the predicted
 434 probability of the correct label (top)
 435 and accuracy (bottom) after N glances.

432 this task. The final average prediction error throughout the task reaches 1.28 cm^3 for APPLE-RND.
 433 APPLE-CrossQ and APPLE-SAC reach an average prediction error of 1.10 cm^3 and 1.16 cm^3 ,
 434 respectively. For the final error APPLE-SAC, with 0.99 cm^3 , outperforms both APPLE-RND with
 435 an error of 1.07 cm^3 and APPLE-CrossQ with 1.05 cm^3 . The higher variances and performance
 436 fluctuations in Fig. 4 indicate that this task is more challenging than the other tasks. In part, these
 437 results might be explained by the fact that neither method was tuned on a regression task. Additionally,
 438 estimating the volume of an unknown object requires much more complete information about its
 439 shape than classifying it, making both the perception and policy optimization more challenging.

4.5 TOOLBOX

In the *Toolbox* task, the agent has to find a wrench on a platform by touch alone. Like *TactileMNISTVolume*, *Toolbox* is a regression task, but here, the agent has to predict the 2D position and 1D orientation of the wrench in the workspace. As such, the task consists of two problems: the agent must find the wrench in the workspace and determine its pose. Crucially, as can be seen in Fig. 3 bottom-right, most parts of the wrench are ambiguous in location when touched, and the information of multiple touches has to be combined to make an accurate prediction. For example, when touching the handle, the agent may extract information about the lateral position of the wrench, but does not yet know where it is currently touching the handle longitudinally, and whether the open end is left or right. Hence, to disambiguate the wrench pose, a strong exploration strategy must include finding one of its ends. Similar to the previous two tasks, the agent moves a GelSight Mini sensor freely in 2D space, constrained by the platform boundaries. Since the platform for this task is larger than that for the other tasks, we allow 64 steps for exploration before the episode is terminated.

The results in Fig. 6 show that **APPLE-CrossQ** reaches a final accuracy of 1.9cm and 13° on average, while **APPLE-SAC** and the random baseline **APPLE-RND** stagnate at much lower accuracies. Throughout the training, **APPLE-CrossQ** learned a sensible exploration strategy, comprised of finding the handle of the wrench and then sliding along it to disambiguate its orientation (see Fig. 12). The low performance of the **APPLE-RND** again highlights the importance of active perception for this task. It is important to note that we again did not tune any of these methods on this task and instead relied on hyperparameters optimized for TactileMNIST. While tuning **APPLE-SAC** on this task can lead to stronger performance, these results indicate that **APPLE-CrossQ** might be more robust w.r.t the choice of hyperparameters. However, more experiments are needed to answer this question definitively. For training and evaluation details, and hyperparameter settings, see Appendix B.4.

5 DISCUSSION

The results in Section 4 show that **APPLE** successfully learns exploration strategies across diverse active perception tasks. We evaluated **APPLE** on the CircleSquare classification task and three simulated tactile benchmarks: TactileMNIST (digit classification), TactileMNISTVolume (volume estimation), and Toolbox (pose estimation). In all three tactile benchmarks, the agent must learn an image encoder and refine its exploration policy jointly. The poor performance of the **APPLE-RND** baseline across our tasks confirms the necessity of structured exploration and confirms that our methods learned policies that go beyond random exploration. Notably, **APPLE-CrossQ** retained high performance when switching tasks without hyperparameter tuning, highlighting its robustness.

We compare our method to HAM Fleer et al. (2020), which failed to learn an effective strategy even on the Circle-Square toy task, defaulting to predicting the mean class despite extensive tuning using HEBO. This points to a fundamental limitation of HAM in this setting, namely that HAM relies on on-policy RL, which discards samples after a single update, limiting sample efficiency. Further exper-

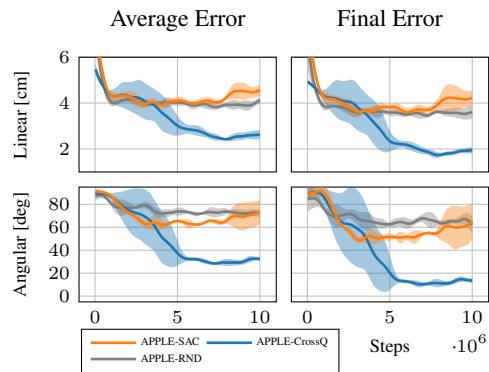


Figure 6: Average and final prediction accuracies for our methods **APPLE-SAC** and **APPLE-CrossQ**, as well as the baseline **APPLE-RND** on the Toolbox task. Each method was trained on 5 seeds for 10M steps.

iments using a PPO-based variant of our method (see Fig. 14) underline our hypothesis that on-policy RL is not suited for active perception. In contrast, we employ off-policy methods (APPLE-SAC and APPLE-CrossQ), enabling sample reuse – a critical factor in active perception, where supervised learning benefits from multiple passes over the same data. Both APPLE-SAC and APPLE-CrossQ perform comparably on environments they have been tuned on, but APPLE-CrossQ has proven more robust to new environments without hyperparameter tuning and offers a clear computational advantage. By avoiding target network updates, it requires roughly half the transformer forward passes during training, leading to a 53% reduction in training time on average, without sacrificing performance. The strong performance of APPLE, especially of APPLE-CrossQ without retuning, demonstrates its potential as a robust, general framework for active perception.

Particularly, in Fig. 8 and Fig. 12, we show the learned behaviors for our policies in the CircleSquare and Toolbox environments, respectively. In both environments, we can observe that our agents have learned interesting exploration behaviors that ultimately help in solving the task. In CircleSquare, APPLE first moves rapidly along the background gradient, which reliably leads toward the object’s location. Once it reaches the circle or square, the agent stabilizes its position and keeps the glimpse above the object for the remainder of the episode. More interestingly, in the Toolbox environment, APPLE-CrossQ learns to both locate the wrench and disambiguate its orientation. At the beginning of the episode, the agent learns a circular search pattern that efficiently sweeps the workspace. Then, when first encountering the wrench handle, it transitions into a sliding motion along the handle’s length. While these patterns are intuitive from a human perspective, for the TactileMNIST and TactileMNISTVolume, the strategies are less clear. In those, the agent typically moves toward the center of the platform early in the episode, as most objects extend into the central region. After initial contact, it often follows local edges or strokes of the digit, but such behaviors vary considerably across digits and seeds. In many cases, the final contacts do not follow a recognizable pattern, suggesting that, in this case, the agent relies more on aggregating many local cues. Overall, these emergent behaviors highlight that APPLE can learn different active perception policies, thus adapting its exploration behavior to the demands of each environment with minimal changes to the setup, suggesting a promising step toward more general active perception frameworks.

6 CONCLUSION

We introduced APPLE, a framework combining reinforcement learning and transformer-based models for active tactile perception. We evaluated it on five benchmarks where APPLE consistently outperforms its baselines, underscoring its efficiency in learning exploration policies. Notably, our method requires no hand-crafted heuristics and learns exploration policies in a principled way by minimizing the prediction loss function. The current state-of-the-art method for tactile classification – HAM – cannot solve any of these tasks beyond the MHSB task, which it was originally developed for. On the Circle-Square task, HAM resorted to always predicting a 50/50 probability for both labels, even after long training, while the other three tasks require an image encoder, which HAM lacks. APPLE, on the other hand, achieves high performance across all tasks, with the exception of APPLE-SAC on the Toolbox task, where it was not tuned on. These results demonstrate APPLE’s versatility across diverse tasks, including both classification and regression. Future work will focus on improving the sample efficiency of APPLE, extending to more realistic applications such as in-hand pose estimation and texture recognition, and exploring multi-modal integration with vision and touch. Another potential future research avenue will be deploying APPLE on a real robotic system. While, in principle, APPLE could be applied to real-world tasks as-is, its sample efficiency poses a practical challenge. In other works, sample efficiency issues of RL methods have been addressed through large-scale domain randomization and sim-to-real transfer Bohlinger et al. (2024); Akkaya et al. (2019); Handa et al. (2023). However, their soft gel makes vision-based tactile sensors particularly hard to simulate. Nevertheless, using sim-to-real transfer jointly with accurate soft-body tactile simulation Nguyen et al. (2024) and transferrable representations Yang et al. (2024a) or realistic rendering Chen et al. (2022) are promising avenues towards the application of APPLE to real-world tasks.

540 REPRODUCIBILITY STATEMENT
541542 We took special care to make this work reproducible. **The full codebase will be released as open**
543 **source upon acceptance**, and further implementation details are provided in the supplementary
544 material. For transparency, all hyperparameters are listed in Appendix E, and implementation details,
545 including GPU specifications and memory considerations, are provided in Appendix F.
546547 LARGE LANGUAGE MODEL USAGE
548549 A large language model (LLM) was used solely for language editing — polishing phrasing, enhancing
550 readability, and correcting minor typographical errors.
551552 REFERENCES
553554 Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
555 Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
556 robot hand. *arXiv preprint arXiv:1910.07113*, 2019.
557558 Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at scale.
559 *arXiv preprint arXiv: 2010.11929*, 2020.
560561 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
562 Vivil: A video vision transformer. In *Proceedings of the IEEE/CVF international conference on*
563 *computer vision*, pp. 6836–6846, 2021.564 R. Bajcsy. Active perception. *Proceedings of the IEEE*, 76(8):966–1005, 1988. doi: 10.1109/5.5968.
565566 Ruzena Bajcsy, Yiannis Aloimonos, and John K Tsotsos. Revisiting active perception. *Autonomous*
567 *Robots*, 42(2):177–196, 2018.
568569 Luca Bartolomei, Lucas Teixeira, and Margarita Chli. Semantic-aware active perception for uavs
570 using deep reinforcement learning. In *2021 IEEE/RSJ International Conference on Intelligent*
571 *Robots and Systems (IROS)*, pp. 3101–3108, 2021. doi: 10.1109/IROS51168.2021.9635893.
572573 Dominik Bauer, Zhenjia Xu, and Shuran Song. Doughnet: A visual predictive model for topological
574 manipulation of deformable objects. In *European Conference on Computer Vision*, pp. 92–108.
575 Springer, 2025.576 Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
577 and Jan Peters. CrossQ: Batch Normalization in Deep Reinforcement Learning for Greater Sample
578 Efficiency and Simplicity. *arXiv preprint arXiv:1902.05605*, 2019.
579580 Marten Björkman, Yasemin Bekiroglu, Virgile Högman, and Danica Kragic. Enhancing visual
581 perception of shape through tactile glances. In *2013 IEEE/RSJ International Conference on*
582 *Intelligent Robots and Systems*, pp. 3180–3186. IEEE, 2013.583 A. Boehm, T. Schneider, B. Belousov, A. Kshirsagar, L. Lin, K. Doerschner, K. Drewing, C.A.
584 Rothkopf, and J. Peters. What Matters for Active Texture Recognition With Vision-Based Tactile
585 Sensors. In *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)*,
586 2024.
587588 Jeannette Bohg, Karol Hausman, Bharath Sankaran, Oliver Brock, Danica Kragic, Stefan Schaal, and
589 Gaurav S Sukhatme. Interactive perception: Leveraging action in perception and perception in
590 action. *IEEE Transactions on Robotics*, 33(6):1273–1291, 2017.
591592 Nico Bohlinger, Grzegorz Czechmanowski, Maciej Krupka, Piotr Kicki, Krzysztof Walas, Jan
593 Peters, and Davide Tateo. One policy to run them all: an end-to-end learning approach to multi-
embodiment locomotion. In *Conference on Robot Learning (CoRL)*, 2024.

594 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
 595 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
 596 Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
 597 <http://github.com/jax-ml/jax>.

598
 599 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
 600 distillation. *arXiv preprint arXiv:1810.12894*, 2018.

601 Weihang Chen, Yuan Xu, Zhenyang Chen, Peiyu Zeng, Renjun Dang, Rui Chen, and Jing Xu.
 602 Bidirectional sim-to-real transfer for gelsight tactile sensors with cyclegan. *IEEE Robotics and
 603 Automation Letters*, 7(3):6187–6194, 2022.

604 Ricson Cheng, Arpit Agarwal, and Katerina Fragkiadaki. Reinforcement learning of active vision for
 605 manipulating objects under occlusions. In *Conference on robot learning*, pp. 422–431. PMLR,
 606 2018.

607
 608 Ian Chuang, Andrew Lee, Dechen Gao, M-Mahdi Naddaf-Sh, and Iman Soltani. Active vision
 609 might be all you need: Exploring active vision in bimanual robotic manipulation. In *2025 IEEE
 610 International Conference on Robotics and Automation (ICRA)*, pp. 7952–7959. IEEE, 2025.

611
 612 Alexander I Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan Rhys
 613 Griffiths, Alexandre Max Maraval, Hao Jianye, Jun Wang, Jan Peters, et al. Hebo: Pushing the
 614 limits of sample-efficient hyper-parameter optimisation. *Journal of Artificial Intelligence Research*,
 615 74:1269–1349, 2022.

616
 617 Xu-Yang Dai, Qing-Hao Meng, Sheng Jin, and Yin-Bo Liu. Camera view planning based on
 618 generative adversarial imitation learning in indoor active exploration. *Applied soft computing*, 129:
 109621, 2022.

619
 620 Shivin Dass, Jiaheng Hu, Ben Abbate, Peter Stone, and Roberto Martín-Martín. Learning
 621 to look: Seeking information for decision making via policy factorization. *arXiv preprint
 622 arXiv:2410.18964*, 2024.

623
 624 Cristiana De Farias, Naresh Marturi, Rustam Stolkin, and Yasemin Bekiroglu. Simultaneous tactile
 625 exploration and grasp refinement for unknown objects. *IEEE Robotics and Automation Letters*, 6
 (2):3349–3356, 2021.

626
 627 Stanimir Dragiev, Marc Toussaint, and Michael Gienger. Uncertainty aware grasping and tactile
 628 exploration. In *2013 IEEE International conference on robotics and automation*, pp. 113–119.
 629 IEEE, 2013.

630
 631 Sascha Fleer, Alexandra Moringen, Roberta L Klatzky, and Helge Ritter. Learning efficient haptic
 632 shape exploration with a rigid tactile sensor array. *PloS one*, 15(1):e0226880, 2020.

633
 634 Konstantinos Gounis, Nikolaos Passalis, and Anastasios Tefas. Uav active perception and motion
 635 control for improving navigation using low-cost sensors. *arXiv preprint arXiv:2407.15122*, 2024.

636
 637 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 638 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference
 639 on machine learning*, pp. 1861–1870. PMLR, 2018.

640
 641 Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh, Jingzhou Liu,
 642 Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balakumar Sundaralingam, et al.
 643 Dextreme: Transfer of agile in-hand manipulation from simulation to reality. In *2023 IEEE
 644 International Conference on Robotics and Automation (ICRA)*, pp. 5977–5984. IEEE, 2023.

645
 646 Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
 647 Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL
 648 <http://github.com/google/flax>.

649
 650 Edward S Hu, Jie Wang, Xingfang Yuan, Fiona Luo, Muyao Li, Gaspard Lambrechts, Oleh Rybkin,
 651 and Dinesh Jayaraman. Real-World Reinforcement Learning of Active Perception Behaviors.
 652 *Advances in Neural Information Processing Systems*, 2025.

648 Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
 649 models. *Advances in neural information processing systems*, 30, 2017.
 650

651 Dinesh Jayaraman and Kristen Grauman. Learning to look around: Intelligently exploring unseen
 652 environments for unknown tasks. In *Proceedings of the IEEE conference on computer vision and*
 653 *pattern recognition*, pp. 1238–1247, 2018.

654 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 655

656 Mike Lambeta, Po-Wei Chou, Stephen Tian, Brian Yang, Benjamin Maloon, Victoria Rose Most,
 657 Dave Stroud, Raymond Santos, Ahmad Byagowi, Gregg Kammerer, et al. Digit: A novel design
 658 for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation.
 659 *IEEE Robotics and Automation Letters*, 5(3):3838–3845, 2020.

660 Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
 661 Peter R Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. SimBa: Simplicity Bias for Scaling
 662 Up Parameters in Deep Reinforcement Learning. *arXiv preprint arXiv:2410.09754*, 2024.
 663

664 Mengdi Li, Xufeng Zhao, Jae Hee Lee, Cornelius Weber, and Stefan Wermter. Internally rewarded
 665 reinforcement learning. In *International Conference on Machine Learning*, pp. 20556–20574.
 666 PMLR, 2023.

667 Qiang Li, Oliver Kroemer, Zhe Su, Filipe Fernandes Veiga, Mohsen Kaboli, and Helge Joachim
 668 Ritter. A review of tactile information: Perception and action through touch. *IEEE Transactions*
 669 *on Robotics*, 36(6):1619–1634, 2020.

670 Shaopeng Liu, Chao Huang, and Hailong Huang. Behavior cloning-based active scene recognition
 671 via generated expert data with revision and prediction for domestic robots. *IEEE Transactions on*
 672 *Robotics*, 2025.

673 John Lloyd and Nathan F Lepora. Pose-and-shear-based tactile servoing. *The International Journal*
 674 *of Robotics Research*, 43(7):1024–1055, 2024.

675 Jun Lv, Yunhai Feng, Cheng Zhang, Shuang Zhao, Lin Shao, and Cewu Lu. Sam-rl: Sensing-aware
 676 model-based reinforcement learning via differentiable physics-based simulation and rendering.
 677 2023.

678 Matheus G Mateus, Ricardo B Grando, and Paulo LJ Drews. Active perception applied to unmanned
 679 aerial vehicles through deep reinforcement learning. In *2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE)*, pp. 1–6. IEEE, 2022.

680 Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. *Advances*
 681 *in neural information processing systems*, 27, 2014.

682 Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miloś, and Marek Cygan. Bigger,
 683 Regularized, Optimistic: scaling for compute and sample-efficient continuous control. In *Advances*
 684 *in neural information processing systems*, 2024.

685 Duc Huy Nguyen, Tim Schneider, Guillaume Duret, Alap Kshirsagar, Boris Belousov, and Jan Peters.
 686 Tacex: Gelsight tactile simulation in isaac sim—combining soft-body and visuotactile simulators.
 687 *arXiv preprint arXiv:2411.04776*, 2024.

688 Christopher Niemann, David Leins, Luca Lach, and Robert Haschke. Learning when to stop: Efficient
 689 active tactile perception with deep reinforcement learning. In *2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 685–692. IEEE, 2024.

690 Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
 691 by self-supervised prediction. In *International conference on machine learning*, pp. 2778–2787.
 692 PMLR, 2017.

693 Tony J. Prescott, Mathew E. Diamond, and Alan M. Wing. Active touch sensing. *Phil. Trans. R. Soc.*
 694 *B*, 366(1581):2989–2995, Nov 2011. ISSN 1471-2970. doi: 10.1098/rstb.2011.0167.

702 Haozhi Qi, Brent Yi, Sudharshan Suresh, Mike Lambeta, Yi Ma, Roberto Calandra, and Jitendra
 703 Malik. General in-hand object rotation with vision and touch. In *Conference on Robot Learning*,
 704 pp. 2549–2564. PMLR, 2023.

705

706 Sai Rajeswar, Cyril Ibrahim, Nitin Surya, Florian Golemo, David Vazquez, Aaron Courville, and
 707 Pedro O Pinheiro. Haptics-based curiosity for sparse-reward tasks. In *Conference on Robot
 708 Learning*, pp. 395–405. PMLR, 2022.

709

710 Tim Schneider, Guillaume Duret, Cristiana de Farias, Roberto Calandra, Liming Chen, and Jan Peters.
 711 Tactile mnist: Benchmarking active tactile perception. *arXiv preprint arXiv:2506.06361*, 2025.

712

713 Amir-Hossein Shahidzadeh, Seong Jong Yoo, Pavan Mantripragada, Chahat Deep Singh, Cornelia
 714 Fermüller, and Yiannis Aloimonos. Actexplore: Active tactile exploration on unknown objects. In
 715 *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 3411–3418. IEEE,
 2024.

716

717 Jinghuan Shang and Michael S Ryoo. Active vision reinforcement learning under limited visual
 718 observability. *Advances in Neural Information Processing Systems*, 36:10316–10338, 2023.

719

720 Zilin Si and Wenzhen Yuan. Taxim: An example-based simulation model for gelsight tactile sensors.
 721 *IEEE Robotics and Automation Letters*, 7(2):2361–2368, 2022.

722

723 Edward Smith, David Meger, Luis Pineda, Roberto Calandra, Jitendra Malik, Adriana Romero Sori-
 724 ano, and Michal Drozdzal. Active 3D Shape Reconstruction from Vision and Touch. *Advances in
 725 Neural Information Processing Systems*, 34:16064–16078, 2021.

726

727 Rahul Tallamraju, Eric Price, Roman Ludwig, Kamalakar Karlapalem, Heinrich H Bülthoff, Michael J
 728 Black, and Aamir Ahmad. Active perception based formation control for multiple aerial vehicles.
 729 *IEEE Robotics and Automation Letters*, 4(4):4491–4498, 2019.

730

731 Sinan Tan, Huaping Liu, Di Guo, Xinyu Zhang, and Fuchun Sun. Towards embodied scene description.
 732 *arXiv preprint arXiv:2004.14638*, 2020.

733

734 Annalisa T Taylor, Thomas A Berrueta, and Todd D Murphey. Active learning in robotics: A review
 735 of control principles. *Mechatronics*, 77:102576, 2021.

736

737 Shagun Uppal, Ananye Agarwal, Haoyu Xiong, Kenneth Shaw, and Deepak Pathak. Spin: Simul-
 738 taneous perception interaction and navigation. In *Proceedings of the IEEE/CVF Conference on
 739 Computer Vision and Pattern Recognition*, pp. 18133–18142, 2024.

740

741 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 742 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
 743 Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
 744 Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
 745 processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
 746 cessing: System Demonstrations*, pp. 38–45, Online, October 2020. Association for Computational
 747 Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.

748

749 Haoyu Xiong, Xiaomeng Xu, Jimmy Wu, Yifan Hou, Jeannette Bohg, and Shuran Song. Vision in
 750 action: Learning active perception from human demonstrations. *arXiv preprint arXiv:2506.15666*,
 751 2025a.

752

753 Haoyu Xiong, Xiaomeng Xu, Jimmy Wu, Yifan Hou, Jeannette Bohg, and Shuran Song. Vision
 754 in action: Learning active perception from human demonstrations. In Joseph Lim, Shuran Song,
 755 and Hae-Won Park (eds.), *Proceedings of The 9th Conference on Robot Learning*, volume 305
 756 of *Proceedings of Machine Learning Research*, pp. 5450–5463. PMLR, 27–30 Sep 2025b. URL
 757 <https://proceedings.mlr.press/v305/xiong25a.html>.

758

759 Jingxi Xu, Shuran Song, and Matei Ciocarlie. Tandem: Learning joint exploration and decision
 760 making with tactile sensors. *IEEE Robotics and Automation Letters*, 7(4):10391–10398, 2022.

756 Jianwei Yang, Zhile Ren, Mingze Xu, Xinlei Chen, David Crandall, Devi Parikh, and Dhruv
757 Batra. Embodied amodal recognition: Learning to move to perceive objects. In *2019*
758 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 2040–2050, 2019. doi:
759 10.1109/ICCV.2019.00213.

760 Max Yang, Chenghua Lu, Alex Church, Yijiong Lin, Chris Ford, Haoran Li, Efi Psomopoulou,
761 David AW Barton, and Nathan F Lepora. Anyrotate: Gravity-invariant in-hand object rotation with
762 sim-to-real touch. *arXiv preprint arXiv:2405.07391*, 2024a.

763 Ning Yang, Fei Lu, Guohui Tian, and Jun Liu. Long-term active object detection for service
764 robots: Using generative adversarial imitation learning with contextualized memory graph. *IEEE*
765 *Transactions on Industrial Electronics*, 2024b.

766 Zhengkun Yi, Roberto Calandra, Filipe Veiga, Herke van Hoof, Tucker Hermans, Yilei Zhang, and Jan
767 Peters. Active tactile object exploration with gaussian processes. In *2016 IEEE/RSJ International*
768 *Conference on Intelligent Robots and Systems (IROS)*, pp. 4925–4930. IEEE, 2016.

769 Zhao-Heng Yin, Binghao Huang, Yuzhe Qin, Qifeng Chen, and Xiaolong Wang. Rotating without
770 seeing: Towards in-hand dexterity through touch. *arXiv preprint arXiv:2303.10880*, 2023.

771 Hanna Yousef, Mehdi Boukallel, and Kaspar Althoefer. Tactile sensing for dexterous in-hand
772 manipulation in robotics—A review. *Sensors and Actuators A: Physical*, 167(2):171–187, 2011.
773 ISSN 0924-4247. doi: <https://doi.org/10.1016/j.sna.2011.02.038>. Solid-State Sensors, Actuators
774 and Microsystems Workshop.

775 Wenzhen Yuan, Siyuan Dong, and Edward H Adelson. Gelsight: High-resolution robot tactile sensors
776 for estimating geometry and force. *Sensors*, 17(12):2762, 2017.

777 Yi Zheng, Filipe Fernandes Veiga, Jan Peters, and Veronica J Santos. Autonomous learning of page
778 flipping movements via tactile feedback. *IEEE Transactions on Robotics*, 38(5):2734–2749, 2022.

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 APPENDIX
811812 A HAM AS A GENERAL ACTIVE PERCEPTION METHOD
813

814 HAM in its original version is an active classification method. Though it is in principle able to use
815 different loss functions than a cross-entropy loss, its reward is defined as a 0-1 reward, yielding 1
816 for a correct classification and 0 for an incorrect classification. For a regression task, such a reward
817 does not make much sense, as one would have to hand-define thresholds to classify predictions as
818 correct or incorrect. However, we found that on the task it was developed for — the MHSB tactile
819 classification task — using the negative prediction loss directly as a reward yields similar results to
820 the original implementation. With this modification, HAM fits in the APPLE framework, and would,
821 in principle, also be a candidate algorithm for solving the objective in Eq. (1). However, as we
822 show throughout our experiments, HAM’s on-policy nature makes it impossible to compete with our
823 off-policy approaches APPLE-SAC and APPLE-CrossQ.

824 Nevertheless, to allow for a fair comparison, we used this modified version of HAM throughout
825 our experiments. The reasons for this are (a) that otherwise, the APPLE methods and HAM would
826 be evaluated on different rewards, making them less comparable, and (b) that we found in our
827 reproduction study of the work of Fleer et al. (2020), that HAM is, surprisingly, more stable when
828 using the negative prediction loss as a reward.

830 B ENVIRONMENT DETAILS
831

832 Here, we detail each of the tasks that were evaluated, with the exception of the MHSB classification
833 task, for which details can be found in Fleer et al. (2020). Thus, we present the details for the
834 CircleSquare 2D classification task, the Tactile MNIST tactile classification and volume estimation
835 tasks, and the Toolbox pose estimation task. These tasks are a part of the TactileMNIST Benchmark
836 Suite, and extra details can be found in Schneider et al. (2025).

837 B.1 CIRCLE SQUARE TASK
838

840 In each CircleSquare episode, the agent receives a 28×28 grayscale image containing either a circle
841 or a square. It can only observe a 5×5 pixel region (glimpse), with the initial location randomized. A
842 color gradient in the background helps guide exploration, but the agent has no access to the object’s
843 position. See Fig. 7 and Fig. 8 for an illustration of the CircleSquare task.

844 Actions $a_t \in [-1, 1]^2$ are mapped to pixel motion as $a_t \cdot 5.6$ px (20% of the image width), allowing
845 smooth movement across the image. We use bilinear interpolation to compute the glimpse values
846 even at non-integer positions. The agent’s prediction $y_t \in \mathbb{R}^2$ is interpreted as logits for circle vs.
847 square:

$$848 \quad p_{\text{circle}}(y_t) = \frac{e^{y_t^{(1)}}}{e^{y_t^{(1)}} + e^{y_t^{(2)}}}, \quad p_{\text{square}}(y_t) = \frac{e^{y_t^{(2)}}}{e^{y_t^{(1)}} + e^{y_t^{(2)}}}.$$

850 Cross-entropy loss is used for training:

$$852 \quad \ell(y_t^*, y_t) = - \sum_{c \in \{\text{circle, square}\}} \delta(y_t^*, c) \log(p_c(y_t)).$$

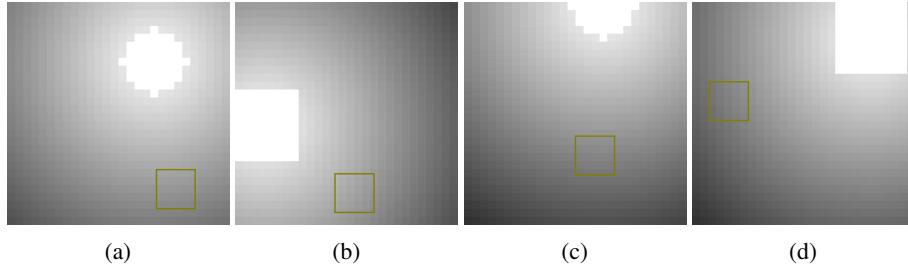
854 We apply a regularizing reward penalty on the magnitude of each action: $r(h_t, a_t) = 10^{-3} \|a_t\|^2$.

856 Due to the small input size, we do not use a vision encoder; instead, the input is directly flattened into
857 a 25-dimensional vector. This design choice allows a fairer comparison to HAM Fleer et al. (2020),
858 which also operates on flat image data.

859 B.2 TACTILE MNIST CLASSIFICATION
860

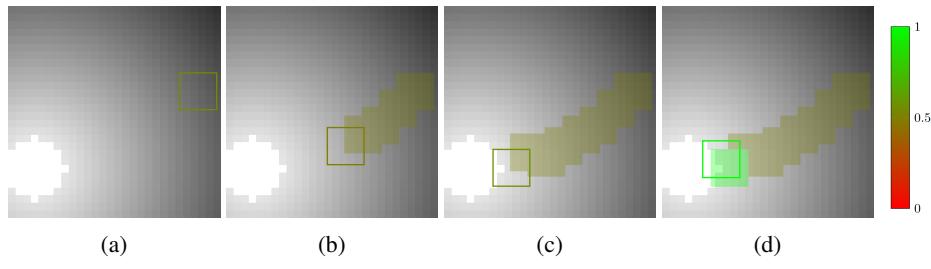
862 In the Tactile MNIST classification task (see 9), the agent is presented with a 3D model of a high-
863 resolution MNIST digit, placed randomly on a 12×12 cm plate. Each digit is up to 10cm in width and
height. The agent uses a single simulated GelSight Mini sensor Yuan et al. (2017) to explore the plate

864
865
866
867
868
869
870
871
872
873
874
875
876

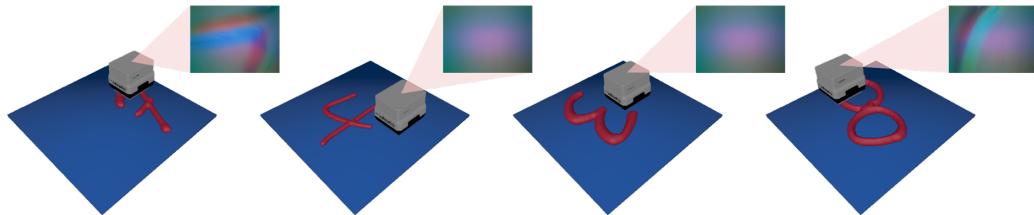


877
878
879
Figure 7: Episode starting conditions of the CircleSquare task. The agent’s glimpse and the object (a, c)
877
878
879
879
information about the object’s location on the field.

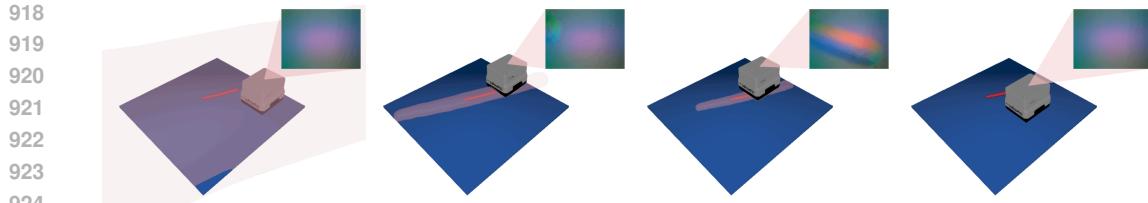
880
881
882
883
884
885
886
887
888



889
890
891
892
893
894
895
896
897
898
899
900
901
902
Figure 8: Visualization of a learned APPLE-CrossQ policy in the *CircleSquare* task. (a) The agent starts at a
900
901
902
random location and uses the color gradient to locate the object. It can only observe a 5×5 pixel patch. (b) The
903
904
905
906
907
908
909
910
agent follows the gradient, gradually gathering information. Without full certainty, it predicts a 50/50 probability
911
912
913
914
915
916
917
between classes along the way. Colored boxes show past glances, with color indicating prediction confidence.
911
912
913
914
915
916
917
(c) The agent reaches the object at the corner. (d) Upon confident identification, the agent classifies the object as
911
912
913
914
915
916
917
a square (bright green box) and maintains this prediction in later steps.



911
912
913
914
915
916
917
Figure 9: The simulated *Tactile MNIST* classification benchmark Schneider et al. (2025), which we use for
911
912
913
914
915
916
917
evaluating our method. The objective of the Tactile MNIST task is to identify the numeric value of the presented
911
912
913
914
915
916
917
digit by touch only. In every step, the agent decides how to move the finger and predicts the class label. The
911
912
913
914
915
916
917
haptic glace is computed via the Taxim Si & Yuan (2022) tactile simulator.



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Figure 10: The simulated *Tactile MNIST-Volume* Schneider et al. (2025) task, which we use for evaluating our method. The objective of this task is to estimate a single continuous value representing the volume of a 3D MNIST digit by touch alone. In every step, the agent decides how to move the finger and predicts the volume of the digit. The haptic glance is computed via the Taxim Si & Yuan (2022) tactile simulator, and in red, we show the current volume estimation in a single run.

surface. The sensor outputs a 32×32 pixel image rendered from a depth map by Taxim Si & Yuan (2022). Additionally, the agent receives the 3D position of the sensor as input.

Each episode begins with a randomly selected digit, randomly placed and oriented. The agent has 16 steps to explore and classify the object. At each step, it chooses a movement action $a_t \in [-1, 1]^2$, which corresponds to a translation of up to 1.5cm per axis. The sensor is automatically positioned to maintain a 2mm indentation into the 4mm-thick gel. To simulate the object shifting around when being manipulated by the agent, we apply Gaussian random noise to the position and orientation of the object throughout the episode.

The classification output is a 10-dimensional logit vector. A standard cross-entropy loss is used:

$$\ell(\hat{y}_t^*, y_t) = - \sum_{c=1}^{10} \delta(y_t^*, c) \log(p_c(y_t)), \quad p_c(y_t) = \frac{e^{y_t^{(c)}}}{\sum_{i=0}^{10} e^{y_t^{(i)}}}.$$

The reward is used only for regularizing motion: $r(h_t, a_t) = 10^{-3} \|a_t\|^2$.

We train *APPLE-SAC*, *APPLE-CrossQ*, and *APPLE-RND* from scratch (no pre-trained encoders), using 5 random seeds for 5M steps. Hyperparameters are tuned via the *HEBO* Bayesian optimizer. *HAM* Fleer et al. (2020) is not evaluated here as it lacks an image encoder. Evaluation is done using digits not seen during training.

B.3 TACTILE MNIST-VOLUME

In the Tactile MNIST-Volume task (see Fig. 10), each episode begins with the 3D model of a high-resolution MNIST digit being placed randomly on a 12×12 cm plate. The agent explores the scene using a simulated GelSight Mini sensor, identical to that used in the classification variant of the MNIST task. The sensor provides a 32×32 tactile image, and the agent also received its 3D sensor position as input. Actions $a_t \in [-1, 1]^2$ again correspond to a maximum motion of 1.5cm per axis. The sensor maintains a fixed 2mm indentation into the gel on each step. Unlike Tactile MNIST, this is a regression task, and the target in each episode is the volume of the digit, normalized to zero mean and unit variance across all digits.

Each agent – *APPLE-SAC*, *APPLE-CrossQ*, and *APPLE-RND* – is trained from scratch using 5 random seeds for 5M steps. We reuse the hyperparameters optimized on Tactile MNIST without modification to evaluate robustness across tasks. Evaluation is performed on held-out shape configurations, which are not seen during training.

B.4 TOOLBOX TASK

In the Toolbox task (see 11), the agent has to estimate the pose of a 24cm long wrench that is placed in a uniformly random 2D position and orientation on a 30×30 cm plate. Similar to the previous two tasks, the agent explores the scene using a simulated GelSight Mini sensor, providing a 32×32 tactile image, while also receiving the 3D sensor position as input. Actions $a_t \in [-1, 1]^2$ again correspond to a maximum motion of 1.5cm per axis, and the sensor maintains a fixed 2mm indentation into the gel on each touch. To simulate the object shifting around when being manipulated by the agent, we apply Gaussian random noise to the position and orientation of the object throughout the episode.

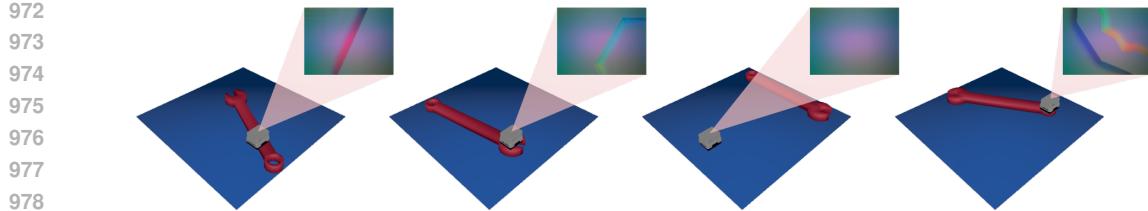


Figure 11: The simulated *Toolbox* task, which we use for evaluating our method. The objective of the Toolbox task is to determine the 2D pose (i.e., 2D position and orientation angle) of the object relative to the platform’s center. In every step, the agent decides how to move the finger and predicts the 2D pose. The haptic glance is computed via the Taxim Si & Yuan (2022) tactile simulator.

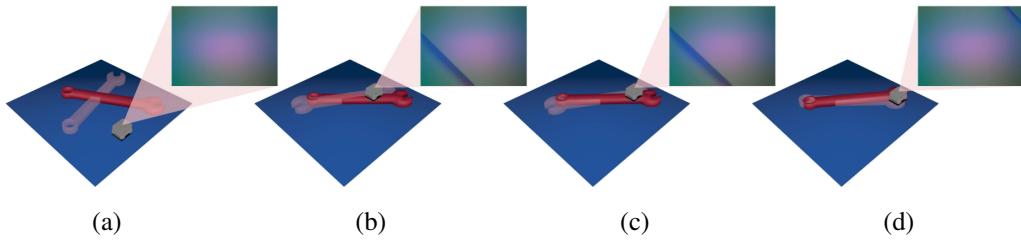


Figure 12: Exploration strategy learned by our APPLE-CrossQ agent. In the beginning (a), both sensor and wrench start in uniformly random places on the platform. The agent guesses a central position of the wrench (illustrated by the transparent wrench) to minimize error in the absence of any further information. To find the object efficiently, the agent has learned a circular search pattern and therefore quickly locates the object (b). However, the information it currently has is not enough, as the orientation of the wrench is not clear just by touching the handle. Thus, it randomly guesses the wrong orientation, with the open jaw pointing left instead of right. To gather information, it moves along the handle (c) until it finds the open jaw (d) and immediately corrects the angle of its pose estimation.

The Toolbox task poses two challenges: finding the object and determining its exact position and orientation. Once the object is found, determining its orientation is still not trivial, as many touch locations only provide ambiguous data. Hence, as shown in Fig. 12, even after the object is found, an exploration strategy for determining its pose must be executed.

Each agent – APPLE-SAC, APPLE-CrossQ, and APPLE-RND – is trained from scratch using 5 random seeds for 10M steps. We reuse the hyperparameters optimized on TactileMNIST without modification to evaluate robustness across tasks.

B.5 CIFAR-10 CLASSIFICATION TASK

Although omitted in the main paper due to space constraints, we also evaluated our approach on the CIFAR10 task introduced by Schneider et al. (2025). Similar to CircleSquare, the agent moves a small 5x5 pixel glimpse across an image in order to classify it. In contrast to CircleSquare, the agent is presented with 32x32 pixel RGB images from the CIFAR-10 dataset Krizhevsky et al. (2009), which it must classify into 10 classes. See Fig. 13 for an illustration of this task.

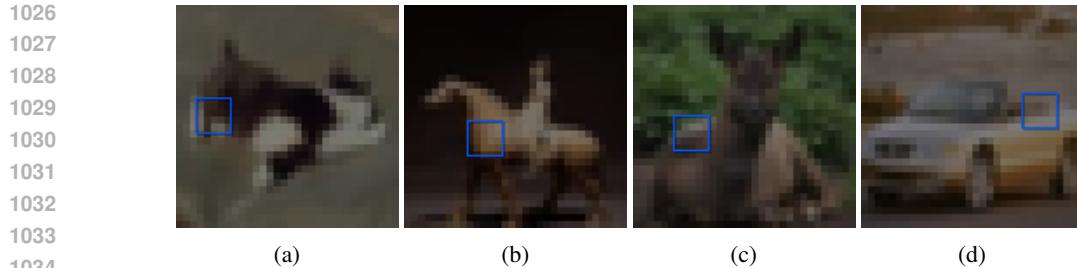
Actions $a_t \in [-1, 1]^2$ are mapped to pixel motion as $a_t \cdot 6.4 \text{ px}$ (20% of the image width), allowing smooth movement across the image. We use bilinear interpolation to compute the glimpse values even at non-integer positions. The agent’s prediction $y_t \in \mathbb{R}^{10}$ is interpreted as logits for the classes:

$$p_c(y_t) = \frac{e^{y_t^{(c)}}}{\sum_{i=1}^{10} e^{y_t^{(i)}}}.$$

Cross-entropy loss is used for training:

$$\ell(y_t^*, y_t) = - \sum_{c=1}^{10} \delta(y_t^*, c) \log(p_c(y_t)).$$

We apply a regularizing reward penalty on the magnitude of each action: $r(h_t, a_t) = 10^{-3} \|a_t\|^2$.



1035 Figure 13: Episode starting conditions of the CIFAR10 task. The agent’s glimpse is placed in a random location
1036 on the field. It must move the glimpse around in order to learn the class of the displayed image.

1037 Due to the small input size, we do not use a vision encoder; instead, the input is directly flattened into
1038 a 25-dimensional vector.

1040 The experimental results for CIFAR10 are presented in Appendix C.6.

1042 C FURTHER EXPERIMENTS

1044 In this section, we present additional experimental results that could not be included in the main body
1045 due to space constraints.

1048 C.1 EVALUATING PPO AND HAM ON CIRCLE SQUARE

1050 Figure 14 shows an additional experiment on the CircleSquare task Schneider et al. (2025), where
1051 we compare HAM to two PPO-based variants, one using HAM’s LSTM model (APPLE-PPO-LSTM)
1052 and one using our transformer model (APPLE-PPO). Note that, unlike in the experiment shown
1053 in Fig. 4 where we stopped training after 250K environment steps, here, we let the training run
1054 for 10M steps. Despite the longer training time, HAM fails to achieve a final prediction accuracy
1055 that is better than random guessing. The PPO variant using HAM’s model (APPLE-PPO-LSTM)
1056 achieves a final prediction accuracy of 72% after 10M steps, while the PPO variant with our
1057 model (APPLE-PPO) achieves around 79%. In addition to the difference in final performance
1058 of APPLE-PPO-LSTM and APPLE-PPO being 7%, APPLE-PPO improves much quicker in the
1059 beginning than APPLE-PPO-LSTM. All hyperparameters for this experiment were again tuned using
HEBO Cowen-Rivers et al. (2022) and each method was trained from scratch on 5 seeds.

1060 These results, in conjunction with the results shown in Section 4.2, indicate that HAM’s issues in
1061 solving the CircleSquare task may have two reasons: First, HAM’s LSTM model seems to be ill-
1062 suited for learning this task, as all other compared methods (APPLE-SAC, APPLE-CrossQ, and
1063 APPLE-PPO) each performed worse with HAM’s LSTM model than with our transformer model.
1064 Second, the fact that PPO and HAM are both on-policy algorithms likely has a negative impact on their
1065 sample efficiency, as samples collected from the environment cannot be reused later on. Off-policy
1066 algorithms, such as APPLE-SAC and APPLE-CrossQ, on the other hand, store samples over the
1067 course of the entire training and revisit them many times, making optimal use of the information
1068 gathered during training. We see this effect clearly in Fig. 14, where APPLE-CrossQ outperforms
1069 APPLE-PPO by orders of magnitude in sample-efficiency, despite both algorithms using the same
1070 model for their policy and class predictions.

1072 C.2 ABLATION STUDY ON CIRCLE SQUARE

1073 To gain an understanding of the effect of the different components of APPLE, we conduct an ablation
1074 study on our CircleSquare experiment.

1076 First, we replace the transformer model with an LSTM model. The results shown in Fig. 15 show
1077 that, although our model is still learning to solve the task, convergence is much slower compared
1078 to the transformer variant of our method, despite extensive tuning of the LSTM baselines with
1079 HEBO Cowen-Rivers et al. (2022). These findings are in line with the results from Appendix C.1, in
which the transformer-based architecture also outperformed the LSTM architecture when used with a

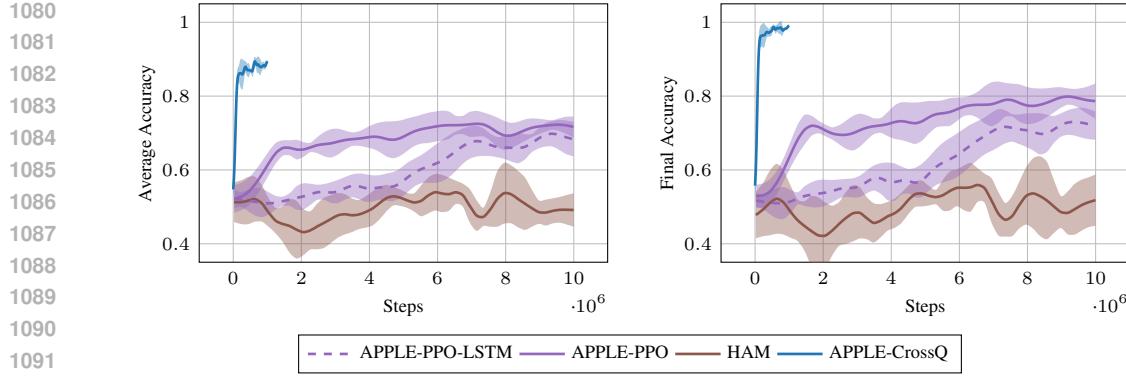


Figure 14: Experiments on the CircleSquare task, comparing HAM with two PPO-based variants: APPLE-PPO and APPLE-PPO-LSTM. The difference between APPLE-PPO and APPLE-PPO-LSTM is that APPLE-PPO uses our transformer model, while APPLE-PPO-LSTM uses HAM’s LSTM model. APPLE-CrossQ’s run with 250K steps is shown for reference. The left plot shows the average prediction accuracies, while the right plot shows the final prediction accuracies. Training is terminated after 10M environment steps.

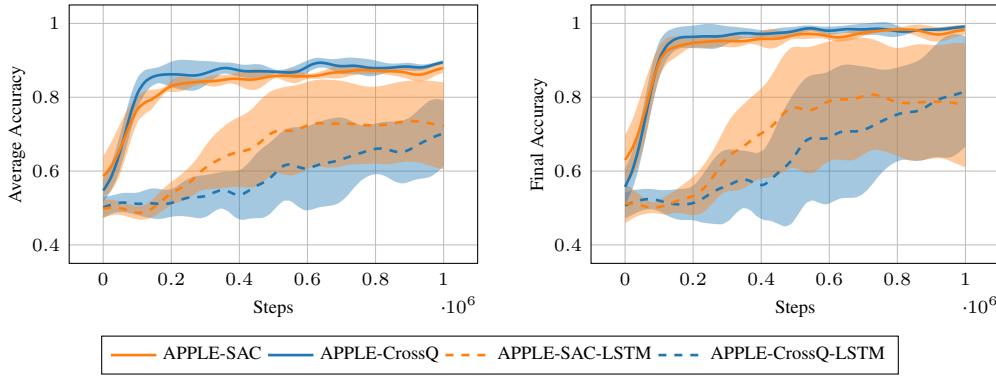


Figure 15: Ablation on the CircleSquare environment, comparing our two APPLE variants with modified versions, in which we use an LSTM model in place of APPLE’s transformer model. The left plot shows the average prediction accuracies, while the right plot shows the final prediction accuracies. Training is terminated after 1M environment steps.

PPO variant of APPLE. Hence, we conclude that the choice of model can have a significant influence on APPLE’s overall performance.

Second, we investigate the importance of utilizing the target label and the loss function ℓ during training. Hence, in this experiment, we just use $\tilde{r}(h_t, \hat{y}_t, a_t, y_t)$ directly as an RL-reward and make y_t become part of the action space. Instead of relying on supervised learning for optimizing $\pi(y_t | o_{0:t})$, the agent must now rely on its policy gradient and essentially find the optimal y_t via trial and error. We call these variants APPLE-SAC-PURE-RL and APPLE-CrossQ-PURE-RL, respectively.

As shown in Fig. 16, although the final accuracy of APPLE-SAC-PURE-RL briefly peaks to 80%, the absence of target labels and the loss function makes the training of these agents very inefficient and unstable. Since CircleSquare is a fairly simple task, this experiment highlights how challenging it is for RL agents to discover and learn a correlation between their observations and the reward they receive in this setting if no structure is imposed.

Finally, we compare our approach to a variant of itself, which, instead of learning an exploration policy, uses a static grid-search strategy to gather information. This strategy moves the glimpse in a grid pattern across the image, always starting at the closest corner. While this strategy produces better exploration than a random policy, it stagnates at a final accuracy of 73%. The reason for this poor performance is that the time budget of the CircleSquare task is specifically chosen to be too low for exhaustive exploration of the entire environment. Instead, the agent must learn to follow the gradient to efficiently locate and classify the target object.

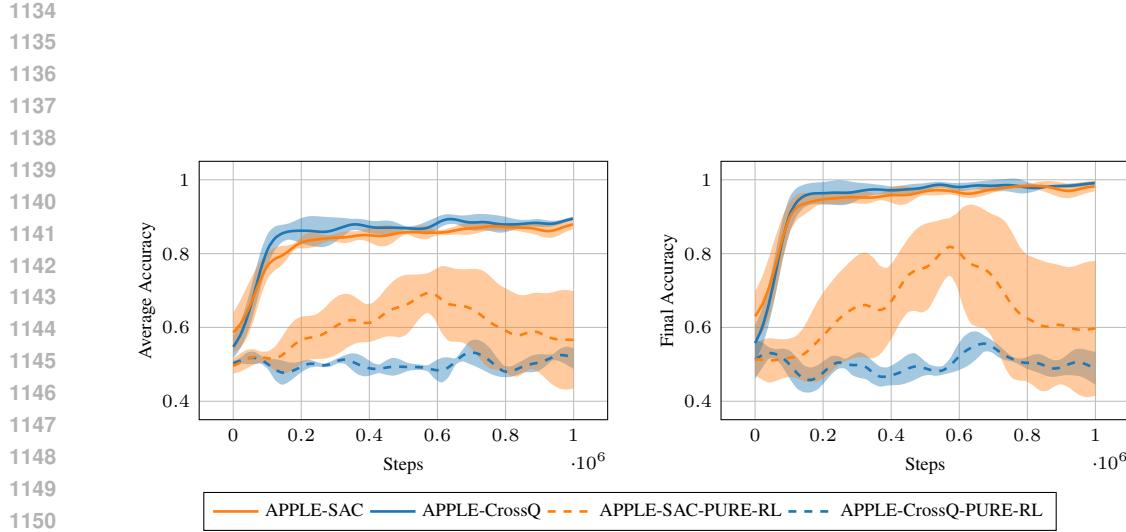


Figure 16: Ablation on the CircleSquare environment, comparing our two **APPLE** variants with modified versions, in which we treat the prediction loss as a regular RL reward, using neither its differentiability nor the target label. Instead, the label prediction becomes part of the regular action space and the agent has to optimize it through its regular policy gradient. The left plot shows the average prediction accuracies, while the right plot shows the final prediction accuracies. Training is terminated after 1M environment steps.

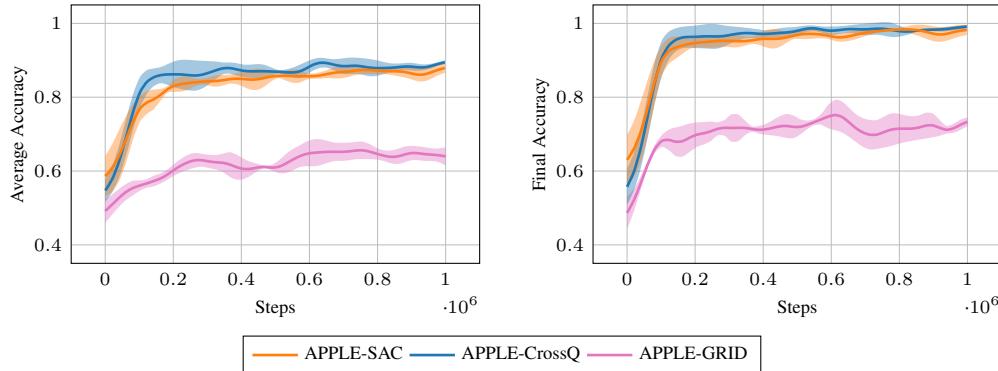


Figure 17: Ablation on the CircleSquare environment, comparing our two **APPLE** variants with a modified version using a heuristic grid-search policy. The grid-search policy searches through the image in a grid pattern, always starting from the closest corner and moving vertically first. Aside from the agent having no control over its actions, everything else is kept the same. The left plot shows the average prediction accuracies, while the right plot shows the final prediction accuracies. Training is terminated after 1M environment steps.

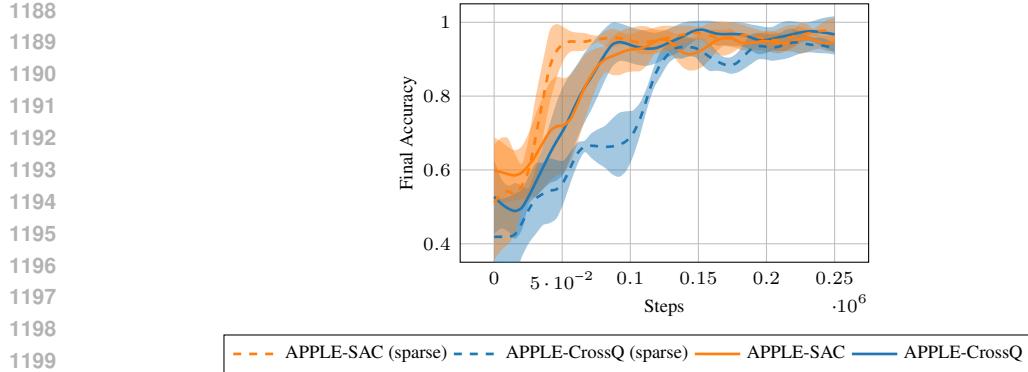


Figure 18: Experiment on a sparse version of CircleSquare, in which only the agent’s prediction in the last time step counts. The original learning curve on the non-sparse version of CircleSquare is also displayed for reference. Training is terminated after 1M environment steps.

C.3 HOW WELL DOES APPLE DEAL WITH SPARSE REWARDS?

In the real world, labels might not always be available for every time step. For example, if a tracking system is used to generate ground-truth data for a tactile pose estimation task, there may be some time steps in the data where the tracking system loses sight of the object. To support this case in our formalism, we can store a boolean variable $w_t \in \{0, 1\}$, indicating whether the object was tracked at time step t ($w_t = 1$) or not ($w_t = 0$) alongside the perception targets \hat{y}_t^* . With a tracking-aware loss function $\ell((\hat{y}_t^*, w_t), y_t) := w_t \text{MSE}(\hat{y}_t^*, y_t)$, we can now make sure that only those steps get considered in the prediction loss in which the tracking was successful.

To briefly evaluate the feasibility of using APPLE with sparse rewards, we conducted a small experiment on our CircleSquare environment. In this experiment, we made the reward sparse by using the above loss function and setting $w_t = 0$ for all time steps except the last one, where we set $w_t = 1$. Essentially, the agent receives its perception reward only for the prediction it makes in the final time step. As shown in Fig. 18, we observe that both APPLE variants continue to learn to solve the task, although our CrossQ variant converges slightly more slowly.

C.4 CAN THE PERCEPTION LOSS HELP IN THE PRESENCE OF ANOTHER DOWNSTREAM TASK?

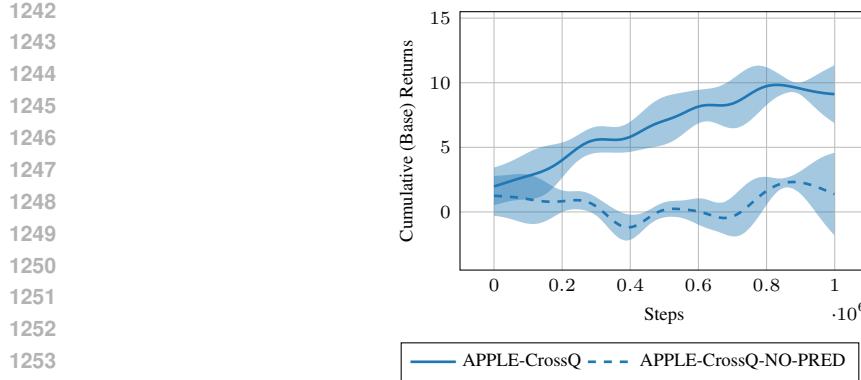
Our long-term objective with this line of work is to tackle tasks in which active perception is not the primary objective, but rather tasks in which the agent must use active perception to fulfill another objective. One such example is finding and retrieving a specific tool from a toolbox. In this task, the main objective is not to find the tool, but it still has to be found in order to be retrieved. Although we deem these types of tasks to be outside of the scope of this work, we conducted a small experiment to pre-validate the feasibility of using APPLE in this context.

Specifically, we created a variant of the CircleSquare task, in which the agent must stay close to squares and far from circles. We call this variant *CircleSquareHideAndSeek* and implement it by using the following base reward instead of the regular CircleSquare base reward:

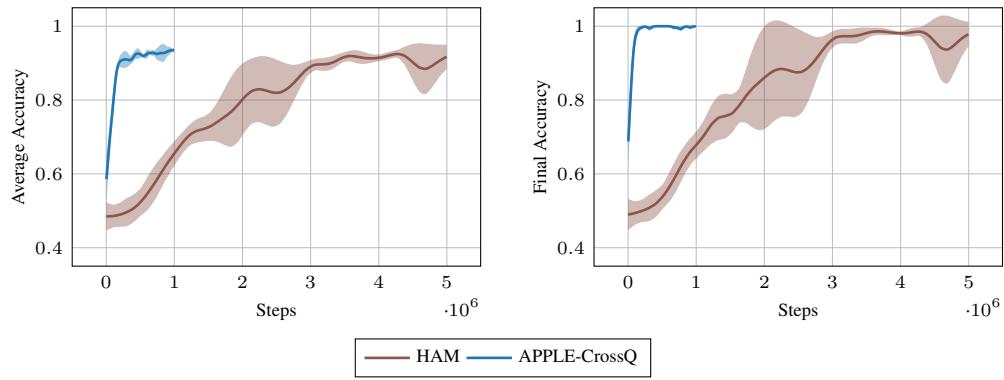
$$r(h_t, a_t) = 10^{-3} \|a_t\|^2 + \begin{cases} \|p_t^{\text{agent}} - p_t^{\text{object}}\| & \text{if square} \\ -\|p_t^{\text{agent}} - p_t^{\text{object}}\| & \text{if circle} \end{cases}$$

Hence, to solve this task optimally, the agent must first identify the class of the object and then either remain close or move far away. Here, active perception is only an intermediate step towards solving this task, as knowing the label yields reward only indirectly. In Fig. 19, we compare two variants of our APPLE-CrossQ agent on this task: our regular APPLE-CrossQ agent, which utilizes label and loss-function information, and a variant APPLE-CrossQ-NO-PRED, which just maximizes the base return.

Our results show that the regular agent, which utilizes the label and the loss function, significantly outperforms the agent relying on pure RL. This result suggests that incorporating a supervised



1255 Figure 19: Experiment on the *CircleSquareHideAndSeek* variant of CircleSquare. In this variant, the agent
1256 must stay close to squares and avoid circles. We test two variants: **APPLE-CrossQ**, our regular approach, and
1257 **APPLE-CrossQ-NO-PRED**, which does not make use of the target label and the loss function. **APPLE-SAC**
1258 variants were not included as neither of them learned any meaningful behavior. Training is terminated after 1M
1259 environment steps.
1260



C.5 LONGER EVALUATION OF HAM OF THE MHSB TASK

To validate our implementation of **HAM**, we conduct a longer experiment on the MHSB task, on which it was originally evaluated. The results of this experiment can be seen in Fig. 20, where we see that **HAM** eventually converges to good performance. Since these results are similar to those of Fleer et al. (2020), we conclude that our implementation is correct.

C.6 CIFAR10 CLASSIFICATION TASK

In Fig. 21, we present the results of running our two **APPLE** variants, as well as a random baseline, on the CIFAR10 task, described in Appendix B.5. Although the task is similar, CIFAR10 is significantly more challenging than CircleSquare, as the agent now has to deal with much more diverse data and ten labels instead of two.

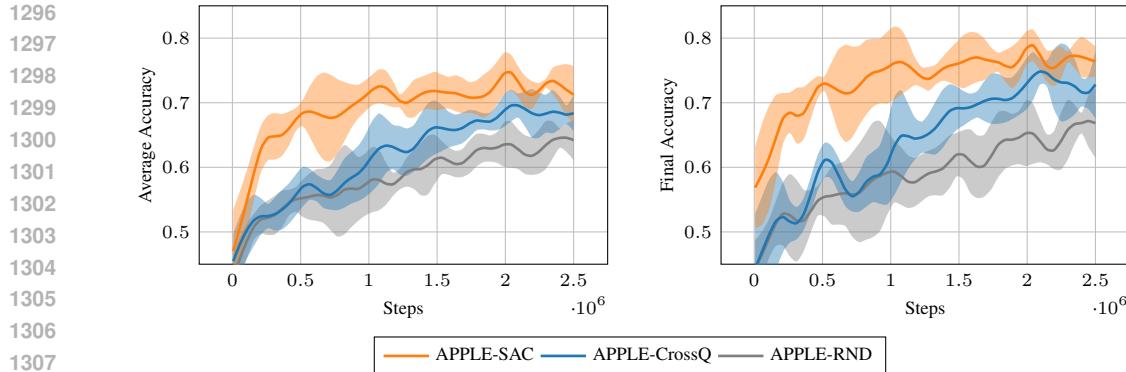


Figure 21: Average and final prediction accuracies for our methods **APPLE-SAC** and **APPLE-CrossQ**, and **APPLE-RND** on the CIFAR10 task. All methods were trained with 5 seeds. Shaded areas represent one standard deviation. Metrics are computed on the test split with unseen images.

As shown in Fig. 21, despite not being tuned for this task, **APPLE-SAC** still performs well, achieving a final accuracy of 76%. **APPLE-CrossQ** converges slightly slower and reaches a slightly lower final accuracy of 73%. Our random baseline reaches a final accuracy of 67% after 2.5M steps.

D LIMITATIONS

While **APPLE** demonstrates strong performance across various active perception tasks, it also has certain limitations. One of the primary drawbacks is its reliance on large amounts of training data, requiring up to 5M steps for the tactile perception tasks. This high data requirement arises from the combination of a transformer-based architecture and RL-based policy optimization. While this approach enhances the generality of **APPLE**, allowing it to adapt to different tasks without hyperparameter tuning, it comes at the cost of sample efficiency. A promising avenue to solve this issue is leveraging pre-trained transformer models, which could improve sample efficiency by providing useful feature representations. Furthermore, recent advancements in sample-efficient reinforcement learning Nauman et al. (2024); Lee et al. (2024) offer potential alternatives for improving the practicality of **APPLE** in real-world applications. Another limitation and future direction is to explore a more diverse and practical set of tasks. Applications such as object pose estimation, shape reconstruction, or material property inference remain unexplored and could pose additional challenges to our methodology. Moreover, our current experiments use a single tactile sensor, but in principle, the **APPLE** model architecture supports multi-fingered robotic hands and multi-modal perception (e.g., combining vision and touch). However, the practical scalability of **APPLE** to those applications remains an open question, as the increased action and observation space complexity may introduce additional challenges in training efficiency, policy learning stability, and computational demands. Future work will explore these extensions by evaluating **APPLE** on multi-fingered robotic systems and integrating complementary sensing modalities to enhance active perception capabilities.

E HYPERPARAMETER OPTIMIZATION

For fair comparison between our method and the baselines, we have performed extensive hyperparameter searches with the HEBO Cowen-Rivers et al. (2022) Bayesian optimizer.

Procedure. We select the CircleSquare and TactileMNIST classification environments as representative environments on which to tune hyperparameters. Specifically, CircleSquare is used as the representative environment without a vision encoder, and TactileMNIST is used as the representative environment with a vision encoder. We evaluate each candidate configuration by training with a single seed (250K steps on CircleSquare and 2.5M steps on TactileMNIST, except for HAM and PPO, which are trained for 1M steps on CircleSquare) and measure the episode return averaged across the entire training run. Averaging rewards over time, rather than using final performance alone, ensures

1350
 1351 Table 1: Hyperparameters determined by the HEBO Cowen-Rivers et al. (2022) Bayesian optimizer for
 1352 **APPLE-SAC** and **APPLE-CrossQ**. The *no vision-encoder* configuration was trained on the CircleSquare
 1353 environment, while the *vision-encoder* configuration was trained on the TactileMNIST environment. Hyperpa-
 1354 rameters with *Rel.* are relative to the total number of steps throughout the training.

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403			
	Hyperparameter	no vis.-enc.	vis.-enc.	APPLE-CrossQ
Optimizer type	ADAMW	ADAMW	ADAMW	ADAMW
Learning-rate (actor)	$5 \cdot 10^{-5}$	$5 \cdot 10^{-4}$	$1 \cdot 10^{-5}$	$3 \cdot 10^{-4}$
Learning-rate (critic)	$5 \cdot 10^{-4}$	$5 \cdot 10^{-5}$	$1 \cdot 10^{-4}$	$6 \cdot 10^{-5}$
LR-schedule (both)	none	cosine-decay	none	none
Rel. LR cosine warm-up (both)	N/A	0.15	N/A	N/A
Initial UTD	0.75	0.25	5.0	0.25
Final UTD	4.0	1.5	0.5	3.5
Rel. UTD warm-up	0.9	0.4	0.3	0.45

1365
 1366 that sample efficiency is taken into account: two hyperparameter sets achieving the same final return
 1367 may differ greatly in how quickly they reach that level of performance.

1368
Search space. Because Bayesian optimization scales poorly with dimensionality, we restrict the
 1369 search to hyperparameters we found most impactful for performance. All methods are tuned for
 1370 learning rate, learning-rate schedule (none, cosine decay, linear), schedule parameters (e.g., warm-
 1371 up steps), and optimizer choice (ADAM, ADAMW, SGD). For off-policy **APPLE** methods, we
 1372 additionally tune the update-to-data (UTD) schedule: initial and final UTD ratios and the number of
 1373 warm-up steps.

1374
Findings. Despite an extensive search, we were unable to identify hyperparameters yielding com-
 1375 petitive performance for **HAM** on CircleSquare. In contrast, the search provided valuable insights
 1376 for **APPLE-SAC** and **APPLE-CrossQ**. Although both achieved comparable performance on their
 1377 tuning tasks, **APPLE-CrossQ** demonstrated substantially greater robustness when transferred to
 1378 unseen environments (Section 4). Interestingly, applying **APPLE-CrossQ**’s vision-encoder hy-
 1379 perparameters to CircleSquare produced no measurable degradation in performance. To simplify
 1380 evaluation, we therefore adopt the vision-encoder configuration for all environments in subsequent
 1381 experiments.

1382
 The final hyperparameter settings selected by HEBO are summarized in Table 1.

F IMPLEMENTATION DETAILS

1383
 The implementations of **APPLE**, **APPLE-PPO**, and **HAM** are built on JAX Bradbury et al. (2018)
 1384 with the Flax framework Heek et al. (2024), and use Hugging Face transformers Wolf et al. (2020).
 1385 For performance, the training loop is fully JIT-compiled, and environment interactions are handled
 1386 via host callbacks—maximizing throughput at the expense of some implementation flexibility.

1387
Replay buffer design. A common bottleneck in deep learning arises from the transfer of data
 1388 between VRAM (GPU) and RAM (CPU). To minimize this overhead, we keep the replay buffer in
 1389 VRAM, so that host-device communication is limited to stepping the environment and logging. The
 1390 drawback is reduced capacity for environments with vision inputs, since VRAM is smaller than RAM.
 1391 On Nvidia RTX A5000 GPUs (24GB VRAM), storing downscaled 32×32 px visual inputs allows for
 1392 roughly 3M transitions before memory is exhausted. Consequently, for vision-encoder configurations
 1393 (i.e., the Tactile MNIST classification and volume estimation tasks as well as the Toolbox localization
 1394 task), we set the replay-buffer size to 3M, whereas for non-vision-encoder configurations, we use a
 1395 replay-buffer size equal to the total number of environment steps.

1396
Hardware setup. All experiments were run on Nvidia RTX A5000 or RTX 3090 GPUs with the
 1397 hyperparameters from Table 1. For vision-encoder configurations, we dedicate one GPU per run. A
 1398 single run of 5M training steps takes about 40–50 hours, depending on the algorithm.

1404
 1405 **Parallelization.** Non-vision-encoder configurations demand less VRAM, enabling multiple runs to
 1406 share a GPU. On a single RTX A5000/3090, we can accommodate up to 28 parallel runs, depending
 1407 on the environment and algorithm. As wall-clock runtime then depends heavily on the number of
 1408 concurrent runs, reporting averages is not meaningful. Nevertheless, we observe that HAM and PPO
 1409 typically run about four times faster than APPLE.

1410 G DETAILED DERIVATION OF EQ. (3)

1411 Due to space constraints, we omitted intermediate steps in the derivation of Eq. (3) in the main paper
 1412 and instead note them here:

$$\begin{aligned}
 1416 \frac{\partial}{\partial \theta} J(\pi_\theta) &= \frac{\partial}{\partial \theta} \mathbb{E}_{p_\theta(\mathbf{h}, \mathbf{y}^*, \mathbf{o}, \mathbf{a})} \left[\sum_{t=0}^{\infty} \gamma^t (r(h_t, a_t) - \ell_{\pi_\theta}(\mathbf{y}_t^*, \mathbf{o}_{0:t})) \right] \\
 1417 &= \frac{\partial}{\partial \theta} \int p_\theta(\mathbf{h}, \mathbf{y}^*, \mathbf{o}, \mathbf{a}) \sum_{t=0}^{\infty} \gamma^t (r(h_t, a_t) - \ell_{\pi_\theta}(\mathbf{y}_t^*, \mathbf{o}_{0:t})) d(\mathbf{h}, \mathbf{y}^*, \mathbf{o}, \mathbf{a}) \\
 1418 &= \int \frac{\partial}{\partial \theta} p_\theta(\mathbf{h}, \mathbf{y}^*, \mathbf{o}, \mathbf{a}) \sum_{t=0}^{\infty} \gamma^t (r(h_t, a_t) - \ell_{\pi_\theta}(\mathbf{y}_t^*, \mathbf{o}_{0:t})) \\
 1419 &\quad + p_\theta(\mathbf{h}, \mathbf{y}^*, \mathbf{o}, \mathbf{a}) \frac{\partial}{\partial \theta} \sum_{t=0}^{\infty} \gamma^t (r(h_t, a_t) - \ell_{\pi_\theta}(\mathbf{y}_t^*, \mathbf{o}_{0:t})) d(\mathbf{h}, \mathbf{y}^*, \mathbf{o}, \mathbf{a}) \\
 1420 &= \underbrace{\mathbb{E}_{p_\theta(\mathbf{h}, \mathbf{y}^*, \mathbf{o}, \mathbf{a})} \left[\frac{\partial}{\partial \theta} \ln \pi_\theta(\mathbf{a} | \mathbf{o}) \sum_{t=0}^{\infty} \gamma^t \tilde{r}(h_t, \mathbf{y}_t^*, a_t, y_t) \right]}_{\text{policy gradient}} - \underbrace{\mathbb{E}_{p_\theta(\mathbf{y}^*, \mathbf{o})} \left[\sum_{t=0}^{\infty} \gamma^t \frac{\partial}{\partial \theta} \ell_{\pi_\theta}(\mathbf{y}_t^*, \mathbf{o}_{0:t}) \right]}_{\text{prediction loss gradient}}.
 \end{aligned}$$

1430 H CONNECTION TO CURIOSITY-BASED INTRINSIC REWARD METHODS

1431 Since formulation in Eq. (2) somewhat resembles the augmented rewards commonly used in curiosity-
 1432 based intrinsic reward RL methods, such as RND Burda et al. (2018) or ICM Pathak et al. (2017), one
 1433 might wonder what the connection between APPLE and those methods is. Fundamentally, APPLE
 1434 solves a different problem than curiosity-based intrinsic reward methods. Intrinsic reward methods
 1435 typically focus on enhancing policy learning in an MDP setting by providing intrinsic exploration
 1436 bonuses for under-explored areas of the state space. Hence, they are concerned with letting the agent
 1437 collect rich experiences to facilitate efficient policy learning. Crucially, the MDP the agent faces
 1438 during training is, because of the augmentation with the intrinsic reward bonus, different from the
 1439 one it faces during evaluation.

1440 APPLE, on the other hand, is concerned with learning hidden properties of the environment within
 1441 an episode. Although our formulation may resemble the augmented rewards of intrinsic motivation
 1442 methods, it operates on a fundamentally different level of exploration. In our case, the extraction of
 1443 information is the objective posed by the task and not a surrogate used to learn better policies.

1444 On a high level, one could say that intrinsic reward methods utilize exploration to learn the optimal
 1445 policy parameters, while APPLE uses exploration to learn about the hidden state of the POMDP it
 1446 operates in. Hence, the exploration procedure of intrinsic reward methods occurs across episodes,
 1447 while the exploration procedure of APPLE takes place within each episode. These two concepts are
 1448 fully orthogonal, and one could indeed combine ICM or RND with APPLE in an attempt to speed up
 1449 its learning progress.