
Minstrel: Application-Aware SLM Inference
Optimization on Edge Devices

Bakshree Mishra
University of Illinois Urbana-Champaign

Urbana, Illinois, USA
bmishra3@illinois.edu

Abstract—Large language models (LLMs) have permeated
different fields of computing, including agentic systems and
controllers. Recent literature has introduced smaller language
models (SLMs) capable of running on edge hardware, unlocking
opportunities to significantly impact human and computer inter-
action. Following trends of LLM inference optimization on data
centers, optimization of SLM inference on edge devices focuses on
independently accelerating the prefill or decode phases. However,
we expect the tasks targeted for SLM inference to not follow
the same input and output length distributions as remote LLM
inference, necessitating a reevaluation of options for hardware
and software optimizations. Further, previous work does not
study the impact of their optimizations in context of different
downstream applications, and the benefits seen in their isolated
evaluations are not generalizable.

In this work, we present Minstrel, an application-aware
optimization framework for SLM inference on edge hardware.
Minstrel introduces a hybrid empirical and analytical model to
predict the inference latency for an application given an SLM
and hardware. Using Minstrel, we divide the application space
into a prefill-dominated P-Zone and a decode-dominated D-
Zone. Leveraging the two zones, we make the observation that,
for a certain range of applications, optimizing prefill phase is
ineffective.

Index Terms—Edge inference, application-aware optimiza-
tions, small language models, SLM, Optimization zones

I. INTRODUCTION

Large language models (LLMs) and foundation models
have become ubiquitous and entered the public consciousness
with popular applications such as Chat-GPT [35] and Gem-
ini [18], [46]. The generalizability of LLMs has influenced
and reshaped how applications are developed in different
fields; LLMs now are proposed for integration in operating
systems [26], [36], as agents and controllers for sub-tasks in
workloads [4], [14], [24], [31], [41], [50], [52]–[54], [59], [64],
[70], and as a service (LLMaaS) [62], [63].

While LLM inference has typically required cloud resources
such as large GPU clusters to run these large models, recent
literature has introduced small language models (SLM) of
parameter sizes 3B or lower [1], [25], [29], [45]–[47], [58],
[68] that can be executed locally on edge/client devices such
as smartphones and desktops with reasonable downstream
accuracy. These show an encouraging trend in the ability to
compress and distill information learned by the large language
models [25], [47], [68] and can be a viable alternative for
edge-inference tasks [19].

Prior work in accelerating LLM inference in data centers
has leveraged the observation that different phases of LLM
inference are memory and compute bound [67] to partition
the phases into heterogeneous accelerators [9], [9], [37], [43],
[58], [58], [60], [69]. However, the distribution of tasks for
traditional LLMs and the new SLMs are different. First, a
user is more likely to send larger texts (documents, images,
etc.) as input to the larger models for complex tasks, and thus
inference tasks can benefit immensely from accelerated prompt
processing. SLMs are better suited for shorter prompts and
for simple agentic tasks [20]. Further, SLMs with agentic use-
cases can reuse shared prompts and context history [8], [15],
[54], further reducing the prompt sizes to be processed. Other
optimizations at data center level focus on improving inference
throughput with batching and scheduling techniques [37], [65],
[69]. It is unlikely that multiple inference requests may arise
from the same user to leverage batching techniques on the
edge. There is a need to systematically study the impact of
different inference optimization techniques for SLM-oriented
tasks with varying input and output lengths.

In this work, we propose Minstrel, a cross-stack framework
that enables application-aware evaluation of hardware and/or
software optimizations. Minstrel introduces a hybrid empirical
and analytical performance model that predicts performance
of an SLM on a hardware configuration. Minstrel learns the
empirical model parameters for a hardware with linear regres-
sion over extensive offline profiling. Minstrel predicts whether
a hardware and SLM can satisfy latency constraints for ap-
plications with different input and output lengths. Minstrel’s
performance model further analytically predicts the overall
speedup achievable for applications with a wide range of
prompt and output lengths, and identifies the inference phase
to be prioritized for any hardware or software optimization.
With Minstrel, we can clearly divide the inference application
space, with varying prompt and decoded output lengths, into a
P-Zone suitable for prefill acceleration and a D-Zone sensitive
to decode optimization.

II. BACKGROUND AND RELATED WORK

LLMs are deep neural networks that have had considerable
success over natural language processing tasks as well as other
modalities, primarily based on transformer [51] architecture.

1

Em
be

dd
in

gs
RMS

Norm

Multi
Head
Attn

RMS
Norm FFN

RMS
Norm FFN Soft-

Max
K

Q

V
Sampling

Decoder × 𝑁

In
pu

t (
𝑙 !

)

× 𝑙"

1

2

Fig. 1. Block diagram of a decoder-only transformer network. The decoder
block consists of the multi-head attention and feed-forward network layers,
and is replicated N times in the network. lp : Prompt length, ld : Output
length.

A. Transformer Architecture

The baseline transformer architecture [51] consists of en-
coder and decoder blocks, and subsequent models derive
from this architecture. Recent models such as GPT-3 [5]
and Llama [48], [49] are decoder-only transformer models.
Figure 1 shows a block diagram of a decoder-only network,
consisting of components such as attention computation and
feed forward networks. Inference with transformer architec-
tures is autoregressive, where the generated embedding token
is used to generate subsequent output token embeddings.
LLM inference can be decomposed into two phases. During
the prefill phase (1 in Figure 1), the model computes over the
entire input prompt sequence (of length lp). Inference perfor-
mance with smaller sequence lengths is dominated by the feed-
forward network in the transformer block, which scales lin-
early with sequence length; for longer sequence lengths, atten-
tion computation dominates which scales quadratically [32].
The KV (Key-Value) cache stores intermediate key and value
projections during the prefill phase to avoid recomputation
during decoding. Subsequently, the prefill phase generates the
first output token. The decode phase (2 in Figure 1) is
autoregressive. Each iteration of the decode phase produces
one token, which serves as an input for the next iteration
to generate the next token. The decode phase continues de-
pending on the length of output tokens (lg). Thus, LLMs are
stateful, where previously generated tokens provide context for
subsequent output tokens.

B. Heterogeneous Inference

Sampling

Prefill Decode

Pre-inf
Task

Post-inf
Task

gen
over? yes

no

1HW 2HW

CPU

Fig. 2. Flow of executing LLM inference on heterogeneous hardware.

Figure 2 shows a flow chart for an LLM inference task
using heterogeneous hardware (CPU, HW 1 , and HW 2

TABLE I
LLM INFERENCE ON HETEROGENEOUS HARDWARE.

Work HW 1 HW 2 Target

Splitwise [60] GPU (large) GPU (small) Datacenter
llm.npu [57] NPU CPU Edge

HeteroLLM [9] NPU GPU Edge

). The CPU executes the upstream and downstream tasks.
The LLM inference task primarily consists of prefill and
decode phases, often offloaded to (same or different) hardware.
In general, inference hardware can be CPU-only, or any
combination of CPU, GPU, Neural Processing Unit (NPU),
or other accelerators (e.g., [12]).

There has been extensive work in leveraging LLM model
optimization techniques such as quantization [7], [55],
FlashAttention [10], [11], KV caching [2], [40], inference
under long context [56] and paged attention [22] to improve
inference latency. Previous work [67] has further observed
that prefill phase is compute intensive, while the decode
phase is more memory intensive. Thus, LLMCompass [67]
suggests that prefill phase (HW 1) be mapped to hardware
with more computation units, while the decode phase be
mapped to hardware with less compute and more memory
bandwidth (HW 2). Previous research in data centers apply
this strategy to map prompt prefill phase to larger accelera-
tors [37], and further focus on scheduling and batching [37],
[42], [44], [65] to improve inference throughput. Table I lists
some of such recent work on heterogeneous LLM inference.
Other inference scheduling research in data centers [34], [38],
[61] optimize for delays and communication costs. In case
of edge devices, recent work has attempted to apply similar
partitioning of prefill and decode stages onto heterogeneous
hardware available on these devices, with most leaning into
optimizing prompt prefill.

C. Application Characteristics of SLMs

Unlike LLM inference on cloud platforms, which support
a variety of requests from multiple users, SLM inference on
edge devices can be predictable depending on the application
and use-case. One category of applications can be agentic use-
cases [20] involving short incremental prompts and formatted
outputs [4], [14], [24], [31], [41], [50], [52]–[54], [59], [64],
[70], where the formatted outputs can be studied to predict
the output/decode length. Edge inference of SLMs also pro-
vides the capability of caching and reusing context, usually
a challenge for LLM inference in data centers [44]. Agentic
applications, with multi-turn inference or common recurring
prompt prefixes, can utilize this opportunity to reuse the KV-
cache and reduce the effective prompt length for inference.
However, current literature on optimizing SLM inference on
edge devices propose solutions that do not consider these
unique opportunities of SLM inference. For example, work
on llm.npu (Table I) evaluates heterogeneous inference on
benchmarks with long prompts and very short output lengths
of 1–2 tokens, but does not study the performance with output
lengths representative of actual tasks [39], nor does it consider

2

the impact of reusing the KV-cache from previous infer-
ences that would effectively shorten prompt lengths. Further,
other literature predicting LLM inference on hardware provide
roofline estimations [21], [66] that map performance of LLM
models as singular points, and do not study whether there is
impact of any such application characteristics on the measured
performance. One option to capture application-specific char-
acteristics is to use the inference prompt and decode lengths
as a proxy for complex application behaviors. For example,
for an agentic task with common prompt prefixes, we can use
the incremental prompt lengths during steady state to predict
the actual inference computation. Similarly, we can use the
(range of) output lengths observed within a task to predict
the overall inference latency. Overall, SLM inference on edge
devices provides more visibility to the range of applications
and inference workloads. This provides an opportunity for
more fine-grained evaluation of different optimizations and
their impact per application, which is difficult to achieve with
LLM inference on cloud platforms.

III. MINSTREL

In this work, we introduce Minstrel, a framework to enable
application-aware optimizations for SLM inference on the
edge.

Power
Analysis

Latency
Analysis

Hardware
Profiling

Offline
Hardware
Analysis

HW

Prompt
length

Output
length

LLM
model

Application

Constraints

Latency budget

Opt.

Hybrid
Empirical –
Analytical

Model

Simulator

Code SW

Perf.
Estimation

HW
Evaluation

Outputs

Descriptors

Fig. 3. A block diagram for the Minstrel system. Opt: Optimization.

A. Hybrid Performance Model

Given a language model and hardware, we use a hybrid
analytical and empirical performance modeling approach to
estimate inference latency t̂e2e for different prompt and de-
code lengths. SLM inference use-cases include tasks such
as natural language commands and agentic tasks [20], [57],
where sequence lengths are not very long. As a result, we
can reason that the inference would be dominated by linearly-
scaling feed-forward networks in the transformer blocks [32].
With this assumption, we define two linear models, t̂pp and
t̂d, that accept prompt and decode lengths as inputs and
predict prefill latency and decode latency respectively as in
Equations 1 and 2:

t̂pp(lp) = θ0lp + θ1, (1)
t̂d(lp, ld) = θ2lp + θ3ld + θ4, (2)

where

lp : Prompt length,
ld : Decode length,

t̂pp : Predicted prefill latency given lp,

t̂d : Predicted decode latency given lp and ld,
θ : Learnable parameters.

t̂pp in Equation 1 is only a function of lp, since prompt prefill
phase always terminates with generating one output token
and is independent of output length ld. Minstrel assumes that
the prefill and decode phases are sequential, and analytically
expresses the end-to-end inference latency as in Equation 3.

t̂e2e(lp, ld) = t̂pp(lp) + t̂d(lp, ld). (3)

We use empirical data obtained from running inference of
SLMs on hardware to train the performance model. The linear
parameters {θ0 · · · θ4} are learned by minimizing MSE.

B. Hardware Evaluation with Minstrel

Minstrel uses Equation 3 to predict inference latency, given
a model and hardware, for different applications. Hence,
Minstrel can also evaluate whether the model and hardware
can satisfy any latency constraint tlim set by the application
with lp input prompt tokens and expecting ld output tokens.
We can define satisfy to validate whether the model and
hardware (system) can satisfy any latency constraint tlim set
by the application with lp input prompt tokens and expecting
ld output tokens as in Equation 4:

satisfy(lp, ld) =

{
1, if t̂e2e(lp, ld) ≤ tlim,

0, if t̂e2e(lp, ld) > tlim.
(4)

where

tlim : Latency constraint,
satisfy : System viability given constraint tlim.

Hardware evaluation with Minstrel can help application de-
signers to preemptively test whether the application, with its
prompt and decode lengths, can meet the set latency con-
straints. This can allow for application-level such as changing
the prompt and/or decode lengths, or relaxing constraints, etc.

C. System Optimization with Minstrel

Minstrel can evaluate impact of optimizing prefill and
decode phases through hardware or software enhancements.
Minstrel expresses the optimized inference latency t̂

optpp,optd
e2e

as the sum of prefill and decode phases, each scaled by their
respective optimization factors optpp and optd.

t̂
optpp,optd
e2e (lp, ld) = optpp · t̂pp(lp) + optd · t̂d(lp, ld), (5)

speedup(lp, ld, optpp, optd) =
t̂e2e(lp, ld)

t̂
optpp,optd
e2e (lp, ld)

, (6)

3

where

optpp < 1 : Optimization factor for prefill stage,

optd < 1 : Optimization factor for decode stage,

t̂
optpp,optd
e2e : Predicted optimized latency,
speedup : Predicted speedup given lp, ld, optpp, and optd.

D. Single Phase Optimization

We consider a special case where only one phase can be
targeted for optimization. In such a case, the optimization
factor for the unchanged phase can be assumed to be 1. Thus,
for an application with prompt and decode lengths lp and ld,
Minstrel evaluates the maximum benefit, max_speedup, that
can be obtained through optimizing prefill or decode stages
with factors as in Equation 7:

max_speedup(lp, ld, optpp, optd) =

max

{
speedup(lp, ld, optpp, 1),

speedup(lp, ld, 1, optd).
(7)

Equation 7 evaluates the impact of proposed optimizations
with respect to individual applications. For an expected distri-
bution of prompt and decode lengths in a system, Minstrel can
evaluate optimization of which phase accelerates the inference
more and enable prioritization of such optimizations.

IV. METHODOLOGY

We evaluate Minstrel over 5 popular SLMs, Gemma 2
2b [17], Qwen1.5-1.8B-Chat [3], Phi 2 [30], Llama3.2 3B [28],
[29], and Llama 3.2 1B Instruct [27], referred to as Gemma,
Qwen, Phi, Llama3B, and Llama1B respectively. We use two
consumer devices, an Intel i9-10900 CPU with an NVIDIA
3070 GPU [33] (referred to as desktop), and an NVIDIA
Jetson Orin AGX as a substitute for a mobile device (referred
to as jetson) [13]. We use the open source Llama.cpp [16]
framework to measure inference latency. We profile over
prompt lengths 1-1500 and generate outputs of lengths ranging
from {0 · · · 256, 512, 1024} from the SLMs to create the
performance dataset for the hybrid performance model. We
choose this range for prompt lengths to match the range in
llm.npu [57]. The Minstrel performance model uses linear
regression to learn the learnable parameters {θ0 · · · θ4}.
Generalizing Inference with Synthetic Prompts: While
benchmarks with meaningful prompts are required to measure
accuracy of a model’s inference, the computation involved in
an inference depends on the input length for computing prefill
and filling the KV-cache, and on the output length for the
number of autoregressive iterations. Hence, for an application,
the effective prompt length (after considering any reuse of
KV-cache from previous inference/common prompt prefixes)
and the expected output length can be mapped to synthetic
inference with the same prompt and decode lengths.

(a) (b)

(c) (d)
Fig. 4. (a) Measured inference latency for different models with varying
decode lengths for fixed prompt length of 32, (b) Linear increase in inference
latency with increase in prompt length for Llama3B on i) desktop and ii)
jetson, (c) Predicted and measured inference latencies for Llama3B on desktop
and jetson for 2 prompt sizes, and (d) Predicted inference latency for a sweep
of prompt and decode sizes with Llama1B on desktop and jetson.

Fig. 5. Y-axis shows predicted speedups of tasks with different decode lengths
ld (on X-axis) and prompt sizes lp (denoted by the color-bar) by optimizing
(a) only prefill phase and (b) only decode phase of Llama1B. (c) shows the
max curve for (a) and (b) denoting the trade-off between optimizations. (d-h)
show the optimization tradeoffs observed in 5 models.

V. RESULTS

A. Latency Analysis

Figure 4a shows the measured inference latencies for the 5
SLMs for a fixed prompt length and varying decode lengths
ld on desktop. The X-axis denotes prompt length and Y-axis
denotes inference latency in seconds. We observe that, for
all the 5 models, the inference latency varies linearly with
increase in decode length, as captured in Equation 2.

Figures 4b and c show the measured inference latency
as well as Minstrel’s latency prediction on both hardware
configurations, desktop and jetson, for Llama3B. In Figure 4b,
the output length is fixed (to 10) and prompt lengths are varied
from 1 to 1500. We confirm linear scaling of latency with
increase in prompt length, and that Minstrel is able to predict
the expected latencies. In Figure 4c, desktop 1 and jetson 1
provide the measured and predicted inference latencies, on
desktop and jetson respectively, for multiple decode lengths
with fixed prompt size of 700; similarly, desktop 2 and jetson
2 provide the measured and predicted inference latencies

4

on desktop and jetson respectively for fixed prompt size of
1400. Once again, we observe that Minstrel’s linear model
reasonably captures the inference latency trends.

Finally, Figure 4d shows the predicted latencies from the
performance model for Llama1B on jetson and desktop, for a
sweep of prompt and decode lengths. The color-bar provides
an indication of prompt lengths, with blue denoting shortest
prompts and red denoting the longest. The solid lines show
the predicted latencies for desktop, while the dashed lines
denote the predicted latencies for jetson. We observe that the
slope in jetson is higher than desktop. This indicates that the
performance gap between jetson and desktop is narrow for
short decode lengths, and widens with increase in decode
length. With Figures 4a–d, Minstrel can test whether jetson
and desktop can satisfy (Equation 4) an inference task
with tlim set to, e.g., 5 seconds for different tasks. Thus,
Minstrel can not only provide a tight latency estimation given
an application’s characteristics, but also guide the range of
prompt and decode lengths feasible for an application targeting
different hardware.

B. Case Study: Single Phase Optimization

Fig. 6. Speedups trends on optimizing prompt and decode phases for different
decode and prompt lengths. X-axis represents variation in decode lengths,
solid and dotted lines represent short and long prompt lengths.

We use speedup and max_speedup from Equa-
tions 6 and 7 to predict the impact of independently optimizing
prefill and decode phases for Llama1B in Figures 5a–c, where
the X-axis denotes decode length ld, and Y-axis denotes
speedup observed over the baseline. For this evaluation, we
choose optpp = optd = 0.5.

Figure 5a shows the Minstrel prediction for optimizing
prefill phase by optpp. We observe that, for all prompt lengths,
optimizing prefill phase sees diminishing returns with increase
in decode length. Applications with small output lengths (<
100) and/or long prompt lengths (> 1500) are noted to benefit
from the prefill optimization. However, for decode length of
≥ 100 tokens, we observe that the benefit of optimizing prefill
phase diminishes for all observed prompt lengths.

Figure 5b shows Minstrel’s prediction for optimizing decode
phase by optd. We observe that applications with short prompt
lengths (< 1500) benefit from optimizing decode phase even
at short decode lengths. On the other hand, applications with
longer prompts the benefit from the optimization at longer
decode lengths (≥ 100 tokens).

Figure 5c plots the max_speedup from Equation 7 for
prompt and decode lengths in Figures 5a and b. We observe

that Figure 5c first demonstrates a diminishing speedup trend
corresponding to the speedup obtained from prefill optimiza-
tion in Figure 5a, followed by a flattened trend corresponding
to the speedup obtained from decode optimization in Fig-
ure 5b. We observe that all workloads, irrespective of prompt
sizes, demonstrate similar trends of benefiting from prefill
optimization for short decode lengths. Prefill optimization,
although resulting in diminishing speedup with increase in
decode length, remains the dominating optimization till a
certain decode length (≤ 100 in Figure 5c). For longer decode
lengths (> 100 in Figure 5c), we observe that the applications
benefit more from decode optimizations.

Finally, Figures 5d-h summarize the max_speedup pre-
diction trends for all 5 models evaluated, Gemma, Phi, Qwen,
Llama3B, and Llama1B respectively (Figures 5c and h are
identical). We observe that all models in Figures 5d-h demon-
strate similar behavior, with a diminishing trend of benefits
from prefill optimization for small decode lengths followed by
a decode dominated range of decode lengths. Thus, depending
on model, prompt, and decode lengths, an application would
be better suited for optimization to different phases.

Figure 6 generalizes the trends in Figure 5 of optimizing
just prefill or decode phases, shown in blue and yellow
respectively. The X-axis denotes decode length ld, and Y-
axis denotes speedup observed over baseline. In general, the
application-space with different prompt and decode lengths
can be divided into two zones: a prefill dominated P-Zone,
and a D-Zone where, primarily, optimization to decode phase
impacts speedup. Determining the zone can be crucial to
identify the dominating phase for optimization and enable
systematic optimization efforts. By identifying these zones,
Minstrel is the first step in capturing impact of application
characteristics on SLM inference optimization on the edge.

C. Discussion

Minstrel’s linear model would not capture the quadratic
scaling of attention computation for very large prompt lengths.
However, for SLM inference use-cases covered by litera-
ture [20], [57], the sequence lengths are not very long. Thus
for the purposes of predicting SLM inference latency, Minstrel
provides reasonably good accuracy. Further, prior work has
also noted similar linear increase in LLM inference latency
with increase in prompt lengths [37].
The Minstrel model is limited to capture the impact of change
to transformer blocks as an optimization factor. It may not
be able to capture optimizations that are outside of the trans-
former blocks, such as the performance impact of speculative
decoding [6], [23] with draft networks which can improve
decode throughput. In such a case, however, Minstrel can still
be used to provide upper and lower bounds for the benefits of
speculation.
Energy is a significant factor for edge inference. Currently,
Minstrel does not provide any insights into energy consumed
by different configurations. For our future work, we plan
to augment Minstrel to predict energy consumption of SLM
inference.

5

VI. CONCLUSION AND FUTURE WORK

In this work, we present Minstrel, a framework to determine
application-aware predictions of inference latency and the im-
pact of optimizations. Minstrel introduces a hybrid empirical
and analytical performance model for SLM inference on edge
devices. Minstrel shows that for certain applications, naive
acceleration of prefill phase has no impact on performance,
and optimizing decode phase would be more valuable. Using
Minstrel, we observe that the application space can be divided
into P-Zone and D-Zone indicating prefill and decode dom-
inated regions respectively and allow targeted optimization
efforts for improving inference latency. Minstrel currently
captures empirical hardware characteristics of a desktop and an
NVIDIA Jetson device. In the future, we plan on extending
our characterization to mobile SoCs. We also plan to vali-
date Minstrel with hardware optimizations to improve prefill
and decode phases. We also plan to introduce an energy-
performance-offload tradeoff with Minstrel and increasing the
solution space.

REFERENCES

[1] M. Abdin, J. Aneja, H. Awadalla, A. Awadallah, A. A. Awan, N. Bach,
A. Bahree, A. Bakhtiari, J. Bao, H. Behl et al., “Phi-3 technical report:
A highly capable language model locally on your phone,” arXiv preprint
arXiv:2404.14219, 2024.

[2] M. Adnan, A. Arunkumar, G. Jain, P. J. Nair, I. Soloveychik, and P. Ka-
math, “Keyformer: KV Cache reduction through key tokens selection
for Efficient Generative Inference.”

[3] Alibaba, “Qwen/Qwen1.5-1.8B-Chat,” https://huggingface.co/Qwen/
Qwen1.5-1.8B-Chat-GGUF/, [Accessed 29-04-2025].

[4] D. Boiarshinov, J. Guajardo, and G. Lanning, “Providing LLM-generated
Point of Interest Description Based on Gaze Tracking,” 2024.

[5] T. B. Brown, “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[6] T. Cai, Y. Li, Z. Geng, H. Peng, J. D. Lee, D. Chen, and
T. Dao, “Medusa: Simple LLM Inference Acceleration Framework with
Multiple Decoding Heads,” Jan. 2024, arXiv:2401.10774 [cs]. [Online].
Available: http://arxiv.org/abs/2401.10774

[7] Y. Chai, M. Kwen, D. Brooks, and G.-Y. Wei, “FlexQuant:
Elastic Quantization Framework for Locally Hosted LLM on Edge
Devices,” Jan. 2025, arXiv:2501.07139 [cs]. [Online]. Available:
http://arxiv.org/abs/2501.07139

[8] C.-M. Chan, W. Chen, Y. Su, J. Yu, W. Xue, S. Zhang, J. Fu, and Z. Liu,
“Chateval: Towards better llm-based evaluators through multi-agent
debate,” 2023. [Online]. Available: https://arxiv.org/abs/2308.07201

[9] L. Chen, D. Feng, E. Feng, Y. Wang, R. Zhao, Y. Xia, H. Chen, and
P. Xu, “HeteroLLM: Accelerating Large Language Model Inference
on Mobile SoCs with Heterogeneous AI Accelerators,” Computer
Science and Mathematics, preprint, Jan. 2025. [Online]. Available:
https://www.preprints.org/manuscript/202501.0901/v1

[10] T. Dao, “FlashAttention-2: Faster attention with better parallelism and
work partitioning,” in International Conference on Learning Represen-
tations (ICLR), 2024.

[11] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “FlashAttention: Fast
and memory-efficient exact attention with IO-awareness,” in Advances
in Neural Information Processing Systems (NeurIPS), 2022.

[12] N. Dey, G. Gosal, Zhiming, Chen, H. Khachane, W. Marshall,
R. Pathria, M. Tom, and J. Hestness, “Cerebras-gpt: Open compute-
optimal language models trained on the cerebras wafer-scale cluster,”
2023. [Online]. Available: https://arxiv.org/abs/2304.03208

[13] M. Ditty, “Nvidia orin system-on-chip,” in 2022 IEEE Hot Chips 34
Symposium (HCS). IEEE Computer Society, 2022, pp. 1–17.

[14] X. L. Dong, S. Moon, Y. E. Xu, K. Malik, and Z. Yu,
“Towards Next-Generation Intelligent Assistants Leveraging LLM
Techniques,” in Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. Long Beach CA

USA: ACM, Aug. 2023, pp. 5792–5793. [Online]. Available:
https://dl.acm.org/doi/10.1145/3580305.3599572

[15] B. Gao, Z. He, P. Sharma, Q. Kang, D. Jevdjic, J. Deng, X. Yang,
Z. Yu, and P. Zuo, “Cost-efficient large language model serving
for multi-turn conversations with cachedattention,” 2024. [Online].
Available: https://arxiv.org/abs/2403.19708

[16] G. Gerganov, “llama.cpp,” 2025. [Online]. Available: https://github.
com/ggml-org/llama.cpp

[17] Google, “google/gemma-2-2b,” https://huggingface.co/google/gemma-
2-2b, [Accessed 29-04-2025].

[18] Google. (2024) Gemini. Google. [Online]. Available: https://gemini.
google.com/u/1/app

[19] C. Irugalbandara, A. Mahendra, R. Daynauth, T. K. Arachchige, J. Dan-
tanarayana, K. Flautner, L. Tang, Y. Kang, and J. Mars, “Scaling down
to scale up: A cost-benefit analysis of replacing openai’s llm with open
source slms in production,” in 2024 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2024,
pp. 280–291.

[20] C. Irugalbandara, A. Mahendra, R. Daynauth, T. K. Arachchige,
J. Dantanarayana, K. Flautner, L. Tang, Y. Kang, and J. Mars,
“Scaling Down to Scale Up: A Cost-Benefit Analysis of Replacing
OpenAI’s LLM with Open Source SLMs in Production,” Apr. 2024,
arXiv:2312.14972 [cs]. [Online]. Available: http://arxiv.org/abs/2312.
14972

[21] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle,
P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,
J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H.
Yoon, “In-Datacenter Performance Analysis of a Tensor Processing
Unit,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ser. ISCA ’17. New York, NY, USA:
Association for Computing Machinery, Jun. 2017, pp. 1–12. [Online].
Available: https://doi.org/10.1145/3079856.3080246

[22] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient Memory Management
for Large Language Model Serving with PagedAttention,” Sep. 2023,
arXiv:2309.06180 [cs]. [Online]. Available: http://arxiv.org/abs/2309.
06180

[23] Y. Leviathan, M. Kalman, and Y. Matias, “Fast Inference from
Transformers via Speculative Decoding,” May 2023, arXiv:2211.17192
[cs]. [Online]. Available: http://arxiv.org/abs/2211.17192

[24] Z. Li, C. Gebhardt, Y. Inglin, N. Steck, P. Streli, and C. Holz,
“SituationAdapt: Contextual UI Optimization in Mixed Reality with
Situation Awareness via LLM Reasoning,” in Proceedings of the 37th
Annual ACM Symposium on User Interface Software and Technology.
Pittsburgh PA USA: ACM, Oct. 2024, pp. 1–13. [Online]. Available:
https://dl.acm.org/doi/10.1145/3654777.3676470

[25] Z. Liu, C. Zhao, F. Iandola, C. Lai, Y. Tian, I. Fedorov, Y. Xiong,
E. Chang, Y. Shi, R. Krishnamoorthi, L. Lai, and V. Chandra, “Mo-
bileLLM: Optimizing Sub-billion Parameter Language Models for On-
Device Use Cases.”

[26] K. Mei, Z. Li, S. Xu, R. Ye, Y. Ge, and Y. Zhang, “Aios: Llm agent
operating system,” arXiv e-prints, pp. arXiv–2403, 2024.

[27] Meta, “meta-llama/Llama-3.2-1B-Instruct,” https://huggingface.co/meta-
llama/Llama-3.2-1B-Instruct, [Accessed 29-04-2025].

[28] Meta, “meta-llama/Llama-3.2-3B-Instruct,” https://huggingface.co/meta-
llama/Llama-3.2-3B-Instruct, [Accessed 29-04-2025].

[29] Meta, “Llama 3.2: Revolutionizing edge ai and vision with open,
customizable models,” 2024. [Online]. Available: https://ai.meta.com/
blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

[30] Microsoft, “microsoft/phi-2,” https://huggingface.co/microsoft/phi-2,
[Accessed 29-04-2025].

[31] J. Mok, M. Kachuee, S. Dai, S. Ray, T. Taghavi, and S. Yoon,
“LLM-based Frameworks for API Argument Filling in Task-Oriented

6

Conversational Systems,” Jun. 2024, arXiv:2407.12016 [cs]. [Online].
Available: http://arxiv.org/abs/2407.12016

[32] N. Nayak, X. Wu, T. O. Odemuyiwa, M. Pellauer, J. S. Emer, and C. W.
Fletcher, “Fusemax: Leveraging extended einsums to optimize attention
accelerator design,” arXiv preprint arXiv:2406.10491, 2024.

[33] Nvidia, “Geforce rtx 3070 user guide,” https://www.nvidia.com/
content/geforce-gtx/GEFORCE RTX 3070 USER GUIDE v02.pdf,
[Accessed 29-04-2025].

[34] H. Oh, K. Kim, J. Kim, S. Kim, J. Lee, D.-s. Chang, and
J. Seo, “ExeGPT: Constraint-Aware Resource Scheduling for LLM
Inference,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2. La Jolla CA USA: ACM, Apr. 2024, pp. 369–384.
[Online]. Available: https://dl.acm.org/doi/10.1145/3620665.3640383

[35] OpenAI. (2024) Chatgpt. OpenAI. [Online]. Available: https://chat.
openai.com/

[36] C. Packer, S. Wooders, K. Lin, V. Fang, S. G. Patil, I. Stoica, and J. E.
Gonzalez, “Memgpt: Towards llms as operating systems,” arXiv preprint
arXiv:2310.08560, 2023.

[37] P. Patel, E. Choukse, C. Zhang, A. Shah, Í. Goiri, S. Maleki, and
R. Bianchini, “Splitwise: Efficient generative llm inference using phase
splitting,” in 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2024, pp. 118–132.

[38] S. Pati, S. Aga, M. Islam, N. Jayasena, and M. D. Sinclair,
“T3: Transparent Tracking & Triggering for Fine-grained Overlap
of Compute & Collectives,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. La Jolla CA
USA: ACM, Apr. 2024, pp. 1146–1164. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3620665.3640410

[39] D. F. Perez-Ramirez, D. Kostic, and M. Boman, “Castillo: Characterizing
response length distributions of large language models,” 2025. [Online].
Available: https://arxiv.org/abs/2505.16881

[40] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury,
A. Levskaya, J. Heek, K. Xiao, S. Agrawal, and J. Dean, “Efficiently
Scaling Transformer Inference,” Nov. 2022, arXiv:2211.05102 [cs].
[Online]. Available: http://arxiv.org/abs/2211.05102

[41] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang, “Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face,” 2023.

[42] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen,
P. Liang, C. Re, I. Stoica, and C. Zhang, “FlexGen: High-Throughput
Generative Inference of Large Language Models with a Single GPU,”
in Proceedings of the 40th International Conference on Machine
Learning. PMLR, Jul. 2023, pp. 31 094–31 116, iSSN: 2640-3498.
[Online]. Available: https://proceedings.mlr.press/v202/sheng23a.html

[43] Y. Song, Z. Mi, H. Xie, and H. Chen, “PowerInfer: Fast Large
Language Model Serving with a Consumer-grade GPU,” Dec. 2023,
arXiv:2312.12456 [cs]. [Online]. Available: http://arxiv.org/abs/2312.
12456

[44] V. Srivatsa, Z. He, R. Abhyankar, D. Li, and Y. Zhang, “Preble:
Efficient distributed prompt scheduling for llm serving,” arXiv preprint
arXiv:2407.00023, 2024.

[45] Y. Tang, F. Liu, Y. Ni, Y. Tian, Z. Bai, Y.-Q. Hu, S. Liu, S. Jui,
K. Han, and Y. Wang, “Rethinking Optimization and Architecture for
Tiny Language Models,” Feb. 2024, arXiv:2402.02791 [cs]. [Online].
Available: http://arxiv.org/abs/2402.02791

[46] G. Team, “Gemini: A Family of Highly Capable Multimodal
Models,” Dec. 2023, arXiv:2312.11805 [cs]. [Online]. Available:
http://arxiv.org/abs/2312.11805

[47] O. Thawakar, A. Vayani, S. Khan, H. Cholakal, R. M. Anwer,
M. Felsberg, T. Baldwin, E. P. Xing, and F. S. Khan, “MobiLlama:
Towards Accurate and Lightweight Fully Transparent GPT,” Feb. 2024,
arXiv:2402.16840 [cs]. [Online]. Available: http://arxiv.org/abs/2402.
16840

[48] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[49] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[50] H.-R. Tsai, S.-K. Chiu, and B. Wang, “GazeNoter: Co-Piloted AR
Note-Taking via Gaze Selection of LLM Suggestions to Match Users’

Intentions,” Jul. 2024, arXiv:2407.01161 [cs]. [Online]. Available:
http://arxiv.org/abs/2407.01161

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[52] Y. Wei, Z. Wang, Y. Lu, C. Xu, C. Liu, H. Zhao, S. Chen, and Y. Wang,
“Editable scene simulation for autonomous driving via collaborative
llm-agents,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2024.

[53] H. Wen, Y. Li, G. Liu, S. Zhao, T. Yu, T. J.-J. Li, S. Jiang, Y. Liu,
Y. Zhang, and Y. Liu, “AutoDroid: LLM-powered Task Automation in
Android,” in Proceedings of the 30th Annual International Conference
on Mobile Computing and Networking, ser. ACM MobiCom ’24. New
York, NY, USA: Association for Computing Machinery, May 2024, pp.
543–557. [Online]. Available: https://doi.org/10.1145/3636534.3649379

[54] Q. Wu, G. Bansal, J. Zhang, Y. Wu, S. Zhang, E. Zhu, B. Li,
L. Jiang, X. Zhang, and C. Wang, “Autogen: Enabling next-gen llm
applications via multi-agent conversation framework,” arXiv preprint
arXiv:2308.08155, 2023.

[55] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han,
“SmoothQuant: Accurate and Efficient Post-Training Quantization for
Large Language Models,” in Proceedings of the 40th International
Conference on Machine Learning. PMLR, Jul. 2023, pp. 38 087–
38 099, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.
press/v202/xiao23c.html

[56] G. Xiao, J. Tang, J. Zuo, J. Guo, S. Yang, H. Tang, Y. Fu,
and S. Han, “Duoattention: Efficient long-context llm inference
with retrieval and streaming heads,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.10819

[57] D. Xu, H. Zhang, L. Yang, R. Liu, G. Huang, M. Xu, and X. Liu, “Fast
On-device LLM Inference with NPUs,” Dec. 2024, arXiv:2407.05858
[cs]. [Online]. Available: http://arxiv.org/abs/2407.05858

[58] J. Xu, Z. Li, W. Chen, Q. Wang, X. Gao, Q. Cai, and Z. Ling,
“On-Device Language Models: A Comprehensive Review,” Sep. 2024,
arXiv:2409.00088 [cs]. [Online]. Available: http://arxiv.org/abs/2409.
00088

[59] S. Xu, Y. Wei, P. Zheng, J. Zhang, and C. Yu, “LLM enabled
generative collaborative design in a mixed reality environment,”
Journal of Manufacturing Systems, vol. 74, pp. 703–715, Jun. 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0278612524000967

[60] Z. Xue, Y. Song, Z. Mi, L. Chen, Y. Xia, and H. Chen, “PowerInfer-2:
Fast Large Language Model Inference on a Smartphone,” Jun. 2024,
arXiv:2406.06282 [cs]. [Online]. Available: http://arxiv.org/abs/2406.
06282

[61] Y. Yao, H. Jin, A. D. Shah, S. Han, Z. Hu, Y. Ran, D. Stripelis,
Z. Xu, S. Avestimehr, and C. He, “ScaleLLM: A Resource-Frugal
LLM Serving Framework by Optimizing End-to-End Efficiency,” Sep.
2024, arXiv:2408.00008 [cs]. [Online]. Available: http://arxiv.org/abs/
2408.00008

[62] W. Yin, M. Xu, Y. Li, and X. Liu, “LLM as a System Service on
Mobile Devices,” Mar. 2024, arXiv:2403.11805. [Online]. Available:
http://arxiv.org/abs/2403.11805

[63] W. Yin, R. Yi, D. Xu, G. Huang, M. Xu, and X. Liu, “ELMS:
Elasticized Large Language Models On Mobile Devices,” Sep. 2024,
arXiv:2409.09071 [cs]. [Online]. Available: http://arxiv.org/abs/2409.
09071

[64] R. Yousri, Z. Essam, Y. Kareem, Y. Sherief, S. Gamil, and
S. Safwat, “IllusionX: An LLM-powered mixed reality personal
companion,” Feb. 2024, arXiv:2402.07924 [cs]. [Online]. Available:
http://arxiv.org/abs/2402.07924

[65] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun,
“Orca: A Distributed Serving System for {Transformer-Based}
Generative Models,” 2022, pp. 521–538. [Online]. Available: https:
//www.usenix.org/conference/osdi22/presentation/yu

[66] Z. Yuan, Y. Shang, Y. Zhou, Z. Dong, C. Xue, B. Wu, Z. Li,
Q. Gu, Y. J. Lee, Y. Yan, B. Chen, G. Sun, and K. Keutzer,
“LLM Inference Unveiled: Survey and Roofline Model Insights,”
Feb. 2024, arXiv:2402.16363 null version: 1. [Online]. Available:
http://arxiv.org/abs/2402.16363

[67] H. Zhang, A. Ning, R. B. Prabhakar, and D. Wentzlaff, “Llmcompass:
Enabling efficient hardware design for large language model inference,”
in 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA), 2024, pp. 1080–1096.

7

[68] P. Zhang, G. Zeng, T. Wang, and W. Lu, “TinyLlama: An Open-Source
Small Language Model,” Jan. 2024, arXiv:2401.02385 [cs]. [Online].
Available: http://arxiv.org/abs/2401.02385

[69] X. Zhao, B. Jia, H. Zhou, Z. Liu, S. Cheng, and Y. You, “HeteGen:
Heterogeneous Parallel Inference for Large Language Models on
Resource-Constrained Devices,” Mar. 2024, arXiv:2403.01164 [cs].
[Online]. Available: http://arxiv.org/abs/2403.01164

[70] Z. Zhao, S. Lou, R. Tan, and C. Lv, “An AR-assisted Human-Robot
Interaction System for Improving LLM-based Robot Control,” in 2024
IEEE International Conference on Cybernetics and Intelligent Systems
(CIS) and IEEE International Conference on Robotics, Automation
and Mechatronics (RAM). Hangzhou, China: IEEE, Aug. 2024,
pp. 144–149. [Online]. Available: https://ieeexplore.ieee.org/document/
10673005/

8

