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Abstract

Inspired by the impressive reasoning capabilities demonstrated by reinforcement
learning approaches like DeepSeek-R1, recent emerging research has begun ex-
ploring the use of reinforcement learning (RL) to enhance vision-language models
(VLMs) for multimodal reasoning tasks. However, most existing multimodal
reinforcement learning approaches remain limited to spatial reasoning within
single-image contexts, yet still struggle to generalize to more complex and real-
world scenarios involving multi-image positional reasoning, where understanding
the relationships across images is crucial. To address this challenge, we propose a
general reinforcement learning approach PeRL tailored for interleaved multimodal
tasks, and a multi-stage strategy designed to enhance the exploration-exploitation
trade-off, thereby improving learning efficiency and task performance. Specifi-
cally, we introduce permutation of image sequences to simulate varied positional
relationships to explore more spatial and positional diversity. Furthermore, we
design a rollout filtering mechanism for resampling to focus on trajectories that
contribute most to learning optimal behaviors to exploit learned policies effectively.
We evaluate our model on 5 widely-used multi-image benchmarks and 3 single-
image benchmarks. Our experiments confirm that PeRL trained model consistently
surpasses R1-related and interleaved VLM baselines by a large margin, achiev-
ing state-of-the-art performance on multi-image benchmarks, while preserving
comparable performance on single-image tasks.

1 Introduction

Real-world applications often require the ability to understand and reason over multiple images—a
capability that humans naturally possess. In response, several multi-image benchmarks (e.g., [14, 19,
35, 46]) have been introduced to support the study of such comprehensive and practically relevant
tasks within the research community. Specifically, multi-image multimodal benchmarks span a wide
range of tasks involving diverse multimodal relationships, including: 1) Low-level visual features,
such as comparing illumination, color saturation, or texture; 2) High-level semantic relationships,
such as emotional associations or conceptual similarities between objects; 3) Temporal reasoning,
involving the understanding of event sequences or changes over time; 4) 2D/3D spatial relationships,
including rotation, symmetry, and variations in camera viewpoints. Furthermore, the interleaved
format of images and text, as introduced in works like [3], provides a unified and flexible template that
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Figure 1: Compare PeRL against baseline approaches, including instruction-tuned or R1-like rein-
forcement learning models, across both in-domain and out-of-domain multi-image benchmarks.

supports both single-image and multi-image scenarios. This format allows for arbitrary arrangements
of textual and visual inputs, enabling dynamic and context-aware interactions that more closely
resemble real-world reasoning tasks.

Despite the impressive progress of vision-language models (VLMs) on single-image tasks, their abil-
ity [16, 53, 54, 5] to understand and reason over multiple images remains significantly underexplored.
Motivated by this gap, recent works such as [19, 22, 24] have constructed multi-image instruction-
tuning datasets to further post-train general-purpose VLMs for multi-image tasks. In parallel, models
like Flamingo [3], LLaVA-Interleave [22], Migician [24] and Mantis-Idefics [19] have been trained
on interleaved image-text data to enhance their multi-image understanding capabilities. However,
despite these efforts, interleaved VLMs still struggle with reasoning across images, as highlighted
in [45]. Their limitations become especially apparent in tasks that require positional alignment,
temporal sequencing, or holistic cross-image understanding. Meanwhile, reinforcement learning (RL)
has recently emerged as a promising direction for enhancing multimodal reasoning in VLMs [34],
showing encouraging results on single-image tasks. Nonetheless, these RL-augmented models also
fall short when applied to more complex multi-image scenarios, particularly those demanding deep
reasoning across spatial and semantic contexts.

Concretely, multi-image scenarios introduce challenges in both spatial reasoning—understanding
object relationships within a single image—and positional reasoning—understanding relationships
across multiple images. As illustrated in Fig. 2, simply altering the order of input images can lead
to incorrect predictions from both general-purpose and instruction-tuned vision-language models.
For instance, the general model Qwen-2.5-VL-7B [7] fails to distinguish the visual attributes of
each image independently, incorrectly referencing “bright yellow and blue hues” for both images.
Meanwhile, the instruction-tuned model Migician [24] correctly identifies the “red and green pattern”
but misattributes it to the wrong image, indicating a failure in positional alignment. These examples
highlight the limitations of current VLMs in maintaining consistent and grounded reasoning across
interleaved multi-image inputs.

To address these challenges, we explore interleaved multimodal reasoning through reinforcement
learning and design a simple yet effective strategy to mitigate positional bias. Specifically, we develop
a multi-stage data processing pipeline that generates diverse training samples by permuting the
order of input images. Since such permutations may alter the semantic alignment between text and
images, we correspondingly rephrase the textual input to maintain semantic consistency. However,
we observe a significant imbalance in the difficulty levels of the resulting training samples leading to
inefficient reinforcement learning. To mitigate this, we introduce a rollout filtering mechanism which
helps stabilize training and improve learning efficiency. This approach allows our proposed model,



Qwen-PeRL, to focus on informative trajectories and better generalize across complex multi-image
reasoning tasks.

‘We summarize our main contributions as follows:

* We propose PeRL, a simple yet effective strategy that permutes image orders and rephrases
text to address multi-image coreference, while a rollout filtering mechanism improves
training efficiency by focusing on informative samples.

» As shown in Fig. 1, extensive experiments on both in-domain and out-of-domain benchmarks
demonstrate that our method achieves state-of-the-art performance on multi-image tasks
and competitive results on single-image tasks.

2 Related Works

2.1 Multimodal Reasoning

Early efforts in multimodal reasoning [36, 56, 25, 41, 4, 26] mainly focus on supervised fine-tuning
(SFT) especially the dataset construction with chain-of-thought (CoT) [28, 27, 61] reasoning steps.
Recently, Deepseek-R1-Zero [15] demonstrates remarkable reasoning capabilities, spearheading
large-scale reinforcement learning (RL) research in LLM. While VLMs also require substantial
reasoning capabilities for vision-and-language tasks, recent investigations employ reinforcement
learning to multimodal reasoning and present early progress including URSA [33], Visual-RFT [31],
LMM-R1 [37], VLM-R1 [39], Reason-RFT [43], MM-EUREKA [34], R1-OneVision [55], Vision-
R1 [17], R1-V [8], R1-VL [58], VL-Rethinker [47], VisualThinker-R1-Zero [62], OpenVLThinker
[12] and Perception-R1 [57]. Most of these works adopt GRPO [38] for RL scaling through data
construction [43, 17, 34, 62] or mixture [37], multi-stage training strategy [37, 12, 17, 34] or
perception-wise [31, 57, 39] or step-wise [58] reward design . Distinct from these approaches,
VL-Rethinker [47] strategically select high-value samples to avoid vanishing advantages, while
NoisyRollout [30] introduces moderately distorted images as diverse samples for broad exploration
to address the challenge of imperfect visual perception.

2.2 Interleaved VLM

With the significant advancement in single-image tasks, vision-language models (VLMs) [1, 44,
2,10, 52,7, 52, 23, 11, 18] have emerged, pretraining on interleaved image-text datasets [48] to
address more comprehensive multi-image tasks in real-world scenarios. Building on this, [23, 19, 24]
further construct interleaved multi-image-text data to post-train VLMs with instruction tuning. These
approaches either exploit learnable cross-attention modules with a Perceiver Resampler [3, 6, 21],
or utilize a linear projection layer [22, 42] to integrate pretrained language models with visual
encoders. Nonetheless, multi-image tasks still face further challenges beyond the perception problem
in single-image tasks, including complex spatial and positional/temporal reasoning. To address the
bias, [45] proposes SoFt Attention (SoFA), a simple, training-free method to mitigate the position
bias of VLMs when processing multiple images. Differently, we propose to scale the interleaved
VLM with reinforcement learning to incentive general multimodal reasoning capability and further
design a comprehensive rollout strategy for coreference resolution.

3 Problem Formuation and Analysis

The multimodal understanding task is defined as predicting an output answer given a text query
interleaved with images. Formally, an input instance is represented as x = (I, (), where @ denotes
the textual query and I = {i, }?:1 is the associated set of images. The corresponding output is
denoted by y, yielding a dataset D = {(z;,v;)}2Y,. In practice, we interleave text tokens with image
representations using a special placeholder token <image> to indicate the presence and position of an
image within the input sequence.



Question: Which image is more similar to the reference image
image 1>? Options: A. <image 2> B. <image 3>

‘5 Qwen-2.5-VL-7B: Both images feature insects with bright,
contrasting colors and are perched on leaves, which aligns with the

q reference image's setting. However, Image A has a more similar

color scheme and overall composition compared to the reference
image.

@ Migician: Both images show insects with vibrant colors, but the
reference image has a yellow and black pattern on the body, while
the other images have different color patterns. Image A has a blue
and yellow pattern, and Image B has red and green patterns.
Therefore, Image A is more similar to the reference image.

@ 04-mini-high: The reference insect (bright yellow with a black
dorsal stripe) is most closely matched in overall body shape and
posture by image 2. So the more similar one is A. <image 2>.

@ Ours: <think>The reference image shows a insect ... Option A
shows an insect with bright yellow wings, blue body, and orange
legs. The insect is perched on a brown branch. Option B shows an
insect with red wings ... Given these observations, the image that is
most similar to the reference image is Option A because it shares the
¥ same bright yellow wings and orange legs, although it lacks the
black stripes and has a different background.</think>\boxed {A }

Question: Which image is more similar to the reference image
image 1>? Options: A. <image 3> B. <image 2>

}; Qwen-2.5-VL-7B: Both images feature insects with vibrant
colors and patterns, particularly bright yellow and blue hues,
which are present in both A and B. However, the overall color
scheme and the specific details of the insect's body and wings are
more closely aligned with option A compared to option B.

@ Migician: Both images show insects with vibrant colors, but
the reference image has a yellow and black pattern on the body,.
The reference image also has a more detailed viewwhile the other
image has a red and green pattern of the insect's legs and antennae.
Therefore, the reference image is more similar to the first image.

@M—mini-high: The insect in image 3 shares the same elon-
gated, two-toned body pattern and overall shape as the referen-ce
(image 1), whereas image 2 has a very different, more compact
form and color scheme. So the more similar one is A. <image 3>.

@ Ours: <think>The reference image shows a insect ... Option
A shows an insect with red and blue coloration, standing on a
green leaf. The insect has a different color scheme compared to
the reference image ... Option B shows an insect ... Considering
the color scheme and the background, Option B is more similar ...
</think>\boxed {B}

Figure 2: A showcase highlighting the challenges faced by existing VLMs: 1) Fail to recognize or
reason across multiple images; 2) VLMs exhibit positional bias, leading to inconsistent answers when
the order of images is permuted even though the semantic of the input keeps the same.

3.1 Positional Bias

One of the critical challenges in multi-image multimodal reasoning is positional coreference, which
requires accurately identifying the specific image that corresponds to a given textual reference.
However, as highlighted in [45], existing vision-language models (VLMs) still suffer from significant
performance degradation when the order of input images is altered. As illustrated in Fig. 2, we
summarize the major limitations of current VLMs in handling multi-image tasks. Motivated by
these observations, we propose a simple yet effective strategy that diversifies image inputs through
permutation, while simultaneously modifying the associated text to preserve semantic invariance. This
approach encourages the model to develop a more robust understanding of positional relationships
across images, thereby improving generalization in complex multimodal reasoning scenarios.

3.2 Difficulty Imbalance

Mantis-Instruct [19] is the first multi-image instruction-tuning data, comprising 721K data. Therefore,
we start with the Mantis-Instruct dataset as our training data. Before training, we firstly exploit the
Qwen-2.5-VL [7] model to generate several outputs and calculate the average accuracy among these
generations as the difficulty score of each sample for statistical analysis. Fig. 3b represents the
difficulty distribution. We find that the distribution is extremely imbalanced, leading to inefficient and
unstable reinforcement learning. Inspired by this finding, we further resample the data for a balanced
difficulty distribution. In the following section, we discuss the pipeline to process the data according
to the two observations.

3.3 Data Prepocessing

We develop a multi-stage data processing pipeline that systematically filters and reformulates QA
pairs from the original training corpus Mantis-Instruct [19] to construct a higher-quality training
subset, as illustrated in Fig. 3a.

Initially, we apply a rule-based filter to the original dataset, screening entries based on question
types, image quantity, and other relevant attributes. Then we employ GPT-40 [1] to perform format
rephrasing on open-ended questions that are challenging to verify through rule-based methods. In
the next phase, we implement a rollout filtering mechanism using Qwen2.5-VL-7B [7]. For each
question, we perform rollout 10 times and calculate the average accuracy of the responses. Questions
are then filtered based on their accuracy score, resulting in a refined distribution as shown in Fig. 3b.

To evaluate the semantic sensitivity of questions to image order, we introduce a semantic variation
analysis step using GPT-4o. Specifically, as illustrated in Fig. 3a, given an input—output pair (z, y),
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Figure 3: Overview of Data Preprocessing and Difficulty Distribution. (a) The multi-stage pipeline
applies (i) rule-based filtering, (ii) format rephrasing, (iii) rollout-based filtering and (iv) semantic
variation checking to curate QA pairs. (b) KDEs of the average score S before (blue) and after
(orange) rollout-based difficulty filtering, with the mean falling from 0.78 to 0.38.

we apply a random permutation o to reorder the image set, resulting in a new input & = (f ,Q)
with [ = {is(j)}- GPT-40 is then prompted to assess whether the permuted input Z preserves the
semantics of the original input z, i.e., whether the intended answer should remain unchanged. The
corresponding output g is defined as:

Q:S(x,:%)y—i-(l—S(a:,:%))A(y,a) (D

Here, S(z,4) € {0,1} is a semantic equivalence indicator obtained by prompting GPT-40, where
S = 1 denotes the input semantics are preserved under permutation. The function A(y, o) denotes
the transformation applied to the answer when semantic equivalence does not hold. It adapts y to the
permuted context according to the structure of the answer space Y, such as reindexing visual choices.

This framework facilitates controlled perturbation of the visual input via image sequence permuta-
tions, aiming to simulate diverse spatial and temporal configurations and thereby encourage richer
generalization and reasoning capabilities.

4 Methods

The goal of multimodal model is to train a policy model 7y (y|x) parameterized by € to optimize the
correctness of model response o. In this paper, we exploit reinforcement learning (RL) framework
specifically GRPO to learn to improve the multimodal reasoning as presented in Fig.4. Firstly, the
policy model 7y (y|x) takes the input x to generate a group of responses {o; }. Next, the reward model
calculates the score r(x, 0;,y) for each response o;, which adopts rule-based functions to evaluate
the accuracy and format correctness. Furthermore, the group computation module estimates the
advantage A; for each response o; to update the policy model.

Specifically, we propose a plug-and-play module to improve the efficient and effective training
through diversified advantage estimation and dynamic resampling. 1) Before exploration, we resample
rollouts with variable reward distribution to exploit learned policies effectively. This ensures the
learning focuses on trajectories that contribute most to learning optimal behaviors across both spatial
and positional dimensions.2) To mitigate positional bias in interleaved multi-image reasoning, we
introduce diversity in the rollout phase: for Single-image,we keep the original format. for multi-image
positional diversity, use permutations of image sequences to simulate varied positional relationships.

4.1 GroupRelative Policy Optimization

GRPO [38] estimates the advantage score based on the reward normalization of a group of responses
given a specific query. Particularly, the advantage score A; and the corresponding loss are defined as:

r(z,00y) = i LI, r(@,05,y)
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where |o| is the group size, o; is the iy, response given the input x. 7,4 is the old policy model to
generate the response o, and 7 is the current policy model to optimize. 7(x, 0;,y) is the rule-based
reward function to calculate the accuracy and format correctness of the response o;.

4.2 Permutation GRPO

Let (z1,y;) denote the original input sample, where z; consists of a query and one or more
images, and y; is the corresponding answer. We augment it in to a group of samples
{(z2,vy2), (3,Y3)..(Tn.+1, Yn.+1)}. For multi-image input, we augment it by swapping images in
x randomly and modify the the answer y correspondingly. To ensure training stability, we introduce a
linearly decaying factor o (scheduled over training steps t) that controls the probability of applying
image swapping per training batch. In the rollout progress, we input the diversified samples to the
policy model to generate response o; and the reward model for further reward calculation. After that,
we merge all ns + 1 groups of responses together to calculate the baseline, final advantage and loss
function as:

ns+1 ‘07,‘
R = Zn +1 ] Z Z (%, 04, k7yz) (4)
Z =1 k=1
T'(Z'z,Ol kayz) - R (5)
Ns 1 i D
\/ ns+1 ol z_1+ Lozll(r(f%()i,k,yi) - R)2
(eagil CTED) mo(0is | 1)
L) = —— ST min ( A g, clip( b L2y 1+e)Ai,k>
Do | ol \ = o Told (04 | T:) Told (0 k | )
— BDxkr, (7o || Trer) )
(6)



where o0; ;; denote the &y, response for input x;, and A; j represent the advantage of this rollout. In

our experiments, we set the number of responses per order |o;| to a same value, i.e. |o1| = |o2] =
ns+1

-+ = |0n 41| = n. Thus the actual group size is Y ;> |o;].

Note that unlike NoisyRollout [30], which performs policy update solely conditioned on the original
images, we calculate policy loss of each rollout group o; based on augmented inputs x;, as shown
in Equation 6. This is because the answer is also updated after permutation, continuing to use the
original prompt as a condition is improper and might lead to model collapse.

Algorithm 1 PeRL: Permutation-Enhanced Reinforcement Learning

Input: Current policy g, old policy 7y, ,, dataset D, training steps Tiax, clip parameter e, initial
decay factor vy, linear decay scheduler 7(-), permutation operation P(-), permutation number 7,
rollout number per order n
for t = 1to T, do
Sample batch (x1,y1) ~ D, B = {(x1,y1)}
Set decay factor oy = n(a, t, Trax)
fori =2ton, + 1do
Generate randomly swapped images and modify answers correspondingly, (x;,yi) =
P((x1,y1), )
B+ BU (Xi7 yi)
end for
for each sample (x;,y;) in B do
Generate responses {0; ;. }/_, from my(o | x;)
end for ~
Compute baseline R according to Eq.4
Compute advantages A; according to Eq.5
Update policy according to Eq.6
0« 6— Vgﬁ(e), 001[1 «— 0
end for

S Experiment

Training Our training data comprise two parts: 22K multi-image instruction examples curated
from the 721K examples in Mantis-Instruct [19], and 36K single-image examples from the K12
dataset for RL. We initialize our policy with Qwen2.5-VL-7B-Instruct [7] and build on the veRL
framework [40]. During RL fine-tuning, we apply one random permutation per sample (ng = 1) and
generate six responses per order (n = 6), yielding 12 rollouts per input. We set the KL coefficient
B = 0.01, train for 2 epochs with a learning rate of 1 x 10~% and a batch size of 256. Further details
are provided in the appendix.

Benchmarks We conduct experiments on both multi-image benchmarks and single-image bench-
marks. As the main experiment, we employ Mantis-Eval [19], BLINK [14], MMIU [35] as multi-
image benchmarks. Furthermore, we evaluate the generalization on widely used single-image
benchmarks including MathVista [32], MathVerse [60] and MathVision [49]. Besides, we also
evaluate our model on out-of-domain multi-image benchmarks including Remi [20] and MV-Math
[50]. We directly employ the VLMEvalKit [13] to evaluate the performance.

5.1 Main Results

Baselines The compared models adopt different training strategies. LLaVA-v1.5-7B [29], LLaVA-
NeXT-Interleave [23], LLaVA-OneVision [22], Qwen2-VL-7B [51], Qwen2.5-VL-7B [7], Deepseek-
VL-7B [52], InternVL2 [11], and InternVL2.5 [9] are instruction-tuned base models. Migician-
630K [24] is further fine-tuned on MGrounding-630K to enhance multi-image grounding. Models
like LLaVA-OneVision-+VISC-150K [59] and Qwen2-VL-7B-VISC-150K [47] are fine-tuned on
synthetic VISC-150K dataset, which explicitly encodes inter-image relations.



Table 1: Model performance across VQA and math reasoning benchmarks. Among Instruct- and
RL-tuning models, bold numbers denote the best value in each column, and underlined numbers
are the second-best. Task categories:

,
, and . The last column (AVG) is the mean of all eight metrics

for rows with complete scores. Models marked with * are evaluated via vLLM inference.
Model Size Mantis-Eval BLINK MMIU MathVista MathVerse MathVision Remi MV-MATH AVG
Human - - 95.67 - 60.30 64.90 68.82 95.80 76.50 -
Random - - 3810 27.40 17.90 12.40 7.17 - - -
GPT-40 - 68.00 68.00 5570 63.80 37.60 30.60 59.96 32.10 -
Multimodal General Models
VILA-1.5 8B 51.15 3930 3245 65.40 = = = = -
Mantis-Idefics2 8B 57.14 49.05  45.60 40.40 15.05 12.40 - 550 -
LLaVA-v1.5-7B 7B 31.34 3713 19.20 24.20 14.82 11.74 - 15.50 -
LLaVA-NeXT-Interleave 7B - 51.30 32.40 34.00 17.99 13.81 - 14.70 -
LLaVA-OneVision 7B 64.20 4820 4032 63.20 2620 18.30 13.69 18.80 36.61
LLaVA-OneVision-VISC-150K 7B 66.36 5024 4652 - - - - - -
Migician-630K 7B 69.12 5153 5232 58.90 30.10 19.60 8.73 14.88 38.15
InternVL2 8B 65.40 5090  42.00 58.30 37.00 17.40 25.85 - -
InternVL2.5 8B 67.00 5480  46.70 64.40 39.50 19.70 30.92 16.84 4248
Deepseek-VL-7B 7B = 4090  24.64 37.20 18.42 13.82 = 14.50 -
Qwen2-VL-7B 7B 69.60 5320 5276 58.20 32.50 1630 28.62 14.53 4071
Qwen2.5-VL-7B 7B 70.80 5523 52.00 68.20 46.30 25.07 36.38 20.41 47.90
Multimodal Reasoning Models
R1-VL-7B-260K" 7B 64.81 55.00 4658 63.50 40.00 24.70 2431 18.77 42.62
Qwen2-VL-7B-VISC-150K" 7B 69.12 5534 5276 58.50 = = = = -
R1-Onevision-7B" 7B 7176 3238 4648 64.10 46.40 29.90 36.96 19.06 4338
MM-Eureka" 7B 69.91 5149 5167 73.00 50.30 2690 4331 2439 49.49
Noisy-K12" 7B 73.15 5423 5213 72.90 52,80 2890 4127 2499  50.05
Qwen-PeRL (Ours)" 7B 76.39 5853 5423 73.00 49.56 2826 4338 25.68 51.13
A over the Baseline Model - +5.59 4330 +2.23 +4.80 +3.26 4319 4700 4527 +3.23

R1-VL-7B-260K [58] and R1-OneVision-7B [55] are trained on 260K and 155K supervised samples
before RL. MM-Eureka [34] and Noisy-K12 [30] are trained only with RL on K12 single-image math
data. Our method follows the same RL-only setting, but focuses on multi-image scenario.

SOTA Results As shown in Table 1, PeRL demonstrates exceptional performance across diverse
benchmarks, achieving state-of-the-art results on multimodal natural scene understanding while
maintaining competitive performance on mathematical reasoning tasks.

Our model achieves superior results with 76.39 on Mantis-Eval and 58.53 on BLINK, substantially
outperforming previous best models. This achievement is particularly significant considering our ap-
proach utilizes substantially less training data compared to traditional supervised fine-tuning methods.
On single-image mathematical reasoning tasks, PeRL demonstrates competitive performance with
scores of 73.00 on MathVista and 49.56 on MathVerse, comparable to specialized state-of-the-art
models MM-Eureka and Noisy-K12.

Most notably, our model exhibits robust generalization on multi-image mathematical reasoning
tasks despite these benchmarks being out-of-distribution relative to our training paradigm. This
generalization capability is particularly valuable as our model was only trained on single-image
mathematical reasoning and multi-image natural scene understanding datasets.

The comprehensive evaluation across 8 metrics yields an average score of 51.13, highlighting the
effectiveness of our proposed training framework tailored specifically for interleaved multimodal
tasks.

5.2 Ablation Study

Permutation vs. Naive GRPO We investigate the effect of diversified permutation on training
dynamics and generalization. As shown in Fig. 5a, Permutation GRPO gradually surpasses naive
GRPO with more stable training. This is because the permutation disrupts fixed visual token positions,
exposing the model to harder cases initially, but enabling it to overcome positional bias through
adaptation. To further clarify the principle behind our method, we include a concise theoretical
justification. Detailed derivations and formal proofs are provided in Appendix.
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Figure 5: Permutation GRPO achieves more consistent training behavior.

Table 2: Permutation Ablation: ng is the number of permuted samples per original input. The total
number of rollouts per input 12 is held constant. n; = 0 indicates no permutation applied, while
ng = 2 indicates two permuted samples per input.

Permutation Mantis-Eval BLINK MMIU MathVista MathVerse MathVision Remi MYV-MATH

ns =0 75.93 56.91 52.26 71.8 49.20 26.51 39.62 24.02
ns =1 76.39 58.53 54.23 73.0 49.56 28.26 41.65 25.68
ns =2 77.78 59.50 54.55 722 50.38 27.89 39.04 24.54
ns =3 74.07 57.02 52.17 70.9 46.39 27.00 38.62 23.25

Table 3: Single v.s. Multiple Image Disentanglement Ablation

Data Setting Benchmark
Multi-image ~ Single-image | Mantis-Eval BLINK MMIU MathVista MathVerse MathVision Remi MV-MATH
X X 70.80 55.23 52.00 68.20 46.30 25.07 36.38 20.41
v X 74.54 57.84 53.70 68.5 46.1 26.60 39.12 20.58
X v 69.23 53.24 51.67 71.9 514 27.20 41.67 24.26
v v 76.39 58.53 54.23 73.0 49.56 28.26 41.65 25.68

To evaluate the impact on output diversity, we compute the average intra-batch cosine similarity of
rollout embeddings using the BGE-Large model®. As shown in Fig. 5b, Permutation GRPO maintains
higher diversity throughout training. Given the same prompt, the policy sees varied visual token
orders, which encourages learning order-invariant representations and improves robustness.

Permutation intensity We investigate the effect of the number of augmented permutations 7.
As shown in Table 2, increasing ns from 0 (i.e., the naive GRPO baseline without permutation) to
2 improves performance on most benchmarks. For instance, Mantis-Eval increases from 75.93 to
77.78, and BLINK from 56.91 to 59.50, indicating that exposure to varied input orders promotes
positional invariance. The improvements are particularly notable on multi-image tasks with complex
spatial structures, such as BLINK and MathVerse. However, ns = 2 yields marginal degradation on
reasoning-centric benchmarks (e.g., MathVista and Remi) and incurs additional training cost due
to reduced key-value cache reuse. These findings suggest a trade-off: permutation augmentation
enhances spatial generalization but may impair reasoning performance and training efficiency.

Single vs. Multi-Image Table 3 shows the impact of single-image and multi-image training
data. Training exclusively on single-image datasets leads to limited generalization on multi-image
benchmarks (e.g., significant drops on Mantis-Eval and BLINK), while training solely on multi-
image data similarly reduces effectiveness on single-image reasoning benchmarks (e.g., MathVista).
Interestingly, even without explicitly training on multi-image math reasoning data, performance
improves on out-of-distribution benchmarks (Remi and MV-MATH), highlighting the model’s implicit
learning of both inter-image relationships and reasoning capabilities. Moreover, MathVision benefits
from multi-image training, likely due to its composite nature of multiple concatenated math reasoning
images, which aligns closely with learned multi-image reasoning patterns.

*https://huggingface.co/BAAI/bge-large-en-vi.5


https://huggingface.co/BAAI/bge-large-en-v1.5

6 Conclusion

In this paper, we investigate the multimodal reasoning capabilities of VLMs on general interleaved
multi-image tasks. To address the challenges posed by spatial and positional reasoning, we introduce a
multi-stage strategy that diversifies image order and resamples the training data distribution, enabling
more effective and efficient learning. Experimental results demonstrate that our resulting model,
Qwen-PeRL not only achieves superior performance on multi-image benchmarks but also generalizes
well to single-image tasks. As future work, we aim to investigate adaptive permutation strategies that
can dynamically adjust image order based on task difficulty or model uncertainty.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the key contributions of PeRL,
including the interleaved reasoning strategy and permutation-based training. These are
consistently discussed throughout the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Table 2
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: See equation 5 4 6
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Algorithm 1
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: Code will release after paper notification
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 5
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the high computational cost of large-scale RL training and the instability
across seeds, we did not report error bars or statistical tests. However, all experiments were
repeated under consistent conditions, and the observed trends were stable across multiple
benchmarks.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Supplemental Material
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. It does not involve
sensitive data, human subjects, or deployment scenarios, and all datasets used are publicly
available.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper presents a general reinforcement learning framework for multimodal
reasoning, without deploying or evaluating on downstream applications involving human
users or sensitive decisions. Therefore, we do not anticipate direct societal impacts.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Section 5
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets. All experiments are conducted
using publicly available datasets and existing open-source models.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or any research with human subjects.
All data used are publicly available and collected from existing datasets.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No relation with human
Guidelines: subjects

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Training and Evaluation Details

Table 4: Details of evaluation benchmarks.

Benchmark | Description | #samples
Mantis-eval | Multi-image General Understanding QA 217
BLINK Multi-image General Understanding QA 1901
MMIU Multi-image General Understanding QA 11698
MathVista Single-image Math Reasoning QA 1000 (testmini)
MathVerse Single-image Math Reasoning QA 3940
MathVision Single-image Math Reasoning QA 3040
Remi Multi-image General Reasoning 2600
MV-Math Multi-image Math Reasoning 2009

We train our model on 8xH100 GPUs using the GRPO-based framework. The training batch size is
128, with a micro-batch size of 4 per GPU. The maximum prompt and response lengths are 8192 and
2048 tokens, respectively. We adopt Qwen2.5-VL-7B-Instruct* as the backbone, enabling gradient
checkpointing and FSDP without offloading. KL loss is applied with a coefficient of 0.01, while
entropy gegularization is disabled. The model is optimized for 2 epochs with a learning rate of
1 x107°.

For evaluation, we use greedy decoding with temperature set to 0, top-p to 1, top-k to -1, and
a maximum generation length of 2048. Evaluation benchmarks include MathVista, MathVerse,
MathVision, and BLINK (configured via VLMEvalKit), while Mantis-Eval, MMIU, and MV-MATH
(evaluated with official code via vLLM). All evaluations follow consistent decoding settings.Details
are shown as Table 4 and prompt A.3

A.2 Case study

As shown in Fig 6, we conduct a detailed comparison of the response quality across different types
of models, including the proprietary model o4-mini-high, open-source base models, and previously
trained interleaved models. We observe that the base models exhibit various types of errors, which
can be broadly categorized into several patterns: missing relevant images, misinterpreting images,
producing incorrect answers despite correct reasoning, and reaching incorrect conclusions despite
accurate observations of details. For instance, in the beetle question shown above, Qwen frequently
makes errors where the reasoning is correct but the final answer is wrong, or where some relevant
visual information is overlooked. These are the types of failures we aim to address.

Besides, in case fig 8, we observe a consistent pattern in model behavior across the permutations of
images: the model exhibits a stronger alignment between the reference image and the image presented
first in the sequence of options. This suggests current VLMs have a positional bias in interleaved
vision tasks.

*https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct

22


https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct

Question: How many beetles are climbing on the balls in the image?

A. Four B. Five C. None of the choices provided D. Two E. One

Qwen 2.5 VL: <thinking> The image shows two beetles LLAVA-Interleave: <think> The left image shows a

actively engaged in rolling a ball of dung. There are no other  beetle on a ball. The right image shows two
beetles visible on the balls or in the immediate vicinity. beetles.

Therefore, the number of beetles climbing on the balls is Therefore, the number is three. </think>
two.</thinking> <answer> D. Two </answer> <answer> D.Two</answer>

04-mini-high: Ours:

<thinking>In the first image there are two beetles on the <thinking>...<thinking>

ball. In the second image there is one beetle on the ball. <answer>None of the choices provided</answer>

That makes three beetles in total, and three is not one of the
listed options.</thinking> <answer>None of the choices

provided</answer>

Figure 6: A showcase for motivation

Here is a statement describing these 2 images: The train in Which star is green?
one of the images has just come around a bend. Isittrue or  A. <image>B. <image>C. <image>

false?
(A) False
(B) True

* || K || X

Before

If image 3 is the reference image, which image of
the other two is more similar to the reference
image? Image 2 image 3

After

*x Kk X

Could you predict the series of actions in this video and
enumerate them in order. <image> <image> <image>
<image> <image> <image> <image> <image> . options:

A.'reach bowl, hold fork,
transfer soup, carry cup'
B. 'hold cup, reach cup, L

carry cup’

C."flip cup, hold plate,
pour juice, carry spoon’
D.'None of the choices
provided'

Figure 7: Training Data preprocessing pipeline explanation and several cases
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<image_1> <image_2> <image_3>

Before Permuation

Which image is more similar to the reference image <image_1>? Options: A. <image_2> B.
<image_3>

Qwen-2.5-VL-7B: To determine which image is more similar to the reference image, let’s
analyze the key elements of both images:

* Reference Image: 1) Features tall trees with a dense forest setting. 2) The lighting appears
to be natural, possibly early morning or late afternoon, with sunlight filtering through the
trees.

* Option A: 1) Also shows a forest scene with tall trees. 2) There is less mist or fog
compared to the reference image.

* Option B: 1) Displays a forest path surrounded by lush greenery. 2) There is no mist or
fog present, and the overall atmosphere is more open and less dense than the reference
image.

Comparing these elements, Option A is closer to the reference image because it maintains the
tall trees and dense forest setting. v’

After Permuation

Which image is more similar to the reference image <image_1>? Options: A. <image_3> B.
<image_2>

Qwen-2.5-VL-7B: To determine which image is more similar to the reference image, let’s
analyze the key elements of both images:

» Reference Image: 1) Features tall trees with a dense forest setting. 2) The lighting
suggests early morning or late afternoon, with sunlight filtering through the trees. 3) The
ground is covered with green foliage, and there is a misty atmosphere.

* Option A: 1) Also features a forest with tall trees. 2) There is a path visible, which is not
present in the reference image. 3) The lighting appears to be diffused, possibly due to the
mist, but it is less pronounced than in the reference image. 4) The ground is covered with
ferns and other greenery, similar to the reference image.

* Option B: 1) Features tall trees with a dense forest setting. 2) The lighting is bright and
direct, suggesting midday sun. 3) The ground is covered with green foliage, but the
overall scene lacks the misty atmosphere seen in the reference image.

Given this analysis, option B lacks the misty atmosphere and has brighter lighting, making it
less similar to the reference image. The image that is most similar to the Reference Image is
Option A. X

Figure 8: Case study demonstrating positional bias. The model correctly identifies the similar image
when presented first (Before Permutation) but fails when the order is swapped (After Permutation).



A.3 prompt
A.3.1 Prompt for data preprocessing

During the data preprocessing stage, we employed GPT-40 in conjunction with the prompts provided
below to reformat questions and perform semantic variation checks.

Format Rephrase

Your task is to convert a given QA conversation into a multiple-choice question format, and
determine whether the question follows the given question type.
Question Type Definition
1) A question is considered a Reference-Image Comparison if it satisfies all of the following
conditions:

* The question presents three or more images (e.g., "<image> <image> <image>").

* One image is clearly identified as the reference image (e.g., "image 1 is the reference").

* The question asks which of the remaining images is most similar to or most different
from the reference image.

» The answer options correspond only to the non-reference images.
2)...
Task Instructions
1) Convert the original QA pair into a multiple-choice question:

* Rephrase the assistant’s response into an answer option (e.g., "A", "B", "C").

» Use placeholder tokens (<image>) in both the question and the options.

* Include only the images being compared (exclude the reference image from the options).
» Format the question strictly according to the example below.

2) Determine the type of the question.

Output Format
Return a JSON object with the following structure:

{
"question": "<multiple-choice question in specified format>",
"answer": "<correct option letter>",
"question_type": "<ReferenceComparison or Other>"

}

Example

Input: "Question: Answer the following question: Here are three images: <image_1>
<image_2> <image_3>. If image 1 is the reference image, which image of the other two is
more similar to the reference image? Answer: The image that is more similar to the reference
image is image 2."

Qutput:
{
"question": "Answer the following question: Which image
is more similar to the reference image <image_1>7
Options: A. <image_ 2> B. <image 3>",
"answer": "A"
"question_type": "ReferenceComparison"
X
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Figure 9: Difference on advantage between Naive GRPO and Permuation GRPO during training
stage.

Semantic Variation Check

You will be given a question involving one or more images, which are represented using
image tokens. The token <image> represents an actual image. The tokens <image_1>,
<image_2>, etc., refer to specific images by their positions (e.g., <image_1> refers to the
first image, <image_2> to the second image).

Your task is to determine the following:
1. If only the order of the images (e.g., <image_1>, <image_2>, etc.) is changed, would
the answer to the question need to change?
2. Is the question structured such that a single main image appears in the question body,
and other images are referenced in the choices?

Respond in the following JSON format:

{
"should_change": true or false,
"is_multichoice_images": true or false

3

Note: This applies to both multiple-choice and fill-in-the-blank questions involving image
references.

A.3.2 Prompt for training and evaluation

Reasoning Format

Instruction:

You first think about the reasoning process as an internal monologue and then provide the
final answer.

The reasoning process must be enclosed within <think> </think> tags.

The final answer must be put in \boxed{}.

A.4 Adavantage Differences
As Fig 9 shows,the distinction becomes clearer when examining the advantage distributions during

training. For multi-image inputs, Naive GRPO yields a distribution sharply peaked around zero,
indicating that a large portion of training examples contribute negligible or ineffective gradient signals.
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In contrast, the permutation-based GRPO introduces greater input diversity by altering image order,
which encourages the model to genuinely capture positional biases. This diversification leads to more
informative advantage signals, facilitating more effective gradient updates during optimization.

A.5 Theoretical Analysis
Here’s a theoretical analysis of why PeRL is better than GRPO in reducing positional bias. Following
the notation, we start by defining GRPO’s optimization problem:

mo(o | x)

7Told(O | x)’ A(x70)> - ﬁKL(T&'g ” 7"'ref)7

meax Eznp Eowﬂold(.m) f€<
where the advantage is defined as
) = r(z,0) — EO’N‘ITold(-Im) [T(x,ol)]
\/Varo/w,,old(_‘m) [r(m, 0’)} +€

Recall that our reward is a verifiable reward that evaluates the correctness of a reasoning or the
execution of the code, meaning that

Az, 0

r(z,0) € {0,1}.

We note the probability of success p of the old policy:

p = peold(x) = PONWold('\I) (T(Z‘,O) = 1)'

Hence, we have for the mean and variance of a Bernoulli random variable:

Eo/ mora(-2)T (2, 0") = P, Vary o (-lo)7 (2, 0") = p(1 — p).

This results in the following advantage:

+(p) — l-p
A(z,0) = p(1 ;p) te

wZ (p) = m, if r(z,0) = 0.

, ifr(z,0) =1,

As established by Theorems 1 and 2 in [1], we obtain:

(o | x) = Zn%l(f) Tret(0 | ) exp (; [wj (Pr—1(2)) Lipr(z,0)=1} — wo (pn1(x))1{r(x,o>_o}D ,

where

Zu-1(0) = ps(e) x5 (s () ) + (1= (o) exp( = (s () )

Define

1

Pe poer (P) = X :
—Pref _ l 1
GRPO evolves as
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pgRPO (z) = P pres (z) (pg,liplo (x)) .

Similar to Theorems 1 and 2, we can show that PeRL updates as

PR (@) = he pros (@) (PFRT (7)),

PeRT‘(m) denotes the average accuracy of all permutations of the original input z.

where p; ™

Proof that PeRL has less positional bias than GRPO. For n = 0, we have

pgRPO(xmin) S pgeRL((Emin) S pgeRL(wmax) S PSRPO(ﬂCmax),

which holds because all models start from the same reference policy. Here, p(Zmin) and p(Zmax)
represent the minimum and maximum accuracies across all image permutations, and we assume these
correspond to the same permutations for all methods and do not change during training.

For iteration n — 1, assume

pglipio(xmin) S pypfflf(l'min) S pl:peluf(xmax) S pg}ilio(xmax)-

Since h is increasing for p € [1/2, 1], which holds for most of our training data, we obtain:

PERE (Zmax) = P pret (2 max) (pTPLeBIf(x)> S P prer (@max) (pfzeflf(xmw)) < P et (wmar) (pglir;o(xmaX)) = pgRPO(xmaX)~
Similarly,

pzeRL(xmin) Z pSRPO(xmin)~
Thus,

pSRPO (Imin) S prERL (‘Tmin) S pieRL (xmax) § pSRPO (xmax) .
By induction, this inequality holds for any step n under the assumption. This shows that PeRL policy’s
success probabilities are less sensitive to input permutations than GRPO’s, proving its effectiveness
in reducing positional bias.

Enhanced Generalization via Invariance. By forcing the policy to be robust to permutations,
we implicitly guide the model to learn an order-invariant representation. This means the model
must base its decisions on the semantic content of the images themselves, rather than on superficial
positional cues. Learning invariant representations is a classic and powerful principle for improving
generalization, as it ensures the model performs robustly on unseen data where permutations may
differ from the training set.

Improved Training Stability. Permutation also unintentionally increases the effective difficulty
for any given input z. This lowers the probability of the model answering all inputs correctly, which
in turn prevents the advantage estimate from collapsing toward zero and causing ineffective gradient
updates—an issue common with overly simple samples. This process ensures a more consistent
advantage signal for a single sample across its permutations (i.e., it reduces intra-group variance),
which fundamentally stabilizes the overall training process.
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