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Abstract
As Large Language Models (LLMs) exceed hu-
man capabilities, providing reliable human feed-
back for evaluating and aligning them, via stan-
dard frameworks such as Reinforcement Learn-
ing from Human Feedback, becomes challeng-
ing. This raises a fundamental question: how
can we leverage weaker (teacher) supervision to
elicit the full capabilities of a stronger (student)
model? This emerging paradigm, known as Weak-
to-Strong (W2S) generalization, however, also in-
troduces a key challenge as the strong student may
“overfit” to the weak teacher’s mistakes, resulting
in a notable performance degradation compared
to learning with ground-truth data. We show that
this overfitting problem occurs because learning
with weak supervision implicitly regularizes the
strong student’s policy toward the weak reference
policy. Building on this insight, we propose a
novel learning approach, called Weak Teacher
Evaluation of Strong Student Demonstrations or
EVE, to instead regularize the strong student to-
ward its reference policy. EVE’s regularization
intuitively elicits the strong student’s knowledge
through its own task demonstrations while relying
on the weaker teacher to evaluate these demonstra-
tions – an instance of formative learning. Exten-
sive empirical evaluations demonstrate that EVE
significantly outperforms existing W2S learning
approaches and exhibits significantly better ro-
bustness under unreliable feedback compared to
naive SFT and refinement approaches.

1. Introduction
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022; Christiano et al., 2017)
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has been a canonical framework for steering language
models (LMs) to align with human values based on
human demonstrations. This framework has demonstrated
impressive performance across a wide range of tasks, from
conversation to coding, where humans “can” provide
reliable supervision. In the future, as these AI models
reach or exceed human capabilities, they will be capable
of solving complex tasks that are difficult for humans to
supervise. For example, when these AI models acquire the
ability to generate a code project with millions of lines of
code or summarize an entire book with thousands of pages,
humans are unlikely to provide reliable feedback to align
these superhuman AI models effectively.

How can we align these superhuman AI models given the
likely unreliable human supervision? Burns et al. (2024)
study this question by using a smaller LLM to represent
unreliable human supervision on binary classification tasks.
Effectively, this “weaker” teacher is prone to make mis-
takes when supervising a “stronger” student model. They
observed a phenomenon called weak-to-strong (W2S) gener-
alization – a stronger model finetuned with labels generated
by a weaker model could outperform this weaker teacher
without even seeing the ground truth labels. Despite the
promising results, a key challenge in learning from weak su-
pervision is the risk of overfitting (Burns et al., 2024), where
the strong student inevitably learns to imitate the errors of
the weak teacher. Burns et al. (2024) study early-stopping
as an implicit regularization to prevent overfitting, but notes
that early-stopping does not constitute a valid method as it
unrealistically requires ground-truth labels.

This paper first provides a crucial theoretical insight into the
overfitting problem in W2S generalization. Specifically, by
representing the weak teacher as an Energy-Based Model
(EBM), we reveal that learning from weak supervision in-
volves maximizing the reward while simultaneously regular-
izing the strong student’s policy toward the weak reference
model. This process leads to a drawback: the strong student
not only inherits the informative supervision but also ampli-
fies the errors of the weak teacher, ultimately degrading the
student’s overall performance on the desired tasks (Hong
et al., 2024).

Building upon this insight, we propose a novel learning
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Figure 1: EVE and existing W2S generalization methods. Naive learning overfits the weak reference model, potentially
imitating its mistakes (e.g., “Eat a lot”). Refinement learning “refines” the weak supervision (i.e., “Do regular exercise”).
In contrast, EVE leverages the weak teacher as a reward function while eliciting the student’s reference model salient
knowledge

method, called Weak Teacher Evaluation of Strong Student
Demonstrations (EVE), to enable the strong student to elicit
its own (prior) knowledge of the task while relying on the
weak teacher to evaluate, or score, such demonstrations –
an instance of formative learning, effectively utilizing both
the knowledge of the weak teacher and the student’s refer-
ence model. As depicted in Fig. 1, EVE utilizes the weak
teacher’s demonstrations to prompt the strong student, al-
lowing it to generate its own training data reflecting its
understanding of the tasks. The generated samples are then
adjusted by the logarithmic ratio of the weak teacher’s pol-
icy pre- and post-alignment, which serves as a reward signal
to guide the strong student’s learning.

In summary, (1) we provide a theoretical characterization of
overfitting in W2S learning; then (2) we introduce EVE, an
approach that enables learning from strong student demon-
strations, where the weak teacher acts as a reward function
to evaluate the strong student’s outputs; finally, (3) we show
that EVE significantly outperforms naive W2S learning by
overcoming the overfitting issue, demonstrating the effec-
tiveness of utilizing the strong student’s critical thinking
ability under the weak teacher’s reward evaluation; surpris-
ingly, when learning from a weak and unreliable reward
signal, EVE – an off-policy method – achieves significantly
better performance to naive SFT and refinement approaches.

2. Related Work
2.1. Weak-to-strong Generalization

Burns et al. (2024) introduce a synthetic setup to study
whether a stronger model can generalize well with weaker
supervision, compared to training with high-quality or
ground-truth data. Prior efforts investigate W2S phenomena
only in binary classification setups, leaving other practical
alignment-relevant tasks (e.g., open-ended text generation
whose output has no fixed length and requires sharing vo-
cabulary size between the strong student and weak teacher)
largely under-explored (Ye et al., 2024; Cui et al., 2024;
Agrawal et al., 2024). Another line of work (Somerstep
et al., 2024; Ye et al., 2025; Zheng et al., 2024) leverages
the pre-trained knowledge of the strong student to refine
labels curated from the weak teacher, thereby improving the
supervision quality. Ye et al. (2025) study W2S generaliza-
tion on text-generation tasks, where they simulate unreliable
demonstrations and unreliable comparison feedback during
the alignment phase.

Different from the prior work, this paper extends W2S gen-
eralization beyond classification. We elicit the latent knowl-
edge of the strong student about the intended tasks, which
is then evaluated by the weak teacher’s reward model. Addi-
tionally, by interpreting learning from weak supervision as
reward maximization, our approach generalizes refinement-
based methods (Ye et al., 2025; Yang et al., 2024).
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2.2. Reinforcement Learning from Human Feedback

RLHF aims to align LMs with human preferences and values
(Christiano et al., 2017; Bai et al., 2022), and has demon-
strated impressive performance on established benchmarks
(OpenAI et al., 2024; Hugo Touvron, 2023; Xiong et al.,
2024a;b; Wang et al., 2024). However, the RLHF pipeline
incurs significant computational costs and requires a large
amount of high-quality human preference labels.

Recent advancements, such as Direct Alignment Algorithms
(DAAs) (Rafailov et al., 2023; Tang et al., 2024), bypass
the need for an explicit reward model and directly train
the LMs on the human preference data. Reinforcement
Learning with AI Feedback (Pang et al., 2024) uses a well-
trained language model (e.g., GPT-4 or Claude-3.5 Sonnet)
to provide preference feedback as a substitute for human
supervision. More recently, Ye et al. (2025) study whether
standard RLHF remains effective under unreliable feedback.

3. Preliminaries
3.1. LLM Alignment with Human Preferences

LLM alignment can be viewed as reward-maximization with
KL-constrained:

max
πθ

Ex∼D,y∼πθ(·|x) [r(x, y)]− βKL(πθ||πref) (1)

where y is a sampled response from πθ, β controls the trade-
off between maximizing the reward and deviation from
the reference model πref, and r is the reward function that
captures human preferences.

The optimal solution to Eq.(1) results in a duality be-
tween the reward function r(x, y) and the language model
πθ(y|x):

rθ(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x) (2)

where Z(x) =
∑

y πref(y|x) exp
(

1
β r(x, y)

)
is the normal-

ization factor.

3.2. Offline Fine-Tuning Methods for Reward
Maximization

Offline Supervised Methods. Directly optimizing objective
1 require repeated sampling, which can be computationally
expensive. This alternative class of methods, including
RAFT (Dong et al., 2023) and RWR (Peters and Schaal,
2007), minimizes a weighted maximum likelihood objective.
Formally, these methods first sample K completions per
prompt x from the reference model πref, i.e., y1,··· ,K ∼
πref(·|x(i)). These responses are then weighted by a non-
negative weighting function F (x, yk|y1,··· ,K) conditioned

on the other sampled responses and maximize:

max
πθ

E(x,y1,···K)∼Doff-sup [log πθ(yi|x) · F (x, yi|y1,··· ,K)]

Intuitively, since F (x, y|y1,···K) is always non-negative,
these methods always increase the likelihood of responses
generated from πref. Responses that are more preferred will
be assigned higher weights, there is no negative gradient
effect to push down the likelihood of suboptimal responses.

3.3. Weak-to-Strong Evaluation Pipeline

We review the W2S evaluation pipeline in (Burns et al.,
2024), which consists of three stages, as follows:

(1) Weak Teacher Creation: The weak teacher is created
by fine-tuning a small pre-trained model to align with human
preferences. We utilize SFT+DPO, a standard preference
learning pipeline, to ensure the weak model acquires knowl-
edge about alignment tasks. The resulting model is denoted
as πweak. textbf(2) Strong Student Learning with Weak Su-
pervision: The weak model is then used to generate weak
supervision data Dweak = {x(i), y(i)} where x(i) and y(i)

are the prompt and the generated response from πweak, re-
spectively. The strong model πθ is then fine-tuned using the
weak supervision data with the SFT objective.

(3) Strong Student Learning with Ground-truth Super-
vision: Another strong model πstrong is fine-tuned with the
Ground-truth human labels to establish the upper-bound per-
formance. To ensure that this aligned model fully acquires
the target task’s capabilities, it goes through an additional,
preference learning phase (e.g., DPO).

The W2S generalization performance of πθ can be measured
by Performance Gap Recovered (PGR):

PGR =
Pweak-to-strong − Pweak

Pstrong − Pweak

where Pweak-to-strong, Pweak, and Pstrong are the task perfor-
mance of πθ, πweak, and πstrong, respectively.

4. Formative Learning with EVE

4.1. Learning from Weak Supervision Implicitly Aligns
with Weak Reference Model

This section connects W2S learning to reward maximization
and builds the theory behind the model’s behavior, i.e., its
generalization characteristics.

We begin by representing the weak teacher in the form of
energy-based models (Rafailov et al., 2023; Levine, 2018;
Haarnoja et al., 2017):

πweak(y|x) = 1

Z(x)
πweak

ref (y|x) exp
(
rweak(x, y)/β

)
3
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Figure 2: Learning from weak supervision as reward
maximization. Left: the strong model πθ learns to max-
imize the implicit reward rweak(x, y) = β log πweak

align (y|x) -
β log πweak

ref (y|x). Right: the strong model also learns to
imitate the weak reference model πweak

ref ’s mistakes, leading
to performance degradation (in PGR).

where πweak
ref is the SFT version of πweak.

Proposition 4.1. W2s generalization with a weak teacher
πweak(y|x) and a strong student πθ (the training model) can
be cast as the following optimization problem:

min
πθ

KL
(
πweak||πθ

)
(3)

s.t πweak = argmin
π

KL
(
π||πEBM)

where πEBM(y|x) ∝ πweak
ref (y|x) exp (r(x, y)/β).

This shows that imitating the weak teacher can be seen as
finding an EBM policy πEBM, which is the optimal solution
in the lower-level objective. This leads to the following
theorem.

Theorem 4.2. The optimal solution to W2S generalization is
equivalent to the optimal solution in the following objective:

max
πθ

Ex∼D,y∼πθ(·|x)
[
rweak(x, y)

]
− λKL(πθ||πweak

ref ) (4)

Proof Sketch. Notice that the objective for training the
strong student, and the reverse KL share the same optimal
solution πθ. In addition, it can be shown that minimizing
the reverse KL between the strong student and the weak
teacher,

min
πθ

KL
(
πθ||πweak) , (5)

is equivalent to maximizing the KL-constrained reward ob-
jective in Eq. (4).

Theorem 4.2 provides a key insight: imitating the weak
teacher maximize an implicit reward, rweak(x, y) =
β log πweak(y|x) − β log πweak

ref (y|x), while regularizing
(with KL objective) the strong student toward the weak
reference model πweak

ref . Consequently, instead of aiming
to elicit knowledge of the strong student, existing W2S
learning remains confined to the knowledge of the weak
model, which may adversely impact the strong student’s
performance.

4.2. Suboptimal Weak-to-Strong Generalization toward
Weak Reference Model

We empirically confirm the theoretical insight in the pre-
vious section. Specifically, we analyze the W2S train-
ing progression on Dweak: at each checkpoint, we gener-
ate responses using the corresponding intermediate model
with the same set of prompts, from which we calcu-
late the implicit reward rweak(x, y) = β log πweak(y|x) −
β log πweak

ref (y|x), the divergence KL(πθ||πweak
ref ), and the

PGR.

Fig. 2 shows that while the strong model learns to maximize
the implicit reward (Left), the learned policy is also regular-
ized towards the weak reference model πweak

ref , indicated by
the consistently low KL divergence KL(πθ||πweak

ref ) shortly
after the training progresses (Right). Moreover, we also
observe that the PGR, as measured by the golden reward
function, decreases significantly (Right). This suggests that
imitating the weak reference model πweak

ref (and potentially
inheriting its mistakes) negatively impacts the performance
of the strong student.

4.3. EVE: Eliciting Strong Student Knowledge

Motivated by the connection between imitating the weak
teacher and reward maximization, we “generalize” the KL-
constrained reward maximization learning of the strong
student π:

max
πθ

Ex∼D,y∼πθ(·|x)
[
rweak(x, y)

]
− λKL(πθ||π̂) (6)

where λ controls the trade-off between maximizing the re-
ward and deviation from a regularization policy π̂(y|x).
Next, we propose one specific choice of the regularization
policy π̂ that can facilitate the elicitation of the strong stu-
dent’s knowledge, thereby enhancing W2S generalization.

The choice of regularization policy π̂. Burns et al. (2024)
interpret W2S generalization in terms of saliency: some
tasks are already salient to the strong student; in this view,
the role of the weak teacher is to elicit the student’s latent
knowledge rather than enforcing naive imitation of the weak
teacher’s own demonstrations. Inspired by this interpreta-
tion, we propose to regularize the learning policy toward the
strong student pre-trained model, i.e., π̂(y|x) = πstrong

ref (y|x).
This design choice serves an important goal: to encourage
the learned policy πθ to remain close to the initial strong
reference model πstrong

ref , thereby facilitating the elicitation
of the student’s prior knowledge while simultaneously in-
corporating assessment from the weak teacher. Similar to
(Burns et al., 2024), to elicit the strong student’s knowledge
of the task, we first create the weak teacher’s demonstra-
tions, which are then used in few-shot prompting the strong
reference model πstrong

ref to generate task-relevant outputs, as
πstrong

ref is not trained to follow instructions.
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Figure 3: Evolution of PGR (%). We observe clear signs of overfitting to the weak teacher’s errors well before finishing a
single epoch. Notably, when there is a large gap between the strong student and the weak teacher, the student reaches its
best performance within the first 10% of the epoch. EVE has little to no PGR degradation and significantly outperforms
naive W2S learning (SFT).

Optimization. Directly optimizing the objective in Eq. (6)
can incur significant computational costs, as it requires
repeated sampling from the strong student πθ inside the
training loop (Rafailov et al., 2023). Following prior
work (Rafailov et al., 2023; Peters and Schaal, 2007; Peng
et al., 2019), it is straightforward to show that the optimal
policy to this KL-constrained objective takes the form:

πr(y|x) =
1

Z(x)
exp (r(x, y)/λ)πstrong

ref (y|x)

where Z(x) =
∑

y π
strong
ref (y|x) exp (r(x, y)/λ) is the nor-

malization constant. We can also leverage the duality
between the reward function and the weak teacher πweak

(Rafailov et al., 2023). Given the optimal policy πr, we
can then formulate a supervised learning objective for the
parametrized strong student πθ to match with this optimal
policy, resulting in the following objective:

max
πθ

J (πθ) = max
πθ

Ex∼D,y∼πstrong
ref (·|x)[(

πweak(y|x)/πweak
ref (y|x)

)β/λ
Z(x)

· log πθ(y|x)
]

where the β/λ ratio controls the impact of the weak-
supervision reward signal during the strong student’s up-
dates. A high β/λ ratio leads to a more uniform update,
where all samples are assigned similar weights; i.e., there
will be no weak supervision in learning. Conversely, a low
β/λ ratio results in a more focused policy update that prior-
itizes samples with high weak-supervision reward signals.
This objective avoids sampling directly from πθ on every
update as πθ changes during training; instead, we can sam-
ple the responses from the fixed πstrong

ref once at the beginning
of the optimization, which is significantly more efficient.

We also estimate the intractable normalization factor Z(x)
using Self-Normalizing Importance Sampling (Owen, 2013).

Formally, given K > 1 i.i.d. completions y1, · · · , yN ∼
πstrong

ref (·|x) drawn from strong reference model, we can
define an empirical distribution by normalizing the log-
ratio f(x, y) = β

λ

(
log πweak(y|x)− log πweak

ref (y|x)
)

over
K samples:

F (x, yi|y1,··· ,K) =
K · exp

(
f(x, yi)

)∑K
k=1 exp (f(x, y

k))
(7)

where the normalization is estimated by Z(x) ≈
1
K

∑K
k=1 exp

(
f(x, yk)

)
. In summary, the final estimate

is:

J (πθ) = Ex∼D,y1,··· ,K∼πstrong
ref (·|x)

[
log πθ(y

i|x)·
F (x, yi|y1,··· ,K)

]
We refer to this W2S learning approach as EVE. EVE can be
seen as an offline supervised method, where the weighting
function is the exponential of the implicit reward defined in
Eq. (2).

5. Experiments
In this section, we empirically evaluate EVE’s W2S general-
ization performance on controlled-summarization tasks:
Setup. We choose the representative Reddit TL;DR sum-
marization (Stiennon et al., 2020) dataset and follow the
synthetic setup from (Gao et al., 2023; Zhou et al., 2024;
Rafailov et al., 2023), where we train a golden reward model
rgold(x, y) to label synthetic preference data Dgolden for fine-
tune weak-aligned model and evaluation. We use GPT2-
series (Radford et al., 2019) (GPT2-Base/Medium/Large) as
weak teachers and a more advanced LLama-3.2-3B model
(MetaAI, 2024a;b) as the strong student. The weak model
πweak is the aligned model with DPO (Rafailov et al., 2023)
from Dgolden.
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Figure 4: PGR (%) of SFT, Refinement and EVE.

Baselines. In additional to EVE, we evaluate several existing
W2S approaches, including SFT – which naively fine-tunes
the strong student on weak supervision data Dweak – and
(2) Refinement (Somerstep et al., 2024; Yang et al., 2024)
– which prompts the strong student to refine the responses
generated by the weak teacher and fine-tunes the strong
student with the refined responses.

Results. Fig. 4 shows the PGR results. EVE consistently out-
performs the other baselines across all weak teachers. No-
tably, under the supervision of GPT-2 (the weakest model),
EVE achieves a nearly 25% performance boost over SFT.
Moreover, SFT achieves the peak performance early in train-
ing (around 10% of the epoch),

but its performance steadily declines thereafter. In contrast,
EVE demonstrates minimal to no degradation in PGR
over the course of the training process. As discussed in
Section 4, this can be attributed to the ability of EVE to more
effectively balance learning from the weak teacher and the
salient knowledge of the strong reference model.

Impact of β/λ ratio. We investigate the impact of β/λ on
W2S performance. Fig. 5 illustrates the impact of β/λ on
PGR across different weak teachers. Setting β/λ around
1.0 achieves optimal or near-optimal performance. Conse-
quently, we default β/λ = 1.0 in all experiments, eliminat-
ing the need for hyperparameter tuning that requires
ground-truth labels. Without the weak supervision (i.e.,
β/λ = ∞), the performance significantly decreases; this
confirms the benefit of learning from the weak teacher’s
reward signals. Conversely, setting β/λ to a very low
value can also degrade the performance. One possible
explanation is that, as β/λ → 0, the weighting function
F (x, yi|y1,··· ,K) converges to a one-hot distribution, where
the response with the highest reward is assigned a weight of
1 and the rest are ignored. This limits learning from a few
samples, making it susceptible to simply memorizing the
training data (Park et al., 2024).

Scaling dataset size. We additionally study the impact
of scaling the number of responses K per prompt. Fig. 6
shows the performance of EVE and SFT. EVE demonstrates
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Figure 5: PGR (%) of various β/λ ratios in EVE’s objective.

improved performance as we increase the size of the training
dataset (especially as the weak teacher is stronger), while
SFT’s performance decreases. This can be explained by
the fact that as the training data size increases, the strong
student also becomes more susceptible to learning the weak
teacher’s mistakes. In contrast, EVE is designed to avoid
this overfitting problem, thus, it can leverage the increased
supervision significantly better.
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Figure 6: Scaling the training size (32k, 64k and 128k) in
EVE and SFT (trained for one epoch). EVE shows notable
improvement as the training size increases, while SFT suf-
fers from overfitting.

6. Conclusion and Discussion
This paper studies the W2S generalization and provides a
new theoretical perspective on imitating the weak teacher.
We show that imitating the weak teacher is equivalent to
maximizing an implicit reward and regularizing the student
towards the weak reference policy, which can amplify the
bias or mistakes of this supervised fine-tuned weak teacher
while not effectively eliciting knowledge from the strong
student. Building upon this observation, we propose EVE,
which directly optimizes the strong student using an RLHF
objective with the “forward KL” regularization towards its
latent knowledge of the given task. Extensive empirical
results demonstrate that EVE achieves superior performance
to existing W2S baselines and effectively mitigates the over-
fitting problem in W2S generalization.

Impact Statement
Our work demonstrates a positive societal impact with bet-
ter alignment with human values, including helpfulness and
harmlessness. We do not expect any negative societal im-
pacts directly resulting from the contributions presented in
our paper.
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